Abstract

Berberine (BBR), a traditional Chinese herb extract medicine, reveals some anticancer effects in leukemia, but it remains controversial about the molecular mechanism of BBR-induced leukemia cell apoptosis. In this study, combining Raman spectrum and spectral imaging, both the biochemical changes of BBR-induced Jurkat cell apoptosis and the precise distribution of BBR in single cell are presented. In contrast, we also show the corresponding results of Jatrorrhizine (JTZ) and Palmatine (PMT), two structural analogues of BBR. It is found that all three structural analogues can induce cell apoptosis by breaking DNA and the main action sites are located in phosphate backbone and base pair groups, but their action on cell cycle are different, in which BBR leads to the S phase arrest while JTZ and PMT are on the G2 phase arrest. Moreover, from the Raman spectra of DNA treated with different drugs, we find that the content of phosphate backbone and base pair groups in BBR-treated DNA are larger than those in JTZ or PMT. And this result reflects the strong capability of BBR breaking DNA backbone relative to JTZ or PMT, suggesting that the existence of methylene-dioxy on the 2, 3 units of A ring on the quinoline ring can greatly enhance the capability of BBR breaking DNA backbone, so the action effect of BBR-induced Jurkat cell apoptosis is better than those of PMT or JTZ. Further, by using Raman spectral imaging approach, we achieve the precise distribution of BBR in single cell, it is found that the receptor-mediated BBR targeting delivery based single-wall carbon nanotube and folic acid (SWNT/FA) reveals excellent performance in BBR targeting delivery relative to the conventional BBR diffusion approach. Importantly, these results demonstrate that Raman spectrum and spectral imaging should be a powerful tool to study the molecular mechanism of drug-induced cell apoptosis and evaluate the efficiency of drug delivery system.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Detection of doxorubicin-induced apoptosis of leukemic T-lymphocytes by laser tweezers Raman spectroscopy

Tobias J. Moritz, Douglas S. Taylor, Denise M. Krol, John Fritch, and James W. Chan
Biomed. Opt. Express 1(4) 1138-1147 (2010)

A simple and rapid detection of tissue adhesive-induced biochemical changes in cells and DNA using Raman spectroscopy

Gyeong Bok Jung, Young Ju Lee, Gihyun Lee, and Hun-Kuk Park
Biomed. Opt. Express 4(11) 2673-2682 (2013)

References

  • View by:
  • |
  • |
  • |

  1. G. H. Lu, L. M. Wang, and J. M. Chen, “Determination and utilization of berberine in plants of Berberis L,” J. Chin. Tradit. Herbal Drugs 30(6), 428–430 (1999).
  2. S. H. Xu, M. S. He, and X. P. Liu, “Berberine contents on B. triacanthophora,” J Chin Med Mater 26(3), 183–184 (2003).
  3. Y. Wang, M. M. Kheir, Y. Chai, J. Hu, D. Xing, F. Lei, and L. Du, “Comprehensive study in the inhibitory effect of berberine on gene transcription, including TATA box,” PLoS One 6(8), e23495 (2011).
    [Crossref] [PubMed]
  4. Y. Pazhang, S. Ahmadian, M. Mahmoudian, and M. Shafiezadeh, “Berberine-induced apoptosis via decreasing the survivin protein in K562 cell line,” Med. Oncol. 28(4), 1577–1583 (2011).
    [Crossref] [PubMed]
  5. H. L. Wu, C. Y. Hsu, W. H. Liu, and B. Y. Yung, “Berberine-induced apoptosis of human leukemia HL-60 cells is associated with down-regulation of nucleophosmin/B23 and telomerase activity,” Int. J. Cancer 81(6), 923–929 (1999).
    [Crossref] [PubMed]
  6. J. M. Hwang, H. C. Kuo, T. H. Tseng, J. Y. Liu, and C. Y. Chu, “Berberine induces apoptosis through a mitochondria/caspases pathway in human hepatoma cells,” Arch. Toxicol. 80(2), 62–73 (2006).
    [Crossref] [PubMed]
  7. Y. Kobayashi, Y. Yamashita, N. Fujii, K. Takaboshi, T. Kawakami, M. Kawamura, T. Mizukami, and H. Nakano, “Inhibitors of DNA topoisomerase I and II isolated from the Coptis rhizomes,” Planta Med. 61(5), 414–418 (1995).
    [Crossref] [PubMed]
  8. S. Letasiová, S. Jantová, M. Miko, R. Ovádeková, and M. Horváthová, “Effect of berberine on proliferation, biosynthesis of macromolecules, cell cycle and induction of intercalation with DNA, dsDNA damage and apoptosis in Ehrlich ascites carcinoma cells,” J. Pharm. Pharmacol. 58(2), 263–270 (2006).
    [Crossref] [PubMed]
  9. T. X. Wang and X. H. Yang, “Reversal effect of isotetrandrine, an isoquinoline alkaloid extracted from Caulis Mahoniae, on P-glycoprotein-mediated doxorubicin-resistance in human breast cancer (MCF-7/DOX) cells,” Yao Xue Xue Bao 43(5), 461–466 (2008).
    [PubMed]
  10. H. G. Hambright, I. S. Batth, J. Xie, R. Ghosh, and A. P. Kumar, “Palmatine inhibits growth and invasion in prostate cancer cell: Potential role for rpS6/NFκB/FLIP,” Mol. Carcinog. 54(10), 1227–1234 (2015).
    [Crossref] [PubMed]
  11. J. Wu, Q. Xiao, N. Zhang, C. Xue, A. W. Leung, H. Zhang, Q. J. Tang, and C. Xu, “Palmatine hydrochloride mediated photodynamic inactivation of breast cancer MCF-7 cells: Effectiveness and mechanism of action,” Photodiagn. Photodyn. Ther. 15, 133–138 (2016).
    [Crossref] [PubMed]
  12. R. Liu, Z. Cao, Y. Pan, G. Zhang, P. Yang, P. Guo, and Q. Zhou, “Jatrorrhizine hydrochloride inhibits the proliferation and neovascularization of C8161 metastatic melanoma cells,” Anticancer Drugs 24(7), 667–676 (2013).
    [Crossref] [PubMed]
  13. G. J. Puppels, F. F. de Mul, C. Otto, J. Greve, M. Robert-Nicoud, D. J. Arndt-Jovin, and T. M. Jovin, “Studying single living cells and chromosomes by confocal Raman microspectroscopy,” Nature 347(6290), 301–303 (1990).
    [Crossref] [PubMed]
  14. W. L. Peticolas, “Raman spectroscopy of DNA and proteins,” Methods Enzymol. 246, 389–416 (1995).
    [Crossref] [PubMed]
  15. R. Buckmaster, F. Asphahani, M. Thein, J. Xu, and M. Zhang, “Detection of drug-induced cellular changes using confocal Raman spectroscopy on patterned single-cell biosensors,” Analyst (Lond.) 134(7), 1440–1446 (2009).
    [Crossref] [PubMed]
  16. G. B. Jung, Y. J. Lee, G. Lee, and H. K. Park, “A simple and rapid detection of tissue adhesive-induced biochemical changes in cells and DNA using Raman spectroscopy,” Biomed. Opt. Express 4(11), 2673–2682 (2013).
    [Crossref] [PubMed]
  17. D. W. Shipp, F. Sinjab, and I. Notingher, “Raman spectroscopy: techniques and applications in the life sciences,” Adv. Opt. Photonics 9(2), 315 (2017).
    [Crossref]
  18. G. B. Jung, J. E. Huh, H. J. Lee, D. Kim, G. J. Lee, H. K. Park, and J. D. Lee, “Anti-cancer effect of bee venom on human MDA-MB-231 breast cancer cells using Raman spectroscopy,” Biomed. Opt. Express 9(11), 5703–5718 (2018).
    [Crossref] [PubMed]
  19. J. W. Chan, D. K. Lieu, T. Huser, and R. A. Li, “Label-free separation of human embryonic stem cells and their cardiac derivatives using Raman spectroscopy,” Anal. Chem. 81(4), 1324–1331 (2009).
    [Crossref] [PubMed]
  20. H. J. Byrne, F. Bonnier, A. Casey, M. Maher, J. McIntyre, E. Efeoglu, and Z. Farhane, “Advancing Raman microspectroscopy for cellular and subcellular analysis: towards in vitro high-content spectralomic analysis,” Appl. Opt. 57(22), E11–E19 (2018).
    [Crossref] [PubMed]
  21. J. Gala de Pablo, F. J. Armistead, S. A. Peyman, D. Bonthron, M. Lones, S. Smith, and S. D. Evans, “Biochemical fingerprint of colorectal cancer cell lines using label-free live single-cell Raman spectroscopy,” J. Raman Spectrosc. 49(8), 1323–1332 (2018).
    [Crossref]
  22. S. Stewart, H. Kirschner, P. J. Treado, R. Priore, M. Tretiakova, and J. K. Cohen, “Distinguishing between renal oncocytoma and chromophobe renal cell carcinoma using Raman molecular imaging,” J. Raman Spectrosc. 45(4), 274–280 (2014).
    [Crossref]
  23. C. Krafft, M. Schmitt, I. W. Schie, D. Cialla-May, C. Matthäus, T. Bocklitz, and J. Popp, “Label-Free Molecular Imaging of Biological Cells and Tissues by Linear and Nonlinear Raman Spectroscopic Approaches,” Angew. Chem. Int. Ed. Engl. 56(16), 4392–4430 (2017).
    [Crossref] [PubMed]
  24. B. Prats Mateu, E. Harreither, M. Schosserer, V. Puxbaum, E. Gludovacz, N. Borth, N. Gierlinger, and J. Grillari, “Label-free live cell imaging by Confocal Raman Microscopy identifies CHO host and producer cell lines,” Biotechnol. J. 12(1), 1600037 (2017).
    [Crossref] [PubMed]
  25. P. Heraud, M. F. Cowan, K. M. Marzec, B. L. Møller, C. K. Blomstedt, and R. Gleadow, “Label-free Raman hyperspectral imaging analysis localizes the cyanogenic glucoside dhurrin to the cytoplasm in sorghum cells,” Sci. Rep. 8(1), 2691 (2018).
    [Crossref] [PubMed]
  26. R. Li, R. Wu, L. Zhao, Z. Hu, S. Guo, X. Pan, and H. Zou, “Folate and iron difunctionalized multiwall carbon nanotubes as dual-targeted drug nanocarrier to cancer cells,” Carbon 49(5), 1797–1805 (2011).
    [Crossref]
  27. Q. Guo, X. T. Shen, Y. Y. Li, and S. Q. Xu, “Carbon nanotubes-based drug delivery to cancer and brain,” J. Huazhong Univ. Sci. Technolog. Med. Sci. 37(5), 635–641 (2017).
    [PubMed]
  28. N. K. Mehra and N. K. Jain, “Multifunctional hybrid-carbon nanotubes: new horizon in drug delivery and targeting,” J. Drug Target. 24(4), 294–308 (2016).
    [Crossref] [PubMed]
  29. S. Kaura, N. K. Mehraa, K. Jaina, N. K. Jain, “Development and evaluation of targeting ligand-anchored CNTs as prospective targeted drug delivery system” J. Taylor & Francis, 2169–141X (Online) (2016).
  30. P. Liu, J. H. Li, Z. W. Tu, Z. Y. Guo, Z. F. Zhuang, and Y. F. Xia, “Discrimination of NPC cell lines associated with malignant types using Raman spectroscopy,” J. Laser Phys. 22(11), 1682–1688 (2012).
    [Crossref]
  31. K. le Roux, L. C. Prinsloo, A. A. Hussein, and N. Lall, “A micro-Raman spectroscopic investigation of leukemic U-937 cells treated with Crotalaria agatiflora Schweinf and the isolated compound madurensine,” Spectrochim. Acta A Mol. Biomol. Spectrosc. 95(5), 547–554 (2012).
    [Crossref] [PubMed]
  32. P. Krishnan and K. F. Bastow, “The 9-position in berberine analogs is an important determinant of DNA topoisomerase II inhibition,” Anticancer Drug Des. 15(4), 255–264 (2000).
    [PubMed]
  33. Y. X. Zhang, X. F. Zhang, and Y. L. Tang, “Studies of the Interactions between Three Protoberberine Alkaloids and Bcl-2 by Fluorescence Spectroscopy,” J. Acta Chimica Sinica 69(2), 247–251 (2011).
  34. M. Franceschin, L. Rossetti, A. D’Ambrosio, S. Schirripa, A. Bianco, G. Ortaggi, M. Savino, C. Schultes, and S. Neidle, “Natural and synthetic G-quadruplex interactive berberine derivatives,” Bioorg. Med. Chem. Lett. 16(6), 1707–1711 (2006).
    [Crossref] [PubMed]

2018 (4)

G. B. Jung, J. E. Huh, H. J. Lee, D. Kim, G. J. Lee, H. K. Park, and J. D. Lee, “Anti-cancer effect of bee venom on human MDA-MB-231 breast cancer cells using Raman spectroscopy,” Biomed. Opt. Express 9(11), 5703–5718 (2018).
[Crossref] [PubMed]

H. J. Byrne, F. Bonnier, A. Casey, M. Maher, J. McIntyre, E. Efeoglu, and Z. Farhane, “Advancing Raman microspectroscopy for cellular and subcellular analysis: towards in vitro high-content spectralomic analysis,” Appl. Opt. 57(22), E11–E19 (2018).
[Crossref] [PubMed]

J. Gala de Pablo, F. J. Armistead, S. A. Peyman, D. Bonthron, M. Lones, S. Smith, and S. D. Evans, “Biochemical fingerprint of colorectal cancer cell lines using label-free live single-cell Raman spectroscopy,” J. Raman Spectrosc. 49(8), 1323–1332 (2018).
[Crossref]

P. Heraud, M. F. Cowan, K. M. Marzec, B. L. Møller, C. K. Blomstedt, and R. Gleadow, “Label-free Raman hyperspectral imaging analysis localizes the cyanogenic glucoside dhurrin to the cytoplasm in sorghum cells,” Sci. Rep. 8(1), 2691 (2018).
[Crossref] [PubMed]

2017 (4)

D. W. Shipp, F. Sinjab, and I. Notingher, “Raman spectroscopy: techniques and applications in the life sciences,” Adv. Opt. Photonics 9(2), 315 (2017).
[Crossref]

C. Krafft, M. Schmitt, I. W. Schie, D. Cialla-May, C. Matthäus, T. Bocklitz, and J. Popp, “Label-Free Molecular Imaging of Biological Cells and Tissues by Linear and Nonlinear Raman Spectroscopic Approaches,” Angew. Chem. Int. Ed. Engl. 56(16), 4392–4430 (2017).
[Crossref] [PubMed]

B. Prats Mateu, E. Harreither, M. Schosserer, V. Puxbaum, E. Gludovacz, N. Borth, N. Gierlinger, and J. Grillari, “Label-free live cell imaging by Confocal Raman Microscopy identifies CHO host and producer cell lines,” Biotechnol. J. 12(1), 1600037 (2017).
[Crossref] [PubMed]

Q. Guo, X. T. Shen, Y. Y. Li, and S. Q. Xu, “Carbon nanotubes-based drug delivery to cancer and brain,” J. Huazhong Univ. Sci. Technolog. Med. Sci. 37(5), 635–641 (2017).
[PubMed]

2016 (2)

N. K. Mehra and N. K. Jain, “Multifunctional hybrid-carbon nanotubes: new horizon in drug delivery and targeting,” J. Drug Target. 24(4), 294–308 (2016).
[Crossref] [PubMed]

J. Wu, Q. Xiao, N. Zhang, C. Xue, A. W. Leung, H. Zhang, Q. J. Tang, and C. Xu, “Palmatine hydrochloride mediated photodynamic inactivation of breast cancer MCF-7 cells: Effectiveness and mechanism of action,” Photodiagn. Photodyn. Ther. 15, 133–138 (2016).
[Crossref] [PubMed]

2015 (1)

H. G. Hambright, I. S. Batth, J. Xie, R. Ghosh, and A. P. Kumar, “Palmatine inhibits growth and invasion in prostate cancer cell: Potential role for rpS6/NFκB/FLIP,” Mol. Carcinog. 54(10), 1227–1234 (2015).
[Crossref] [PubMed]

2014 (1)

S. Stewart, H. Kirschner, P. J. Treado, R. Priore, M. Tretiakova, and J. K. Cohen, “Distinguishing between renal oncocytoma and chromophobe renal cell carcinoma using Raman molecular imaging,” J. Raman Spectrosc. 45(4), 274–280 (2014).
[Crossref]

2013 (2)

R. Liu, Z. Cao, Y. Pan, G. Zhang, P. Yang, P. Guo, and Q. Zhou, “Jatrorrhizine hydrochloride inhibits the proliferation and neovascularization of C8161 metastatic melanoma cells,” Anticancer Drugs 24(7), 667–676 (2013).
[Crossref] [PubMed]

G. B. Jung, Y. J. Lee, G. Lee, and H. K. Park, “A simple and rapid detection of tissue adhesive-induced biochemical changes in cells and DNA using Raman spectroscopy,” Biomed. Opt. Express 4(11), 2673–2682 (2013).
[Crossref] [PubMed]

2012 (2)

P. Liu, J. H. Li, Z. W. Tu, Z. Y. Guo, Z. F. Zhuang, and Y. F. Xia, “Discrimination of NPC cell lines associated with malignant types using Raman spectroscopy,” J. Laser Phys. 22(11), 1682–1688 (2012).
[Crossref]

K. le Roux, L. C. Prinsloo, A. A. Hussein, and N. Lall, “A micro-Raman spectroscopic investigation of leukemic U-937 cells treated with Crotalaria agatiflora Schweinf and the isolated compound madurensine,” Spectrochim. Acta A Mol. Biomol. Spectrosc. 95(5), 547–554 (2012).
[Crossref] [PubMed]

2011 (4)

R. Li, R. Wu, L. Zhao, Z. Hu, S. Guo, X. Pan, and H. Zou, “Folate and iron difunctionalized multiwall carbon nanotubes as dual-targeted drug nanocarrier to cancer cells,” Carbon 49(5), 1797–1805 (2011).
[Crossref]

Y. X. Zhang, X. F. Zhang, and Y. L. Tang, “Studies of the Interactions between Three Protoberberine Alkaloids and Bcl-2 by Fluorescence Spectroscopy,” J. Acta Chimica Sinica 69(2), 247–251 (2011).

Y. Wang, M. M. Kheir, Y. Chai, J. Hu, D. Xing, F. Lei, and L. Du, “Comprehensive study in the inhibitory effect of berberine on gene transcription, including TATA box,” PLoS One 6(8), e23495 (2011).
[Crossref] [PubMed]

Y. Pazhang, S. Ahmadian, M. Mahmoudian, and M. Shafiezadeh, “Berberine-induced apoptosis via decreasing the survivin protein in K562 cell line,” Med. Oncol. 28(4), 1577–1583 (2011).
[Crossref] [PubMed]

2009 (2)

R. Buckmaster, F. Asphahani, M. Thein, J. Xu, and M. Zhang, “Detection of drug-induced cellular changes using confocal Raman spectroscopy on patterned single-cell biosensors,” Analyst (Lond.) 134(7), 1440–1446 (2009).
[Crossref] [PubMed]

J. W. Chan, D. K. Lieu, T. Huser, and R. A. Li, “Label-free separation of human embryonic stem cells and their cardiac derivatives using Raman spectroscopy,” Anal. Chem. 81(4), 1324–1331 (2009).
[Crossref] [PubMed]

2008 (1)

T. X. Wang and X. H. Yang, “Reversal effect of isotetrandrine, an isoquinoline alkaloid extracted from Caulis Mahoniae, on P-glycoprotein-mediated doxorubicin-resistance in human breast cancer (MCF-7/DOX) cells,” Yao Xue Xue Bao 43(5), 461–466 (2008).
[PubMed]

2006 (3)

S. Letasiová, S. Jantová, M. Miko, R. Ovádeková, and M. Horváthová, “Effect of berberine on proliferation, biosynthesis of macromolecules, cell cycle and induction of intercalation with DNA, dsDNA damage and apoptosis in Ehrlich ascites carcinoma cells,” J. Pharm. Pharmacol. 58(2), 263–270 (2006).
[Crossref] [PubMed]

J. M. Hwang, H. C. Kuo, T. H. Tseng, J. Y. Liu, and C. Y. Chu, “Berberine induces apoptosis through a mitochondria/caspases pathway in human hepatoma cells,” Arch. Toxicol. 80(2), 62–73 (2006).
[Crossref] [PubMed]

M. Franceschin, L. Rossetti, A. D’Ambrosio, S. Schirripa, A. Bianco, G. Ortaggi, M. Savino, C. Schultes, and S. Neidle, “Natural and synthetic G-quadruplex interactive berberine derivatives,” Bioorg. Med. Chem. Lett. 16(6), 1707–1711 (2006).
[Crossref] [PubMed]

2003 (1)

S. H. Xu, M. S. He, and X. P. Liu, “Berberine contents on B. triacanthophora,” J Chin Med Mater 26(3), 183–184 (2003).

2000 (1)

P. Krishnan and K. F. Bastow, “The 9-position in berberine analogs is an important determinant of DNA topoisomerase II inhibition,” Anticancer Drug Des. 15(4), 255–264 (2000).
[PubMed]

1999 (2)

G. H. Lu, L. M. Wang, and J. M. Chen, “Determination and utilization of berberine in plants of Berberis L,” J. Chin. Tradit. Herbal Drugs 30(6), 428–430 (1999).

H. L. Wu, C. Y. Hsu, W. H. Liu, and B. Y. Yung, “Berberine-induced apoptosis of human leukemia HL-60 cells is associated with down-regulation of nucleophosmin/B23 and telomerase activity,” Int. J. Cancer 81(6), 923–929 (1999).
[Crossref] [PubMed]

1995 (2)

Y. Kobayashi, Y. Yamashita, N. Fujii, K. Takaboshi, T. Kawakami, M. Kawamura, T. Mizukami, and H. Nakano, “Inhibitors of DNA topoisomerase I and II isolated from the Coptis rhizomes,” Planta Med. 61(5), 414–418 (1995).
[Crossref] [PubMed]

W. L. Peticolas, “Raman spectroscopy of DNA and proteins,” Methods Enzymol. 246, 389–416 (1995).
[Crossref] [PubMed]

1990 (1)

G. J. Puppels, F. F. de Mul, C. Otto, J. Greve, M. Robert-Nicoud, D. J. Arndt-Jovin, and T. M. Jovin, “Studying single living cells and chromosomes by confocal Raman microspectroscopy,” Nature 347(6290), 301–303 (1990).
[Crossref] [PubMed]

Ahmadian, S.

Y. Pazhang, S. Ahmadian, M. Mahmoudian, and M. Shafiezadeh, “Berberine-induced apoptosis via decreasing the survivin protein in K562 cell line,” Med. Oncol. 28(4), 1577–1583 (2011).
[Crossref] [PubMed]

Armistead, F. J.

J. Gala de Pablo, F. J. Armistead, S. A. Peyman, D. Bonthron, M. Lones, S. Smith, and S. D. Evans, “Biochemical fingerprint of colorectal cancer cell lines using label-free live single-cell Raman spectroscopy,” J. Raman Spectrosc. 49(8), 1323–1332 (2018).
[Crossref]

Arndt-Jovin, D. J.

G. J. Puppels, F. F. de Mul, C. Otto, J. Greve, M. Robert-Nicoud, D. J. Arndt-Jovin, and T. M. Jovin, “Studying single living cells and chromosomes by confocal Raman microspectroscopy,” Nature 347(6290), 301–303 (1990).
[Crossref] [PubMed]

Asphahani, F.

R. Buckmaster, F. Asphahani, M. Thein, J. Xu, and M. Zhang, “Detection of drug-induced cellular changes using confocal Raman spectroscopy on patterned single-cell biosensors,” Analyst (Lond.) 134(7), 1440–1446 (2009).
[Crossref] [PubMed]

Bastow, K. F.

P. Krishnan and K. F. Bastow, “The 9-position in berberine analogs is an important determinant of DNA topoisomerase II inhibition,” Anticancer Drug Des. 15(4), 255–264 (2000).
[PubMed]

Batth, I. S.

H. G. Hambright, I. S. Batth, J. Xie, R. Ghosh, and A. P. Kumar, “Palmatine inhibits growth and invasion in prostate cancer cell: Potential role for rpS6/NFκB/FLIP,” Mol. Carcinog. 54(10), 1227–1234 (2015).
[Crossref] [PubMed]

Bianco, A.

M. Franceschin, L. Rossetti, A. D’Ambrosio, S. Schirripa, A. Bianco, G. Ortaggi, M. Savino, C. Schultes, and S. Neidle, “Natural and synthetic G-quadruplex interactive berberine derivatives,” Bioorg. Med. Chem. Lett. 16(6), 1707–1711 (2006).
[Crossref] [PubMed]

Blomstedt, C. K.

P. Heraud, M. F. Cowan, K. M. Marzec, B. L. Møller, C. K. Blomstedt, and R. Gleadow, “Label-free Raman hyperspectral imaging analysis localizes the cyanogenic glucoside dhurrin to the cytoplasm in sorghum cells,” Sci. Rep. 8(1), 2691 (2018).
[Crossref] [PubMed]

Bocklitz, T.

C. Krafft, M. Schmitt, I. W. Schie, D. Cialla-May, C. Matthäus, T. Bocklitz, and J. Popp, “Label-Free Molecular Imaging of Biological Cells and Tissues by Linear and Nonlinear Raman Spectroscopic Approaches,” Angew. Chem. Int. Ed. Engl. 56(16), 4392–4430 (2017).
[Crossref] [PubMed]

Bonnier, F.

Bonthron, D.

J. Gala de Pablo, F. J. Armistead, S. A. Peyman, D. Bonthron, M. Lones, S. Smith, and S. D. Evans, “Biochemical fingerprint of colorectal cancer cell lines using label-free live single-cell Raman spectroscopy,” J. Raman Spectrosc. 49(8), 1323–1332 (2018).
[Crossref]

Borth, N.

B. Prats Mateu, E. Harreither, M. Schosserer, V. Puxbaum, E. Gludovacz, N. Borth, N. Gierlinger, and J. Grillari, “Label-free live cell imaging by Confocal Raman Microscopy identifies CHO host and producer cell lines,” Biotechnol. J. 12(1), 1600037 (2017).
[Crossref] [PubMed]

Buckmaster, R.

R. Buckmaster, F. Asphahani, M. Thein, J. Xu, and M. Zhang, “Detection of drug-induced cellular changes using confocal Raman spectroscopy on patterned single-cell biosensors,” Analyst (Lond.) 134(7), 1440–1446 (2009).
[Crossref] [PubMed]

Byrne, H. J.

Cao, Z.

R. Liu, Z. Cao, Y. Pan, G. Zhang, P. Yang, P. Guo, and Q. Zhou, “Jatrorrhizine hydrochloride inhibits the proliferation and neovascularization of C8161 metastatic melanoma cells,” Anticancer Drugs 24(7), 667–676 (2013).
[Crossref] [PubMed]

Casey, A.

Chai, Y.

Y. Wang, M. M. Kheir, Y. Chai, J. Hu, D. Xing, F. Lei, and L. Du, “Comprehensive study in the inhibitory effect of berberine on gene transcription, including TATA box,” PLoS One 6(8), e23495 (2011).
[Crossref] [PubMed]

Chan, J. W.

J. W. Chan, D. K. Lieu, T. Huser, and R. A. Li, “Label-free separation of human embryonic stem cells and their cardiac derivatives using Raman spectroscopy,” Anal. Chem. 81(4), 1324–1331 (2009).
[Crossref] [PubMed]

Chen, J. M.

G. H. Lu, L. M. Wang, and J. M. Chen, “Determination and utilization of berberine in plants of Berberis L,” J. Chin. Tradit. Herbal Drugs 30(6), 428–430 (1999).

Chu, C. Y.

J. M. Hwang, H. C. Kuo, T. H. Tseng, J. Y. Liu, and C. Y. Chu, “Berberine induces apoptosis through a mitochondria/caspases pathway in human hepatoma cells,” Arch. Toxicol. 80(2), 62–73 (2006).
[Crossref] [PubMed]

Cialla-May, D.

C. Krafft, M. Schmitt, I. W. Schie, D. Cialla-May, C. Matthäus, T. Bocklitz, and J. Popp, “Label-Free Molecular Imaging of Biological Cells and Tissues by Linear and Nonlinear Raman Spectroscopic Approaches,” Angew. Chem. Int. Ed. Engl. 56(16), 4392–4430 (2017).
[Crossref] [PubMed]

Cohen, J. K.

S. Stewart, H. Kirschner, P. J. Treado, R. Priore, M. Tretiakova, and J. K. Cohen, “Distinguishing between renal oncocytoma and chromophobe renal cell carcinoma using Raman molecular imaging,” J. Raman Spectrosc. 45(4), 274–280 (2014).
[Crossref]

Cowan, M. F.

P. Heraud, M. F. Cowan, K. M. Marzec, B. L. Møller, C. K. Blomstedt, and R. Gleadow, “Label-free Raman hyperspectral imaging analysis localizes the cyanogenic glucoside dhurrin to the cytoplasm in sorghum cells,” Sci. Rep. 8(1), 2691 (2018).
[Crossref] [PubMed]

D’Ambrosio, A.

M. Franceschin, L. Rossetti, A. D’Ambrosio, S. Schirripa, A. Bianco, G. Ortaggi, M. Savino, C. Schultes, and S. Neidle, “Natural and synthetic G-quadruplex interactive berberine derivatives,” Bioorg. Med. Chem. Lett. 16(6), 1707–1711 (2006).
[Crossref] [PubMed]

de Mul, F. F.

G. J. Puppels, F. F. de Mul, C. Otto, J. Greve, M. Robert-Nicoud, D. J. Arndt-Jovin, and T. M. Jovin, “Studying single living cells and chromosomes by confocal Raman microspectroscopy,” Nature 347(6290), 301–303 (1990).
[Crossref] [PubMed]

Du, L.

Y. Wang, M. M. Kheir, Y. Chai, J. Hu, D. Xing, F. Lei, and L. Du, “Comprehensive study in the inhibitory effect of berberine on gene transcription, including TATA box,” PLoS One 6(8), e23495 (2011).
[Crossref] [PubMed]

Efeoglu, E.

Evans, S. D.

J. Gala de Pablo, F. J. Armistead, S. A. Peyman, D. Bonthron, M. Lones, S. Smith, and S. D. Evans, “Biochemical fingerprint of colorectal cancer cell lines using label-free live single-cell Raman spectroscopy,” J. Raman Spectrosc. 49(8), 1323–1332 (2018).
[Crossref]

Farhane, Z.

Franceschin, M.

M. Franceschin, L. Rossetti, A. D’Ambrosio, S. Schirripa, A. Bianco, G. Ortaggi, M. Savino, C. Schultes, and S. Neidle, “Natural and synthetic G-quadruplex interactive berberine derivatives,” Bioorg. Med. Chem. Lett. 16(6), 1707–1711 (2006).
[Crossref] [PubMed]

Fujii, N.

Y. Kobayashi, Y. Yamashita, N. Fujii, K. Takaboshi, T. Kawakami, M. Kawamura, T. Mizukami, and H. Nakano, “Inhibitors of DNA topoisomerase I and II isolated from the Coptis rhizomes,” Planta Med. 61(5), 414–418 (1995).
[Crossref] [PubMed]

Gala de Pablo, J.

J. Gala de Pablo, F. J. Armistead, S. A. Peyman, D. Bonthron, M. Lones, S. Smith, and S. D. Evans, “Biochemical fingerprint of colorectal cancer cell lines using label-free live single-cell Raman spectroscopy,” J. Raman Spectrosc. 49(8), 1323–1332 (2018).
[Crossref]

Ghosh, R.

H. G. Hambright, I. S. Batth, J. Xie, R. Ghosh, and A. P. Kumar, “Palmatine inhibits growth and invasion in prostate cancer cell: Potential role for rpS6/NFκB/FLIP,” Mol. Carcinog. 54(10), 1227–1234 (2015).
[Crossref] [PubMed]

Gierlinger, N.

B. Prats Mateu, E. Harreither, M. Schosserer, V. Puxbaum, E. Gludovacz, N. Borth, N. Gierlinger, and J. Grillari, “Label-free live cell imaging by Confocal Raman Microscopy identifies CHO host and producer cell lines,” Biotechnol. J. 12(1), 1600037 (2017).
[Crossref] [PubMed]

Gleadow, R.

P. Heraud, M. F. Cowan, K. M. Marzec, B. L. Møller, C. K. Blomstedt, and R. Gleadow, “Label-free Raman hyperspectral imaging analysis localizes the cyanogenic glucoside dhurrin to the cytoplasm in sorghum cells,” Sci. Rep. 8(1), 2691 (2018).
[Crossref] [PubMed]

Gludovacz, E.

B. Prats Mateu, E. Harreither, M. Schosserer, V. Puxbaum, E. Gludovacz, N. Borth, N. Gierlinger, and J. Grillari, “Label-free live cell imaging by Confocal Raman Microscopy identifies CHO host and producer cell lines,” Biotechnol. J. 12(1), 1600037 (2017).
[Crossref] [PubMed]

Greve, J.

G. J. Puppels, F. F. de Mul, C. Otto, J. Greve, M. Robert-Nicoud, D. J. Arndt-Jovin, and T. M. Jovin, “Studying single living cells and chromosomes by confocal Raman microspectroscopy,” Nature 347(6290), 301–303 (1990).
[Crossref] [PubMed]

Grillari, J.

B. Prats Mateu, E. Harreither, M. Schosserer, V. Puxbaum, E. Gludovacz, N. Borth, N. Gierlinger, and J. Grillari, “Label-free live cell imaging by Confocal Raman Microscopy identifies CHO host and producer cell lines,” Biotechnol. J. 12(1), 1600037 (2017).
[Crossref] [PubMed]

Guo, P.

R. Liu, Z. Cao, Y. Pan, G. Zhang, P. Yang, P. Guo, and Q. Zhou, “Jatrorrhizine hydrochloride inhibits the proliferation and neovascularization of C8161 metastatic melanoma cells,” Anticancer Drugs 24(7), 667–676 (2013).
[Crossref] [PubMed]

Guo, Q.

Q. Guo, X. T. Shen, Y. Y. Li, and S. Q. Xu, “Carbon nanotubes-based drug delivery to cancer and brain,” J. Huazhong Univ. Sci. Technolog. Med. Sci. 37(5), 635–641 (2017).
[PubMed]

Guo, S.

R. Li, R. Wu, L. Zhao, Z. Hu, S. Guo, X. Pan, and H. Zou, “Folate and iron difunctionalized multiwall carbon nanotubes as dual-targeted drug nanocarrier to cancer cells,” Carbon 49(5), 1797–1805 (2011).
[Crossref]

Guo, Z. Y.

P. Liu, J. H. Li, Z. W. Tu, Z. Y. Guo, Z. F. Zhuang, and Y. F. Xia, “Discrimination of NPC cell lines associated with malignant types using Raman spectroscopy,” J. Laser Phys. 22(11), 1682–1688 (2012).
[Crossref]

Hambright, H. G.

H. G. Hambright, I. S. Batth, J. Xie, R. Ghosh, and A. P. Kumar, “Palmatine inhibits growth and invasion in prostate cancer cell: Potential role for rpS6/NFκB/FLIP,” Mol. Carcinog. 54(10), 1227–1234 (2015).
[Crossref] [PubMed]

Harreither, E.

B. Prats Mateu, E. Harreither, M. Schosserer, V. Puxbaum, E. Gludovacz, N. Borth, N. Gierlinger, and J. Grillari, “Label-free live cell imaging by Confocal Raman Microscopy identifies CHO host and producer cell lines,” Biotechnol. J. 12(1), 1600037 (2017).
[Crossref] [PubMed]

He, M. S.

S. H. Xu, M. S. He, and X. P. Liu, “Berberine contents on B. triacanthophora,” J Chin Med Mater 26(3), 183–184 (2003).

Heraud, P.

P. Heraud, M. F. Cowan, K. M. Marzec, B. L. Møller, C. K. Blomstedt, and R. Gleadow, “Label-free Raman hyperspectral imaging analysis localizes the cyanogenic glucoside dhurrin to the cytoplasm in sorghum cells,” Sci. Rep. 8(1), 2691 (2018).
[Crossref] [PubMed]

Horváthová, M.

S. Letasiová, S. Jantová, M. Miko, R. Ovádeková, and M. Horváthová, “Effect of berberine on proliferation, biosynthesis of macromolecules, cell cycle and induction of intercalation with DNA, dsDNA damage and apoptosis in Ehrlich ascites carcinoma cells,” J. Pharm. Pharmacol. 58(2), 263–270 (2006).
[Crossref] [PubMed]

Hsu, C. Y.

H. L. Wu, C. Y. Hsu, W. H. Liu, and B. Y. Yung, “Berberine-induced apoptosis of human leukemia HL-60 cells is associated with down-regulation of nucleophosmin/B23 and telomerase activity,” Int. J. Cancer 81(6), 923–929 (1999).
[Crossref] [PubMed]

Hu, J.

Y. Wang, M. M. Kheir, Y. Chai, J. Hu, D. Xing, F. Lei, and L. Du, “Comprehensive study in the inhibitory effect of berberine on gene transcription, including TATA box,” PLoS One 6(8), e23495 (2011).
[Crossref] [PubMed]

Hu, Z.

R. Li, R. Wu, L. Zhao, Z. Hu, S. Guo, X. Pan, and H. Zou, “Folate and iron difunctionalized multiwall carbon nanotubes as dual-targeted drug nanocarrier to cancer cells,” Carbon 49(5), 1797–1805 (2011).
[Crossref]

Huh, J. E.

Huser, T.

J. W. Chan, D. K. Lieu, T. Huser, and R. A. Li, “Label-free separation of human embryonic stem cells and their cardiac derivatives using Raman spectroscopy,” Anal. Chem. 81(4), 1324–1331 (2009).
[Crossref] [PubMed]

Hussein, A. A.

K. le Roux, L. C. Prinsloo, A. A. Hussein, and N. Lall, “A micro-Raman spectroscopic investigation of leukemic U-937 cells treated with Crotalaria agatiflora Schweinf and the isolated compound madurensine,” Spectrochim. Acta A Mol. Biomol. Spectrosc. 95(5), 547–554 (2012).
[Crossref] [PubMed]

Hwang, J. M.

J. M. Hwang, H. C. Kuo, T. H. Tseng, J. Y. Liu, and C. Y. Chu, “Berberine induces apoptosis through a mitochondria/caspases pathway in human hepatoma cells,” Arch. Toxicol. 80(2), 62–73 (2006).
[Crossref] [PubMed]

Jain, N. K.

N. K. Mehra and N. K. Jain, “Multifunctional hybrid-carbon nanotubes: new horizon in drug delivery and targeting,” J. Drug Target. 24(4), 294–308 (2016).
[Crossref] [PubMed]

Jantová, S.

S. Letasiová, S. Jantová, M. Miko, R. Ovádeková, and M. Horváthová, “Effect of berberine on proliferation, biosynthesis of macromolecules, cell cycle and induction of intercalation with DNA, dsDNA damage and apoptosis in Ehrlich ascites carcinoma cells,” J. Pharm. Pharmacol. 58(2), 263–270 (2006).
[Crossref] [PubMed]

Jovin, T. M.

G. J. Puppels, F. F. de Mul, C. Otto, J. Greve, M. Robert-Nicoud, D. J. Arndt-Jovin, and T. M. Jovin, “Studying single living cells and chromosomes by confocal Raman microspectroscopy,” Nature 347(6290), 301–303 (1990).
[Crossref] [PubMed]

Jung, G. B.

Kawakami, T.

Y. Kobayashi, Y. Yamashita, N. Fujii, K. Takaboshi, T. Kawakami, M. Kawamura, T. Mizukami, and H. Nakano, “Inhibitors of DNA topoisomerase I and II isolated from the Coptis rhizomes,” Planta Med. 61(5), 414–418 (1995).
[Crossref] [PubMed]

Kawamura, M.

Y. Kobayashi, Y. Yamashita, N. Fujii, K. Takaboshi, T. Kawakami, M. Kawamura, T. Mizukami, and H. Nakano, “Inhibitors of DNA topoisomerase I and II isolated from the Coptis rhizomes,” Planta Med. 61(5), 414–418 (1995).
[Crossref] [PubMed]

Kheir, M. M.

Y. Wang, M. M. Kheir, Y. Chai, J. Hu, D. Xing, F. Lei, and L. Du, “Comprehensive study in the inhibitory effect of berberine on gene transcription, including TATA box,” PLoS One 6(8), e23495 (2011).
[Crossref] [PubMed]

Kim, D.

Kirschner, H.

S. Stewart, H. Kirschner, P. J. Treado, R. Priore, M. Tretiakova, and J. K. Cohen, “Distinguishing between renal oncocytoma and chromophobe renal cell carcinoma using Raman molecular imaging,” J. Raman Spectrosc. 45(4), 274–280 (2014).
[Crossref]

Kobayashi, Y.

Y. Kobayashi, Y. Yamashita, N. Fujii, K. Takaboshi, T. Kawakami, M. Kawamura, T. Mizukami, and H. Nakano, “Inhibitors of DNA topoisomerase I and II isolated from the Coptis rhizomes,” Planta Med. 61(5), 414–418 (1995).
[Crossref] [PubMed]

Krafft, C.

C. Krafft, M. Schmitt, I. W. Schie, D. Cialla-May, C. Matthäus, T. Bocklitz, and J. Popp, “Label-Free Molecular Imaging of Biological Cells and Tissues by Linear and Nonlinear Raman Spectroscopic Approaches,” Angew. Chem. Int. Ed. Engl. 56(16), 4392–4430 (2017).
[Crossref] [PubMed]

Krishnan, P.

P. Krishnan and K. F. Bastow, “The 9-position in berberine analogs is an important determinant of DNA topoisomerase II inhibition,” Anticancer Drug Des. 15(4), 255–264 (2000).
[PubMed]

Kumar, A. P.

H. G. Hambright, I. S. Batth, J. Xie, R. Ghosh, and A. P. Kumar, “Palmatine inhibits growth and invasion in prostate cancer cell: Potential role for rpS6/NFκB/FLIP,” Mol. Carcinog. 54(10), 1227–1234 (2015).
[Crossref] [PubMed]

Kuo, H. C.

J. M. Hwang, H. C. Kuo, T. H. Tseng, J. Y. Liu, and C. Y. Chu, “Berberine induces apoptosis through a mitochondria/caspases pathway in human hepatoma cells,” Arch. Toxicol. 80(2), 62–73 (2006).
[Crossref] [PubMed]

Lall, N.

K. le Roux, L. C. Prinsloo, A. A. Hussein, and N. Lall, “A micro-Raman spectroscopic investigation of leukemic U-937 cells treated with Crotalaria agatiflora Schweinf and the isolated compound madurensine,” Spectrochim. Acta A Mol. Biomol. Spectrosc. 95(5), 547–554 (2012).
[Crossref] [PubMed]

le Roux, K.

K. le Roux, L. C. Prinsloo, A. A. Hussein, and N. Lall, “A micro-Raman spectroscopic investigation of leukemic U-937 cells treated with Crotalaria agatiflora Schweinf and the isolated compound madurensine,” Spectrochim. Acta A Mol. Biomol. Spectrosc. 95(5), 547–554 (2012).
[Crossref] [PubMed]

Lee, G.

Lee, G. J.

Lee, H. J.

Lee, J. D.

Lee, Y. J.

Lei, F.

Y. Wang, M. M. Kheir, Y. Chai, J. Hu, D. Xing, F. Lei, and L. Du, “Comprehensive study in the inhibitory effect of berberine on gene transcription, including TATA box,” PLoS One 6(8), e23495 (2011).
[Crossref] [PubMed]

Letasiová, S.

S. Letasiová, S. Jantová, M. Miko, R. Ovádeková, and M. Horváthová, “Effect of berberine on proliferation, biosynthesis of macromolecules, cell cycle and induction of intercalation with DNA, dsDNA damage and apoptosis in Ehrlich ascites carcinoma cells,” J. Pharm. Pharmacol. 58(2), 263–270 (2006).
[Crossref] [PubMed]

Leung, A. W.

J. Wu, Q. Xiao, N. Zhang, C. Xue, A. W. Leung, H. Zhang, Q. J. Tang, and C. Xu, “Palmatine hydrochloride mediated photodynamic inactivation of breast cancer MCF-7 cells: Effectiveness and mechanism of action,” Photodiagn. Photodyn. Ther. 15, 133–138 (2016).
[Crossref] [PubMed]

Li, J. H.

P. Liu, J. H. Li, Z. W. Tu, Z. Y. Guo, Z. F. Zhuang, and Y. F. Xia, “Discrimination of NPC cell lines associated with malignant types using Raman spectroscopy,” J. Laser Phys. 22(11), 1682–1688 (2012).
[Crossref]

Li, R.

R. Li, R. Wu, L. Zhao, Z. Hu, S. Guo, X. Pan, and H. Zou, “Folate and iron difunctionalized multiwall carbon nanotubes as dual-targeted drug nanocarrier to cancer cells,” Carbon 49(5), 1797–1805 (2011).
[Crossref]

Li, R. A.

J. W. Chan, D. K. Lieu, T. Huser, and R. A. Li, “Label-free separation of human embryonic stem cells and their cardiac derivatives using Raman spectroscopy,” Anal. Chem. 81(4), 1324–1331 (2009).
[Crossref] [PubMed]

Li, Y. Y.

Q. Guo, X. T. Shen, Y. Y. Li, and S. Q. Xu, “Carbon nanotubes-based drug delivery to cancer and brain,” J. Huazhong Univ. Sci. Technolog. Med. Sci. 37(5), 635–641 (2017).
[PubMed]

Lieu, D. K.

J. W. Chan, D. K. Lieu, T. Huser, and R. A. Li, “Label-free separation of human embryonic stem cells and their cardiac derivatives using Raman spectroscopy,” Anal. Chem. 81(4), 1324–1331 (2009).
[Crossref] [PubMed]

Liu, J. Y.

J. M. Hwang, H. C. Kuo, T. H. Tseng, J. Y. Liu, and C. Y. Chu, “Berberine induces apoptosis through a mitochondria/caspases pathway in human hepatoma cells,” Arch. Toxicol. 80(2), 62–73 (2006).
[Crossref] [PubMed]

Liu, P.

P. Liu, J. H. Li, Z. W. Tu, Z. Y. Guo, Z. F. Zhuang, and Y. F. Xia, “Discrimination of NPC cell lines associated with malignant types using Raman spectroscopy,” J. Laser Phys. 22(11), 1682–1688 (2012).
[Crossref]

Liu, R.

R. Liu, Z. Cao, Y. Pan, G. Zhang, P. Yang, P. Guo, and Q. Zhou, “Jatrorrhizine hydrochloride inhibits the proliferation and neovascularization of C8161 metastatic melanoma cells,” Anticancer Drugs 24(7), 667–676 (2013).
[Crossref] [PubMed]

Liu, W. H.

H. L. Wu, C. Y. Hsu, W. H. Liu, and B. Y. Yung, “Berberine-induced apoptosis of human leukemia HL-60 cells is associated with down-regulation of nucleophosmin/B23 and telomerase activity,” Int. J. Cancer 81(6), 923–929 (1999).
[Crossref] [PubMed]

Liu, X. P.

S. H. Xu, M. S. He, and X. P. Liu, “Berberine contents on B. triacanthophora,” J Chin Med Mater 26(3), 183–184 (2003).

Lones, M.

J. Gala de Pablo, F. J. Armistead, S. A. Peyman, D. Bonthron, M. Lones, S. Smith, and S. D. Evans, “Biochemical fingerprint of colorectal cancer cell lines using label-free live single-cell Raman spectroscopy,” J. Raman Spectrosc. 49(8), 1323–1332 (2018).
[Crossref]

Lu, G. H.

G. H. Lu, L. M. Wang, and J. M. Chen, “Determination and utilization of berberine in plants of Berberis L,” J. Chin. Tradit. Herbal Drugs 30(6), 428–430 (1999).

Maher, M.

Mahmoudian, M.

Y. Pazhang, S. Ahmadian, M. Mahmoudian, and M. Shafiezadeh, “Berberine-induced apoptosis via decreasing the survivin protein in K562 cell line,” Med. Oncol. 28(4), 1577–1583 (2011).
[Crossref] [PubMed]

Marzec, K. M.

P. Heraud, M. F. Cowan, K. M. Marzec, B. L. Møller, C. K. Blomstedt, and R. Gleadow, “Label-free Raman hyperspectral imaging analysis localizes the cyanogenic glucoside dhurrin to the cytoplasm in sorghum cells,” Sci. Rep. 8(1), 2691 (2018).
[Crossref] [PubMed]

Matthäus, C.

C. Krafft, M. Schmitt, I. W. Schie, D. Cialla-May, C. Matthäus, T. Bocklitz, and J. Popp, “Label-Free Molecular Imaging of Biological Cells and Tissues by Linear and Nonlinear Raman Spectroscopic Approaches,” Angew. Chem. Int. Ed. Engl. 56(16), 4392–4430 (2017).
[Crossref] [PubMed]

McIntyre, J.

Mehra, N. K.

N. K. Mehra and N. K. Jain, “Multifunctional hybrid-carbon nanotubes: new horizon in drug delivery and targeting,” J. Drug Target. 24(4), 294–308 (2016).
[Crossref] [PubMed]

Miko, M.

S. Letasiová, S. Jantová, M. Miko, R. Ovádeková, and M. Horváthová, “Effect of berberine on proliferation, biosynthesis of macromolecules, cell cycle and induction of intercalation with DNA, dsDNA damage and apoptosis in Ehrlich ascites carcinoma cells,” J. Pharm. Pharmacol. 58(2), 263–270 (2006).
[Crossref] [PubMed]

Mizukami, T.

Y. Kobayashi, Y. Yamashita, N. Fujii, K. Takaboshi, T. Kawakami, M. Kawamura, T. Mizukami, and H. Nakano, “Inhibitors of DNA topoisomerase I and II isolated from the Coptis rhizomes,” Planta Med. 61(5), 414–418 (1995).
[Crossref] [PubMed]

Møller, B. L.

P. Heraud, M. F. Cowan, K. M. Marzec, B. L. Møller, C. K. Blomstedt, and R. Gleadow, “Label-free Raman hyperspectral imaging analysis localizes the cyanogenic glucoside dhurrin to the cytoplasm in sorghum cells,” Sci. Rep. 8(1), 2691 (2018).
[Crossref] [PubMed]

Nakano, H.

Y. Kobayashi, Y. Yamashita, N. Fujii, K. Takaboshi, T. Kawakami, M. Kawamura, T. Mizukami, and H. Nakano, “Inhibitors of DNA topoisomerase I and II isolated from the Coptis rhizomes,” Planta Med. 61(5), 414–418 (1995).
[Crossref] [PubMed]

Neidle, S.

M. Franceschin, L. Rossetti, A. D’Ambrosio, S. Schirripa, A. Bianco, G. Ortaggi, M. Savino, C. Schultes, and S. Neidle, “Natural and synthetic G-quadruplex interactive berberine derivatives,” Bioorg. Med. Chem. Lett. 16(6), 1707–1711 (2006).
[Crossref] [PubMed]

Notingher, I.

D. W. Shipp, F. Sinjab, and I. Notingher, “Raman spectroscopy: techniques and applications in the life sciences,” Adv. Opt. Photonics 9(2), 315 (2017).
[Crossref]

Ortaggi, G.

M. Franceschin, L. Rossetti, A. D’Ambrosio, S. Schirripa, A. Bianco, G. Ortaggi, M. Savino, C. Schultes, and S. Neidle, “Natural and synthetic G-quadruplex interactive berberine derivatives,” Bioorg. Med. Chem. Lett. 16(6), 1707–1711 (2006).
[Crossref] [PubMed]

Otto, C.

G. J. Puppels, F. F. de Mul, C. Otto, J. Greve, M. Robert-Nicoud, D. J. Arndt-Jovin, and T. M. Jovin, “Studying single living cells and chromosomes by confocal Raman microspectroscopy,” Nature 347(6290), 301–303 (1990).
[Crossref] [PubMed]

Ovádeková, R.

S. Letasiová, S. Jantová, M. Miko, R. Ovádeková, and M. Horváthová, “Effect of berberine on proliferation, biosynthesis of macromolecules, cell cycle and induction of intercalation with DNA, dsDNA damage and apoptosis in Ehrlich ascites carcinoma cells,” J. Pharm. Pharmacol. 58(2), 263–270 (2006).
[Crossref] [PubMed]

Pan, X.

R. Li, R. Wu, L. Zhao, Z. Hu, S. Guo, X. Pan, and H. Zou, “Folate and iron difunctionalized multiwall carbon nanotubes as dual-targeted drug nanocarrier to cancer cells,” Carbon 49(5), 1797–1805 (2011).
[Crossref]

Pan, Y.

R. Liu, Z. Cao, Y. Pan, G. Zhang, P. Yang, P. Guo, and Q. Zhou, “Jatrorrhizine hydrochloride inhibits the proliferation and neovascularization of C8161 metastatic melanoma cells,” Anticancer Drugs 24(7), 667–676 (2013).
[Crossref] [PubMed]

Park, H. K.

Pazhang, Y.

Y. Pazhang, S. Ahmadian, M. Mahmoudian, and M. Shafiezadeh, “Berberine-induced apoptosis via decreasing the survivin protein in K562 cell line,” Med. Oncol. 28(4), 1577–1583 (2011).
[Crossref] [PubMed]

Peticolas, W. L.

W. L. Peticolas, “Raman spectroscopy of DNA and proteins,” Methods Enzymol. 246, 389–416 (1995).
[Crossref] [PubMed]

Peyman, S. A.

J. Gala de Pablo, F. J. Armistead, S. A. Peyman, D. Bonthron, M. Lones, S. Smith, and S. D. Evans, “Biochemical fingerprint of colorectal cancer cell lines using label-free live single-cell Raman spectroscopy,” J. Raman Spectrosc. 49(8), 1323–1332 (2018).
[Crossref]

Popp, J.

C. Krafft, M. Schmitt, I. W. Schie, D. Cialla-May, C. Matthäus, T. Bocklitz, and J. Popp, “Label-Free Molecular Imaging of Biological Cells and Tissues by Linear and Nonlinear Raman Spectroscopic Approaches,” Angew. Chem. Int. Ed. Engl. 56(16), 4392–4430 (2017).
[Crossref] [PubMed]

Prats Mateu, B.

B. Prats Mateu, E. Harreither, M. Schosserer, V. Puxbaum, E. Gludovacz, N. Borth, N. Gierlinger, and J. Grillari, “Label-free live cell imaging by Confocal Raman Microscopy identifies CHO host and producer cell lines,” Biotechnol. J. 12(1), 1600037 (2017).
[Crossref] [PubMed]

Prinsloo, L. C.

K. le Roux, L. C. Prinsloo, A. A. Hussein, and N. Lall, “A micro-Raman spectroscopic investigation of leukemic U-937 cells treated with Crotalaria agatiflora Schweinf and the isolated compound madurensine,” Spectrochim. Acta A Mol. Biomol. Spectrosc. 95(5), 547–554 (2012).
[Crossref] [PubMed]

Priore, R.

S. Stewart, H. Kirschner, P. J. Treado, R. Priore, M. Tretiakova, and J. K. Cohen, “Distinguishing between renal oncocytoma and chromophobe renal cell carcinoma using Raman molecular imaging,” J. Raman Spectrosc. 45(4), 274–280 (2014).
[Crossref]

Puppels, G. J.

G. J. Puppels, F. F. de Mul, C. Otto, J. Greve, M. Robert-Nicoud, D. J. Arndt-Jovin, and T. M. Jovin, “Studying single living cells and chromosomes by confocal Raman microspectroscopy,” Nature 347(6290), 301–303 (1990).
[Crossref] [PubMed]

Puxbaum, V.

B. Prats Mateu, E. Harreither, M. Schosserer, V. Puxbaum, E. Gludovacz, N. Borth, N. Gierlinger, and J. Grillari, “Label-free live cell imaging by Confocal Raman Microscopy identifies CHO host and producer cell lines,” Biotechnol. J. 12(1), 1600037 (2017).
[Crossref] [PubMed]

Robert-Nicoud, M.

G. J. Puppels, F. F. de Mul, C. Otto, J. Greve, M. Robert-Nicoud, D. J. Arndt-Jovin, and T. M. Jovin, “Studying single living cells and chromosomes by confocal Raman microspectroscopy,” Nature 347(6290), 301–303 (1990).
[Crossref] [PubMed]

Rossetti, L.

M. Franceschin, L. Rossetti, A. D’Ambrosio, S. Schirripa, A. Bianco, G. Ortaggi, M. Savino, C. Schultes, and S. Neidle, “Natural and synthetic G-quadruplex interactive berberine derivatives,” Bioorg. Med. Chem. Lett. 16(6), 1707–1711 (2006).
[Crossref] [PubMed]

Savino, M.

M. Franceschin, L. Rossetti, A. D’Ambrosio, S. Schirripa, A. Bianco, G. Ortaggi, M. Savino, C. Schultes, and S. Neidle, “Natural and synthetic G-quadruplex interactive berberine derivatives,” Bioorg. Med. Chem. Lett. 16(6), 1707–1711 (2006).
[Crossref] [PubMed]

Schie, I. W.

C. Krafft, M. Schmitt, I. W. Schie, D. Cialla-May, C. Matthäus, T. Bocklitz, and J. Popp, “Label-Free Molecular Imaging of Biological Cells and Tissues by Linear and Nonlinear Raman Spectroscopic Approaches,” Angew. Chem. Int. Ed. Engl. 56(16), 4392–4430 (2017).
[Crossref] [PubMed]

Schirripa, S.

M. Franceschin, L. Rossetti, A. D’Ambrosio, S. Schirripa, A. Bianco, G. Ortaggi, M. Savino, C. Schultes, and S. Neidle, “Natural and synthetic G-quadruplex interactive berberine derivatives,” Bioorg. Med. Chem. Lett. 16(6), 1707–1711 (2006).
[Crossref] [PubMed]

Schmitt, M.

C. Krafft, M. Schmitt, I. W. Schie, D. Cialla-May, C. Matthäus, T. Bocklitz, and J. Popp, “Label-Free Molecular Imaging of Biological Cells and Tissues by Linear and Nonlinear Raman Spectroscopic Approaches,” Angew. Chem. Int. Ed. Engl. 56(16), 4392–4430 (2017).
[Crossref] [PubMed]

Schosserer, M.

B. Prats Mateu, E. Harreither, M. Schosserer, V. Puxbaum, E. Gludovacz, N. Borth, N. Gierlinger, and J. Grillari, “Label-free live cell imaging by Confocal Raman Microscopy identifies CHO host and producer cell lines,” Biotechnol. J. 12(1), 1600037 (2017).
[Crossref] [PubMed]

Schultes, C.

M. Franceschin, L. Rossetti, A. D’Ambrosio, S. Schirripa, A. Bianco, G. Ortaggi, M. Savino, C. Schultes, and S. Neidle, “Natural and synthetic G-quadruplex interactive berberine derivatives,” Bioorg. Med. Chem. Lett. 16(6), 1707–1711 (2006).
[Crossref] [PubMed]

Shafiezadeh, M.

Y. Pazhang, S. Ahmadian, M. Mahmoudian, and M. Shafiezadeh, “Berberine-induced apoptosis via decreasing the survivin protein in K562 cell line,” Med. Oncol. 28(4), 1577–1583 (2011).
[Crossref] [PubMed]

Shen, X. T.

Q. Guo, X. T. Shen, Y. Y. Li, and S. Q. Xu, “Carbon nanotubes-based drug delivery to cancer and brain,” J. Huazhong Univ. Sci. Technolog. Med. Sci. 37(5), 635–641 (2017).
[PubMed]

Shipp, D. W.

D. W. Shipp, F. Sinjab, and I. Notingher, “Raman spectroscopy: techniques and applications in the life sciences,” Adv. Opt. Photonics 9(2), 315 (2017).
[Crossref]

Sinjab, F.

D. W. Shipp, F. Sinjab, and I. Notingher, “Raman spectroscopy: techniques and applications in the life sciences,” Adv. Opt. Photonics 9(2), 315 (2017).
[Crossref]

Smith, S.

J. Gala de Pablo, F. J. Armistead, S. A. Peyman, D. Bonthron, M. Lones, S. Smith, and S. D. Evans, “Biochemical fingerprint of colorectal cancer cell lines using label-free live single-cell Raman spectroscopy,” J. Raman Spectrosc. 49(8), 1323–1332 (2018).
[Crossref]

Stewart, S.

S. Stewart, H. Kirschner, P. J. Treado, R. Priore, M. Tretiakova, and J. K. Cohen, “Distinguishing between renal oncocytoma and chromophobe renal cell carcinoma using Raman molecular imaging,” J. Raman Spectrosc. 45(4), 274–280 (2014).
[Crossref]

Takaboshi, K.

Y. Kobayashi, Y. Yamashita, N. Fujii, K. Takaboshi, T. Kawakami, M. Kawamura, T. Mizukami, and H. Nakano, “Inhibitors of DNA topoisomerase I and II isolated from the Coptis rhizomes,” Planta Med. 61(5), 414–418 (1995).
[Crossref] [PubMed]

Tang, Q. J.

J. Wu, Q. Xiao, N. Zhang, C. Xue, A. W. Leung, H. Zhang, Q. J. Tang, and C. Xu, “Palmatine hydrochloride mediated photodynamic inactivation of breast cancer MCF-7 cells: Effectiveness and mechanism of action,” Photodiagn. Photodyn. Ther. 15, 133–138 (2016).
[Crossref] [PubMed]

Tang, Y. L.

Y. X. Zhang, X. F. Zhang, and Y. L. Tang, “Studies of the Interactions between Three Protoberberine Alkaloids and Bcl-2 by Fluorescence Spectroscopy,” J. Acta Chimica Sinica 69(2), 247–251 (2011).

Thein, M.

R. Buckmaster, F. Asphahani, M. Thein, J. Xu, and M. Zhang, “Detection of drug-induced cellular changes using confocal Raman spectroscopy on patterned single-cell biosensors,” Analyst (Lond.) 134(7), 1440–1446 (2009).
[Crossref] [PubMed]

Treado, P. J.

S. Stewart, H. Kirschner, P. J. Treado, R. Priore, M. Tretiakova, and J. K. Cohen, “Distinguishing between renal oncocytoma and chromophobe renal cell carcinoma using Raman molecular imaging,” J. Raman Spectrosc. 45(4), 274–280 (2014).
[Crossref]

Tretiakova, M.

S. Stewart, H. Kirschner, P. J. Treado, R. Priore, M. Tretiakova, and J. K. Cohen, “Distinguishing between renal oncocytoma and chromophobe renal cell carcinoma using Raman molecular imaging,” J. Raman Spectrosc. 45(4), 274–280 (2014).
[Crossref]

Tseng, T. H.

J. M. Hwang, H. C. Kuo, T. H. Tseng, J. Y. Liu, and C. Y. Chu, “Berberine induces apoptosis through a mitochondria/caspases pathway in human hepatoma cells,” Arch. Toxicol. 80(2), 62–73 (2006).
[Crossref] [PubMed]

Tu, Z. W.

P. Liu, J. H. Li, Z. W. Tu, Z. Y. Guo, Z. F. Zhuang, and Y. F. Xia, “Discrimination of NPC cell lines associated with malignant types using Raman spectroscopy,” J. Laser Phys. 22(11), 1682–1688 (2012).
[Crossref]

Wang, L. M.

G. H. Lu, L. M. Wang, and J. M. Chen, “Determination and utilization of berberine in plants of Berberis L,” J. Chin. Tradit. Herbal Drugs 30(6), 428–430 (1999).

Wang, T. X.

T. X. Wang and X. H. Yang, “Reversal effect of isotetrandrine, an isoquinoline alkaloid extracted from Caulis Mahoniae, on P-glycoprotein-mediated doxorubicin-resistance in human breast cancer (MCF-7/DOX) cells,” Yao Xue Xue Bao 43(5), 461–466 (2008).
[PubMed]

Wang, Y.

Y. Wang, M. M. Kheir, Y. Chai, J. Hu, D. Xing, F. Lei, and L. Du, “Comprehensive study in the inhibitory effect of berberine on gene transcription, including TATA box,” PLoS One 6(8), e23495 (2011).
[Crossref] [PubMed]

Wu, H. L.

H. L. Wu, C. Y. Hsu, W. H. Liu, and B. Y. Yung, “Berberine-induced apoptosis of human leukemia HL-60 cells is associated with down-regulation of nucleophosmin/B23 and telomerase activity,” Int. J. Cancer 81(6), 923–929 (1999).
[Crossref] [PubMed]

Wu, J.

J. Wu, Q. Xiao, N. Zhang, C. Xue, A. W. Leung, H. Zhang, Q. J. Tang, and C. Xu, “Palmatine hydrochloride mediated photodynamic inactivation of breast cancer MCF-7 cells: Effectiveness and mechanism of action,” Photodiagn. Photodyn. Ther. 15, 133–138 (2016).
[Crossref] [PubMed]

Wu, R.

R. Li, R. Wu, L. Zhao, Z. Hu, S. Guo, X. Pan, and H. Zou, “Folate and iron difunctionalized multiwall carbon nanotubes as dual-targeted drug nanocarrier to cancer cells,” Carbon 49(5), 1797–1805 (2011).
[Crossref]

Xia, Y. F.

P. Liu, J. H. Li, Z. W. Tu, Z. Y. Guo, Z. F. Zhuang, and Y. F. Xia, “Discrimination of NPC cell lines associated with malignant types using Raman spectroscopy,” J. Laser Phys. 22(11), 1682–1688 (2012).
[Crossref]

Xiao, Q.

J. Wu, Q. Xiao, N. Zhang, C. Xue, A. W. Leung, H. Zhang, Q. J. Tang, and C. Xu, “Palmatine hydrochloride mediated photodynamic inactivation of breast cancer MCF-7 cells: Effectiveness and mechanism of action,” Photodiagn. Photodyn. Ther. 15, 133–138 (2016).
[Crossref] [PubMed]

Xie, J.

H. G. Hambright, I. S. Batth, J. Xie, R. Ghosh, and A. P. Kumar, “Palmatine inhibits growth and invasion in prostate cancer cell: Potential role for rpS6/NFκB/FLIP,” Mol. Carcinog. 54(10), 1227–1234 (2015).
[Crossref] [PubMed]

Xing, D.

Y. Wang, M. M. Kheir, Y. Chai, J. Hu, D. Xing, F. Lei, and L. Du, “Comprehensive study in the inhibitory effect of berberine on gene transcription, including TATA box,” PLoS One 6(8), e23495 (2011).
[Crossref] [PubMed]

Xu, C.

J. Wu, Q. Xiao, N. Zhang, C. Xue, A. W. Leung, H. Zhang, Q. J. Tang, and C. Xu, “Palmatine hydrochloride mediated photodynamic inactivation of breast cancer MCF-7 cells: Effectiveness and mechanism of action,” Photodiagn. Photodyn. Ther. 15, 133–138 (2016).
[Crossref] [PubMed]

Xu, J.

R. Buckmaster, F. Asphahani, M. Thein, J. Xu, and M. Zhang, “Detection of drug-induced cellular changes using confocal Raman spectroscopy on patterned single-cell biosensors,” Analyst (Lond.) 134(7), 1440–1446 (2009).
[Crossref] [PubMed]

Xu, S. H.

S. H. Xu, M. S. He, and X. P. Liu, “Berberine contents on B. triacanthophora,” J Chin Med Mater 26(3), 183–184 (2003).

Xu, S. Q.

Q. Guo, X. T. Shen, Y. Y. Li, and S. Q. Xu, “Carbon nanotubes-based drug delivery to cancer and brain,” J. Huazhong Univ. Sci. Technolog. Med. Sci. 37(5), 635–641 (2017).
[PubMed]

Xue, C.

J. Wu, Q. Xiao, N. Zhang, C. Xue, A. W. Leung, H. Zhang, Q. J. Tang, and C. Xu, “Palmatine hydrochloride mediated photodynamic inactivation of breast cancer MCF-7 cells: Effectiveness and mechanism of action,” Photodiagn. Photodyn. Ther. 15, 133–138 (2016).
[Crossref] [PubMed]

Yamashita, Y.

Y. Kobayashi, Y. Yamashita, N. Fujii, K. Takaboshi, T. Kawakami, M. Kawamura, T. Mizukami, and H. Nakano, “Inhibitors of DNA topoisomerase I and II isolated from the Coptis rhizomes,” Planta Med. 61(5), 414–418 (1995).
[Crossref] [PubMed]

Yang, P.

R. Liu, Z. Cao, Y. Pan, G. Zhang, P. Yang, P. Guo, and Q. Zhou, “Jatrorrhizine hydrochloride inhibits the proliferation and neovascularization of C8161 metastatic melanoma cells,” Anticancer Drugs 24(7), 667–676 (2013).
[Crossref] [PubMed]

Yang, X. H.

T. X. Wang and X. H. Yang, “Reversal effect of isotetrandrine, an isoquinoline alkaloid extracted from Caulis Mahoniae, on P-glycoprotein-mediated doxorubicin-resistance in human breast cancer (MCF-7/DOX) cells,” Yao Xue Xue Bao 43(5), 461–466 (2008).
[PubMed]

Yung, B. Y.

H. L. Wu, C. Y. Hsu, W. H. Liu, and B. Y. Yung, “Berberine-induced apoptosis of human leukemia HL-60 cells is associated with down-regulation of nucleophosmin/B23 and telomerase activity,” Int. J. Cancer 81(6), 923–929 (1999).
[Crossref] [PubMed]

Zhang, G.

R. Liu, Z. Cao, Y. Pan, G. Zhang, P. Yang, P. Guo, and Q. Zhou, “Jatrorrhizine hydrochloride inhibits the proliferation and neovascularization of C8161 metastatic melanoma cells,” Anticancer Drugs 24(7), 667–676 (2013).
[Crossref] [PubMed]

Zhang, H.

J. Wu, Q. Xiao, N. Zhang, C. Xue, A. W. Leung, H. Zhang, Q. J. Tang, and C. Xu, “Palmatine hydrochloride mediated photodynamic inactivation of breast cancer MCF-7 cells: Effectiveness and mechanism of action,” Photodiagn. Photodyn. Ther. 15, 133–138 (2016).
[Crossref] [PubMed]

Zhang, M.

R. Buckmaster, F. Asphahani, M. Thein, J. Xu, and M. Zhang, “Detection of drug-induced cellular changes using confocal Raman spectroscopy on patterned single-cell biosensors,” Analyst (Lond.) 134(7), 1440–1446 (2009).
[Crossref] [PubMed]

Zhang, N.

J. Wu, Q. Xiao, N. Zhang, C. Xue, A. W. Leung, H. Zhang, Q. J. Tang, and C. Xu, “Palmatine hydrochloride mediated photodynamic inactivation of breast cancer MCF-7 cells: Effectiveness and mechanism of action,” Photodiagn. Photodyn. Ther. 15, 133–138 (2016).
[Crossref] [PubMed]

Zhang, X. F.

Y. X. Zhang, X. F. Zhang, and Y. L. Tang, “Studies of the Interactions between Three Protoberberine Alkaloids and Bcl-2 by Fluorescence Spectroscopy,” J. Acta Chimica Sinica 69(2), 247–251 (2011).

Zhang, Y. X.

Y. X. Zhang, X. F. Zhang, and Y. L. Tang, “Studies of the Interactions between Three Protoberberine Alkaloids and Bcl-2 by Fluorescence Spectroscopy,” J. Acta Chimica Sinica 69(2), 247–251 (2011).

Zhao, L.

R. Li, R. Wu, L. Zhao, Z. Hu, S. Guo, X. Pan, and H. Zou, “Folate and iron difunctionalized multiwall carbon nanotubes as dual-targeted drug nanocarrier to cancer cells,” Carbon 49(5), 1797–1805 (2011).
[Crossref]

Zhou, Q.

R. Liu, Z. Cao, Y. Pan, G. Zhang, P. Yang, P. Guo, and Q. Zhou, “Jatrorrhizine hydrochloride inhibits the proliferation and neovascularization of C8161 metastatic melanoma cells,” Anticancer Drugs 24(7), 667–676 (2013).
[Crossref] [PubMed]

Zhuang, Z. F.

P. Liu, J. H. Li, Z. W. Tu, Z. Y. Guo, Z. F. Zhuang, and Y. F. Xia, “Discrimination of NPC cell lines associated with malignant types using Raman spectroscopy,” J. Laser Phys. 22(11), 1682–1688 (2012).
[Crossref]

Zou, H.

R. Li, R. Wu, L. Zhao, Z. Hu, S. Guo, X. Pan, and H. Zou, “Folate and iron difunctionalized multiwall carbon nanotubes as dual-targeted drug nanocarrier to cancer cells,” Carbon 49(5), 1797–1805 (2011).
[Crossref]

Adv. Opt. Photonics (1)

D. W. Shipp, F. Sinjab, and I. Notingher, “Raman spectroscopy: techniques and applications in the life sciences,” Adv. Opt. Photonics 9(2), 315 (2017).
[Crossref]

Anal. Chem. (1)

J. W. Chan, D. K. Lieu, T. Huser, and R. A. Li, “Label-free separation of human embryonic stem cells and their cardiac derivatives using Raman spectroscopy,” Anal. Chem. 81(4), 1324–1331 (2009).
[Crossref] [PubMed]

Analyst (Lond.) (1)

R. Buckmaster, F. Asphahani, M. Thein, J. Xu, and M. Zhang, “Detection of drug-induced cellular changes using confocal Raman spectroscopy on patterned single-cell biosensors,” Analyst (Lond.) 134(7), 1440–1446 (2009).
[Crossref] [PubMed]

Angew. Chem. Int. Ed. Engl. (1)

C. Krafft, M. Schmitt, I. W. Schie, D. Cialla-May, C. Matthäus, T. Bocklitz, and J. Popp, “Label-Free Molecular Imaging of Biological Cells and Tissues by Linear and Nonlinear Raman Spectroscopic Approaches,” Angew. Chem. Int. Ed. Engl. 56(16), 4392–4430 (2017).
[Crossref] [PubMed]

Anticancer Drug Des. (1)

P. Krishnan and K. F. Bastow, “The 9-position in berberine analogs is an important determinant of DNA topoisomerase II inhibition,” Anticancer Drug Des. 15(4), 255–264 (2000).
[PubMed]

Anticancer Drugs (1)

R. Liu, Z. Cao, Y. Pan, G. Zhang, P. Yang, P. Guo, and Q. Zhou, “Jatrorrhizine hydrochloride inhibits the proliferation and neovascularization of C8161 metastatic melanoma cells,” Anticancer Drugs 24(7), 667–676 (2013).
[Crossref] [PubMed]

Appl. Opt. (1)

Arch. Toxicol. (1)

J. M. Hwang, H. C. Kuo, T. H. Tseng, J. Y. Liu, and C. Y. Chu, “Berberine induces apoptosis through a mitochondria/caspases pathway in human hepatoma cells,” Arch. Toxicol. 80(2), 62–73 (2006).
[Crossref] [PubMed]

Biomed. Opt. Express (2)

Bioorg. Med. Chem. Lett. (1)

M. Franceschin, L. Rossetti, A. D’Ambrosio, S. Schirripa, A. Bianco, G. Ortaggi, M. Savino, C. Schultes, and S. Neidle, “Natural and synthetic G-quadruplex interactive berberine derivatives,” Bioorg. Med. Chem. Lett. 16(6), 1707–1711 (2006).
[Crossref] [PubMed]

Biotechnol. J. (1)

B. Prats Mateu, E. Harreither, M. Schosserer, V. Puxbaum, E. Gludovacz, N. Borth, N. Gierlinger, and J. Grillari, “Label-free live cell imaging by Confocal Raman Microscopy identifies CHO host and producer cell lines,” Biotechnol. J. 12(1), 1600037 (2017).
[Crossref] [PubMed]

Carbon (1)

R. Li, R. Wu, L. Zhao, Z. Hu, S. Guo, X. Pan, and H. Zou, “Folate and iron difunctionalized multiwall carbon nanotubes as dual-targeted drug nanocarrier to cancer cells,” Carbon 49(5), 1797–1805 (2011).
[Crossref]

Int. J. Cancer (1)

H. L. Wu, C. Y. Hsu, W. H. Liu, and B. Y. Yung, “Berberine-induced apoptosis of human leukemia HL-60 cells is associated with down-regulation of nucleophosmin/B23 and telomerase activity,” Int. J. Cancer 81(6), 923–929 (1999).
[Crossref] [PubMed]

J Chin Med Mater (1)

S. H. Xu, M. S. He, and X. P. Liu, “Berberine contents on B. triacanthophora,” J Chin Med Mater 26(3), 183–184 (2003).

J. Acta Chimica Sinica (1)

Y. X. Zhang, X. F. Zhang, and Y. L. Tang, “Studies of the Interactions between Three Protoberberine Alkaloids and Bcl-2 by Fluorescence Spectroscopy,” J. Acta Chimica Sinica 69(2), 247–251 (2011).

J. Chin. Tradit. Herbal Drugs (1)

G. H. Lu, L. M. Wang, and J. M. Chen, “Determination and utilization of berberine in plants of Berberis L,” J. Chin. Tradit. Herbal Drugs 30(6), 428–430 (1999).

J. Drug Target. (1)

N. K. Mehra and N. K. Jain, “Multifunctional hybrid-carbon nanotubes: new horizon in drug delivery and targeting,” J. Drug Target. 24(4), 294–308 (2016).
[Crossref] [PubMed]

J. Huazhong Univ. Sci. Technolog. Med. Sci. (1)

Q. Guo, X. T. Shen, Y. Y. Li, and S. Q. Xu, “Carbon nanotubes-based drug delivery to cancer and brain,” J. Huazhong Univ. Sci. Technolog. Med. Sci. 37(5), 635–641 (2017).
[PubMed]

J. Laser Phys. (1)

P. Liu, J. H. Li, Z. W. Tu, Z. Y. Guo, Z. F. Zhuang, and Y. F. Xia, “Discrimination of NPC cell lines associated with malignant types using Raman spectroscopy,” J. Laser Phys. 22(11), 1682–1688 (2012).
[Crossref]

J. Pharm. Pharmacol. (1)

S. Letasiová, S. Jantová, M. Miko, R. Ovádeková, and M. Horváthová, “Effect of berberine on proliferation, biosynthesis of macromolecules, cell cycle and induction of intercalation with DNA, dsDNA damage and apoptosis in Ehrlich ascites carcinoma cells,” J. Pharm. Pharmacol. 58(2), 263–270 (2006).
[Crossref] [PubMed]

J. Raman Spectrosc. (2)

J. Gala de Pablo, F. J. Armistead, S. A. Peyman, D. Bonthron, M. Lones, S. Smith, and S. D. Evans, “Biochemical fingerprint of colorectal cancer cell lines using label-free live single-cell Raman spectroscopy,” J. Raman Spectrosc. 49(8), 1323–1332 (2018).
[Crossref]

S. Stewart, H. Kirschner, P. J. Treado, R. Priore, M. Tretiakova, and J. K. Cohen, “Distinguishing between renal oncocytoma and chromophobe renal cell carcinoma using Raman molecular imaging,” J. Raman Spectrosc. 45(4), 274–280 (2014).
[Crossref]

Med. Oncol. (1)

Y. Pazhang, S. Ahmadian, M. Mahmoudian, and M. Shafiezadeh, “Berberine-induced apoptosis via decreasing the survivin protein in K562 cell line,” Med. Oncol. 28(4), 1577–1583 (2011).
[Crossref] [PubMed]

Methods Enzymol. (1)

W. L. Peticolas, “Raman spectroscopy of DNA and proteins,” Methods Enzymol. 246, 389–416 (1995).
[Crossref] [PubMed]

Mol. Carcinog. (1)

H. G. Hambright, I. S. Batth, J. Xie, R. Ghosh, and A. P. Kumar, “Palmatine inhibits growth and invasion in prostate cancer cell: Potential role for rpS6/NFκB/FLIP,” Mol. Carcinog. 54(10), 1227–1234 (2015).
[Crossref] [PubMed]

Nature (1)

G. J. Puppels, F. F. de Mul, C. Otto, J. Greve, M. Robert-Nicoud, D. J. Arndt-Jovin, and T. M. Jovin, “Studying single living cells and chromosomes by confocal Raman microspectroscopy,” Nature 347(6290), 301–303 (1990).
[Crossref] [PubMed]

Photodiagn. Photodyn. Ther. (1)

J. Wu, Q. Xiao, N. Zhang, C. Xue, A. W. Leung, H. Zhang, Q. J. Tang, and C. Xu, “Palmatine hydrochloride mediated photodynamic inactivation of breast cancer MCF-7 cells: Effectiveness and mechanism of action,” Photodiagn. Photodyn. Ther. 15, 133–138 (2016).
[Crossref] [PubMed]

Planta Med. (1)

Y. Kobayashi, Y. Yamashita, N. Fujii, K. Takaboshi, T. Kawakami, M. Kawamura, T. Mizukami, and H. Nakano, “Inhibitors of DNA topoisomerase I and II isolated from the Coptis rhizomes,” Planta Med. 61(5), 414–418 (1995).
[Crossref] [PubMed]

PLoS One (1)

Y. Wang, M. M. Kheir, Y. Chai, J. Hu, D. Xing, F. Lei, and L. Du, “Comprehensive study in the inhibitory effect of berberine on gene transcription, including TATA box,” PLoS One 6(8), e23495 (2011).
[Crossref] [PubMed]

Sci. Rep. (1)

P. Heraud, M. F. Cowan, K. M. Marzec, B. L. Møller, C. K. Blomstedt, and R. Gleadow, “Label-free Raman hyperspectral imaging analysis localizes the cyanogenic glucoside dhurrin to the cytoplasm in sorghum cells,” Sci. Rep. 8(1), 2691 (2018).
[Crossref] [PubMed]

Spectrochim. Acta A Mol. Biomol. Spectrosc. (1)

K. le Roux, L. C. Prinsloo, A. A. Hussein, and N. Lall, “A micro-Raman spectroscopic investigation of leukemic U-937 cells treated with Crotalaria agatiflora Schweinf and the isolated compound madurensine,” Spectrochim. Acta A Mol. Biomol. Spectrosc. 95(5), 547–554 (2012).
[Crossref] [PubMed]

Yao Xue Xue Bao (1)

T. X. Wang and X. H. Yang, “Reversal effect of isotetrandrine, an isoquinoline alkaloid extracted from Caulis Mahoniae, on P-glycoprotein-mediated doxorubicin-resistance in human breast cancer (MCF-7/DOX) cells,” Yao Xue Xue Bao 43(5), 461–466 (2008).
[PubMed]

Other (1)

S. Kaura, N. K. Mehraa, K. Jaina, N. K. Jain, “Development and evaluation of targeting ligand-anchored CNTs as prospective targeted drug delivery system” J. Taylor & Francis, 2169–141X (Online) (2016).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (16)

Fig. 1
Fig. 1 The structural formula of Berberine, Jatrorrhizine, Palmatine, respectively.
Fig. 2
Fig. 2 Survival rate of Jurkat cells treated with BBR, JTZ or PMT, respectively.
Fig. 3
Fig. 3 Topographic images of Jurkat cells (a) without treatment; respectively treated with different drugs for 24h and 48h (b1) (b2) BBR; (c1)(c2) JTZ; (d1)(2) PMT, in which X, Y and Z represented the horizontal, vertical and height scanning ranges, respectively.
Fig. 4
Fig. 4 Bright field images and fluorescent images of Jurkat cells (a1)(a2) without treatment; treated with different drugs for 24h (b1)(b2) BBR; (c1)(c2)JTZ; (d1)(d2) PMT; treated with different drugs for 48h (e1)(e2) BBR; (f1)(f2) JTZ; (g1)(g2) PMT. Scale bar 10 um.
Fig. 5
Fig. 5 Average Raman spectra of Jurkat cells (a)without treatment; treated with different drugs for 24h (b)BBR; (c)JTZ; (d) PMT; (e)(f)(g) the spectral differences between (b) (c) (d) and (a), respectively.
Fig. 6
Fig. 6 Average Raman spectra of Jurkat cells (a)without treatment; treated with different drugs for 48h (b)BBR; (c)JTZ; (d)PMT; (e)(f)(g) the spectral differences between (b) (c) (d) and (a), respectively.
Fig. 7
Fig. 7 PCA scatter plots of PC1 and PC2 (or PC3) of Jurkat cells treated with different drugs and the corresponding loading curves during cell apoptosis (a)(b) in the early stage; (c)(d) in the late stage.
Fig. 8
Fig. 8 Intensity variations of selected Raman peaks in the drug-treated cells and the control group, in which the vertical axis was displayed as the intensity ratio of drug-treated cells to the control group.
Fig. 9
Fig. 9 Raman spectral imaging result of Jurkat cells treated with different drugs
Fig. 10
Fig. 10 Average Raman spectra of different drugs (a)BBR; (b)JTZ; (c)PMT; average Raman spectra of DNA (d)without treatment, treated with different drugs (e)BBR; (f)JTZ; (g)PMT, respectively.
Fig. 11
Fig. 11 The UV-vis absorption spectra of SWNT conjugated with different carriers (a)SWNT;(b) SWNT-PEG;(c) SWNT-PEG-FA;(d) SWNT -PEG-FA/BBR
Fig. 12
Fig. 12 Raman spectra of SWNT conjugated with different number carriers (a)SWNT;(b) SWNT-PEG;(c) SWNT-PEG-FA;(d) SWNT-PEG-FA/BBR
Fig. 13
Fig. 13 (a) UV-Vis absorption spectra variation of the prepared SWNT-PEG-FA/BBR with the BBR concentration; (b)the fitting curve of the absorbance with the BBR concentration. The dotted red line is 16 ug/mL.
Fig. 14
Fig. 14 Survival rate of Jurkat cells treated with different carriers (a) SWNT;(b)BBR;(c) SWNT-PEG-FA/BBR
Fig. 15
Fig. 15 Raman spectral imaging results during Jurkat cell uptake individual SWNT or synthesized SWNT-PEG-FA/BBR (a1)(a2)(a3)SWNT for 2h; (b1)(b2)(b3)SWNT for 6h; (c1)(c2)(c3)SWNT for 12h; (d1)(d2)(d3)SWNT-PEG-FA/BBR for 2h; (e1)(e2)(e3) SWNT-PEG-FA/BBR for 6h; (f1)(f2)(f3) SWNT-PEG-FA/BBR for 12h; in which the 1st, 2nd, 3rd rows respectively denoted the bright field image, magnified Raman image and Merge image (scale bar 2μm).
Fig. 16
Fig. 16 Bright field and fluorescence images of Jurkat cells treated with (a1)(a2), (b1)(b2) BBR; (c1)(c2), (d1)(d2) SWNT-PEG-FA/BBR (bar:10 um).

Tables (2)

Tables Icon

Table 1 Raman peak frequencies and their assignments [13–21,30,31]

Tables Icon

Table 2 Raman peak frequencies and their assignments [14–18,31]

Metrics