Abstract

The phenomenon of glistenings, often appearing in intraocular lenses (IOLs) of patients after some time from the surgical operation, is potentially able to induce a poor quality of vision and, therefore, frustrate IOL implantation itself. In this paper, we combine optical microscopy with micro-Raman spectroscopy to get a deeper insight on the mechanism ruling, at microscopic scale, glistening formation. In particular, we have analyzed two types of IOLs, characterized by a different internal hydrophobicity but a similar polymer hydration coefficient. Raman imaging of single microvacuoles reveals that water creeps into the polymeric network, which traps water. Finally, applying the Principal Component Analysis (PCA) to Raman data, we provide information on the probable mechanism leading to water trapping in the two kinds of analyzed IOLs.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Quantification of glistenings in intraocular lenses using a ballistic-photon removing integrating-sphere method

Do-Hyun Kim, Robert H. James, Robert J. Landry, Don Calogero, James Anderson, and Ilko K. Ilev
Appl. Opt. 50(35) 6461-6467 (2011)

Advances and challenges of intraocular lens design [Invited]

Lan Zeng and Fengzhou Fang
Appl. Opt. 57(25) 7363-7376 (2018)

Chemical basis for alteration of an intraocular lens using a femtosecond laser

Josef F. Bille, Johann Engelhardt, Hans-Robert Volpp, Abdelmoutalib Laghouissa, Marcus Motzkus, Zhongxiang Jiang, and Ruth Sahler
Biomed. Opt. Express 8(3) 1390-1404 (2017)

References

  • View by:
  • |
  • |
  • |

  1. D. V. Leaming, “Practice styles and preferences of ASCRS members--1994 survey,” J. Cataract Refract. Surg. 21(4), 378–385 (1995).
    [Crossref] [PubMed]
  2. H. Ridley, “Intra-ocular acrylic lenses; a recent development in the surgery of cataract,” Br. J. Ophthalmol. 36(3), 113–122 (1952).
    [Crossref] [PubMed]
  3. K. R. Mehta, S. N. Sathe, and S. D. Karyekar, “The new soft intraocular lens implant,” J. Am. Intraocul. Implant Soc. 4(4), 200–205 (1978).
    [Crossref] [PubMed]
  4. E. Epstein, “History of intraocular lens implant surgery,” in Soft implant lenses in cataract surgery, T. R. Mazzocco, G. M. Rajacich, E. Epstein, ed. (Slack, 1986).
  5. R. Menapace, M. Amon, and U. Radax, “Evaluation of 200 consecutive IOGEL 1103 capsular-bag lenses implanted through a small incision,” J. Cataract Refract. Surg. 18(3), 252–264 (1992).
    [Crossref] [PubMed]
  6. L. Werner, D. J. Apple, M. Escobar-Gomez, A. Ohrström, B. B. Crayford, R. Bianchi, and S. K. Pandey, “Postoperative deposition of calcium on the surfaces of a hydrogel intraocular lens,” Ophthalmology 107(12), 2179–2185 (2000).
    [Crossref] [PubMed]
  7. E. J. Hollick, D. J. Spalton, P. G. Ursell, and M. V. Pande, “Biocompatibility of poly(methyl methacrylate), silicone, and AcrySof intraocular lenses: randomized comparison of the cellular reaction on the anterior lens surface,” J. Cataract Refract. Surg. 24(3), 361–366 (1998).
    [Crossref] [PubMed]
  8. E. Epstein, “Use of soft lenses,” J. Cataract Refract. Surg. 16(6), 779 (1990).
    [Crossref] [PubMed]
  9. M. Tetz and M. R. Jorgensen, “New hydrophobic IOL materials and understanding the science of glistenings,” Curr. Eye Res. 40(10), 969–981 (2015).
    [Crossref] [PubMed]
  10. D. B. Elliott, “Contrast sensitivity decline with ageing: a neural or optical phenomenon?” 7, 415–419 (1987).
    [Crossref]
  11. L. Werner, J. C. Stover, J. Schwiegerling, and K. K. Das, “Effects of Intraocular Lens Opacification on Light Scatter, Stray Light, and Overall Optical Quality/Performance,” Invest. Ophthalmol. Vis. Sci. 57(7), 3239–3247 (2016).
    [Crossref] [PubMed]
  12. K. K. Das, J. C. Stover, J. Schwiegerling, and M. Karakelle, “Technique for measuring forward light scatter in intraocular lenses,” J. Cataract Refract. Surg. 39(5), 770–778 (2013).
    [Crossref] [PubMed]
  13. H. Nishihara, S. Yaguchi, T. Onishi, M. Chida, and M. Ayaki, “Surface scattering in implanted hydrophobic intraocular lenses,” J. Cataract Refract. Surg. 29(7), 1385–1388 (2003).
    [Crossref] [PubMed]
  14. D. K. Dhaliwal, N. Mamalis, R. J. Olson, A. S. Crandall, P. Zimmerman, O. C. Alldredge, F. J. Durcan, and O. Omar, “Visual significance of glistenings seen in the AcrySof intraocular lens,” J. Cataract Refract. Surg. 22(4), 452–457 (1996).
    [Crossref] [PubMed]
  15. D. Tripti, R. S. Haldar, S. Geetha, K. Niyogi, and R. K. Khandal, “Materials for intraocular lenses (IOLs): Review of developments to achieve biocompatibility,” E-Polymers 9(1), 124 (2009).
    [Crossref]
  16. U. Gunenc, F. H. Oner, S. Tongal, and M. Ferliel, “Effects on visual function of glistenings and folding marks in AcrySof intraocular lenses,” J. Cataract Refract. Surg. 27(10), 1611–1614 (2001).
    [Crossref] [PubMed]
  17. D. H. Kim, R. H. James, R. J. Landry, D. Calogero, J. Anderson, and I. K. Ilev, “Quantification of glistenings in intraocular lenses using a ballistic-photon removing integrating-sphere method,” Appl. Opt. 50(35), 6461–6467 (2011).
    [Crossref] [PubMed]
  18. J. M. Artigas, A. Felipe, A. Navea, M. C. García-Domene, Á. Pons, and J. Mataix, “Determination of scattering in intraocular lenses by spectrophotometric measurements,” J. Biomed. Opt. 19(12), 127006 (2014).
    [Crossref] [PubMed]
  19. B. N. Walker, R. H. James, D. Calogero, and I. K. Ilev, “A novel full-angle scanning light scattering profiler to quantitatively evaluate forward and backward light scattering from intraocular lenses,” Rev. Sci. Instrum. 86(9), 095004 (2015).
    [Crossref] [PubMed]
  20. T. Oshika, Y. Shiokawa, S. Amano, and K. Mitomo, “Influence of glistenings on the optical quality of acrylic foldable intraocular lens,” Br. J. Ophthalmol. 85(9), 1034–1037 (2001).
    [Crossref] [PubMed]
  21. S. Yoshida, H. Matsushima, M. Nagata, T. Senoo, I. Ota, and K. Miyake, “Decreased visual function due to high-level light scattering in a hydrophobic acrylic intraocular lens,” Jpn. J. Ophthalmol. 55(1), 62–66 (2011).
    [Crossref] [PubMed]
  22. A. Waite, N. Faulkner, and R. J. Olson, “Glistenings in the single-piece, hydrophobic, acrylic intraocular lenses,” Am. J. Ophthalmol. 144(1), 143–144 (2007).
    [Crossref] [PubMed]
  23. H. Minami, K. Toru, K. Hiroi, and S. Kazama, “Glistening of Acrylic Intraocular Lenses,” Rinsho Ganka 53(5), 991–994 (1999).
  24. J. Colin and I. Orignac, “Glistenings on intraocular lenses in healthy eyes: effects and associations,” J. Refract. Surg. 27(12), 869–875 (2011).
    [Crossref] [PubMed]
  25. G. Christiansen, F. J. Durcan, R. J. Olson, and K. Christiansen, “Glistenings in the AcrySof intraocular lens: pilot study,” J. Cataract Refract. Surg. 27(5), 728–733 (2001).
    [Crossref] [PubMed]
  26. M. van der Mooren, L. Franssen, and P. Piers, “Effects of glistenings in intraocular lenses,” Biomed. Opt. Express 4(8), 1294–1304 (2013).
    [Crossref] [PubMed]
  27. D. M. Saylor, D. Coleman Richardson, B. J. Dair, and S. K. Pollack, “Osmotic cavitation of elastomeric intraocular lenses,” Acta Biomater. 6(3), 1090–1098 (2010).
    [Crossref] [PubMed]
  28. R. F. Fedors, “A new mechanism of failure in polymers,” J. Polym. Sci. Polym. Lett. Ed. 12(2), 81–84 (1974).
    [Crossref]
  29. R. F. Fedors, “Osmotic effects in water absorption by polymers,” Polymer (Guildf.) 21(2), 207–212 (1980).
    [Crossref]
  30. R. F. Fedors, “Cracking in a glassy epoxy resin induced by water absorption,” Polymer (Guildf.) 21(6), 713–715 (1980).
    [Crossref]
  31. A. Thomas and K. Muniandy, “Adsorption and desorption of water in rubbers,” Polymer (Guildf.) 28(3), 408–415 (1987).
    [Crossref]
  32. L. Gautier, B. Mortaigne, V. Bellenger, and J. Verdu, “Osmotic cracking in unsaturated polyester matrices under humid environments,” J. Appl. Polym. Sci. 79(14), 2517–2526 (2001).
    [Crossref]
  33. A. Miyata, N. Uchida, K. Nakajima, and S. Yaguchi, “Clinical and experimental observation of glistening in acrylic intraocular lenses,” Jpn. J. Ophthalmol. 45(6), 564–569 (2001).
    [Crossref] [PubMed]
  34. B. E. Thomes and T. A. Callaghan, “Evaluation of in vitro glistening formation in hydrophobic acrylic intraocular lenses,” Clin. Ophthalmol. 7, 1529–1534 (2013).
    [Crossref] [PubMed]
  35. N. Z. Gregori, T. S. Spencer, N. Mamalis, and R. J. Olson, “In vitro comparison of glistening formation among hydrophobic acrylic intraocular lenses(1),” J. Cataract Refract. Surg. 28(7), 1262–1268 (2002).
    [Crossref] [PubMed]
  36. T. Shiba, K. Mitooka, and H. Tsuneoka, “In vitro analysis of AcrySof intraocular lens glistening,” Eur. J. Ophthalmol. 13(9-10), 759–763 (2003).
    [Crossref] [PubMed]
  37. K. Kato, M. Nishida, H. Yamane, K. Nakamae, Y. Tagami, and K. Tetsumoto, “Glistening formation in an AcrySof lens initiated by spinodal decomposition of the polymer network by temperature change,” J. Cataract Refract. Surg. 27(9), 1493–1498 (2001).
    [Crossref] [PubMed]
  38. E. Smith and G. Dent, Modern Raman Spectroscopy - A Practical Approach (John Wiley & Sons Ltd, 2005).
  39. D. W. Shipp, F. Sinjab, and I. Notingher, “Raman spectroscopy: techniques and applications in the life sciences,” Adv. Opt. Photonics 9(2), 315–428 (2017).
    [Crossref]
  40. F. Siebert and P. Hildebrandt, Vibrational Spectroscopy in Life Science (Wiley, 2008).
  41. M. S. Amer, Raman Spectroscopy for Soft Matter Applications (John Wiley & Sons, 2009).
  42. H. G. M. Edwards, A. F. Johnson, and I. R. Lewis, “Applications of Raman spectroscopy to the study of polymers and polymerization processes,” J. Raman Spectrosc. 24(8), 475–483 (1993).
    [Crossref]
  43. J. Popp and T. Mayerhöfer, Micro-raman Spectroscopy: Theory and Application (De Gruyter, 2018).
  44. G. Rusciano, P. Capriglione, G. Pesce, S. Del Prete, G. Cennamo, D. Di Cave, L. Cerulli, and A. Sasso, “Raman microspectroscopy analysis in the treatment of acanthamoeba keratitis,” PLoS One 8(8), e72127 (2013).
    [Crossref] [PubMed]
  45. G. Rusciano, G. Zito, G. Pesce, S. Del Prete, G. Cennamo, A. Sasso, “Assessment of conjunctival microvilli abnormality by micro-Raman analysis” J. Biophotonics (5), 551–559 (2016).
  46. A. Bertoluzza, P. Monti, J. V. Garcia-Ramos, R. Simoni, R. Caramazza, and A. Calzavara, “Applications of Raman spectroscopy to the ophthalmological field: Raman spectra of soft contact lenses made of poly-2-hydroxyethylmethacrylate (PHEMA),” J. Mol. Struct. 143, 469–472 (1986).
    [Crossref]
  47. A. Bertoluzza, P. Monti, R. Simoni, R. Caramazza, M. Cellini, L. De Martino, and A. Calzavara, “Applications of Raman spectroscopy to ophthalmological field: Raman spectra of soft contact lenses made of polyvinylpyrrolidone,” in Laser Scattering Spectroscopy of Biological Objects (Studies in Physical & Theoretical Chemistry), J. Stepanek, P. Anzenbacher, and B. Sedlacek, ed. (Elsevier, 1987), vol 45, pp. 595–604.
  48. A. Bertoluzza, C. Fagnano, P. Monti, G. Semerano, J. V. Garcia-Ramos, R. Caramazza, and M. Cellini, “Raman spectra of intraocular lenses before and after implantation in relation to their biocompatibility,” J. Raman Spectrosc. 18(2), 151–152 (1987).
    [Crossref]
  49. P. Monti and R. Simoni, “The role of water in the molecular structure and properties of soft contact lenses and surface interactions,” J. Mol. Struct. 269(3–4), 243–255 (1992).
    [Crossref]
  50. P. Monti, R. Simoni, R. Caramazza, and A. Bertoluzza, “Applications of Raman spectroscopy to ophthalmology: spectroscopic characterization of disposable soft contact lenses,” Biospectroscopy 4(6), 413–419 (1998).
    [Crossref] [PubMed]
  51. K. Krysztofiak, K. Ciężar, and M. Kościński, “Raman imaging of layered soft contact lenses,” J. Appl. Biomater. Funct. Mater. 15(2), e149–e152 (2017).
    [Crossref] [PubMed]
  52. United States Patent: US6636299B1, (2003).
  53. G. Rusciano, A. Martinez, G. Pesce, G. Zito, and A. Sasso, “Micro-Raman analysis of glisterings in intraocular lenses,” Proc. SPIE 10333 Optical Methods for Inspection, Characterization, and Imaging of BiomaterialsIII, 103331A (2017).
  54. H. Zhu, K. C. Jha, R. S. Bhatta, M. Tsige, and A. Dhinojwala, “Molecular structure of poly(methyl methacrylate) surface. I. Combination of interface-sensitive infrared-visible sum frequency generation, molecular dynamics simulations, and ab initio calculations,” Langmuir 30(39), 11609–11618 (2014).
    [Crossref] [PubMed]
  55. B. Schneider, J. A. Štokr, P. Schmidt, M. Mihailov, S. Dirlikov, and N. Peeva, “Stretching and deformation vibrations of CH2, C(CH3)and O(CH3) groups of poly(methyl methacrylate),” Polymer (Guildf.) 20(6), 705–712 (1979).
    [Crossref]
  56. S. Dirlikov and J. Koenig, “Assignment of the carbon-hydrogenstretching and bending vibrations of poly(methyl methacrylate) by selective deuteration,” Appl. Spectrosc. 33(6), 555–561 (1979).
    [Crossref]
  57. H. Willis, V. Zichy, and P. Hendra, “The laser-Raman and infra-red spectra of poly(methyl methacrylate),” Polymer (Guildf.) 10(9), 737–746 (1969).
    [Crossref]
  58. I. Lipschitz, “The vibrational spectrum of poly(methylmethacrylate): A review,” Polym. Plast. Technol. Eng. 19(1), 53–106 (1982).
    [Crossref]
  59. K. J. Thomas, M. Sheeba, V. P. N. Nampoori, C. P. G. Vallabhan, and P. Radhakrishnan, “Raman spectra of polymethyl methacrylate optical fibres excited by a 532 nm diode pumped solid state laser,” J. Opt. A, Pure Appl. Opt. 10(5), 055303 (2008).
    [Crossref]
  60. S. C. Goheen, R. M. Saunders, S. D. Harvey, and P. C. Olsen, “Raman spectroscopy of 2-hydroxyethyl methacrylate-acrylamide copolymer using gamma irradiation for cross-linking,” J. Raman Spectrosc. 37(11), 1248–1256 (2006).
    [Crossref]
  61. F. Pallikari, G. Chondrokoukis, M. Rebelakis, and Y. Kotsalas, “Raman spectroscopy: A technique for estimating extent of polymerization in PMMA,” Mater. Res. Innov. 4(2–3), 89–92 (2001).
    [Crossref]
  62. X. Xu, H. Ming, Q. Zhang, and Y. Zhang, “Properties of Raman spectra and laser induced birefringence in polymethyl methacrylate optical fibres,” J. Opt. A, Pure Appl. Opt. 4(3), 237–242 (2002).
    [Crossref]
  63. C. Choe, J. Lademann, and M. E. Darvin, “Depth profiles of hydrogen bound water molecule types and their relation to lipid and protein interaction in the human stratum corneum in vivo,” Analyst (Lond.) 141(22), 6329–6337 (2016).
    [Crossref] [PubMed]

2017 (2)

D. W. Shipp, F. Sinjab, and I. Notingher, “Raman spectroscopy: techniques and applications in the life sciences,” Adv. Opt. Photonics 9(2), 315–428 (2017).
[Crossref]

K. Krysztofiak, K. Ciężar, and M. Kościński, “Raman imaging of layered soft contact lenses,” J. Appl. Biomater. Funct. Mater. 15(2), e149–e152 (2017).
[Crossref] [PubMed]

2016 (2)

C. Choe, J. Lademann, and M. E. Darvin, “Depth profiles of hydrogen bound water molecule types and their relation to lipid and protein interaction in the human stratum corneum in vivo,” Analyst (Lond.) 141(22), 6329–6337 (2016).
[Crossref] [PubMed]

L. Werner, J. C. Stover, J. Schwiegerling, and K. K. Das, “Effects of Intraocular Lens Opacification on Light Scatter, Stray Light, and Overall Optical Quality/Performance,” Invest. Ophthalmol. Vis. Sci. 57(7), 3239–3247 (2016).
[Crossref] [PubMed]

2015 (2)

M. Tetz and M. R. Jorgensen, “New hydrophobic IOL materials and understanding the science of glistenings,” Curr. Eye Res. 40(10), 969–981 (2015).
[Crossref] [PubMed]

B. N. Walker, R. H. James, D. Calogero, and I. K. Ilev, “A novel full-angle scanning light scattering profiler to quantitatively evaluate forward and backward light scattering from intraocular lenses,” Rev. Sci. Instrum. 86(9), 095004 (2015).
[Crossref] [PubMed]

2014 (2)

J. M. Artigas, A. Felipe, A. Navea, M. C. García-Domene, Á. Pons, and J. Mataix, “Determination of scattering in intraocular lenses by spectrophotometric measurements,” J. Biomed. Opt. 19(12), 127006 (2014).
[Crossref] [PubMed]

H. Zhu, K. C. Jha, R. S. Bhatta, M. Tsige, and A. Dhinojwala, “Molecular structure of poly(methyl methacrylate) surface. I. Combination of interface-sensitive infrared-visible sum frequency generation, molecular dynamics simulations, and ab initio calculations,” Langmuir 30(39), 11609–11618 (2014).
[Crossref] [PubMed]

2013 (4)

G. Rusciano, P. Capriglione, G. Pesce, S. Del Prete, G. Cennamo, D. Di Cave, L. Cerulli, and A. Sasso, “Raman microspectroscopy analysis in the treatment of acanthamoeba keratitis,” PLoS One 8(8), e72127 (2013).
[Crossref] [PubMed]

M. van der Mooren, L. Franssen, and P. Piers, “Effects of glistenings in intraocular lenses,” Biomed. Opt. Express 4(8), 1294–1304 (2013).
[Crossref] [PubMed]

K. K. Das, J. C. Stover, J. Schwiegerling, and M. Karakelle, “Technique for measuring forward light scatter in intraocular lenses,” J. Cataract Refract. Surg. 39(5), 770–778 (2013).
[Crossref] [PubMed]

B. E. Thomes and T. A. Callaghan, “Evaluation of in vitro glistening formation in hydrophobic acrylic intraocular lenses,” Clin. Ophthalmol. 7, 1529–1534 (2013).
[Crossref] [PubMed]

2011 (3)

S. Yoshida, H. Matsushima, M. Nagata, T. Senoo, I. Ota, and K. Miyake, “Decreased visual function due to high-level light scattering in a hydrophobic acrylic intraocular lens,” Jpn. J. Ophthalmol. 55(1), 62–66 (2011).
[Crossref] [PubMed]

J. Colin and I. Orignac, “Glistenings on intraocular lenses in healthy eyes: effects and associations,” J. Refract. Surg. 27(12), 869–875 (2011).
[Crossref] [PubMed]

D. H. Kim, R. H. James, R. J. Landry, D. Calogero, J. Anderson, and I. K. Ilev, “Quantification of glistenings in intraocular lenses using a ballistic-photon removing integrating-sphere method,” Appl. Opt. 50(35), 6461–6467 (2011).
[Crossref] [PubMed]

2010 (1)

D. M. Saylor, D. Coleman Richardson, B. J. Dair, and S. K. Pollack, “Osmotic cavitation of elastomeric intraocular lenses,” Acta Biomater. 6(3), 1090–1098 (2010).
[Crossref] [PubMed]

2009 (1)

D. Tripti, R. S. Haldar, S. Geetha, K. Niyogi, and R. K. Khandal, “Materials for intraocular lenses (IOLs): Review of developments to achieve biocompatibility,” E-Polymers 9(1), 124 (2009).
[Crossref]

2008 (1)

K. J. Thomas, M. Sheeba, V. P. N. Nampoori, C. P. G. Vallabhan, and P. Radhakrishnan, “Raman spectra of polymethyl methacrylate optical fibres excited by a 532 nm diode pumped solid state laser,” J. Opt. A, Pure Appl. Opt. 10(5), 055303 (2008).
[Crossref]

2007 (1)

A. Waite, N. Faulkner, and R. J. Olson, “Glistenings in the single-piece, hydrophobic, acrylic intraocular lenses,” Am. J. Ophthalmol. 144(1), 143–144 (2007).
[Crossref] [PubMed]

2006 (1)

S. C. Goheen, R. M. Saunders, S. D. Harvey, and P. C. Olsen, “Raman spectroscopy of 2-hydroxyethyl methacrylate-acrylamide copolymer using gamma irradiation for cross-linking,” J. Raman Spectrosc. 37(11), 1248–1256 (2006).
[Crossref]

2003 (2)

T. Shiba, K. Mitooka, and H. Tsuneoka, “In vitro analysis of AcrySof intraocular lens glistening,” Eur. J. Ophthalmol. 13(9-10), 759–763 (2003).
[Crossref] [PubMed]

H. Nishihara, S. Yaguchi, T. Onishi, M. Chida, and M. Ayaki, “Surface scattering in implanted hydrophobic intraocular lenses,” J. Cataract Refract. Surg. 29(7), 1385–1388 (2003).
[Crossref] [PubMed]

2002 (2)

N. Z. Gregori, T. S. Spencer, N. Mamalis, and R. J. Olson, “In vitro comparison of glistening formation among hydrophobic acrylic intraocular lenses(1),” J. Cataract Refract. Surg. 28(7), 1262–1268 (2002).
[Crossref] [PubMed]

X. Xu, H. Ming, Q. Zhang, and Y. Zhang, “Properties of Raman spectra and laser induced birefringence in polymethyl methacrylate optical fibres,” J. Opt. A, Pure Appl. Opt. 4(3), 237–242 (2002).
[Crossref]

2001 (7)

F. Pallikari, G. Chondrokoukis, M. Rebelakis, and Y. Kotsalas, “Raman spectroscopy: A technique for estimating extent of polymerization in PMMA,” Mater. Res. Innov. 4(2–3), 89–92 (2001).
[Crossref]

L. Gautier, B. Mortaigne, V. Bellenger, and J. Verdu, “Osmotic cracking in unsaturated polyester matrices under humid environments,” J. Appl. Polym. Sci. 79(14), 2517–2526 (2001).
[Crossref]

A. Miyata, N. Uchida, K. Nakajima, and S. Yaguchi, “Clinical and experimental observation of glistening in acrylic intraocular lenses,” Jpn. J. Ophthalmol. 45(6), 564–569 (2001).
[Crossref] [PubMed]

K. Kato, M. Nishida, H. Yamane, K. Nakamae, Y. Tagami, and K. Tetsumoto, “Glistening formation in an AcrySof lens initiated by spinodal decomposition of the polymer network by temperature change,” J. Cataract Refract. Surg. 27(9), 1493–1498 (2001).
[Crossref] [PubMed]

G. Christiansen, F. J. Durcan, R. J. Olson, and K. Christiansen, “Glistenings in the AcrySof intraocular lens: pilot study,” J. Cataract Refract. Surg. 27(5), 728–733 (2001).
[Crossref] [PubMed]

U. Gunenc, F. H. Oner, S. Tongal, and M. Ferliel, “Effects on visual function of glistenings and folding marks in AcrySof intraocular lenses,” J. Cataract Refract. Surg. 27(10), 1611–1614 (2001).
[Crossref] [PubMed]

T. Oshika, Y. Shiokawa, S. Amano, and K. Mitomo, “Influence of glistenings on the optical quality of acrylic foldable intraocular lens,” Br. J. Ophthalmol. 85(9), 1034–1037 (2001).
[Crossref] [PubMed]

2000 (1)

L. Werner, D. J. Apple, M. Escobar-Gomez, A. Ohrström, B. B. Crayford, R. Bianchi, and S. K. Pandey, “Postoperative deposition of calcium on the surfaces of a hydrogel intraocular lens,” Ophthalmology 107(12), 2179–2185 (2000).
[Crossref] [PubMed]

1999 (1)

H. Minami, K. Toru, K. Hiroi, and S. Kazama, “Glistening of Acrylic Intraocular Lenses,” Rinsho Ganka 53(5), 991–994 (1999).

1998 (2)

E. J. Hollick, D. J. Spalton, P. G. Ursell, and M. V. Pande, “Biocompatibility of poly(methyl methacrylate), silicone, and AcrySof intraocular lenses: randomized comparison of the cellular reaction on the anterior lens surface,” J. Cataract Refract. Surg. 24(3), 361–366 (1998).
[Crossref] [PubMed]

P. Monti, R. Simoni, R. Caramazza, and A. Bertoluzza, “Applications of Raman spectroscopy to ophthalmology: spectroscopic characterization of disposable soft contact lenses,” Biospectroscopy 4(6), 413–419 (1998).
[Crossref] [PubMed]

1996 (1)

D. K. Dhaliwal, N. Mamalis, R. J. Olson, A. S. Crandall, P. Zimmerman, O. C. Alldredge, F. J. Durcan, and O. Omar, “Visual significance of glistenings seen in the AcrySof intraocular lens,” J. Cataract Refract. Surg. 22(4), 452–457 (1996).
[Crossref] [PubMed]

1995 (1)

D. V. Leaming, “Practice styles and preferences of ASCRS members--1994 survey,” J. Cataract Refract. Surg. 21(4), 378–385 (1995).
[Crossref] [PubMed]

1993 (1)

H. G. M. Edwards, A. F. Johnson, and I. R. Lewis, “Applications of Raman spectroscopy to the study of polymers and polymerization processes,” J. Raman Spectrosc. 24(8), 475–483 (1993).
[Crossref]

1992 (2)

R. Menapace, M. Amon, and U. Radax, “Evaluation of 200 consecutive IOGEL 1103 capsular-bag lenses implanted through a small incision,” J. Cataract Refract. Surg. 18(3), 252–264 (1992).
[Crossref] [PubMed]

P. Monti and R. Simoni, “The role of water in the molecular structure and properties of soft contact lenses and surface interactions,” J. Mol. Struct. 269(3–4), 243–255 (1992).
[Crossref]

1990 (1)

E. Epstein, “Use of soft lenses,” J. Cataract Refract. Surg. 16(6), 779 (1990).
[Crossref] [PubMed]

1987 (2)

A. Thomas and K. Muniandy, “Adsorption and desorption of water in rubbers,” Polymer (Guildf.) 28(3), 408–415 (1987).
[Crossref]

A. Bertoluzza, C. Fagnano, P. Monti, G. Semerano, J. V. Garcia-Ramos, R. Caramazza, and M. Cellini, “Raman spectra of intraocular lenses before and after implantation in relation to their biocompatibility,” J. Raman Spectrosc. 18(2), 151–152 (1987).
[Crossref]

1986 (1)

A. Bertoluzza, P. Monti, J. V. Garcia-Ramos, R. Simoni, R. Caramazza, and A. Calzavara, “Applications of Raman spectroscopy to the ophthalmological field: Raman spectra of soft contact lenses made of poly-2-hydroxyethylmethacrylate (PHEMA),” J. Mol. Struct. 143, 469–472 (1986).
[Crossref]

1982 (1)

I. Lipschitz, “The vibrational spectrum of poly(methylmethacrylate): A review,” Polym. Plast. Technol. Eng. 19(1), 53–106 (1982).
[Crossref]

1980 (2)

R. F. Fedors, “Osmotic effects in water absorption by polymers,” Polymer (Guildf.) 21(2), 207–212 (1980).
[Crossref]

R. F. Fedors, “Cracking in a glassy epoxy resin induced by water absorption,” Polymer (Guildf.) 21(6), 713–715 (1980).
[Crossref]

1979 (2)

S. Dirlikov and J. Koenig, “Assignment of the carbon-hydrogenstretching and bending vibrations of poly(methyl methacrylate) by selective deuteration,” Appl. Spectrosc. 33(6), 555–561 (1979).
[Crossref]

B. Schneider, J. A. Štokr, P. Schmidt, M. Mihailov, S. Dirlikov, and N. Peeva, “Stretching and deformation vibrations of CH2, C(CH3)and O(CH3) groups of poly(methyl methacrylate),” Polymer (Guildf.) 20(6), 705–712 (1979).
[Crossref]

1978 (1)

K. R. Mehta, S. N. Sathe, and S. D. Karyekar, “The new soft intraocular lens implant,” J. Am. Intraocul. Implant Soc. 4(4), 200–205 (1978).
[Crossref] [PubMed]

1974 (1)

R. F. Fedors, “A new mechanism of failure in polymers,” J. Polym. Sci. Polym. Lett. Ed. 12(2), 81–84 (1974).
[Crossref]

1969 (1)

H. Willis, V. Zichy, and P. Hendra, “The laser-Raman and infra-red spectra of poly(methyl methacrylate),” Polymer (Guildf.) 10(9), 737–746 (1969).
[Crossref]

1952 (1)

H. Ridley, “Intra-ocular acrylic lenses; a recent development in the surgery of cataract,” Br. J. Ophthalmol. 36(3), 113–122 (1952).
[Crossref] [PubMed]

Alldredge, O. C.

D. K. Dhaliwal, N. Mamalis, R. J. Olson, A. S. Crandall, P. Zimmerman, O. C. Alldredge, F. J. Durcan, and O. Omar, “Visual significance of glistenings seen in the AcrySof intraocular lens,” J. Cataract Refract. Surg. 22(4), 452–457 (1996).
[Crossref] [PubMed]

Amano, S.

T. Oshika, Y. Shiokawa, S. Amano, and K. Mitomo, “Influence of glistenings on the optical quality of acrylic foldable intraocular lens,” Br. J. Ophthalmol. 85(9), 1034–1037 (2001).
[Crossref] [PubMed]

Amon, M.

R. Menapace, M. Amon, and U. Radax, “Evaluation of 200 consecutive IOGEL 1103 capsular-bag lenses implanted through a small incision,” J. Cataract Refract. Surg. 18(3), 252–264 (1992).
[Crossref] [PubMed]

Anderson, J.

Apple, D. J.

L. Werner, D. J. Apple, M. Escobar-Gomez, A. Ohrström, B. B. Crayford, R. Bianchi, and S. K. Pandey, “Postoperative deposition of calcium on the surfaces of a hydrogel intraocular lens,” Ophthalmology 107(12), 2179–2185 (2000).
[Crossref] [PubMed]

Artigas, J. M.

J. M. Artigas, A. Felipe, A. Navea, M. C. García-Domene, Á. Pons, and J. Mataix, “Determination of scattering in intraocular lenses by spectrophotometric measurements,” J. Biomed. Opt. 19(12), 127006 (2014).
[Crossref] [PubMed]

Ayaki, M.

H. Nishihara, S. Yaguchi, T. Onishi, M. Chida, and M. Ayaki, “Surface scattering in implanted hydrophobic intraocular lenses,” J. Cataract Refract. Surg. 29(7), 1385–1388 (2003).
[Crossref] [PubMed]

Bellenger, V.

L. Gautier, B. Mortaigne, V. Bellenger, and J. Verdu, “Osmotic cracking in unsaturated polyester matrices under humid environments,” J. Appl. Polym. Sci. 79(14), 2517–2526 (2001).
[Crossref]

Bertoluzza, A.

P. Monti, R. Simoni, R. Caramazza, and A. Bertoluzza, “Applications of Raman spectroscopy to ophthalmology: spectroscopic characterization of disposable soft contact lenses,” Biospectroscopy 4(6), 413–419 (1998).
[Crossref] [PubMed]

A. Bertoluzza, C. Fagnano, P. Monti, G. Semerano, J. V. Garcia-Ramos, R. Caramazza, and M. Cellini, “Raman spectra of intraocular lenses before and after implantation in relation to their biocompatibility,” J. Raman Spectrosc. 18(2), 151–152 (1987).
[Crossref]

A. Bertoluzza, P. Monti, J. V. Garcia-Ramos, R. Simoni, R. Caramazza, and A. Calzavara, “Applications of Raman spectroscopy to the ophthalmological field: Raman spectra of soft contact lenses made of poly-2-hydroxyethylmethacrylate (PHEMA),” J. Mol. Struct. 143, 469–472 (1986).
[Crossref]

Bhatta, R. S.

H. Zhu, K. C. Jha, R. S. Bhatta, M. Tsige, and A. Dhinojwala, “Molecular structure of poly(methyl methacrylate) surface. I. Combination of interface-sensitive infrared-visible sum frequency generation, molecular dynamics simulations, and ab initio calculations,” Langmuir 30(39), 11609–11618 (2014).
[Crossref] [PubMed]

Bianchi, R.

L. Werner, D. J. Apple, M. Escobar-Gomez, A. Ohrström, B. B. Crayford, R. Bianchi, and S. K. Pandey, “Postoperative deposition of calcium on the surfaces of a hydrogel intraocular lens,” Ophthalmology 107(12), 2179–2185 (2000).
[Crossref] [PubMed]

Callaghan, T. A.

B. E. Thomes and T. A. Callaghan, “Evaluation of in vitro glistening formation in hydrophobic acrylic intraocular lenses,” Clin. Ophthalmol. 7, 1529–1534 (2013).
[Crossref] [PubMed]

Calogero, D.

B. N. Walker, R. H. James, D. Calogero, and I. K. Ilev, “A novel full-angle scanning light scattering profiler to quantitatively evaluate forward and backward light scattering from intraocular lenses,” Rev. Sci. Instrum. 86(9), 095004 (2015).
[Crossref] [PubMed]

D. H. Kim, R. H. James, R. J. Landry, D. Calogero, J. Anderson, and I. K. Ilev, “Quantification of glistenings in intraocular lenses using a ballistic-photon removing integrating-sphere method,” Appl. Opt. 50(35), 6461–6467 (2011).
[Crossref] [PubMed]

Calzavara, A.

A. Bertoluzza, P. Monti, J. V. Garcia-Ramos, R. Simoni, R. Caramazza, and A. Calzavara, “Applications of Raman spectroscopy to the ophthalmological field: Raman spectra of soft contact lenses made of poly-2-hydroxyethylmethacrylate (PHEMA),” J. Mol. Struct. 143, 469–472 (1986).
[Crossref]

Capriglione, P.

G. Rusciano, P. Capriglione, G. Pesce, S. Del Prete, G. Cennamo, D. Di Cave, L. Cerulli, and A. Sasso, “Raman microspectroscopy analysis in the treatment of acanthamoeba keratitis,” PLoS One 8(8), e72127 (2013).
[Crossref] [PubMed]

Caramazza, R.

P. Monti, R. Simoni, R. Caramazza, and A. Bertoluzza, “Applications of Raman spectroscopy to ophthalmology: spectroscopic characterization of disposable soft contact lenses,” Biospectroscopy 4(6), 413–419 (1998).
[Crossref] [PubMed]

A. Bertoluzza, C. Fagnano, P. Monti, G. Semerano, J. V. Garcia-Ramos, R. Caramazza, and M. Cellini, “Raman spectra of intraocular lenses before and after implantation in relation to their biocompatibility,” J. Raman Spectrosc. 18(2), 151–152 (1987).
[Crossref]

A. Bertoluzza, P. Monti, J. V. Garcia-Ramos, R. Simoni, R. Caramazza, and A. Calzavara, “Applications of Raman spectroscopy to the ophthalmological field: Raman spectra of soft contact lenses made of poly-2-hydroxyethylmethacrylate (PHEMA),” J. Mol. Struct. 143, 469–472 (1986).
[Crossref]

Cellini, M.

A. Bertoluzza, C. Fagnano, P. Monti, G. Semerano, J. V. Garcia-Ramos, R. Caramazza, and M. Cellini, “Raman spectra of intraocular lenses before and after implantation in relation to their biocompatibility,” J. Raman Spectrosc. 18(2), 151–152 (1987).
[Crossref]

Cennamo, G.

G. Rusciano, P. Capriglione, G. Pesce, S. Del Prete, G. Cennamo, D. Di Cave, L. Cerulli, and A. Sasso, “Raman microspectroscopy analysis in the treatment of acanthamoeba keratitis,” PLoS One 8(8), e72127 (2013).
[Crossref] [PubMed]

Cerulli, L.

G. Rusciano, P. Capriglione, G. Pesce, S. Del Prete, G. Cennamo, D. Di Cave, L. Cerulli, and A. Sasso, “Raman microspectroscopy analysis in the treatment of acanthamoeba keratitis,” PLoS One 8(8), e72127 (2013).
[Crossref] [PubMed]

Chida, M.

H. Nishihara, S. Yaguchi, T. Onishi, M. Chida, and M. Ayaki, “Surface scattering in implanted hydrophobic intraocular lenses,” J. Cataract Refract. Surg. 29(7), 1385–1388 (2003).
[Crossref] [PubMed]

Choe, C.

C. Choe, J. Lademann, and M. E. Darvin, “Depth profiles of hydrogen bound water molecule types and their relation to lipid and protein interaction in the human stratum corneum in vivo,” Analyst (Lond.) 141(22), 6329–6337 (2016).
[Crossref] [PubMed]

Chondrokoukis, G.

F. Pallikari, G. Chondrokoukis, M. Rebelakis, and Y. Kotsalas, “Raman spectroscopy: A technique for estimating extent of polymerization in PMMA,” Mater. Res. Innov. 4(2–3), 89–92 (2001).
[Crossref]

Christiansen, G.

G. Christiansen, F. J. Durcan, R. J. Olson, and K. Christiansen, “Glistenings in the AcrySof intraocular lens: pilot study,” J. Cataract Refract. Surg. 27(5), 728–733 (2001).
[Crossref] [PubMed]

Christiansen, K.

G. Christiansen, F. J. Durcan, R. J. Olson, and K. Christiansen, “Glistenings in the AcrySof intraocular lens: pilot study,” J. Cataract Refract. Surg. 27(5), 728–733 (2001).
[Crossref] [PubMed]

Ciezar, K.

K. Krysztofiak, K. Ciężar, and M. Kościński, “Raman imaging of layered soft contact lenses,” J. Appl. Biomater. Funct. Mater. 15(2), e149–e152 (2017).
[Crossref] [PubMed]

Coleman Richardson, D.

D. M. Saylor, D. Coleman Richardson, B. J. Dair, and S. K. Pollack, “Osmotic cavitation of elastomeric intraocular lenses,” Acta Biomater. 6(3), 1090–1098 (2010).
[Crossref] [PubMed]

Colin, J.

J. Colin and I. Orignac, “Glistenings on intraocular lenses in healthy eyes: effects and associations,” J. Refract. Surg. 27(12), 869–875 (2011).
[Crossref] [PubMed]

Crandall, A. S.

D. K. Dhaliwal, N. Mamalis, R. J. Olson, A. S. Crandall, P. Zimmerman, O. C. Alldredge, F. J. Durcan, and O. Omar, “Visual significance of glistenings seen in the AcrySof intraocular lens,” J. Cataract Refract. Surg. 22(4), 452–457 (1996).
[Crossref] [PubMed]

Crayford, B. B.

L. Werner, D. J. Apple, M. Escobar-Gomez, A. Ohrström, B. B. Crayford, R. Bianchi, and S. K. Pandey, “Postoperative deposition of calcium on the surfaces of a hydrogel intraocular lens,” Ophthalmology 107(12), 2179–2185 (2000).
[Crossref] [PubMed]

Dair, B. J.

D. M. Saylor, D. Coleman Richardson, B. J. Dair, and S. K. Pollack, “Osmotic cavitation of elastomeric intraocular lenses,” Acta Biomater. 6(3), 1090–1098 (2010).
[Crossref] [PubMed]

Darvin, M. E.

C. Choe, J. Lademann, and M. E. Darvin, “Depth profiles of hydrogen bound water molecule types and their relation to lipid and protein interaction in the human stratum corneum in vivo,” Analyst (Lond.) 141(22), 6329–6337 (2016).
[Crossref] [PubMed]

Das, K. K.

L. Werner, J. C. Stover, J. Schwiegerling, and K. K. Das, “Effects of Intraocular Lens Opacification on Light Scatter, Stray Light, and Overall Optical Quality/Performance,” Invest. Ophthalmol. Vis. Sci. 57(7), 3239–3247 (2016).
[Crossref] [PubMed]

K. K. Das, J. C. Stover, J. Schwiegerling, and M. Karakelle, “Technique for measuring forward light scatter in intraocular lenses,” J. Cataract Refract. Surg. 39(5), 770–778 (2013).
[Crossref] [PubMed]

Del Prete, S.

G. Rusciano, P. Capriglione, G. Pesce, S. Del Prete, G. Cennamo, D. Di Cave, L. Cerulli, and A. Sasso, “Raman microspectroscopy analysis in the treatment of acanthamoeba keratitis,” PLoS One 8(8), e72127 (2013).
[Crossref] [PubMed]

Dhaliwal, D. K.

D. K. Dhaliwal, N. Mamalis, R. J. Olson, A. S. Crandall, P. Zimmerman, O. C. Alldredge, F. J. Durcan, and O. Omar, “Visual significance of glistenings seen in the AcrySof intraocular lens,” J. Cataract Refract. Surg. 22(4), 452–457 (1996).
[Crossref] [PubMed]

Dhinojwala, A.

H. Zhu, K. C. Jha, R. S. Bhatta, M. Tsige, and A. Dhinojwala, “Molecular structure of poly(methyl methacrylate) surface. I. Combination of interface-sensitive infrared-visible sum frequency generation, molecular dynamics simulations, and ab initio calculations,” Langmuir 30(39), 11609–11618 (2014).
[Crossref] [PubMed]

Di Cave, D.

G. Rusciano, P. Capriglione, G. Pesce, S. Del Prete, G. Cennamo, D. Di Cave, L. Cerulli, and A. Sasso, “Raman microspectroscopy analysis in the treatment of acanthamoeba keratitis,” PLoS One 8(8), e72127 (2013).
[Crossref] [PubMed]

Dirlikov, S.

B. Schneider, J. A. Štokr, P. Schmidt, M. Mihailov, S. Dirlikov, and N. Peeva, “Stretching and deformation vibrations of CH2, C(CH3)and O(CH3) groups of poly(methyl methacrylate),” Polymer (Guildf.) 20(6), 705–712 (1979).
[Crossref]

S. Dirlikov and J. Koenig, “Assignment of the carbon-hydrogenstretching and bending vibrations of poly(methyl methacrylate) by selective deuteration,” Appl. Spectrosc. 33(6), 555–561 (1979).
[Crossref]

Durcan, F. J.

G. Christiansen, F. J. Durcan, R. J. Olson, and K. Christiansen, “Glistenings in the AcrySof intraocular lens: pilot study,” J. Cataract Refract. Surg. 27(5), 728–733 (2001).
[Crossref] [PubMed]

D. K. Dhaliwal, N. Mamalis, R. J. Olson, A. S. Crandall, P. Zimmerman, O. C. Alldredge, F. J. Durcan, and O. Omar, “Visual significance of glistenings seen in the AcrySof intraocular lens,” J. Cataract Refract. Surg. 22(4), 452–457 (1996).
[Crossref] [PubMed]

Edwards, H. G. M.

H. G. M. Edwards, A. F. Johnson, and I. R. Lewis, “Applications of Raman spectroscopy to the study of polymers and polymerization processes,” J. Raman Spectrosc. 24(8), 475–483 (1993).
[Crossref]

Epstein, E.

E. Epstein, “Use of soft lenses,” J. Cataract Refract. Surg. 16(6), 779 (1990).
[Crossref] [PubMed]

Escobar-Gomez, M.

L. Werner, D. J. Apple, M. Escobar-Gomez, A. Ohrström, B. B. Crayford, R. Bianchi, and S. K. Pandey, “Postoperative deposition of calcium on the surfaces of a hydrogel intraocular lens,” Ophthalmology 107(12), 2179–2185 (2000).
[Crossref] [PubMed]

Fagnano, C.

A. Bertoluzza, C. Fagnano, P. Monti, G. Semerano, J. V. Garcia-Ramos, R. Caramazza, and M. Cellini, “Raman spectra of intraocular lenses before and after implantation in relation to their biocompatibility,” J. Raman Spectrosc. 18(2), 151–152 (1987).
[Crossref]

Faulkner, N.

A. Waite, N. Faulkner, and R. J. Olson, “Glistenings in the single-piece, hydrophobic, acrylic intraocular lenses,” Am. J. Ophthalmol. 144(1), 143–144 (2007).
[Crossref] [PubMed]

Fedors, R. F.

R. F. Fedors, “Osmotic effects in water absorption by polymers,” Polymer (Guildf.) 21(2), 207–212 (1980).
[Crossref]

R. F. Fedors, “Cracking in a glassy epoxy resin induced by water absorption,” Polymer (Guildf.) 21(6), 713–715 (1980).
[Crossref]

R. F. Fedors, “A new mechanism of failure in polymers,” J. Polym. Sci. Polym. Lett. Ed. 12(2), 81–84 (1974).
[Crossref]

Felipe, A.

J. M. Artigas, A. Felipe, A. Navea, M. C. García-Domene, Á. Pons, and J. Mataix, “Determination of scattering in intraocular lenses by spectrophotometric measurements,” J. Biomed. Opt. 19(12), 127006 (2014).
[Crossref] [PubMed]

Ferliel, M.

U. Gunenc, F. H. Oner, S. Tongal, and M. Ferliel, “Effects on visual function of glistenings and folding marks in AcrySof intraocular lenses,” J. Cataract Refract. Surg. 27(10), 1611–1614 (2001).
[Crossref] [PubMed]

Franssen, L.

García-Domene, M. C.

J. M. Artigas, A. Felipe, A. Navea, M. C. García-Domene, Á. Pons, and J. Mataix, “Determination of scattering in intraocular lenses by spectrophotometric measurements,” J. Biomed. Opt. 19(12), 127006 (2014).
[Crossref] [PubMed]

Garcia-Ramos, J. V.

A. Bertoluzza, C. Fagnano, P. Monti, G. Semerano, J. V. Garcia-Ramos, R. Caramazza, and M. Cellini, “Raman spectra of intraocular lenses before and after implantation in relation to their biocompatibility,” J. Raman Spectrosc. 18(2), 151–152 (1987).
[Crossref]

A. Bertoluzza, P. Monti, J. V. Garcia-Ramos, R. Simoni, R. Caramazza, and A. Calzavara, “Applications of Raman spectroscopy to the ophthalmological field: Raman spectra of soft contact lenses made of poly-2-hydroxyethylmethacrylate (PHEMA),” J. Mol. Struct. 143, 469–472 (1986).
[Crossref]

Gautier, L.

L. Gautier, B. Mortaigne, V. Bellenger, and J. Verdu, “Osmotic cracking in unsaturated polyester matrices under humid environments,” J. Appl. Polym. Sci. 79(14), 2517–2526 (2001).
[Crossref]

Geetha, S.

D. Tripti, R. S. Haldar, S. Geetha, K. Niyogi, and R. K. Khandal, “Materials for intraocular lenses (IOLs): Review of developments to achieve biocompatibility,” E-Polymers 9(1), 124 (2009).
[Crossref]

Goheen, S. C.

S. C. Goheen, R. M. Saunders, S. D. Harvey, and P. C. Olsen, “Raman spectroscopy of 2-hydroxyethyl methacrylate-acrylamide copolymer using gamma irradiation for cross-linking,” J. Raman Spectrosc. 37(11), 1248–1256 (2006).
[Crossref]

Gregori, N. Z.

N. Z. Gregori, T. S. Spencer, N. Mamalis, and R. J. Olson, “In vitro comparison of glistening formation among hydrophobic acrylic intraocular lenses(1),” J. Cataract Refract. Surg. 28(7), 1262–1268 (2002).
[Crossref] [PubMed]

Gunenc, U.

U. Gunenc, F. H. Oner, S. Tongal, and M. Ferliel, “Effects on visual function of glistenings and folding marks in AcrySof intraocular lenses,” J. Cataract Refract. Surg. 27(10), 1611–1614 (2001).
[Crossref] [PubMed]

Haldar, R. S.

D. Tripti, R. S. Haldar, S. Geetha, K. Niyogi, and R. K. Khandal, “Materials for intraocular lenses (IOLs): Review of developments to achieve biocompatibility,” E-Polymers 9(1), 124 (2009).
[Crossref]

Harvey, S. D.

S. C. Goheen, R. M. Saunders, S. D. Harvey, and P. C. Olsen, “Raman spectroscopy of 2-hydroxyethyl methacrylate-acrylamide copolymer using gamma irradiation for cross-linking,” J. Raman Spectrosc. 37(11), 1248–1256 (2006).
[Crossref]

Hendra, P.

H. Willis, V. Zichy, and P. Hendra, “The laser-Raman and infra-red spectra of poly(methyl methacrylate),” Polymer (Guildf.) 10(9), 737–746 (1969).
[Crossref]

Hiroi, K.

H. Minami, K. Toru, K. Hiroi, and S. Kazama, “Glistening of Acrylic Intraocular Lenses,” Rinsho Ganka 53(5), 991–994 (1999).

Hollick, E. J.

E. J. Hollick, D. J. Spalton, P. G. Ursell, and M. V. Pande, “Biocompatibility of poly(methyl methacrylate), silicone, and AcrySof intraocular lenses: randomized comparison of the cellular reaction on the anterior lens surface,” J. Cataract Refract. Surg. 24(3), 361–366 (1998).
[Crossref] [PubMed]

Ilev, I. K.

B. N. Walker, R. H. James, D. Calogero, and I. K. Ilev, “A novel full-angle scanning light scattering profiler to quantitatively evaluate forward and backward light scattering from intraocular lenses,” Rev. Sci. Instrum. 86(9), 095004 (2015).
[Crossref] [PubMed]

D. H. Kim, R. H. James, R. J. Landry, D. Calogero, J. Anderson, and I. K. Ilev, “Quantification of glistenings in intraocular lenses using a ballistic-photon removing integrating-sphere method,” Appl. Opt. 50(35), 6461–6467 (2011).
[Crossref] [PubMed]

James, R. H.

B. N. Walker, R. H. James, D. Calogero, and I. K. Ilev, “A novel full-angle scanning light scattering profiler to quantitatively evaluate forward and backward light scattering from intraocular lenses,” Rev. Sci. Instrum. 86(9), 095004 (2015).
[Crossref] [PubMed]

D. H. Kim, R. H. James, R. J. Landry, D. Calogero, J. Anderson, and I. K. Ilev, “Quantification of glistenings in intraocular lenses using a ballistic-photon removing integrating-sphere method,” Appl. Opt. 50(35), 6461–6467 (2011).
[Crossref] [PubMed]

Jha, K. C.

H. Zhu, K. C. Jha, R. S. Bhatta, M. Tsige, and A. Dhinojwala, “Molecular structure of poly(methyl methacrylate) surface. I. Combination of interface-sensitive infrared-visible sum frequency generation, molecular dynamics simulations, and ab initio calculations,” Langmuir 30(39), 11609–11618 (2014).
[Crossref] [PubMed]

Johnson, A. F.

H. G. M. Edwards, A. F. Johnson, and I. R. Lewis, “Applications of Raman spectroscopy to the study of polymers and polymerization processes,” J. Raman Spectrosc. 24(8), 475–483 (1993).
[Crossref]

Jorgensen, M. R.

M. Tetz and M. R. Jorgensen, “New hydrophobic IOL materials and understanding the science of glistenings,” Curr. Eye Res. 40(10), 969–981 (2015).
[Crossref] [PubMed]

Karakelle, M.

K. K. Das, J. C. Stover, J. Schwiegerling, and M. Karakelle, “Technique for measuring forward light scatter in intraocular lenses,” J. Cataract Refract. Surg. 39(5), 770–778 (2013).
[Crossref] [PubMed]

Karyekar, S. D.

K. R. Mehta, S. N. Sathe, and S. D. Karyekar, “The new soft intraocular lens implant,” J. Am. Intraocul. Implant Soc. 4(4), 200–205 (1978).
[Crossref] [PubMed]

Kato, K.

K. Kato, M. Nishida, H. Yamane, K. Nakamae, Y. Tagami, and K. Tetsumoto, “Glistening formation in an AcrySof lens initiated by spinodal decomposition of the polymer network by temperature change,” J. Cataract Refract. Surg. 27(9), 1493–1498 (2001).
[Crossref] [PubMed]

Kazama, S.

H. Minami, K. Toru, K. Hiroi, and S. Kazama, “Glistening of Acrylic Intraocular Lenses,” Rinsho Ganka 53(5), 991–994 (1999).

Khandal, R. K.

D. Tripti, R. S. Haldar, S. Geetha, K. Niyogi, and R. K. Khandal, “Materials for intraocular lenses (IOLs): Review of developments to achieve biocompatibility,” E-Polymers 9(1), 124 (2009).
[Crossref]

Kim, D. H.

Koenig, J.

Koscinski, M.

K. Krysztofiak, K. Ciężar, and M. Kościński, “Raman imaging of layered soft contact lenses,” J. Appl. Biomater. Funct. Mater. 15(2), e149–e152 (2017).
[Crossref] [PubMed]

Kotsalas, Y.

F. Pallikari, G. Chondrokoukis, M. Rebelakis, and Y. Kotsalas, “Raman spectroscopy: A technique for estimating extent of polymerization in PMMA,” Mater. Res. Innov. 4(2–3), 89–92 (2001).
[Crossref]

Krysztofiak, K.

K. Krysztofiak, K. Ciężar, and M. Kościński, “Raman imaging of layered soft contact lenses,” J. Appl. Biomater. Funct. Mater. 15(2), e149–e152 (2017).
[Crossref] [PubMed]

Lademann, J.

C. Choe, J. Lademann, and M. E. Darvin, “Depth profiles of hydrogen bound water molecule types and their relation to lipid and protein interaction in the human stratum corneum in vivo,” Analyst (Lond.) 141(22), 6329–6337 (2016).
[Crossref] [PubMed]

Landry, R. J.

Leaming, D. V.

D. V. Leaming, “Practice styles and preferences of ASCRS members--1994 survey,” J. Cataract Refract. Surg. 21(4), 378–385 (1995).
[Crossref] [PubMed]

Lewis, I. R.

H. G. M. Edwards, A. F. Johnson, and I. R. Lewis, “Applications of Raman spectroscopy to the study of polymers and polymerization processes,” J. Raman Spectrosc. 24(8), 475–483 (1993).
[Crossref]

Lipschitz, I.

I. Lipschitz, “The vibrational spectrum of poly(methylmethacrylate): A review,” Polym. Plast. Technol. Eng. 19(1), 53–106 (1982).
[Crossref]

Mamalis, N.

N. Z. Gregori, T. S. Spencer, N. Mamalis, and R. J. Olson, “In vitro comparison of glistening formation among hydrophobic acrylic intraocular lenses(1),” J. Cataract Refract. Surg. 28(7), 1262–1268 (2002).
[Crossref] [PubMed]

D. K. Dhaliwal, N. Mamalis, R. J. Olson, A. S. Crandall, P. Zimmerman, O. C. Alldredge, F. J. Durcan, and O. Omar, “Visual significance of glistenings seen in the AcrySof intraocular lens,” J. Cataract Refract. Surg. 22(4), 452–457 (1996).
[Crossref] [PubMed]

Martinez, A.

G. Rusciano, A. Martinez, G. Pesce, G. Zito, and A. Sasso, “Micro-Raman analysis of glisterings in intraocular lenses,” Proc. SPIE 10333 Optical Methods for Inspection, Characterization, and Imaging of BiomaterialsIII, 103331A (2017).

Mataix, J.

J. M. Artigas, A. Felipe, A. Navea, M. C. García-Domene, Á. Pons, and J. Mataix, “Determination of scattering in intraocular lenses by spectrophotometric measurements,” J. Biomed. Opt. 19(12), 127006 (2014).
[Crossref] [PubMed]

Matsushima, H.

S. Yoshida, H. Matsushima, M. Nagata, T. Senoo, I. Ota, and K. Miyake, “Decreased visual function due to high-level light scattering in a hydrophobic acrylic intraocular lens,” Jpn. J. Ophthalmol. 55(1), 62–66 (2011).
[Crossref] [PubMed]

Mehta, K. R.

K. R. Mehta, S. N. Sathe, and S. D. Karyekar, “The new soft intraocular lens implant,” J. Am. Intraocul. Implant Soc. 4(4), 200–205 (1978).
[Crossref] [PubMed]

Menapace, R.

R. Menapace, M. Amon, and U. Radax, “Evaluation of 200 consecutive IOGEL 1103 capsular-bag lenses implanted through a small incision,” J. Cataract Refract. Surg. 18(3), 252–264 (1992).
[Crossref] [PubMed]

Mihailov, M.

B. Schneider, J. A. Štokr, P. Schmidt, M. Mihailov, S. Dirlikov, and N. Peeva, “Stretching and deformation vibrations of CH2, C(CH3)and O(CH3) groups of poly(methyl methacrylate),” Polymer (Guildf.) 20(6), 705–712 (1979).
[Crossref]

Minami, H.

H. Minami, K. Toru, K. Hiroi, and S. Kazama, “Glistening of Acrylic Intraocular Lenses,” Rinsho Ganka 53(5), 991–994 (1999).

Ming, H.

X. Xu, H. Ming, Q. Zhang, and Y. Zhang, “Properties of Raman spectra and laser induced birefringence in polymethyl methacrylate optical fibres,” J. Opt. A, Pure Appl. Opt. 4(3), 237–242 (2002).
[Crossref]

Mitomo, K.

T. Oshika, Y. Shiokawa, S. Amano, and K. Mitomo, “Influence of glistenings on the optical quality of acrylic foldable intraocular lens,” Br. J. Ophthalmol. 85(9), 1034–1037 (2001).
[Crossref] [PubMed]

Mitooka, K.

T. Shiba, K. Mitooka, and H. Tsuneoka, “In vitro analysis of AcrySof intraocular lens glistening,” Eur. J. Ophthalmol. 13(9-10), 759–763 (2003).
[Crossref] [PubMed]

Miyake, K.

S. Yoshida, H. Matsushima, M. Nagata, T. Senoo, I. Ota, and K. Miyake, “Decreased visual function due to high-level light scattering in a hydrophobic acrylic intraocular lens,” Jpn. J. Ophthalmol. 55(1), 62–66 (2011).
[Crossref] [PubMed]

Miyata, A.

A. Miyata, N. Uchida, K. Nakajima, and S. Yaguchi, “Clinical and experimental observation of glistening in acrylic intraocular lenses,” Jpn. J. Ophthalmol. 45(6), 564–569 (2001).
[Crossref] [PubMed]

Monti, P.

P. Monti, R. Simoni, R. Caramazza, and A. Bertoluzza, “Applications of Raman spectroscopy to ophthalmology: spectroscopic characterization of disposable soft contact lenses,” Biospectroscopy 4(6), 413–419 (1998).
[Crossref] [PubMed]

P. Monti and R. Simoni, “The role of water in the molecular structure and properties of soft contact lenses and surface interactions,” J. Mol. Struct. 269(3–4), 243–255 (1992).
[Crossref]

A. Bertoluzza, C. Fagnano, P. Monti, G. Semerano, J. V. Garcia-Ramos, R. Caramazza, and M. Cellini, “Raman spectra of intraocular lenses before and after implantation in relation to their biocompatibility,” J. Raman Spectrosc. 18(2), 151–152 (1987).
[Crossref]

A. Bertoluzza, P. Monti, J. V. Garcia-Ramos, R. Simoni, R. Caramazza, and A. Calzavara, “Applications of Raman spectroscopy to the ophthalmological field: Raman spectra of soft contact lenses made of poly-2-hydroxyethylmethacrylate (PHEMA),” J. Mol. Struct. 143, 469–472 (1986).
[Crossref]

Mortaigne, B.

L. Gautier, B. Mortaigne, V. Bellenger, and J. Verdu, “Osmotic cracking in unsaturated polyester matrices under humid environments,” J. Appl. Polym. Sci. 79(14), 2517–2526 (2001).
[Crossref]

Muniandy, K.

A. Thomas and K. Muniandy, “Adsorption and desorption of water in rubbers,” Polymer (Guildf.) 28(3), 408–415 (1987).
[Crossref]

Nagata, M.

S. Yoshida, H. Matsushima, M. Nagata, T. Senoo, I. Ota, and K. Miyake, “Decreased visual function due to high-level light scattering in a hydrophobic acrylic intraocular lens,” Jpn. J. Ophthalmol. 55(1), 62–66 (2011).
[Crossref] [PubMed]

Nakajima, K.

A. Miyata, N. Uchida, K. Nakajima, and S. Yaguchi, “Clinical and experimental observation of glistening in acrylic intraocular lenses,” Jpn. J. Ophthalmol. 45(6), 564–569 (2001).
[Crossref] [PubMed]

Nakamae, K.

K. Kato, M. Nishida, H. Yamane, K. Nakamae, Y. Tagami, and K. Tetsumoto, “Glistening formation in an AcrySof lens initiated by spinodal decomposition of the polymer network by temperature change,” J. Cataract Refract. Surg. 27(9), 1493–1498 (2001).
[Crossref] [PubMed]

Nampoori, V. P. N.

K. J. Thomas, M. Sheeba, V. P. N. Nampoori, C. P. G. Vallabhan, and P. Radhakrishnan, “Raman spectra of polymethyl methacrylate optical fibres excited by a 532 nm diode pumped solid state laser,” J. Opt. A, Pure Appl. Opt. 10(5), 055303 (2008).
[Crossref]

Navea, A.

J. M. Artigas, A. Felipe, A. Navea, M. C. García-Domene, Á. Pons, and J. Mataix, “Determination of scattering in intraocular lenses by spectrophotometric measurements,” J. Biomed. Opt. 19(12), 127006 (2014).
[Crossref] [PubMed]

Nishida, M.

K. Kato, M. Nishida, H. Yamane, K. Nakamae, Y. Tagami, and K. Tetsumoto, “Glistening formation in an AcrySof lens initiated by spinodal decomposition of the polymer network by temperature change,” J. Cataract Refract. Surg. 27(9), 1493–1498 (2001).
[Crossref] [PubMed]

Nishihara, H.

H. Nishihara, S. Yaguchi, T. Onishi, M. Chida, and M. Ayaki, “Surface scattering in implanted hydrophobic intraocular lenses,” J. Cataract Refract. Surg. 29(7), 1385–1388 (2003).
[Crossref] [PubMed]

Niyogi, K.

D. Tripti, R. S. Haldar, S. Geetha, K. Niyogi, and R. K. Khandal, “Materials for intraocular lenses (IOLs): Review of developments to achieve biocompatibility,” E-Polymers 9(1), 124 (2009).
[Crossref]

Notingher, I.

D. W. Shipp, F. Sinjab, and I. Notingher, “Raman spectroscopy: techniques and applications in the life sciences,” Adv. Opt. Photonics 9(2), 315–428 (2017).
[Crossref]

Ohrström, A.

L. Werner, D. J. Apple, M. Escobar-Gomez, A. Ohrström, B. B. Crayford, R. Bianchi, and S. K. Pandey, “Postoperative deposition of calcium on the surfaces of a hydrogel intraocular lens,” Ophthalmology 107(12), 2179–2185 (2000).
[Crossref] [PubMed]

Olsen, P. C.

S. C. Goheen, R. M. Saunders, S. D. Harvey, and P. C. Olsen, “Raman spectroscopy of 2-hydroxyethyl methacrylate-acrylamide copolymer using gamma irradiation for cross-linking,” J. Raman Spectrosc. 37(11), 1248–1256 (2006).
[Crossref]

Olson, R. J.

A. Waite, N. Faulkner, and R. J. Olson, “Glistenings in the single-piece, hydrophobic, acrylic intraocular lenses,” Am. J. Ophthalmol. 144(1), 143–144 (2007).
[Crossref] [PubMed]

N. Z. Gregori, T. S. Spencer, N. Mamalis, and R. J. Olson, “In vitro comparison of glistening formation among hydrophobic acrylic intraocular lenses(1),” J. Cataract Refract. Surg. 28(7), 1262–1268 (2002).
[Crossref] [PubMed]

G. Christiansen, F. J. Durcan, R. J. Olson, and K. Christiansen, “Glistenings in the AcrySof intraocular lens: pilot study,” J. Cataract Refract. Surg. 27(5), 728–733 (2001).
[Crossref] [PubMed]

D. K. Dhaliwal, N. Mamalis, R. J. Olson, A. S. Crandall, P. Zimmerman, O. C. Alldredge, F. J. Durcan, and O. Omar, “Visual significance of glistenings seen in the AcrySof intraocular lens,” J. Cataract Refract. Surg. 22(4), 452–457 (1996).
[Crossref] [PubMed]

Omar, O.

D. K. Dhaliwal, N. Mamalis, R. J. Olson, A. S. Crandall, P. Zimmerman, O. C. Alldredge, F. J. Durcan, and O. Omar, “Visual significance of glistenings seen in the AcrySof intraocular lens,” J. Cataract Refract. Surg. 22(4), 452–457 (1996).
[Crossref] [PubMed]

Oner, F. H.

U. Gunenc, F. H. Oner, S. Tongal, and M. Ferliel, “Effects on visual function of glistenings and folding marks in AcrySof intraocular lenses,” J. Cataract Refract. Surg. 27(10), 1611–1614 (2001).
[Crossref] [PubMed]

Onishi, T.

H. Nishihara, S. Yaguchi, T. Onishi, M. Chida, and M. Ayaki, “Surface scattering in implanted hydrophobic intraocular lenses,” J. Cataract Refract. Surg. 29(7), 1385–1388 (2003).
[Crossref] [PubMed]

Orignac, I.

J. Colin and I. Orignac, “Glistenings on intraocular lenses in healthy eyes: effects and associations,” J. Refract. Surg. 27(12), 869–875 (2011).
[Crossref] [PubMed]

Oshika, T.

T. Oshika, Y. Shiokawa, S. Amano, and K. Mitomo, “Influence of glistenings on the optical quality of acrylic foldable intraocular lens,” Br. J. Ophthalmol. 85(9), 1034–1037 (2001).
[Crossref] [PubMed]

Ota, I.

S. Yoshida, H. Matsushima, M. Nagata, T. Senoo, I. Ota, and K. Miyake, “Decreased visual function due to high-level light scattering in a hydrophobic acrylic intraocular lens,” Jpn. J. Ophthalmol. 55(1), 62–66 (2011).
[Crossref] [PubMed]

Pallikari, F.

F. Pallikari, G. Chondrokoukis, M. Rebelakis, and Y. Kotsalas, “Raman spectroscopy: A technique for estimating extent of polymerization in PMMA,” Mater. Res. Innov. 4(2–3), 89–92 (2001).
[Crossref]

Pande, M. V.

E. J. Hollick, D. J. Spalton, P. G. Ursell, and M. V. Pande, “Biocompatibility of poly(methyl methacrylate), silicone, and AcrySof intraocular lenses: randomized comparison of the cellular reaction on the anterior lens surface,” J. Cataract Refract. Surg. 24(3), 361–366 (1998).
[Crossref] [PubMed]

Pandey, S. K.

L. Werner, D. J. Apple, M. Escobar-Gomez, A. Ohrström, B. B. Crayford, R. Bianchi, and S. K. Pandey, “Postoperative deposition of calcium on the surfaces of a hydrogel intraocular lens,” Ophthalmology 107(12), 2179–2185 (2000).
[Crossref] [PubMed]

Peeva, N.

B. Schneider, J. A. Štokr, P. Schmidt, M. Mihailov, S. Dirlikov, and N. Peeva, “Stretching and deformation vibrations of CH2, C(CH3)and O(CH3) groups of poly(methyl methacrylate),” Polymer (Guildf.) 20(6), 705–712 (1979).
[Crossref]

Pesce, G.

G. Rusciano, P. Capriglione, G. Pesce, S. Del Prete, G. Cennamo, D. Di Cave, L. Cerulli, and A. Sasso, “Raman microspectroscopy analysis in the treatment of acanthamoeba keratitis,” PLoS One 8(8), e72127 (2013).
[Crossref] [PubMed]

G. Rusciano, A. Martinez, G. Pesce, G. Zito, and A. Sasso, “Micro-Raman analysis of glisterings in intraocular lenses,” Proc. SPIE 10333 Optical Methods for Inspection, Characterization, and Imaging of BiomaterialsIII, 103331A (2017).

Piers, P.

Pollack, S. K.

D. M. Saylor, D. Coleman Richardson, B. J. Dair, and S. K. Pollack, “Osmotic cavitation of elastomeric intraocular lenses,” Acta Biomater. 6(3), 1090–1098 (2010).
[Crossref] [PubMed]

Pons, Á.

J. M. Artigas, A. Felipe, A. Navea, M. C. García-Domene, Á. Pons, and J. Mataix, “Determination of scattering in intraocular lenses by spectrophotometric measurements,” J. Biomed. Opt. 19(12), 127006 (2014).
[Crossref] [PubMed]

Radax, U.

R. Menapace, M. Amon, and U. Radax, “Evaluation of 200 consecutive IOGEL 1103 capsular-bag lenses implanted through a small incision,” J. Cataract Refract. Surg. 18(3), 252–264 (1992).
[Crossref] [PubMed]

Radhakrishnan, P.

K. J. Thomas, M. Sheeba, V. P. N. Nampoori, C. P. G. Vallabhan, and P. Radhakrishnan, “Raman spectra of polymethyl methacrylate optical fibres excited by a 532 nm diode pumped solid state laser,” J. Opt. A, Pure Appl. Opt. 10(5), 055303 (2008).
[Crossref]

Rebelakis, M.

F. Pallikari, G. Chondrokoukis, M. Rebelakis, and Y. Kotsalas, “Raman spectroscopy: A technique for estimating extent of polymerization in PMMA,” Mater. Res. Innov. 4(2–3), 89–92 (2001).
[Crossref]

Ridley, H.

H. Ridley, “Intra-ocular acrylic lenses; a recent development in the surgery of cataract,” Br. J. Ophthalmol. 36(3), 113–122 (1952).
[Crossref] [PubMed]

Rusciano, G.

G. Rusciano, P. Capriglione, G. Pesce, S. Del Prete, G. Cennamo, D. Di Cave, L. Cerulli, and A. Sasso, “Raman microspectroscopy analysis in the treatment of acanthamoeba keratitis,” PLoS One 8(8), e72127 (2013).
[Crossref] [PubMed]

G. Rusciano, A. Martinez, G. Pesce, G. Zito, and A. Sasso, “Micro-Raman analysis of glisterings in intraocular lenses,” Proc. SPIE 10333 Optical Methods for Inspection, Characterization, and Imaging of BiomaterialsIII, 103331A (2017).

Sasso, A.

G. Rusciano, P. Capriglione, G. Pesce, S. Del Prete, G. Cennamo, D. Di Cave, L. Cerulli, and A. Sasso, “Raman microspectroscopy analysis in the treatment of acanthamoeba keratitis,” PLoS One 8(8), e72127 (2013).
[Crossref] [PubMed]

G. Rusciano, A. Martinez, G. Pesce, G. Zito, and A. Sasso, “Micro-Raman analysis of glisterings in intraocular lenses,” Proc. SPIE 10333 Optical Methods for Inspection, Characterization, and Imaging of BiomaterialsIII, 103331A (2017).

Sathe, S. N.

K. R. Mehta, S. N. Sathe, and S. D. Karyekar, “The new soft intraocular lens implant,” J. Am. Intraocul. Implant Soc. 4(4), 200–205 (1978).
[Crossref] [PubMed]

Saunders, R. M.

S. C. Goheen, R. M. Saunders, S. D. Harvey, and P. C. Olsen, “Raman spectroscopy of 2-hydroxyethyl methacrylate-acrylamide copolymer using gamma irradiation for cross-linking,” J. Raman Spectrosc. 37(11), 1248–1256 (2006).
[Crossref]

Saylor, D. M.

D. M. Saylor, D. Coleman Richardson, B. J. Dair, and S. K. Pollack, “Osmotic cavitation of elastomeric intraocular lenses,” Acta Biomater. 6(3), 1090–1098 (2010).
[Crossref] [PubMed]

Schmidt, P.

B. Schneider, J. A. Štokr, P. Schmidt, M. Mihailov, S. Dirlikov, and N. Peeva, “Stretching and deformation vibrations of CH2, C(CH3)and O(CH3) groups of poly(methyl methacrylate),” Polymer (Guildf.) 20(6), 705–712 (1979).
[Crossref]

Schneider, B.

B. Schneider, J. A. Štokr, P. Schmidt, M. Mihailov, S. Dirlikov, and N. Peeva, “Stretching and deformation vibrations of CH2, C(CH3)and O(CH3) groups of poly(methyl methacrylate),” Polymer (Guildf.) 20(6), 705–712 (1979).
[Crossref]

Schwiegerling, J.

L. Werner, J. C. Stover, J. Schwiegerling, and K. K. Das, “Effects of Intraocular Lens Opacification on Light Scatter, Stray Light, and Overall Optical Quality/Performance,” Invest. Ophthalmol. Vis. Sci. 57(7), 3239–3247 (2016).
[Crossref] [PubMed]

K. K. Das, J. C. Stover, J. Schwiegerling, and M. Karakelle, “Technique for measuring forward light scatter in intraocular lenses,” J. Cataract Refract. Surg. 39(5), 770–778 (2013).
[Crossref] [PubMed]

Semerano, G.

A. Bertoluzza, C. Fagnano, P. Monti, G. Semerano, J. V. Garcia-Ramos, R. Caramazza, and M. Cellini, “Raman spectra of intraocular lenses before and after implantation in relation to their biocompatibility,” J. Raman Spectrosc. 18(2), 151–152 (1987).
[Crossref]

Senoo, T.

S. Yoshida, H. Matsushima, M. Nagata, T. Senoo, I. Ota, and K. Miyake, “Decreased visual function due to high-level light scattering in a hydrophobic acrylic intraocular lens,” Jpn. J. Ophthalmol. 55(1), 62–66 (2011).
[Crossref] [PubMed]

Sheeba, M.

K. J. Thomas, M. Sheeba, V. P. N. Nampoori, C. P. G. Vallabhan, and P. Radhakrishnan, “Raman spectra of polymethyl methacrylate optical fibres excited by a 532 nm diode pumped solid state laser,” J. Opt. A, Pure Appl. Opt. 10(5), 055303 (2008).
[Crossref]

Shiba, T.

T. Shiba, K. Mitooka, and H. Tsuneoka, “In vitro analysis of AcrySof intraocular lens glistening,” Eur. J. Ophthalmol. 13(9-10), 759–763 (2003).
[Crossref] [PubMed]

Shiokawa, Y.

T. Oshika, Y. Shiokawa, S. Amano, and K. Mitomo, “Influence of glistenings on the optical quality of acrylic foldable intraocular lens,” Br. J. Ophthalmol. 85(9), 1034–1037 (2001).
[Crossref] [PubMed]

Shipp, D. W.

D. W. Shipp, F. Sinjab, and I. Notingher, “Raman spectroscopy: techniques and applications in the life sciences,” Adv. Opt. Photonics 9(2), 315–428 (2017).
[Crossref]

Simoni, R.

P. Monti, R. Simoni, R. Caramazza, and A. Bertoluzza, “Applications of Raman spectroscopy to ophthalmology: spectroscopic characterization of disposable soft contact lenses,” Biospectroscopy 4(6), 413–419 (1998).
[Crossref] [PubMed]

P. Monti and R. Simoni, “The role of water in the molecular structure and properties of soft contact lenses and surface interactions,” J. Mol. Struct. 269(3–4), 243–255 (1992).
[Crossref]

A. Bertoluzza, P. Monti, J. V. Garcia-Ramos, R. Simoni, R. Caramazza, and A. Calzavara, “Applications of Raman spectroscopy to the ophthalmological field: Raman spectra of soft contact lenses made of poly-2-hydroxyethylmethacrylate (PHEMA),” J. Mol. Struct. 143, 469–472 (1986).
[Crossref]

Sinjab, F.

D. W. Shipp, F. Sinjab, and I. Notingher, “Raman spectroscopy: techniques and applications in the life sciences,” Adv. Opt. Photonics 9(2), 315–428 (2017).
[Crossref]

Spalton, D. J.

E. J. Hollick, D. J. Spalton, P. G. Ursell, and M. V. Pande, “Biocompatibility of poly(methyl methacrylate), silicone, and AcrySof intraocular lenses: randomized comparison of the cellular reaction on the anterior lens surface,” J. Cataract Refract. Surg. 24(3), 361–366 (1998).
[Crossref] [PubMed]

Spencer, T. S.

N. Z. Gregori, T. S. Spencer, N. Mamalis, and R. J. Olson, “In vitro comparison of glistening formation among hydrophobic acrylic intraocular lenses(1),” J. Cataract Refract. Surg. 28(7), 1262–1268 (2002).
[Crossref] [PubMed]

Štokr, J. A.

B. Schneider, J. A. Štokr, P. Schmidt, M. Mihailov, S. Dirlikov, and N. Peeva, “Stretching and deformation vibrations of CH2, C(CH3)and O(CH3) groups of poly(methyl methacrylate),” Polymer (Guildf.) 20(6), 705–712 (1979).
[Crossref]

Stover, J. C.

L. Werner, J. C. Stover, J. Schwiegerling, and K. K. Das, “Effects of Intraocular Lens Opacification on Light Scatter, Stray Light, and Overall Optical Quality/Performance,” Invest. Ophthalmol. Vis. Sci. 57(7), 3239–3247 (2016).
[Crossref] [PubMed]

K. K. Das, J. C. Stover, J. Schwiegerling, and M. Karakelle, “Technique for measuring forward light scatter in intraocular lenses,” J. Cataract Refract. Surg. 39(5), 770–778 (2013).
[Crossref] [PubMed]

Tagami, Y.

K. Kato, M. Nishida, H. Yamane, K. Nakamae, Y. Tagami, and K. Tetsumoto, “Glistening formation in an AcrySof lens initiated by spinodal decomposition of the polymer network by temperature change,” J. Cataract Refract. Surg. 27(9), 1493–1498 (2001).
[Crossref] [PubMed]

Tetsumoto, K.

K. Kato, M. Nishida, H. Yamane, K. Nakamae, Y. Tagami, and K. Tetsumoto, “Glistening formation in an AcrySof lens initiated by spinodal decomposition of the polymer network by temperature change,” J. Cataract Refract. Surg. 27(9), 1493–1498 (2001).
[Crossref] [PubMed]

Tetz, M.

M. Tetz and M. R. Jorgensen, “New hydrophobic IOL materials and understanding the science of glistenings,” Curr. Eye Res. 40(10), 969–981 (2015).
[Crossref] [PubMed]

Thomas, A.

A. Thomas and K. Muniandy, “Adsorption and desorption of water in rubbers,” Polymer (Guildf.) 28(3), 408–415 (1987).
[Crossref]

Thomas, K. J.

K. J. Thomas, M. Sheeba, V. P. N. Nampoori, C. P. G. Vallabhan, and P. Radhakrishnan, “Raman spectra of polymethyl methacrylate optical fibres excited by a 532 nm diode pumped solid state laser,” J. Opt. A, Pure Appl. Opt. 10(5), 055303 (2008).
[Crossref]

Thomes, B. E.

B. E. Thomes and T. A. Callaghan, “Evaluation of in vitro glistening formation in hydrophobic acrylic intraocular lenses,” Clin. Ophthalmol. 7, 1529–1534 (2013).
[Crossref] [PubMed]

Tongal, S.

U. Gunenc, F. H. Oner, S. Tongal, and M. Ferliel, “Effects on visual function of glistenings and folding marks in AcrySof intraocular lenses,” J. Cataract Refract. Surg. 27(10), 1611–1614 (2001).
[Crossref] [PubMed]

Toru, K.

H. Minami, K. Toru, K. Hiroi, and S. Kazama, “Glistening of Acrylic Intraocular Lenses,” Rinsho Ganka 53(5), 991–994 (1999).

Tripti, D.

D. Tripti, R. S. Haldar, S. Geetha, K. Niyogi, and R. K. Khandal, “Materials for intraocular lenses (IOLs): Review of developments to achieve biocompatibility,” E-Polymers 9(1), 124 (2009).
[Crossref]

Tsige, M.

H. Zhu, K. C. Jha, R. S. Bhatta, M. Tsige, and A. Dhinojwala, “Molecular structure of poly(methyl methacrylate) surface. I. Combination of interface-sensitive infrared-visible sum frequency generation, molecular dynamics simulations, and ab initio calculations,” Langmuir 30(39), 11609–11618 (2014).
[Crossref] [PubMed]

Tsuneoka, H.

T. Shiba, K. Mitooka, and H. Tsuneoka, “In vitro analysis of AcrySof intraocular lens glistening,” Eur. J. Ophthalmol. 13(9-10), 759–763 (2003).
[Crossref] [PubMed]

Uchida, N.

A. Miyata, N. Uchida, K. Nakajima, and S. Yaguchi, “Clinical and experimental observation of glistening in acrylic intraocular lenses,” Jpn. J. Ophthalmol. 45(6), 564–569 (2001).
[Crossref] [PubMed]

Ursell, P. G.

E. J. Hollick, D. J. Spalton, P. G. Ursell, and M. V. Pande, “Biocompatibility of poly(methyl methacrylate), silicone, and AcrySof intraocular lenses: randomized comparison of the cellular reaction on the anterior lens surface,” J. Cataract Refract. Surg. 24(3), 361–366 (1998).
[Crossref] [PubMed]

Vallabhan, C. P. G.

K. J. Thomas, M. Sheeba, V. P. N. Nampoori, C. P. G. Vallabhan, and P. Radhakrishnan, “Raman spectra of polymethyl methacrylate optical fibres excited by a 532 nm diode pumped solid state laser,” J. Opt. A, Pure Appl. Opt. 10(5), 055303 (2008).
[Crossref]

van der Mooren, M.

Verdu, J.

L. Gautier, B. Mortaigne, V. Bellenger, and J. Verdu, “Osmotic cracking in unsaturated polyester matrices under humid environments,” J. Appl. Polym. Sci. 79(14), 2517–2526 (2001).
[Crossref]

Waite, A.

A. Waite, N. Faulkner, and R. J. Olson, “Glistenings in the single-piece, hydrophobic, acrylic intraocular lenses,” Am. J. Ophthalmol. 144(1), 143–144 (2007).
[Crossref] [PubMed]

Walker, B. N.

B. N. Walker, R. H. James, D. Calogero, and I. K. Ilev, “A novel full-angle scanning light scattering profiler to quantitatively evaluate forward and backward light scattering from intraocular lenses,” Rev. Sci. Instrum. 86(9), 095004 (2015).
[Crossref] [PubMed]

Werner, L.

L. Werner, J. C. Stover, J. Schwiegerling, and K. K. Das, “Effects of Intraocular Lens Opacification on Light Scatter, Stray Light, and Overall Optical Quality/Performance,” Invest. Ophthalmol. Vis. Sci. 57(7), 3239–3247 (2016).
[Crossref] [PubMed]

L. Werner, D. J. Apple, M. Escobar-Gomez, A. Ohrström, B. B. Crayford, R. Bianchi, and S. K. Pandey, “Postoperative deposition of calcium on the surfaces of a hydrogel intraocular lens,” Ophthalmology 107(12), 2179–2185 (2000).
[Crossref] [PubMed]

Willis, H.

H. Willis, V. Zichy, and P. Hendra, “The laser-Raman and infra-red spectra of poly(methyl methacrylate),” Polymer (Guildf.) 10(9), 737–746 (1969).
[Crossref]

Xu, X.

X. Xu, H. Ming, Q. Zhang, and Y. Zhang, “Properties of Raman spectra and laser induced birefringence in polymethyl methacrylate optical fibres,” J. Opt. A, Pure Appl. Opt. 4(3), 237–242 (2002).
[Crossref]

Yaguchi, S.

H. Nishihara, S. Yaguchi, T. Onishi, M. Chida, and M. Ayaki, “Surface scattering in implanted hydrophobic intraocular lenses,” J. Cataract Refract. Surg. 29(7), 1385–1388 (2003).
[Crossref] [PubMed]

A. Miyata, N. Uchida, K. Nakajima, and S. Yaguchi, “Clinical and experimental observation of glistening in acrylic intraocular lenses,” Jpn. J. Ophthalmol. 45(6), 564–569 (2001).
[Crossref] [PubMed]

Yamane, H.

K. Kato, M. Nishida, H. Yamane, K. Nakamae, Y. Tagami, and K. Tetsumoto, “Glistening formation in an AcrySof lens initiated by spinodal decomposition of the polymer network by temperature change,” J. Cataract Refract. Surg. 27(9), 1493–1498 (2001).
[Crossref] [PubMed]

Yoshida, S.

S. Yoshida, H. Matsushima, M. Nagata, T. Senoo, I. Ota, and K. Miyake, “Decreased visual function due to high-level light scattering in a hydrophobic acrylic intraocular lens,” Jpn. J. Ophthalmol. 55(1), 62–66 (2011).
[Crossref] [PubMed]

Zhang, Q.

X. Xu, H. Ming, Q. Zhang, and Y. Zhang, “Properties of Raman spectra and laser induced birefringence in polymethyl methacrylate optical fibres,” J. Opt. A, Pure Appl. Opt. 4(3), 237–242 (2002).
[Crossref]

Zhang, Y.

X. Xu, H. Ming, Q. Zhang, and Y. Zhang, “Properties of Raman spectra and laser induced birefringence in polymethyl methacrylate optical fibres,” J. Opt. A, Pure Appl. Opt. 4(3), 237–242 (2002).
[Crossref]

Zhu, H.

H. Zhu, K. C. Jha, R. S. Bhatta, M. Tsige, and A. Dhinojwala, “Molecular structure of poly(methyl methacrylate) surface. I. Combination of interface-sensitive infrared-visible sum frequency generation, molecular dynamics simulations, and ab initio calculations,” Langmuir 30(39), 11609–11618 (2014).
[Crossref] [PubMed]

Zichy, V.

H. Willis, V. Zichy, and P. Hendra, “The laser-Raman and infra-red spectra of poly(methyl methacrylate),” Polymer (Guildf.) 10(9), 737–746 (1969).
[Crossref]

Zimmerman, P.

D. K. Dhaliwal, N. Mamalis, R. J. Olson, A. S. Crandall, P. Zimmerman, O. C. Alldredge, F. J. Durcan, and O. Omar, “Visual significance of glistenings seen in the AcrySof intraocular lens,” J. Cataract Refract. Surg. 22(4), 452–457 (1996).
[Crossref] [PubMed]

Zito, G.

G. Rusciano, A. Martinez, G. Pesce, G. Zito, and A. Sasso, “Micro-Raman analysis of glisterings in intraocular lenses,” Proc. SPIE 10333 Optical Methods for Inspection, Characterization, and Imaging of BiomaterialsIII, 103331A (2017).

Acta Biomater. (1)

D. M. Saylor, D. Coleman Richardson, B. J. Dair, and S. K. Pollack, “Osmotic cavitation of elastomeric intraocular lenses,” Acta Biomater. 6(3), 1090–1098 (2010).
[Crossref] [PubMed]

Adv. Opt. Photonics (1)

D. W. Shipp, F. Sinjab, and I. Notingher, “Raman spectroscopy: techniques and applications in the life sciences,” Adv. Opt. Photonics 9(2), 315–428 (2017).
[Crossref]

Am. J. Ophthalmol. (1)

A. Waite, N. Faulkner, and R. J. Olson, “Glistenings in the single-piece, hydrophobic, acrylic intraocular lenses,” Am. J. Ophthalmol. 144(1), 143–144 (2007).
[Crossref] [PubMed]

Analyst (Lond.) (1)

C. Choe, J. Lademann, and M. E. Darvin, “Depth profiles of hydrogen bound water molecule types and their relation to lipid and protein interaction in the human stratum corneum in vivo,” Analyst (Lond.) 141(22), 6329–6337 (2016).
[Crossref] [PubMed]

Appl. Opt. (1)

Appl. Spectrosc. (1)

Biomed. Opt. Express (1)

Biospectroscopy (1)

P. Monti, R. Simoni, R. Caramazza, and A. Bertoluzza, “Applications of Raman spectroscopy to ophthalmology: spectroscopic characterization of disposable soft contact lenses,” Biospectroscopy 4(6), 413–419 (1998).
[Crossref] [PubMed]

Br. J. Ophthalmol. (2)

T. Oshika, Y. Shiokawa, S. Amano, and K. Mitomo, “Influence of glistenings on the optical quality of acrylic foldable intraocular lens,” Br. J. Ophthalmol. 85(9), 1034–1037 (2001).
[Crossref] [PubMed]

H. Ridley, “Intra-ocular acrylic lenses; a recent development in the surgery of cataract,” Br. J. Ophthalmol. 36(3), 113–122 (1952).
[Crossref] [PubMed]

Clin. Ophthalmol. (1)

B. E. Thomes and T. A. Callaghan, “Evaluation of in vitro glistening formation in hydrophobic acrylic intraocular lenses,” Clin. Ophthalmol. 7, 1529–1534 (2013).
[Crossref] [PubMed]

Curr. Eye Res. (1)

M. Tetz and M. R. Jorgensen, “New hydrophobic IOL materials and understanding the science of glistenings,” Curr. Eye Res. 40(10), 969–981 (2015).
[Crossref] [PubMed]

E-Polymers (1)

D. Tripti, R. S. Haldar, S. Geetha, K. Niyogi, and R. K. Khandal, “Materials for intraocular lenses (IOLs): Review of developments to achieve biocompatibility,” E-Polymers 9(1), 124 (2009).
[Crossref]

Eur. J. Ophthalmol. (1)

T. Shiba, K. Mitooka, and H. Tsuneoka, “In vitro analysis of AcrySof intraocular lens glistening,” Eur. J. Ophthalmol. 13(9-10), 759–763 (2003).
[Crossref] [PubMed]

Invest. Ophthalmol. Vis. Sci. (1)

L. Werner, J. C. Stover, J. Schwiegerling, and K. K. Das, “Effects of Intraocular Lens Opacification on Light Scatter, Stray Light, and Overall Optical Quality/Performance,” Invest. Ophthalmol. Vis. Sci. 57(7), 3239–3247 (2016).
[Crossref] [PubMed]

J. Am. Intraocul. Implant Soc. (1)

K. R. Mehta, S. N. Sathe, and S. D. Karyekar, “The new soft intraocular lens implant,” J. Am. Intraocul. Implant Soc. 4(4), 200–205 (1978).
[Crossref] [PubMed]

J. Appl. Biomater. Funct. Mater. (1)

K. Krysztofiak, K. Ciężar, and M. Kościński, “Raman imaging of layered soft contact lenses,” J. Appl. Biomater. Funct. Mater. 15(2), e149–e152 (2017).
[Crossref] [PubMed]

J. Appl. Polym. Sci. (1)

L. Gautier, B. Mortaigne, V. Bellenger, and J. Verdu, “Osmotic cracking in unsaturated polyester matrices under humid environments,” J. Appl. Polym. Sci. 79(14), 2517–2526 (2001).
[Crossref]

J. Biomed. Opt. (1)

J. M. Artigas, A. Felipe, A. Navea, M. C. García-Domene, Á. Pons, and J. Mataix, “Determination of scattering in intraocular lenses by spectrophotometric measurements,” J. Biomed. Opt. 19(12), 127006 (2014).
[Crossref] [PubMed]

J. Cataract Refract. Surg. (11)

D. V. Leaming, “Practice styles and preferences of ASCRS members--1994 survey,” J. Cataract Refract. Surg. 21(4), 378–385 (1995).
[Crossref] [PubMed]

G. Christiansen, F. J. Durcan, R. J. Olson, and K. Christiansen, “Glistenings in the AcrySof intraocular lens: pilot study,” J. Cataract Refract. Surg. 27(5), 728–733 (2001).
[Crossref] [PubMed]

U. Gunenc, F. H. Oner, S. Tongal, and M. Ferliel, “Effects on visual function of glistenings and folding marks in AcrySof intraocular lenses,” J. Cataract Refract. Surg. 27(10), 1611–1614 (2001).
[Crossref] [PubMed]

K. Kato, M. Nishida, H. Yamane, K. Nakamae, Y. Tagami, and K. Tetsumoto, “Glistening formation in an AcrySof lens initiated by spinodal decomposition of the polymer network by temperature change,” J. Cataract Refract. Surg. 27(9), 1493–1498 (2001).
[Crossref] [PubMed]

N. Z. Gregori, T. S. Spencer, N. Mamalis, and R. J. Olson, “In vitro comparison of glistening formation among hydrophobic acrylic intraocular lenses(1),” J. Cataract Refract. Surg. 28(7), 1262–1268 (2002).
[Crossref] [PubMed]

R. Menapace, M. Amon, and U. Radax, “Evaluation of 200 consecutive IOGEL 1103 capsular-bag lenses implanted through a small incision,” J. Cataract Refract. Surg. 18(3), 252–264 (1992).
[Crossref] [PubMed]

E. J. Hollick, D. J. Spalton, P. G. Ursell, and M. V. Pande, “Biocompatibility of poly(methyl methacrylate), silicone, and AcrySof intraocular lenses: randomized comparison of the cellular reaction on the anterior lens surface,” J. Cataract Refract. Surg. 24(3), 361–366 (1998).
[Crossref] [PubMed]

E. Epstein, “Use of soft lenses,” J. Cataract Refract. Surg. 16(6), 779 (1990).
[Crossref] [PubMed]

K. K. Das, J. C. Stover, J. Schwiegerling, and M. Karakelle, “Technique for measuring forward light scatter in intraocular lenses,” J. Cataract Refract. Surg. 39(5), 770–778 (2013).
[Crossref] [PubMed]

H. Nishihara, S. Yaguchi, T. Onishi, M. Chida, and M. Ayaki, “Surface scattering in implanted hydrophobic intraocular lenses,” J. Cataract Refract. Surg. 29(7), 1385–1388 (2003).
[Crossref] [PubMed]

D. K. Dhaliwal, N. Mamalis, R. J. Olson, A. S. Crandall, P. Zimmerman, O. C. Alldredge, F. J. Durcan, and O. Omar, “Visual significance of glistenings seen in the AcrySof intraocular lens,” J. Cataract Refract. Surg. 22(4), 452–457 (1996).
[Crossref] [PubMed]

J. Mol. Struct. (2)

A. Bertoluzza, P. Monti, J. V. Garcia-Ramos, R. Simoni, R. Caramazza, and A. Calzavara, “Applications of Raman spectroscopy to the ophthalmological field: Raman spectra of soft contact lenses made of poly-2-hydroxyethylmethacrylate (PHEMA),” J. Mol. Struct. 143, 469–472 (1986).
[Crossref]

P. Monti and R. Simoni, “The role of water in the molecular structure and properties of soft contact lenses and surface interactions,” J. Mol. Struct. 269(3–4), 243–255 (1992).
[Crossref]

J. Opt. A, Pure Appl. Opt. (2)

K. J. Thomas, M. Sheeba, V. P. N. Nampoori, C. P. G. Vallabhan, and P. Radhakrishnan, “Raman spectra of polymethyl methacrylate optical fibres excited by a 532 nm diode pumped solid state laser,” J. Opt. A, Pure Appl. Opt. 10(5), 055303 (2008).
[Crossref]

X. Xu, H. Ming, Q. Zhang, and Y. Zhang, “Properties of Raman spectra and laser induced birefringence in polymethyl methacrylate optical fibres,” J. Opt. A, Pure Appl. Opt. 4(3), 237–242 (2002).
[Crossref]

J. Polym. Sci. Polym. Lett. Ed. (1)

R. F. Fedors, “A new mechanism of failure in polymers,” J. Polym. Sci. Polym. Lett. Ed. 12(2), 81–84 (1974).
[Crossref]

J. Raman Spectrosc. (3)

H. G. M. Edwards, A. F. Johnson, and I. R. Lewis, “Applications of Raman spectroscopy to the study of polymers and polymerization processes,” J. Raman Spectrosc. 24(8), 475–483 (1993).
[Crossref]

S. C. Goheen, R. M. Saunders, S. D. Harvey, and P. C. Olsen, “Raman spectroscopy of 2-hydroxyethyl methacrylate-acrylamide copolymer using gamma irradiation for cross-linking,” J. Raman Spectrosc. 37(11), 1248–1256 (2006).
[Crossref]

A. Bertoluzza, C. Fagnano, P. Monti, G. Semerano, J. V. Garcia-Ramos, R. Caramazza, and M. Cellini, “Raman spectra of intraocular lenses before and after implantation in relation to their biocompatibility,” J. Raman Spectrosc. 18(2), 151–152 (1987).
[Crossref]

J. Refract. Surg. (1)

J. Colin and I. Orignac, “Glistenings on intraocular lenses in healthy eyes: effects and associations,” J. Refract. Surg. 27(12), 869–875 (2011).
[Crossref] [PubMed]

Jpn. J. Ophthalmol. (2)

S. Yoshida, H. Matsushima, M. Nagata, T. Senoo, I. Ota, and K. Miyake, “Decreased visual function due to high-level light scattering in a hydrophobic acrylic intraocular lens,” Jpn. J. Ophthalmol. 55(1), 62–66 (2011).
[Crossref] [PubMed]

A. Miyata, N. Uchida, K. Nakajima, and S. Yaguchi, “Clinical and experimental observation of glistening in acrylic intraocular lenses,” Jpn. J. Ophthalmol. 45(6), 564–569 (2001).
[Crossref] [PubMed]

Langmuir (1)

H. Zhu, K. C. Jha, R. S. Bhatta, M. Tsige, and A. Dhinojwala, “Molecular structure of poly(methyl methacrylate) surface. I. Combination of interface-sensitive infrared-visible sum frequency generation, molecular dynamics simulations, and ab initio calculations,” Langmuir 30(39), 11609–11618 (2014).
[Crossref] [PubMed]

Mater. Res. Innov. (1)

F. Pallikari, G. Chondrokoukis, M. Rebelakis, and Y. Kotsalas, “Raman spectroscopy: A technique for estimating extent of polymerization in PMMA,” Mater. Res. Innov. 4(2–3), 89–92 (2001).
[Crossref]

Ophthalmology (1)

L. Werner, D. J. Apple, M. Escobar-Gomez, A. Ohrström, B. B. Crayford, R. Bianchi, and S. K. Pandey, “Postoperative deposition of calcium on the surfaces of a hydrogel intraocular lens,” Ophthalmology 107(12), 2179–2185 (2000).
[Crossref] [PubMed]

PLoS One (1)

G. Rusciano, P. Capriglione, G. Pesce, S. Del Prete, G. Cennamo, D. Di Cave, L. Cerulli, and A. Sasso, “Raman microspectroscopy analysis in the treatment of acanthamoeba keratitis,” PLoS One 8(8), e72127 (2013).
[Crossref] [PubMed]

Polym. Plast. Technol. Eng. (1)

I. Lipschitz, “The vibrational spectrum of poly(methylmethacrylate): A review,” Polym. Plast. Technol. Eng. 19(1), 53–106 (1982).
[Crossref]

Polymer (Guildf.) (5)

H. Willis, V. Zichy, and P. Hendra, “The laser-Raman and infra-red spectra of poly(methyl methacrylate),” Polymer (Guildf.) 10(9), 737–746 (1969).
[Crossref]

B. Schneider, J. A. Štokr, P. Schmidt, M. Mihailov, S. Dirlikov, and N. Peeva, “Stretching and deformation vibrations of CH2, C(CH3)and O(CH3) groups of poly(methyl methacrylate),” Polymer (Guildf.) 20(6), 705–712 (1979).
[Crossref]

R. F. Fedors, “Osmotic effects in water absorption by polymers,” Polymer (Guildf.) 21(2), 207–212 (1980).
[Crossref]

R. F. Fedors, “Cracking in a glassy epoxy resin induced by water absorption,” Polymer (Guildf.) 21(6), 713–715 (1980).
[Crossref]

A. Thomas and K. Muniandy, “Adsorption and desorption of water in rubbers,” Polymer (Guildf.) 28(3), 408–415 (1987).
[Crossref]

Rev. Sci. Instrum. (1)

B. N. Walker, R. H. James, D. Calogero, and I. K. Ilev, “A novel full-angle scanning light scattering profiler to quantitatively evaluate forward and backward light scattering from intraocular lenses,” Rev. Sci. Instrum. 86(9), 095004 (2015).
[Crossref] [PubMed]

Rinsho Ganka (1)

H. Minami, K. Toru, K. Hiroi, and S. Kazama, “Glistening of Acrylic Intraocular Lenses,” Rinsho Ganka 53(5), 991–994 (1999).

Other (10)

United States Patent: US6636299B1, (2003).

G. Rusciano, A. Martinez, G. Pesce, G. Zito, and A. Sasso, “Micro-Raman analysis of glisterings in intraocular lenses,” Proc. SPIE 10333 Optical Methods for Inspection, Characterization, and Imaging of BiomaterialsIII, 103331A (2017).

E. Epstein, “History of intraocular lens implant surgery,” in Soft implant lenses in cataract surgery, T. R. Mazzocco, G. M. Rajacich, E. Epstein, ed. (Slack, 1986).

D. B. Elliott, “Contrast sensitivity decline with ageing: a neural or optical phenomenon?” 7, 415–419 (1987).
[Crossref]

G. Rusciano, G. Zito, G. Pesce, S. Del Prete, G. Cennamo, A. Sasso, “Assessment of conjunctival microvilli abnormality by micro-Raman analysis” J. Biophotonics (5), 551–559 (2016).

A. Bertoluzza, P. Monti, R. Simoni, R. Caramazza, M. Cellini, L. De Martino, and A. Calzavara, “Applications of Raman spectroscopy to ophthalmological field: Raman spectra of soft contact lenses made of polyvinylpyrrolidone,” in Laser Scattering Spectroscopy of Biological Objects (Studies in Physical & Theoretical Chemistry), J. Stepanek, P. Anzenbacher, and B. Sedlacek, ed. (Elsevier, 1987), vol 45, pp. 595–604.

J. Popp and T. Mayerhöfer, Micro-raman Spectroscopy: Theory and Application (De Gruyter, 2018).

F. Siebert and P. Hildebrandt, Vibrational Spectroscopy in Life Science (Wiley, 2008).

M. S. Amer, Raman Spectroscopy for Soft Matter Applications (John Wiley & Sons, 2009).

E. Smith and G. Dent, Modern Raman Spectroscopy - A Practical Approach (John Wiley & Sons Ltd, 2005).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 Chemical structure of the monomers forming the copolymers of IOLs here investigated
Fig. 2
Fig. 2 (a) Cartoon of the procedure for glistenings activation. (b) Typical optical images of IOL after glistenings activation: upper HFO, lower A-HFO. The bar scale is of 30 μm.
Fig. 3
Fig. 3 (a) Optical images of HFO lens. The two inserts show a magnification of a typical spherical and ellipsoidal vacuole. (b) Area distribution of the ellipses calculated at three penetration depth in the IOL (h = 20, 100 and 180 μm). Average area and standard deviation are reported for each histogram. (c) Behavior of the total number of vacuoles found in an area of 0.02 μm2 (upper part) and of the average area (lower part) versus the penetration depth in the IOL.
Fig. 4
Fig. 4 Typical Raman spectrum acquired in a HFO (i) and in a A-HFO (ii) IOL.
Fig. 5
Fig. 5 (a) Typical Raman spectra obtained in a point external (i) and internal (ii) at the microvacuole. The inset shows an optical image of the microvacuole selected for Raman analysis in HFO. The dashed borders delimit the region scanned by the laser. (b) Raman image of the microvacuole shown in part a), obtained selecting the polymer band intensity (area) between 2800 and 2900 cm-1. (c) Water distribution inside the vacuole obtained by plotting the intensity of features between 3200 and 3700 cm−1. (d) Loading plot for the first (bottom) and second (upper) PC, resulting from the analysis of spectra acquired in a raster scan around the vacuole. (e) PC1 score map from PCA of Raman spectra. (f) Same as in e), but for the second PC.
Fig. 6
Fig. 6 (a) Typical Raman spectra obtained in a point external (i) and internal (ii) at the microvacuole. The inset shows an optical image of the microvacuole selected for Raman analysis in A-HFO. The dashed borders delimit the region scanned by the laser. (b) Raman image of the microvacuole shown in part a), obtained selecting the polymer band intensity (area) between 2800 and 2900 cm−1. (c) Water distribution inside the vacuole obtained by plotting the intensity of features between 3200 and 3700 cm-1. (d) Loading plot for the first (bottom) and second (upper) PC, resulting from the analysis of spectra acquired in a raster scan around the vacuole. (e) PC1 score map from PCA of Raman spectra. (f) Same as in e), but for the second PC.

Metrics