Abstract

With the widespread use of high-power laser systems in the wavelength spectrum between 1300 and 1400 nm, the risk of ocular damage becomes more serious and concerning. Existing ocular bio-effects studies have revealed unique damage characteristics, the damage mechanisms involved, and the trends of damage thresholds in this wavelength range. However, the influence of ocular axial length on retinal damage thresholds has not been investigated quantitatively. In this paper, using a 1319 nm continuous-wave laser, the in-vivo retinal damage thresholds were determined for two groups of chinchilla grey rabbits with the ocular axial lengths of 15.97 and 17.25 mm, respectively. The incident corneal irradiance diameter was fixed at 5 mm and the exposure duration was 0.1 s. The determined ED50 values at 24-h post-exposure for the axial lengths of 15.97 and 17.25 mm were 1.06 and 1.79 J, respectively. Detailed analysis revealed that a sufficient margin existed between the damage threshold and MPE for adult humans, but for the newborn eyes, the safety factor may be less than 2.3.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Retinal thermal damage threshold dependence on exposure duration for the transitional near-infrared laser radiation at 1319 nm

Jiarui Wang, Luguang Jiao, Xiaomin Jing, Hongxia Chen, Xiangjun Hu, and Zaifu Yang
Biomed. Opt. Express 7(5) 2016-2021 (2016)

Ocular damage effects from 1338-nm pulsed laser radiation in a rabbit eye model

Luguang Jiao, Jiarui Wang, Xiaomin Jing, Hongxia Chen, and Zaifu Yang
Biomed. Opt. Express 8(5) 2745-2755 (2017)

Corneal minimal visible lesion thresholds for 2.0 μm laser radiation

Bo Chen, Jeffrey Oliver, Soumak Dutta, Grady H. Rylander III, Sharon L. Thomsen, and Ashley J. Welch
J. Opt. Soc. Am. A 24(10) 3080-3088 (2007)

References

  • View by:
  • |
  • |
  • |

  1. J. A. Zuclich, D. A. Gagliano, F. Cheney, B. E. Stuck, H. Zwick, P. Edsall, and D. J. Lund, “Ocular effects of penetrating IR laser wavelengths,” Proc. SPIE 2391, 112–125 (1995).
    [Crossref]
  2. J. A. Zuclich, D. J. Lund, P. R. Edsall, B. E. Stuck, and G. Hengst, “High power lasers in the 1.3-1.4 μm wavelength range: ocular effects and safety standard implications,” Proc. SPIE 4246, 78–88 (2001).
    [Crossref]
  3. J. A. Zuclich, D. J. Lund, and B. E. Stuck, “Wavelength dependence of ocular damage thresholds in the near-ir to far-ir transition region: Proposed revisions to MPES,” Health Phys. 92(1), 15–23 (2007).
    [Crossref] [PubMed]
  4. A. Saha, R. Debnath, D. S. Hada, and S. K. Beda, “Simultaneous oscillations of twelve wavelengths around 1.3 μm in quasi-CW Nd:YAG laser,” Opt. Laser Technol. 94, 112–118 (2017).
    [Crossref]
  5. X. Xu, Y. Lu, L. Zhang, H. Ren, and X. Chen, “Relaxation oscillation suppressed, narrow linewidth, high beam quality, 1319 nm long-pulsed duration laser,” Appl. Opt. 57(16), 4692–4695 (2018).
    [Crossref] [PubMed]
  6. H. Y. Lin, D. Sun, N. Copner, and W. Z. Zhu, “Nd:GYSGG laser at 1331.6 nm passively Q-switched by a Co:MgAl2O4 crystal,” Opt. Mater. 69, 250–253 (2017).
    [Crossref]
  7. J. Cook, “High-energy laser weapons since the early 1960s,” Opt. Eng. 52(2), 021007 (2012).
    [Crossref]
  8. A. Rolle, A. Pereszlenyi, R. Koch, B. Bis, and B. Baier, “Laser resection technique and results of multiple lung metastasectomies using a new 1,318 nm Nd:YAG laser system,” Lasers Surg. Med. 38(1), 26–32 (2006).
    [Crossref] [PubMed]
  9. A. Kirschbaum, D. K. Bartsch, and P. Rexin, “Comparison of the local effects of a 600-μm bare fibre at high laser power on lung parenchyma: Nd:YAG laser 1320 vs. 1064 nm,” Lasers Med. Sci. 32(3), 557–562 (2017).
    [Crossref] [PubMed]
  10. C. Porrello, R. Gullo, A. Vaglica, G. Scerrino, G. Salamone, L. Licari, C. Raspanti, E. Gulotta, G. Gulotta, and G. Cocorullo, “Pulmonary laser metastasectomy by 1318-nm neodymium-doped yttrium-aluminum garnet laser: a retrospective study about laser metastasectomy of the lung,” Surg. Innov. 25(2), 142–148 (2018).
    [Crossref] [PubMed]
  11. M. Milanič and B. Majaron, “Energy deposition profile in human skin upon irradiation with a 1,342 nm Nd:YAP laser,” Lasers Surg. Med. 45(1), 8–14 (2013).
    [Crossref] [PubMed]
  12. R. Liljemalm, T. Nyberg, and H. von Holst, “Heating during infrared neural stimulation,” Lasers Surg. Med. 45(7), 469–481 (2013).
    [Crossref] [PubMed]
  13. M. Turri, F. Teatini, F. Donato, G. Zanette, V. Tugnoli, L. Deotto, B. Bonetti, and G. Squintani, “Pain modulation after oromucosal cannabinoid spray (SATIVEX) in patients with multiple sclerosis: A study with quantitative sensory testing and laser-evoked potentials,” Medicines (Basel) 5(3), 59 (2018).
    [Crossref] [PubMed]
  14. J. A. Zuclich, S. T. Schuschereba, H. Zwick, S. A. Boppart, J. G. Fujimoto, F. E. Cheney, and B. E. Stuck, “A comparison of laser-induced retinal damage from infrared wavelengths from that from visible wavelengths,” Laser Light Ophthalmol. 8(1), 15–29 (1997).
  15. J. A. Zuclich, H. Zwick, S. T. Schuschereba, B. W. Stuck, and F. E. Cheney, “Ophthalmoscopic and pathologic description of ocular damage induced by infrared laser radiation,” J. Laser Appl. 10(3), 114–120 (1998).
    [Crossref]
  16. B. Ketzenberger, T. E. Johnson, Y. A. Van Gessel, S. P. Wild, and W. P. Roach, “Study of corneal lesions induced by 1,318-nm laser radiation pulses in Dutch belted rabbits (Oryctolagus cuniculus),” Comp. Med. 52(6), 513–517 (2002).
    [PubMed]
  17. R. L. Vincelette, B. A. Rockwell, J. W. Oliver, S. S. Kumru, R. J. Thomas, K. J. Schuster, G. D. Noojin, A. D. Shingledecker, D. J. Stolarski, and A. J. Welch, “Trends in retinal damage thresholds from 100-millisecond near-infrared laser radiation exposures: a study at 1,110, 1,130, 1,150, and 1,319 nm,” Lasers Surg. Med. 41(5), 382–390 (2009).
    [Crossref] [PubMed]
  18. R. L. Vincelette, A. J. Welch, R. J. Thomas, B. A. Rockwell, and D. J. Lund, “Thermal lensing in ocular media exposed to continuous-wave near-infrared radiation: the 1150-1350-nm region,” J. Biomed. Opt. 13(5), 054005 (2008).
    [Crossref] [PubMed]
  19. G. M. Pocock, J. W. Oliver, G. D. Noojin, K. J. Schuster, D. Stolarski, A. Shingledecker, and B. A. Rockwell, “Follow up study of NIR (1100 to 1319 nm) retinal damage thresholds and trends,” Proc. SPIE 7562, 75620E (2010).
    [Crossref]
  20. R. L. Vincelette, R. J. Thomas, B. A. Rockwell, C. D. Clark, and A. J. Welch, “First-order model of thermal lensing in a virtual eye,” J. Opt. Soc. Am. A 26(3), 548–558 (2009).
    [Crossref] [PubMed]
  21. R. L. Vincelette, J. W. Oliver, B. A. Rockwell, R. J. Thomas, and A. J. Welch, “Confocal imaging of thermal lensing induced by near-IR laser radiation in an artificial eye,” IEEE J. Sel. Top. Quantum Electron. 16(4), 740–747 (2010).
    [Crossref]
  22. E. L. Towle, P. V. Garcia, P. A. Smith, R. J. Thomas, A. K. Dunn, A. J. Welch, and B. K. Foutch, “Visual disruption using the thermal lensing effect in the human eye: pilot study,” J. Biomed. Opt. 17(10), 105007 (2012).
    [Crossref] [PubMed]
  23. E. L. Towle, M. Rickman, A. K. Dunn, A. J. Welch, and R. J. Thomas, “Quantification of thermal lensing using an artificial eye,” IEEE J. Sel. Top. Quantum Electron. 20(2), 7000108 (2014).
    [Crossref]
  24. J. Wang, L. Jiao, H. Chen, Z. Yang, and X. Hu, “Corneal thermal damage threshold dependence on the exposure duration for near-infrared laser radiation at 1319 nm,” J. Biomed. Opt. 21(1), 015011 (2016).
    [Crossref] [PubMed]
  25. J. Wang, L. Jiao, X. Jing, H. Chen, X. Hu, and Z. Yang, “Retinal thermal damage threshold dependence on exposure duration for the transitional near-infrared laser radiation at 1319 nm,” Biomed. Opt. Express 7(5), 2016–2021 (2016).
    [Crossref] [PubMed]
  26. L. Jiao, J. Wang, X. Jing, H. Chen, and Z. Yang, “Ocular damage effects from 1338-nm pulsed laser radiation in a rabbit eye model,” Biomed. Opt. Express 8(5), 2745–2755 (2017).
    [Crossref] [PubMed]
  27. D. J. Lund, P. R. Edsall, D. R. Fuller, and S. W. Hoxie, “Bioeffects of near-infrared lasers,” J. Laser Appl. 10(3), 140–143 (1998).
    [Crossref]
  28. R. L. McCally, J. Bonney-Ray, and C. B. Bargeron, “Corneal epithelial injury thresholds for exposures to 1.54 µm radiation-dependence on beam diameter,” Health Phys. 87(6), 615–624 (2004).
    [Crossref] [PubMed]
  29. R. L. McCally, R. A. Farrell, and C. B. Bargeron, “Cornea epithelial damage thresholds in rabbits exposed to Tm:YAG laser radiation at 2.02 µm,” Lasers Surg. Med. 12(6), 598–603 (1992).
    [Crossref] [PubMed]
  30. C. B. Bargeron, O. J. Deters, R. A. Farrell, and R. L. McCally, “Epithelial damage in rabbit corneas exposed to CO2 laser radiation,” Health Phys. 56(1), 89–95 (1989).
    [Crossref] [PubMed]
  31. J. A. Zuclich, P. R. Edsall, D. J. Lund, B. E. Stuck, R. C. Hollins, S. Till, P. A. Smith, L. N. McLin, and P. K. Kennedy, “Variation of laser induced retinal-damage threshold with retinal image size,” J. Laser Appl. 12(2), 74–80 (2000).
    [Crossref]
  32. D. J. Lund, P. Edsall, B. E. Stuck, and K. Schulmeister, “Variation of laser-induced retinal injury thresholds with retinal irradiated area: 0.1-s duration, 514-nm exposures,” J. Biomed. Opt. 12(2), 024023 (2007).
    [Crossref] [PubMed]
  33. International Commission on Non-Ionizing Radiation Protection, “Guidelines on limits of exposure to laser radiation of wavelength between 180 nm and 1,000 microns,” Health Phys. 105(3), 271–295 (2013).
    [Crossref] [PubMed]
  34. ANSI, American National Standard for Safety Use of Lasers, Z136.1, Laser Institute of America, Orlando (2014).
  35. International Electrotechnical Commission, Safety of laser products-Part 1: Equipment classification and requirements, IEC 60825–1 (2014).
  36. R. A. Gordon and P. B. Donzis, “Refractive development of the human eye,” Arch. Ophthalmol. 103(6), 785–789 (1985).
    [Crossref] [PubMed]
  37. J. E. Greivenkamp, J. Schwiegerling, J. M. Miller, and M. D. Mellinger, “Visual acuity modeling using optical raytracing of schematic eyes,” Am. J. Ophthalmol. 120(2), 227–240 (1995).
    [Crossref] [PubMed]
  38. ISO 11146–1, Lasers and laser-related equipment – Test methods for laser beam widths, divergence angles and beam propagation ratios – Part 1: Stigmatic and simple astigmatic beams (2005).
  39. D. H. Sliney, J. Mellerio, V. P. Gabel, and K. Schulmeister, “What is the meaning of threshold in laser injury experiments? implications for human exposure limits,” Health Phys. 82(3), 335–347 (2002).
    [Crossref] [PubMed]
  40. D. J. Lund, P. R. Edsall, D. R. Fuller, and S. W. Hoxie, “Bioeffects of near-infrared lasers,” J. Laser Appl. 10(3), 140–143 (1998).
    [Crossref]
  41. M. F. Blankenstein, J. Zuclich, R. G. Allen, H. Davis, S. J. Thomas, and R. F. Harrison, “Retinal hemorrhage thresholds for Q-switched neodymium-Yag laser exposures,” Invest. Ophthalmol. Vis. Sci. 27(7), 1176–1179 (1986).
    [PubMed]
  42. H. Chen, Z. Yang, J. Wang, P. Chen, and H. Qian, “A comparative study on ocular damage induced by 1319nm laser radiation,” Lasers Surg. Med. 43(4), 306–312 (2011).
    [Crossref] [PubMed]
  43. L. Kou, D. Labrie, and P. Chylek, “Refractive indices of water and ice in the 0.65- to 2.5-µm spectral range,” Appl. Opt. 32(19), 3531–3540 (1993).
    [Crossref] [PubMed]
  44. K. Schulmeister, B. E. Stuck, D. J. Lund, and D. H. Sliney, “Review of thresholds and exposure limits for laser and broadband optical radiation for thermally induced retinal injury,” Health Phys. 100(2), 210–220 (2011).
    [Crossref] [PubMed]
  45. K. Schulmeister, R. Ullah, and M. Jean, “Near infrared ex-vivo bovine and computer model thresholds for laser-induced retinal damage,” Photonics Lasers Med. 1(2), 123–131 (2012).
    [Crossref]

2018 (3)

X. Xu, Y. Lu, L. Zhang, H. Ren, and X. Chen, “Relaxation oscillation suppressed, narrow linewidth, high beam quality, 1319 nm long-pulsed duration laser,” Appl. Opt. 57(16), 4692–4695 (2018).
[Crossref] [PubMed]

C. Porrello, R. Gullo, A. Vaglica, G. Scerrino, G. Salamone, L. Licari, C. Raspanti, E. Gulotta, G. Gulotta, and G. Cocorullo, “Pulmonary laser metastasectomy by 1318-nm neodymium-doped yttrium-aluminum garnet laser: a retrospective study about laser metastasectomy of the lung,” Surg. Innov. 25(2), 142–148 (2018).
[Crossref] [PubMed]

M. Turri, F. Teatini, F. Donato, G. Zanette, V. Tugnoli, L. Deotto, B. Bonetti, and G. Squintani, “Pain modulation after oromucosal cannabinoid spray (SATIVEX) in patients with multiple sclerosis: A study with quantitative sensory testing and laser-evoked potentials,” Medicines (Basel) 5(3), 59 (2018).
[Crossref] [PubMed]

2017 (4)

A. Kirschbaum, D. K. Bartsch, and P. Rexin, “Comparison of the local effects of a 600-μm bare fibre at high laser power on lung parenchyma: Nd:YAG laser 1320 vs. 1064 nm,” Lasers Med. Sci. 32(3), 557–562 (2017).
[Crossref] [PubMed]

H. Y. Lin, D. Sun, N. Copner, and W. Z. Zhu, “Nd:GYSGG laser at 1331.6 nm passively Q-switched by a Co:MgAl2O4 crystal,” Opt. Mater. 69, 250–253 (2017).
[Crossref]

A. Saha, R. Debnath, D. S. Hada, and S. K. Beda, “Simultaneous oscillations of twelve wavelengths around 1.3 μm in quasi-CW Nd:YAG laser,” Opt. Laser Technol. 94, 112–118 (2017).
[Crossref]

L. Jiao, J. Wang, X. Jing, H. Chen, and Z. Yang, “Ocular damage effects from 1338-nm pulsed laser radiation in a rabbit eye model,” Biomed. Opt. Express 8(5), 2745–2755 (2017).
[Crossref] [PubMed]

2016 (2)

J. Wang, L. Jiao, H. Chen, Z. Yang, and X. Hu, “Corneal thermal damage threshold dependence on the exposure duration for near-infrared laser radiation at 1319 nm,” J. Biomed. Opt. 21(1), 015011 (2016).
[Crossref] [PubMed]

J. Wang, L. Jiao, X. Jing, H. Chen, X. Hu, and Z. Yang, “Retinal thermal damage threshold dependence on exposure duration for the transitional near-infrared laser radiation at 1319 nm,” Biomed. Opt. Express 7(5), 2016–2021 (2016).
[Crossref] [PubMed]

2014 (1)

E. L. Towle, M. Rickman, A. K. Dunn, A. J. Welch, and R. J. Thomas, “Quantification of thermal lensing using an artificial eye,” IEEE J. Sel. Top. Quantum Electron. 20(2), 7000108 (2014).
[Crossref]

2013 (3)

International Commission on Non-Ionizing Radiation Protection, “Guidelines on limits of exposure to laser radiation of wavelength between 180 nm and 1,000 microns,” Health Phys. 105(3), 271–295 (2013).
[Crossref] [PubMed]

M. Milanič and B. Majaron, “Energy deposition profile in human skin upon irradiation with a 1,342 nm Nd:YAP laser,” Lasers Surg. Med. 45(1), 8–14 (2013).
[Crossref] [PubMed]

R. Liljemalm, T. Nyberg, and H. von Holst, “Heating during infrared neural stimulation,” Lasers Surg. Med. 45(7), 469–481 (2013).
[Crossref] [PubMed]

2012 (3)

J. Cook, “High-energy laser weapons since the early 1960s,” Opt. Eng. 52(2), 021007 (2012).
[Crossref]

E. L. Towle, P. V. Garcia, P. A. Smith, R. J. Thomas, A. K. Dunn, A. J. Welch, and B. K. Foutch, “Visual disruption using the thermal lensing effect in the human eye: pilot study,” J. Biomed. Opt. 17(10), 105007 (2012).
[Crossref] [PubMed]

K. Schulmeister, R. Ullah, and M. Jean, “Near infrared ex-vivo bovine and computer model thresholds for laser-induced retinal damage,” Photonics Lasers Med. 1(2), 123–131 (2012).
[Crossref]

2011 (2)

K. Schulmeister, B. E. Stuck, D. J. Lund, and D. H. Sliney, “Review of thresholds and exposure limits for laser and broadband optical radiation for thermally induced retinal injury,” Health Phys. 100(2), 210–220 (2011).
[Crossref] [PubMed]

H. Chen, Z. Yang, J. Wang, P. Chen, and H. Qian, “A comparative study on ocular damage induced by 1319nm laser radiation,” Lasers Surg. Med. 43(4), 306–312 (2011).
[Crossref] [PubMed]

2010 (2)

G. M. Pocock, J. W. Oliver, G. D. Noojin, K. J. Schuster, D. Stolarski, A. Shingledecker, and B. A. Rockwell, “Follow up study of NIR (1100 to 1319 nm) retinal damage thresholds and trends,” Proc. SPIE 7562, 75620E (2010).
[Crossref]

R. L. Vincelette, J. W. Oliver, B. A. Rockwell, R. J. Thomas, and A. J. Welch, “Confocal imaging of thermal lensing induced by near-IR laser radiation in an artificial eye,” IEEE J. Sel. Top. Quantum Electron. 16(4), 740–747 (2010).
[Crossref]

2009 (2)

R. L. Vincelette, R. J. Thomas, B. A. Rockwell, C. D. Clark, and A. J. Welch, “First-order model of thermal lensing in a virtual eye,” J. Opt. Soc. Am. A 26(3), 548–558 (2009).
[Crossref] [PubMed]

R. L. Vincelette, B. A. Rockwell, J. W. Oliver, S. S. Kumru, R. J. Thomas, K. J. Schuster, G. D. Noojin, A. D. Shingledecker, D. J. Stolarski, and A. J. Welch, “Trends in retinal damage thresholds from 100-millisecond near-infrared laser radiation exposures: a study at 1,110, 1,130, 1,150, and 1,319 nm,” Lasers Surg. Med. 41(5), 382–390 (2009).
[Crossref] [PubMed]

2008 (1)

R. L. Vincelette, A. J. Welch, R. J. Thomas, B. A. Rockwell, and D. J. Lund, “Thermal lensing in ocular media exposed to continuous-wave near-infrared radiation: the 1150-1350-nm region,” J. Biomed. Opt. 13(5), 054005 (2008).
[Crossref] [PubMed]

2007 (2)

J. A. Zuclich, D. J. Lund, and B. E. Stuck, “Wavelength dependence of ocular damage thresholds in the near-ir to far-ir transition region: Proposed revisions to MPES,” Health Phys. 92(1), 15–23 (2007).
[Crossref] [PubMed]

D. J. Lund, P. Edsall, B. E. Stuck, and K. Schulmeister, “Variation of laser-induced retinal injury thresholds with retinal irradiated area: 0.1-s duration, 514-nm exposures,” J. Biomed. Opt. 12(2), 024023 (2007).
[Crossref] [PubMed]

2006 (1)

A. Rolle, A. Pereszlenyi, R. Koch, B. Bis, and B. Baier, “Laser resection technique and results of multiple lung metastasectomies using a new 1,318 nm Nd:YAG laser system,” Lasers Surg. Med. 38(1), 26–32 (2006).
[Crossref] [PubMed]

2004 (1)

R. L. McCally, J. Bonney-Ray, and C. B. Bargeron, “Corneal epithelial injury thresholds for exposures to 1.54 µm radiation-dependence on beam diameter,” Health Phys. 87(6), 615–624 (2004).
[Crossref] [PubMed]

2002 (2)

B. Ketzenberger, T. E. Johnson, Y. A. Van Gessel, S. P. Wild, and W. P. Roach, “Study of corneal lesions induced by 1,318-nm laser radiation pulses in Dutch belted rabbits (Oryctolagus cuniculus),” Comp. Med. 52(6), 513–517 (2002).
[PubMed]

D. H. Sliney, J. Mellerio, V. P. Gabel, and K. Schulmeister, “What is the meaning of threshold in laser injury experiments? implications for human exposure limits,” Health Phys. 82(3), 335–347 (2002).
[Crossref] [PubMed]

2001 (1)

J. A. Zuclich, D. J. Lund, P. R. Edsall, B. E. Stuck, and G. Hengst, “High power lasers in the 1.3-1.4 μm wavelength range: ocular effects and safety standard implications,” Proc. SPIE 4246, 78–88 (2001).
[Crossref]

2000 (1)

J. A. Zuclich, P. R. Edsall, D. J. Lund, B. E. Stuck, R. C. Hollins, S. Till, P. A. Smith, L. N. McLin, and P. K. Kennedy, “Variation of laser induced retinal-damage threshold with retinal image size,” J. Laser Appl. 12(2), 74–80 (2000).
[Crossref]

1998 (3)

D. J. Lund, P. R. Edsall, D. R. Fuller, and S. W. Hoxie, “Bioeffects of near-infrared lasers,” J. Laser Appl. 10(3), 140–143 (1998).
[Crossref]

J. A. Zuclich, H. Zwick, S. T. Schuschereba, B. W. Stuck, and F. E. Cheney, “Ophthalmoscopic and pathologic description of ocular damage induced by infrared laser radiation,” J. Laser Appl. 10(3), 114–120 (1998).
[Crossref]

D. J. Lund, P. R. Edsall, D. R. Fuller, and S. W. Hoxie, “Bioeffects of near-infrared lasers,” J. Laser Appl. 10(3), 140–143 (1998).
[Crossref]

1997 (1)

J. A. Zuclich, S. T. Schuschereba, H. Zwick, S. A. Boppart, J. G. Fujimoto, F. E. Cheney, and B. E. Stuck, “A comparison of laser-induced retinal damage from infrared wavelengths from that from visible wavelengths,” Laser Light Ophthalmol. 8(1), 15–29 (1997).

1995 (2)

J. A. Zuclich, D. A. Gagliano, F. Cheney, B. E. Stuck, H. Zwick, P. Edsall, and D. J. Lund, “Ocular effects of penetrating IR laser wavelengths,” Proc. SPIE 2391, 112–125 (1995).
[Crossref]

J. E. Greivenkamp, J. Schwiegerling, J. M. Miller, and M. D. Mellinger, “Visual acuity modeling using optical raytracing of schematic eyes,” Am. J. Ophthalmol. 120(2), 227–240 (1995).
[Crossref] [PubMed]

1993 (1)

1992 (1)

R. L. McCally, R. A. Farrell, and C. B. Bargeron, “Cornea epithelial damage thresholds in rabbits exposed to Tm:YAG laser radiation at 2.02 µm,” Lasers Surg. Med. 12(6), 598–603 (1992).
[Crossref] [PubMed]

1989 (1)

C. B. Bargeron, O. J. Deters, R. A. Farrell, and R. L. McCally, “Epithelial damage in rabbit corneas exposed to CO2 laser radiation,” Health Phys. 56(1), 89–95 (1989).
[Crossref] [PubMed]

1986 (1)

M. F. Blankenstein, J. Zuclich, R. G. Allen, H. Davis, S. J. Thomas, and R. F. Harrison, “Retinal hemorrhage thresholds for Q-switched neodymium-Yag laser exposures,” Invest. Ophthalmol. Vis. Sci. 27(7), 1176–1179 (1986).
[PubMed]

1985 (1)

R. A. Gordon and P. B. Donzis, “Refractive development of the human eye,” Arch. Ophthalmol. 103(6), 785–789 (1985).
[Crossref] [PubMed]

Allen, R. G.

M. F. Blankenstein, J. Zuclich, R. G. Allen, H. Davis, S. J. Thomas, and R. F. Harrison, “Retinal hemorrhage thresholds for Q-switched neodymium-Yag laser exposures,” Invest. Ophthalmol. Vis. Sci. 27(7), 1176–1179 (1986).
[PubMed]

Baier, B.

A. Rolle, A. Pereszlenyi, R. Koch, B. Bis, and B. Baier, “Laser resection technique and results of multiple lung metastasectomies using a new 1,318 nm Nd:YAG laser system,” Lasers Surg. Med. 38(1), 26–32 (2006).
[Crossref] [PubMed]

Bargeron, C. B.

R. L. McCally, J. Bonney-Ray, and C. B. Bargeron, “Corneal epithelial injury thresholds for exposures to 1.54 µm radiation-dependence on beam diameter,” Health Phys. 87(6), 615–624 (2004).
[Crossref] [PubMed]

R. L. McCally, R. A. Farrell, and C. B. Bargeron, “Cornea epithelial damage thresholds in rabbits exposed to Tm:YAG laser radiation at 2.02 µm,” Lasers Surg. Med. 12(6), 598–603 (1992).
[Crossref] [PubMed]

C. B. Bargeron, O. J. Deters, R. A. Farrell, and R. L. McCally, “Epithelial damage in rabbit corneas exposed to CO2 laser radiation,” Health Phys. 56(1), 89–95 (1989).
[Crossref] [PubMed]

Bartsch, D. K.

A. Kirschbaum, D. K. Bartsch, and P. Rexin, “Comparison of the local effects of a 600-μm bare fibre at high laser power on lung parenchyma: Nd:YAG laser 1320 vs. 1064 nm,” Lasers Med. Sci. 32(3), 557–562 (2017).
[Crossref] [PubMed]

Beda, S. K.

A. Saha, R. Debnath, D. S. Hada, and S. K. Beda, “Simultaneous oscillations of twelve wavelengths around 1.3 μm in quasi-CW Nd:YAG laser,” Opt. Laser Technol. 94, 112–118 (2017).
[Crossref]

Bis, B.

A. Rolle, A. Pereszlenyi, R. Koch, B. Bis, and B. Baier, “Laser resection technique and results of multiple lung metastasectomies using a new 1,318 nm Nd:YAG laser system,” Lasers Surg. Med. 38(1), 26–32 (2006).
[Crossref] [PubMed]

Blankenstein, M. F.

M. F. Blankenstein, J. Zuclich, R. G. Allen, H. Davis, S. J. Thomas, and R. F. Harrison, “Retinal hemorrhage thresholds for Q-switched neodymium-Yag laser exposures,” Invest. Ophthalmol. Vis. Sci. 27(7), 1176–1179 (1986).
[PubMed]

Bonetti, B.

M. Turri, F. Teatini, F. Donato, G. Zanette, V. Tugnoli, L. Deotto, B. Bonetti, and G. Squintani, “Pain modulation after oromucosal cannabinoid spray (SATIVEX) in patients with multiple sclerosis: A study with quantitative sensory testing and laser-evoked potentials,” Medicines (Basel) 5(3), 59 (2018).
[Crossref] [PubMed]

Bonney-Ray, J.

R. L. McCally, J. Bonney-Ray, and C. B. Bargeron, “Corneal epithelial injury thresholds for exposures to 1.54 µm radiation-dependence on beam diameter,” Health Phys. 87(6), 615–624 (2004).
[Crossref] [PubMed]

Boppart, S. A.

J. A. Zuclich, S. T. Schuschereba, H. Zwick, S. A. Boppart, J. G. Fujimoto, F. E. Cheney, and B. E. Stuck, “A comparison of laser-induced retinal damage from infrared wavelengths from that from visible wavelengths,” Laser Light Ophthalmol. 8(1), 15–29 (1997).

Chen, H.

L. Jiao, J. Wang, X. Jing, H. Chen, and Z. Yang, “Ocular damage effects from 1338-nm pulsed laser radiation in a rabbit eye model,” Biomed. Opt. Express 8(5), 2745–2755 (2017).
[Crossref] [PubMed]

J. Wang, L. Jiao, X. Jing, H. Chen, X. Hu, and Z. Yang, “Retinal thermal damage threshold dependence on exposure duration for the transitional near-infrared laser radiation at 1319 nm,” Biomed. Opt. Express 7(5), 2016–2021 (2016).
[Crossref] [PubMed]

J. Wang, L. Jiao, H. Chen, Z. Yang, and X. Hu, “Corneal thermal damage threshold dependence on the exposure duration for near-infrared laser radiation at 1319 nm,” J. Biomed. Opt. 21(1), 015011 (2016).
[Crossref] [PubMed]

H. Chen, Z. Yang, J. Wang, P. Chen, and H. Qian, “A comparative study on ocular damage induced by 1319nm laser radiation,” Lasers Surg. Med. 43(4), 306–312 (2011).
[Crossref] [PubMed]

Chen, P.

H. Chen, Z. Yang, J. Wang, P. Chen, and H. Qian, “A comparative study on ocular damage induced by 1319nm laser radiation,” Lasers Surg. Med. 43(4), 306–312 (2011).
[Crossref] [PubMed]

Chen, X.

Cheney, F.

J. A. Zuclich, D. A. Gagliano, F. Cheney, B. E. Stuck, H. Zwick, P. Edsall, and D. J. Lund, “Ocular effects of penetrating IR laser wavelengths,” Proc. SPIE 2391, 112–125 (1995).
[Crossref]

Cheney, F. E.

J. A. Zuclich, H. Zwick, S. T. Schuschereba, B. W. Stuck, and F. E. Cheney, “Ophthalmoscopic and pathologic description of ocular damage induced by infrared laser radiation,” J. Laser Appl. 10(3), 114–120 (1998).
[Crossref]

J. A. Zuclich, S. T. Schuschereba, H. Zwick, S. A. Boppart, J. G. Fujimoto, F. E. Cheney, and B. E. Stuck, “A comparison of laser-induced retinal damage from infrared wavelengths from that from visible wavelengths,” Laser Light Ophthalmol. 8(1), 15–29 (1997).

Chylek, P.

Clark, C. D.

Cocorullo, G.

C. Porrello, R. Gullo, A. Vaglica, G. Scerrino, G. Salamone, L. Licari, C. Raspanti, E. Gulotta, G. Gulotta, and G. Cocorullo, “Pulmonary laser metastasectomy by 1318-nm neodymium-doped yttrium-aluminum garnet laser: a retrospective study about laser metastasectomy of the lung,” Surg. Innov. 25(2), 142–148 (2018).
[Crossref] [PubMed]

Cook, J.

J. Cook, “High-energy laser weapons since the early 1960s,” Opt. Eng. 52(2), 021007 (2012).
[Crossref]

Copner, N.

H. Y. Lin, D. Sun, N. Copner, and W. Z. Zhu, “Nd:GYSGG laser at 1331.6 nm passively Q-switched by a Co:MgAl2O4 crystal,” Opt. Mater. 69, 250–253 (2017).
[Crossref]

Davis, H.

M. F. Blankenstein, J. Zuclich, R. G. Allen, H. Davis, S. J. Thomas, and R. F. Harrison, “Retinal hemorrhage thresholds for Q-switched neodymium-Yag laser exposures,” Invest. Ophthalmol. Vis. Sci. 27(7), 1176–1179 (1986).
[PubMed]

Debnath, R.

A. Saha, R. Debnath, D. S. Hada, and S. K. Beda, “Simultaneous oscillations of twelve wavelengths around 1.3 μm in quasi-CW Nd:YAG laser,” Opt. Laser Technol. 94, 112–118 (2017).
[Crossref]

Deotto, L.

M. Turri, F. Teatini, F. Donato, G. Zanette, V. Tugnoli, L. Deotto, B. Bonetti, and G. Squintani, “Pain modulation after oromucosal cannabinoid spray (SATIVEX) in patients with multiple sclerosis: A study with quantitative sensory testing and laser-evoked potentials,” Medicines (Basel) 5(3), 59 (2018).
[Crossref] [PubMed]

Deters, O. J.

C. B. Bargeron, O. J. Deters, R. A. Farrell, and R. L. McCally, “Epithelial damage in rabbit corneas exposed to CO2 laser radiation,” Health Phys. 56(1), 89–95 (1989).
[Crossref] [PubMed]

Donato, F.

M. Turri, F. Teatini, F. Donato, G. Zanette, V. Tugnoli, L. Deotto, B. Bonetti, and G. Squintani, “Pain modulation after oromucosal cannabinoid spray (SATIVEX) in patients with multiple sclerosis: A study with quantitative sensory testing and laser-evoked potentials,” Medicines (Basel) 5(3), 59 (2018).
[Crossref] [PubMed]

Donzis, P. B.

R. A. Gordon and P. B. Donzis, “Refractive development of the human eye,” Arch. Ophthalmol. 103(6), 785–789 (1985).
[Crossref] [PubMed]

Dunn, A. K.

E. L. Towle, M. Rickman, A. K. Dunn, A. J. Welch, and R. J. Thomas, “Quantification of thermal lensing using an artificial eye,” IEEE J. Sel. Top. Quantum Electron. 20(2), 7000108 (2014).
[Crossref]

E. L. Towle, P. V. Garcia, P. A. Smith, R. J. Thomas, A. K. Dunn, A. J. Welch, and B. K. Foutch, “Visual disruption using the thermal lensing effect in the human eye: pilot study,” J. Biomed. Opt. 17(10), 105007 (2012).
[Crossref] [PubMed]

Edsall, P.

D. J. Lund, P. Edsall, B. E. Stuck, and K. Schulmeister, “Variation of laser-induced retinal injury thresholds with retinal irradiated area: 0.1-s duration, 514-nm exposures,” J. Biomed. Opt. 12(2), 024023 (2007).
[Crossref] [PubMed]

J. A. Zuclich, D. A. Gagliano, F. Cheney, B. E. Stuck, H. Zwick, P. Edsall, and D. J. Lund, “Ocular effects of penetrating IR laser wavelengths,” Proc. SPIE 2391, 112–125 (1995).
[Crossref]

Edsall, P. R.

J. A. Zuclich, D. J. Lund, P. R. Edsall, B. E. Stuck, and G. Hengst, “High power lasers in the 1.3-1.4 μm wavelength range: ocular effects and safety standard implications,” Proc. SPIE 4246, 78–88 (2001).
[Crossref]

J. A. Zuclich, P. R. Edsall, D. J. Lund, B. E. Stuck, R. C. Hollins, S. Till, P. A. Smith, L. N. McLin, and P. K. Kennedy, “Variation of laser induced retinal-damage threshold with retinal image size,” J. Laser Appl. 12(2), 74–80 (2000).
[Crossref]

D. J. Lund, P. R. Edsall, D. R. Fuller, and S. W. Hoxie, “Bioeffects of near-infrared lasers,” J. Laser Appl. 10(3), 140–143 (1998).
[Crossref]

D. J. Lund, P. R. Edsall, D. R. Fuller, and S. W. Hoxie, “Bioeffects of near-infrared lasers,” J. Laser Appl. 10(3), 140–143 (1998).
[Crossref]

Farrell, R. A.

R. L. McCally, R. A. Farrell, and C. B. Bargeron, “Cornea epithelial damage thresholds in rabbits exposed to Tm:YAG laser radiation at 2.02 µm,” Lasers Surg. Med. 12(6), 598–603 (1992).
[Crossref] [PubMed]

C. B. Bargeron, O. J. Deters, R. A. Farrell, and R. L. McCally, “Epithelial damage in rabbit corneas exposed to CO2 laser radiation,” Health Phys. 56(1), 89–95 (1989).
[Crossref] [PubMed]

Foutch, B. K.

E. L. Towle, P. V. Garcia, P. A. Smith, R. J. Thomas, A. K. Dunn, A. J. Welch, and B. K. Foutch, “Visual disruption using the thermal lensing effect in the human eye: pilot study,” J. Biomed. Opt. 17(10), 105007 (2012).
[Crossref] [PubMed]

Fujimoto, J. G.

J. A. Zuclich, S. T. Schuschereba, H. Zwick, S. A. Boppart, J. G. Fujimoto, F. E. Cheney, and B. E. Stuck, “A comparison of laser-induced retinal damage from infrared wavelengths from that from visible wavelengths,” Laser Light Ophthalmol. 8(1), 15–29 (1997).

Fuller, D. R.

D. J. Lund, P. R. Edsall, D. R. Fuller, and S. W. Hoxie, “Bioeffects of near-infrared lasers,” J. Laser Appl. 10(3), 140–143 (1998).
[Crossref]

D. J. Lund, P. R. Edsall, D. R. Fuller, and S. W. Hoxie, “Bioeffects of near-infrared lasers,” J. Laser Appl. 10(3), 140–143 (1998).
[Crossref]

Gabel, V. P.

D. H. Sliney, J. Mellerio, V. P. Gabel, and K. Schulmeister, “What is the meaning of threshold in laser injury experiments? implications for human exposure limits,” Health Phys. 82(3), 335–347 (2002).
[Crossref] [PubMed]

Gagliano, D. A.

J. A. Zuclich, D. A. Gagliano, F. Cheney, B. E. Stuck, H. Zwick, P. Edsall, and D. J. Lund, “Ocular effects of penetrating IR laser wavelengths,” Proc. SPIE 2391, 112–125 (1995).
[Crossref]

Garcia, P. V.

E. L. Towle, P. V. Garcia, P. A. Smith, R. J. Thomas, A. K. Dunn, A. J. Welch, and B. K. Foutch, “Visual disruption using the thermal lensing effect in the human eye: pilot study,” J. Biomed. Opt. 17(10), 105007 (2012).
[Crossref] [PubMed]

Gordon, R. A.

R. A. Gordon and P. B. Donzis, “Refractive development of the human eye,” Arch. Ophthalmol. 103(6), 785–789 (1985).
[Crossref] [PubMed]

Greivenkamp, J. E.

J. E. Greivenkamp, J. Schwiegerling, J. M. Miller, and M. D. Mellinger, “Visual acuity modeling using optical raytracing of schematic eyes,” Am. J. Ophthalmol. 120(2), 227–240 (1995).
[Crossref] [PubMed]

Gullo, R.

C. Porrello, R. Gullo, A. Vaglica, G. Scerrino, G. Salamone, L. Licari, C. Raspanti, E. Gulotta, G. Gulotta, and G. Cocorullo, “Pulmonary laser metastasectomy by 1318-nm neodymium-doped yttrium-aluminum garnet laser: a retrospective study about laser metastasectomy of the lung,” Surg. Innov. 25(2), 142–148 (2018).
[Crossref] [PubMed]

Gulotta, E.

C. Porrello, R. Gullo, A. Vaglica, G. Scerrino, G. Salamone, L. Licari, C. Raspanti, E. Gulotta, G. Gulotta, and G. Cocorullo, “Pulmonary laser metastasectomy by 1318-nm neodymium-doped yttrium-aluminum garnet laser: a retrospective study about laser metastasectomy of the lung,” Surg. Innov. 25(2), 142–148 (2018).
[Crossref] [PubMed]

Gulotta, G.

C. Porrello, R. Gullo, A. Vaglica, G. Scerrino, G. Salamone, L. Licari, C. Raspanti, E. Gulotta, G. Gulotta, and G. Cocorullo, “Pulmonary laser metastasectomy by 1318-nm neodymium-doped yttrium-aluminum garnet laser: a retrospective study about laser metastasectomy of the lung,” Surg. Innov. 25(2), 142–148 (2018).
[Crossref] [PubMed]

Hada, D. S.

A. Saha, R. Debnath, D. S. Hada, and S. K. Beda, “Simultaneous oscillations of twelve wavelengths around 1.3 μm in quasi-CW Nd:YAG laser,” Opt. Laser Technol. 94, 112–118 (2017).
[Crossref]

Harrison, R. F.

M. F. Blankenstein, J. Zuclich, R. G. Allen, H. Davis, S. J. Thomas, and R. F. Harrison, “Retinal hemorrhage thresholds for Q-switched neodymium-Yag laser exposures,” Invest. Ophthalmol. Vis. Sci. 27(7), 1176–1179 (1986).
[PubMed]

Hengst, G.

J. A. Zuclich, D. J. Lund, P. R. Edsall, B. E. Stuck, and G. Hengst, “High power lasers in the 1.3-1.4 μm wavelength range: ocular effects and safety standard implications,” Proc. SPIE 4246, 78–88 (2001).
[Crossref]

Hollins, R. C.

J. A. Zuclich, P. R. Edsall, D. J. Lund, B. E. Stuck, R. C. Hollins, S. Till, P. A. Smith, L. N. McLin, and P. K. Kennedy, “Variation of laser induced retinal-damage threshold with retinal image size,” J. Laser Appl. 12(2), 74–80 (2000).
[Crossref]

Hoxie, S. W.

D. J. Lund, P. R. Edsall, D. R. Fuller, and S. W. Hoxie, “Bioeffects of near-infrared lasers,” J. Laser Appl. 10(3), 140–143 (1998).
[Crossref]

D. J. Lund, P. R. Edsall, D. R. Fuller, and S. W. Hoxie, “Bioeffects of near-infrared lasers,” J. Laser Appl. 10(3), 140–143 (1998).
[Crossref]

Hu, X.

J. Wang, L. Jiao, H. Chen, Z. Yang, and X. Hu, “Corneal thermal damage threshold dependence on the exposure duration for near-infrared laser radiation at 1319 nm,” J. Biomed. Opt. 21(1), 015011 (2016).
[Crossref] [PubMed]

J. Wang, L. Jiao, X. Jing, H. Chen, X. Hu, and Z. Yang, “Retinal thermal damage threshold dependence on exposure duration for the transitional near-infrared laser radiation at 1319 nm,” Biomed. Opt. Express 7(5), 2016–2021 (2016).
[Crossref] [PubMed]

Jean, M.

K. Schulmeister, R. Ullah, and M. Jean, “Near infrared ex-vivo bovine and computer model thresholds for laser-induced retinal damage,” Photonics Lasers Med. 1(2), 123–131 (2012).
[Crossref]

Jiao, L.

Jing, X.

Johnson, T. E.

B. Ketzenberger, T. E. Johnson, Y. A. Van Gessel, S. P. Wild, and W. P. Roach, “Study of corneal lesions induced by 1,318-nm laser radiation pulses in Dutch belted rabbits (Oryctolagus cuniculus),” Comp. Med. 52(6), 513–517 (2002).
[PubMed]

Kennedy, P. K.

J. A. Zuclich, P. R. Edsall, D. J. Lund, B. E. Stuck, R. C. Hollins, S. Till, P. A. Smith, L. N. McLin, and P. K. Kennedy, “Variation of laser induced retinal-damage threshold with retinal image size,” J. Laser Appl. 12(2), 74–80 (2000).
[Crossref]

Ketzenberger, B.

B. Ketzenberger, T. E. Johnson, Y. A. Van Gessel, S. P. Wild, and W. P. Roach, “Study of corneal lesions induced by 1,318-nm laser radiation pulses in Dutch belted rabbits (Oryctolagus cuniculus),” Comp. Med. 52(6), 513–517 (2002).
[PubMed]

Kirschbaum, A.

A. Kirschbaum, D. K. Bartsch, and P. Rexin, “Comparison of the local effects of a 600-μm bare fibre at high laser power on lung parenchyma: Nd:YAG laser 1320 vs. 1064 nm,” Lasers Med. Sci. 32(3), 557–562 (2017).
[Crossref] [PubMed]

Koch, R.

A. Rolle, A. Pereszlenyi, R. Koch, B. Bis, and B. Baier, “Laser resection technique and results of multiple lung metastasectomies using a new 1,318 nm Nd:YAG laser system,” Lasers Surg. Med. 38(1), 26–32 (2006).
[Crossref] [PubMed]

Kou, L.

Kumru, S. S.

R. L. Vincelette, B. A. Rockwell, J. W. Oliver, S. S. Kumru, R. J. Thomas, K. J. Schuster, G. D. Noojin, A. D. Shingledecker, D. J. Stolarski, and A. J. Welch, “Trends in retinal damage thresholds from 100-millisecond near-infrared laser radiation exposures: a study at 1,110, 1,130, 1,150, and 1,319 nm,” Lasers Surg. Med. 41(5), 382–390 (2009).
[Crossref] [PubMed]

Labrie, D.

Licari, L.

C. Porrello, R. Gullo, A. Vaglica, G. Scerrino, G. Salamone, L. Licari, C. Raspanti, E. Gulotta, G. Gulotta, and G. Cocorullo, “Pulmonary laser metastasectomy by 1318-nm neodymium-doped yttrium-aluminum garnet laser: a retrospective study about laser metastasectomy of the lung,” Surg. Innov. 25(2), 142–148 (2018).
[Crossref] [PubMed]

Liljemalm, R.

R. Liljemalm, T. Nyberg, and H. von Holst, “Heating during infrared neural stimulation,” Lasers Surg. Med. 45(7), 469–481 (2013).
[Crossref] [PubMed]

Lin, H. Y.

H. Y. Lin, D. Sun, N. Copner, and W. Z. Zhu, “Nd:GYSGG laser at 1331.6 nm passively Q-switched by a Co:MgAl2O4 crystal,” Opt. Mater. 69, 250–253 (2017).
[Crossref]

Lu, Y.

Lund, D. J.

K. Schulmeister, B. E. Stuck, D. J. Lund, and D. H. Sliney, “Review of thresholds and exposure limits for laser and broadband optical radiation for thermally induced retinal injury,” Health Phys. 100(2), 210–220 (2011).
[Crossref] [PubMed]

R. L. Vincelette, A. J. Welch, R. J. Thomas, B. A. Rockwell, and D. J. Lund, “Thermal lensing in ocular media exposed to continuous-wave near-infrared radiation: the 1150-1350-nm region,” J. Biomed. Opt. 13(5), 054005 (2008).
[Crossref] [PubMed]

D. J. Lund, P. Edsall, B. E. Stuck, and K. Schulmeister, “Variation of laser-induced retinal injury thresholds with retinal irradiated area: 0.1-s duration, 514-nm exposures,” J. Biomed. Opt. 12(2), 024023 (2007).
[Crossref] [PubMed]

J. A. Zuclich, D. J. Lund, and B. E. Stuck, “Wavelength dependence of ocular damage thresholds in the near-ir to far-ir transition region: Proposed revisions to MPES,” Health Phys. 92(1), 15–23 (2007).
[Crossref] [PubMed]

J. A. Zuclich, D. J. Lund, P. R. Edsall, B. E. Stuck, and G. Hengst, “High power lasers in the 1.3-1.4 μm wavelength range: ocular effects and safety standard implications,” Proc. SPIE 4246, 78–88 (2001).
[Crossref]

J. A. Zuclich, P. R. Edsall, D. J. Lund, B. E. Stuck, R. C. Hollins, S. Till, P. A. Smith, L. N. McLin, and P. K. Kennedy, “Variation of laser induced retinal-damage threshold with retinal image size,” J. Laser Appl. 12(2), 74–80 (2000).
[Crossref]

D. J. Lund, P. R. Edsall, D. R. Fuller, and S. W. Hoxie, “Bioeffects of near-infrared lasers,” J. Laser Appl. 10(3), 140–143 (1998).
[Crossref]

D. J. Lund, P. R. Edsall, D. R. Fuller, and S. W. Hoxie, “Bioeffects of near-infrared lasers,” J. Laser Appl. 10(3), 140–143 (1998).
[Crossref]

J. A. Zuclich, D. A. Gagliano, F. Cheney, B. E. Stuck, H. Zwick, P. Edsall, and D. J. Lund, “Ocular effects of penetrating IR laser wavelengths,” Proc. SPIE 2391, 112–125 (1995).
[Crossref]

Majaron, B.

M. Milanič and B. Majaron, “Energy deposition profile in human skin upon irradiation with a 1,342 nm Nd:YAP laser,” Lasers Surg. Med. 45(1), 8–14 (2013).
[Crossref] [PubMed]

McCally, R. L.

R. L. McCally, J. Bonney-Ray, and C. B. Bargeron, “Corneal epithelial injury thresholds for exposures to 1.54 µm radiation-dependence on beam diameter,” Health Phys. 87(6), 615–624 (2004).
[Crossref] [PubMed]

R. L. McCally, R. A. Farrell, and C. B. Bargeron, “Cornea epithelial damage thresholds in rabbits exposed to Tm:YAG laser radiation at 2.02 µm,” Lasers Surg. Med. 12(6), 598–603 (1992).
[Crossref] [PubMed]

C. B. Bargeron, O. J. Deters, R. A. Farrell, and R. L. McCally, “Epithelial damage in rabbit corneas exposed to CO2 laser radiation,” Health Phys. 56(1), 89–95 (1989).
[Crossref] [PubMed]

McLin, L. N.

J. A. Zuclich, P. R. Edsall, D. J. Lund, B. E. Stuck, R. C. Hollins, S. Till, P. A. Smith, L. N. McLin, and P. K. Kennedy, “Variation of laser induced retinal-damage threshold with retinal image size,” J. Laser Appl. 12(2), 74–80 (2000).
[Crossref]

Mellerio, J.

D. H. Sliney, J. Mellerio, V. P. Gabel, and K. Schulmeister, “What is the meaning of threshold in laser injury experiments? implications for human exposure limits,” Health Phys. 82(3), 335–347 (2002).
[Crossref] [PubMed]

Mellinger, M. D.

J. E. Greivenkamp, J. Schwiegerling, J. M. Miller, and M. D. Mellinger, “Visual acuity modeling using optical raytracing of schematic eyes,” Am. J. Ophthalmol. 120(2), 227–240 (1995).
[Crossref] [PubMed]

Milanic, M.

M. Milanič and B. Majaron, “Energy deposition profile in human skin upon irradiation with a 1,342 nm Nd:YAP laser,” Lasers Surg. Med. 45(1), 8–14 (2013).
[Crossref] [PubMed]

Miller, J. M.

J. E. Greivenkamp, J. Schwiegerling, J. M. Miller, and M. D. Mellinger, “Visual acuity modeling using optical raytracing of schematic eyes,” Am. J. Ophthalmol. 120(2), 227–240 (1995).
[Crossref] [PubMed]

Noojin, G. D.

G. M. Pocock, J. W. Oliver, G. D. Noojin, K. J. Schuster, D. Stolarski, A. Shingledecker, and B. A. Rockwell, “Follow up study of NIR (1100 to 1319 nm) retinal damage thresholds and trends,” Proc. SPIE 7562, 75620E (2010).
[Crossref]

R. L. Vincelette, B. A. Rockwell, J. W. Oliver, S. S. Kumru, R. J. Thomas, K. J. Schuster, G. D. Noojin, A. D. Shingledecker, D. J. Stolarski, and A. J. Welch, “Trends in retinal damage thresholds from 100-millisecond near-infrared laser radiation exposures: a study at 1,110, 1,130, 1,150, and 1,319 nm,” Lasers Surg. Med. 41(5), 382–390 (2009).
[Crossref] [PubMed]

Nyberg, T.

R. Liljemalm, T. Nyberg, and H. von Holst, “Heating during infrared neural stimulation,” Lasers Surg. Med. 45(7), 469–481 (2013).
[Crossref] [PubMed]

Oliver, J. W.

G. M. Pocock, J. W. Oliver, G. D. Noojin, K. J. Schuster, D. Stolarski, A. Shingledecker, and B. A. Rockwell, “Follow up study of NIR (1100 to 1319 nm) retinal damage thresholds and trends,” Proc. SPIE 7562, 75620E (2010).
[Crossref]

R. L. Vincelette, J. W. Oliver, B. A. Rockwell, R. J. Thomas, and A. J. Welch, “Confocal imaging of thermal lensing induced by near-IR laser radiation in an artificial eye,” IEEE J. Sel. Top. Quantum Electron. 16(4), 740–747 (2010).
[Crossref]

R. L. Vincelette, B. A. Rockwell, J. W. Oliver, S. S. Kumru, R. J. Thomas, K. J. Schuster, G. D. Noojin, A. D. Shingledecker, D. J. Stolarski, and A. J. Welch, “Trends in retinal damage thresholds from 100-millisecond near-infrared laser radiation exposures: a study at 1,110, 1,130, 1,150, and 1,319 nm,” Lasers Surg. Med. 41(5), 382–390 (2009).
[Crossref] [PubMed]

Pereszlenyi, A.

A. Rolle, A. Pereszlenyi, R. Koch, B. Bis, and B. Baier, “Laser resection technique and results of multiple lung metastasectomies using a new 1,318 nm Nd:YAG laser system,” Lasers Surg. Med. 38(1), 26–32 (2006).
[Crossref] [PubMed]

Pocock, G. M.

G. M. Pocock, J. W. Oliver, G. D. Noojin, K. J. Schuster, D. Stolarski, A. Shingledecker, and B. A. Rockwell, “Follow up study of NIR (1100 to 1319 nm) retinal damage thresholds and trends,” Proc. SPIE 7562, 75620E (2010).
[Crossref]

Porrello, C.

C. Porrello, R. Gullo, A. Vaglica, G. Scerrino, G. Salamone, L. Licari, C. Raspanti, E. Gulotta, G. Gulotta, and G. Cocorullo, “Pulmonary laser metastasectomy by 1318-nm neodymium-doped yttrium-aluminum garnet laser: a retrospective study about laser metastasectomy of the lung,” Surg. Innov. 25(2), 142–148 (2018).
[Crossref] [PubMed]

Qian, H.

H. Chen, Z. Yang, J. Wang, P. Chen, and H. Qian, “A comparative study on ocular damage induced by 1319nm laser radiation,” Lasers Surg. Med. 43(4), 306–312 (2011).
[Crossref] [PubMed]

Raspanti, C.

C. Porrello, R. Gullo, A. Vaglica, G. Scerrino, G. Salamone, L. Licari, C. Raspanti, E. Gulotta, G. Gulotta, and G. Cocorullo, “Pulmonary laser metastasectomy by 1318-nm neodymium-doped yttrium-aluminum garnet laser: a retrospective study about laser metastasectomy of the lung,” Surg. Innov. 25(2), 142–148 (2018).
[Crossref] [PubMed]

Ren, H.

Rexin, P.

A. Kirschbaum, D. K. Bartsch, and P. Rexin, “Comparison of the local effects of a 600-μm bare fibre at high laser power on lung parenchyma: Nd:YAG laser 1320 vs. 1064 nm,” Lasers Med. Sci. 32(3), 557–562 (2017).
[Crossref] [PubMed]

Rickman, M.

E. L. Towle, M. Rickman, A. K. Dunn, A. J. Welch, and R. J. Thomas, “Quantification of thermal lensing using an artificial eye,” IEEE J. Sel. Top. Quantum Electron. 20(2), 7000108 (2014).
[Crossref]

Roach, W. P.

B. Ketzenberger, T. E. Johnson, Y. A. Van Gessel, S. P. Wild, and W. P. Roach, “Study of corneal lesions induced by 1,318-nm laser radiation pulses in Dutch belted rabbits (Oryctolagus cuniculus),” Comp. Med. 52(6), 513–517 (2002).
[PubMed]

Rockwell, B. A.

G. M. Pocock, J. W. Oliver, G. D. Noojin, K. J. Schuster, D. Stolarski, A. Shingledecker, and B. A. Rockwell, “Follow up study of NIR (1100 to 1319 nm) retinal damage thresholds and trends,” Proc. SPIE 7562, 75620E (2010).
[Crossref]

R. L. Vincelette, J. W. Oliver, B. A. Rockwell, R. J. Thomas, and A. J. Welch, “Confocal imaging of thermal lensing induced by near-IR laser radiation in an artificial eye,” IEEE J. Sel. Top. Quantum Electron. 16(4), 740–747 (2010).
[Crossref]

R. L. Vincelette, B. A. Rockwell, J. W. Oliver, S. S. Kumru, R. J. Thomas, K. J. Schuster, G. D. Noojin, A. D. Shingledecker, D. J. Stolarski, and A. J. Welch, “Trends in retinal damage thresholds from 100-millisecond near-infrared laser radiation exposures: a study at 1,110, 1,130, 1,150, and 1,319 nm,” Lasers Surg. Med. 41(5), 382–390 (2009).
[Crossref] [PubMed]

R. L. Vincelette, R. J. Thomas, B. A. Rockwell, C. D. Clark, and A. J. Welch, “First-order model of thermal lensing in a virtual eye,” J. Opt. Soc. Am. A 26(3), 548–558 (2009).
[Crossref] [PubMed]

R. L. Vincelette, A. J. Welch, R. J. Thomas, B. A. Rockwell, and D. J. Lund, “Thermal lensing in ocular media exposed to continuous-wave near-infrared radiation: the 1150-1350-nm region,” J. Biomed. Opt. 13(5), 054005 (2008).
[Crossref] [PubMed]

Rolle, A.

A. Rolle, A. Pereszlenyi, R. Koch, B. Bis, and B. Baier, “Laser resection technique and results of multiple lung metastasectomies using a new 1,318 nm Nd:YAG laser system,” Lasers Surg. Med. 38(1), 26–32 (2006).
[Crossref] [PubMed]

Saha, A.

A. Saha, R. Debnath, D. S. Hada, and S. K. Beda, “Simultaneous oscillations of twelve wavelengths around 1.3 μm in quasi-CW Nd:YAG laser,” Opt. Laser Technol. 94, 112–118 (2017).
[Crossref]

Salamone, G.

C. Porrello, R. Gullo, A. Vaglica, G. Scerrino, G. Salamone, L. Licari, C. Raspanti, E. Gulotta, G. Gulotta, and G. Cocorullo, “Pulmonary laser metastasectomy by 1318-nm neodymium-doped yttrium-aluminum garnet laser: a retrospective study about laser metastasectomy of the lung,” Surg. Innov. 25(2), 142–148 (2018).
[Crossref] [PubMed]

Scerrino, G.

C. Porrello, R. Gullo, A. Vaglica, G. Scerrino, G. Salamone, L. Licari, C. Raspanti, E. Gulotta, G. Gulotta, and G. Cocorullo, “Pulmonary laser metastasectomy by 1318-nm neodymium-doped yttrium-aluminum garnet laser: a retrospective study about laser metastasectomy of the lung,” Surg. Innov. 25(2), 142–148 (2018).
[Crossref] [PubMed]

Schulmeister, K.

K. Schulmeister, R. Ullah, and M. Jean, “Near infrared ex-vivo bovine and computer model thresholds for laser-induced retinal damage,” Photonics Lasers Med. 1(2), 123–131 (2012).
[Crossref]

K. Schulmeister, B. E. Stuck, D. J. Lund, and D. H. Sliney, “Review of thresholds and exposure limits for laser and broadband optical radiation for thermally induced retinal injury,” Health Phys. 100(2), 210–220 (2011).
[Crossref] [PubMed]

D. J. Lund, P. Edsall, B. E. Stuck, and K. Schulmeister, “Variation of laser-induced retinal injury thresholds with retinal irradiated area: 0.1-s duration, 514-nm exposures,” J. Biomed. Opt. 12(2), 024023 (2007).
[Crossref] [PubMed]

D. H. Sliney, J. Mellerio, V. P. Gabel, and K. Schulmeister, “What is the meaning of threshold in laser injury experiments? implications for human exposure limits,” Health Phys. 82(3), 335–347 (2002).
[Crossref] [PubMed]

Schuschereba, S. T.

J. A. Zuclich, H. Zwick, S. T. Schuschereba, B. W. Stuck, and F. E. Cheney, “Ophthalmoscopic and pathologic description of ocular damage induced by infrared laser radiation,” J. Laser Appl. 10(3), 114–120 (1998).
[Crossref]

J. A. Zuclich, S. T. Schuschereba, H. Zwick, S. A. Boppart, J. G. Fujimoto, F. E. Cheney, and B. E. Stuck, “A comparison of laser-induced retinal damage from infrared wavelengths from that from visible wavelengths,” Laser Light Ophthalmol. 8(1), 15–29 (1997).

Schuster, K. J.

G. M. Pocock, J. W. Oliver, G. D. Noojin, K. J. Schuster, D. Stolarski, A. Shingledecker, and B. A. Rockwell, “Follow up study of NIR (1100 to 1319 nm) retinal damage thresholds and trends,” Proc. SPIE 7562, 75620E (2010).
[Crossref]

R. L. Vincelette, B. A. Rockwell, J. W. Oliver, S. S. Kumru, R. J. Thomas, K. J. Schuster, G. D. Noojin, A. D. Shingledecker, D. J. Stolarski, and A. J. Welch, “Trends in retinal damage thresholds from 100-millisecond near-infrared laser radiation exposures: a study at 1,110, 1,130, 1,150, and 1,319 nm,” Lasers Surg. Med. 41(5), 382–390 (2009).
[Crossref] [PubMed]

Schwiegerling, J.

J. E. Greivenkamp, J. Schwiegerling, J. M. Miller, and M. D. Mellinger, “Visual acuity modeling using optical raytracing of schematic eyes,” Am. J. Ophthalmol. 120(2), 227–240 (1995).
[Crossref] [PubMed]

Shingledecker, A.

G. M. Pocock, J. W. Oliver, G. D. Noojin, K. J. Schuster, D. Stolarski, A. Shingledecker, and B. A. Rockwell, “Follow up study of NIR (1100 to 1319 nm) retinal damage thresholds and trends,” Proc. SPIE 7562, 75620E (2010).
[Crossref]

Shingledecker, A. D.

R. L. Vincelette, B. A. Rockwell, J. W. Oliver, S. S. Kumru, R. J. Thomas, K. J. Schuster, G. D. Noojin, A. D. Shingledecker, D. J. Stolarski, and A. J. Welch, “Trends in retinal damage thresholds from 100-millisecond near-infrared laser radiation exposures: a study at 1,110, 1,130, 1,150, and 1,319 nm,” Lasers Surg. Med. 41(5), 382–390 (2009).
[Crossref] [PubMed]

Sliney, D. H.

K. Schulmeister, B. E. Stuck, D. J. Lund, and D. H. Sliney, “Review of thresholds and exposure limits for laser and broadband optical radiation for thermally induced retinal injury,” Health Phys. 100(2), 210–220 (2011).
[Crossref] [PubMed]

D. H. Sliney, J. Mellerio, V. P. Gabel, and K. Schulmeister, “What is the meaning of threshold in laser injury experiments? implications for human exposure limits,” Health Phys. 82(3), 335–347 (2002).
[Crossref] [PubMed]

Smith, P. A.

E. L. Towle, P. V. Garcia, P. A. Smith, R. J. Thomas, A. K. Dunn, A. J. Welch, and B. K. Foutch, “Visual disruption using the thermal lensing effect in the human eye: pilot study,” J. Biomed. Opt. 17(10), 105007 (2012).
[Crossref] [PubMed]

J. A. Zuclich, P. R. Edsall, D. J. Lund, B. E. Stuck, R. C. Hollins, S. Till, P. A. Smith, L. N. McLin, and P. K. Kennedy, “Variation of laser induced retinal-damage threshold with retinal image size,” J. Laser Appl. 12(2), 74–80 (2000).
[Crossref]

Squintani, G.

M. Turri, F. Teatini, F. Donato, G. Zanette, V. Tugnoli, L. Deotto, B. Bonetti, and G. Squintani, “Pain modulation after oromucosal cannabinoid spray (SATIVEX) in patients with multiple sclerosis: A study with quantitative sensory testing and laser-evoked potentials,” Medicines (Basel) 5(3), 59 (2018).
[Crossref] [PubMed]

Stolarski, D.

G. M. Pocock, J. W. Oliver, G. D. Noojin, K. J. Schuster, D. Stolarski, A. Shingledecker, and B. A. Rockwell, “Follow up study of NIR (1100 to 1319 nm) retinal damage thresholds and trends,” Proc. SPIE 7562, 75620E (2010).
[Crossref]

Stolarski, D. J.

R. L. Vincelette, B. A. Rockwell, J. W. Oliver, S. S. Kumru, R. J. Thomas, K. J. Schuster, G. D. Noojin, A. D. Shingledecker, D. J. Stolarski, and A. J. Welch, “Trends in retinal damage thresholds from 100-millisecond near-infrared laser radiation exposures: a study at 1,110, 1,130, 1,150, and 1,319 nm,” Lasers Surg. Med. 41(5), 382–390 (2009).
[Crossref] [PubMed]

Stuck, B. E.

K. Schulmeister, B. E. Stuck, D. J. Lund, and D. H. Sliney, “Review of thresholds and exposure limits for laser and broadband optical radiation for thermally induced retinal injury,” Health Phys. 100(2), 210–220 (2011).
[Crossref] [PubMed]

J. A. Zuclich, D. J. Lund, and B. E. Stuck, “Wavelength dependence of ocular damage thresholds in the near-ir to far-ir transition region: Proposed revisions to MPES,” Health Phys. 92(1), 15–23 (2007).
[Crossref] [PubMed]

D. J. Lund, P. Edsall, B. E. Stuck, and K. Schulmeister, “Variation of laser-induced retinal injury thresholds with retinal irradiated area: 0.1-s duration, 514-nm exposures,” J. Biomed. Opt. 12(2), 024023 (2007).
[Crossref] [PubMed]

J. A. Zuclich, D. J. Lund, P. R. Edsall, B. E. Stuck, and G. Hengst, “High power lasers in the 1.3-1.4 μm wavelength range: ocular effects and safety standard implications,” Proc. SPIE 4246, 78–88 (2001).
[Crossref]

J. A. Zuclich, P. R. Edsall, D. J. Lund, B. E. Stuck, R. C. Hollins, S. Till, P. A. Smith, L. N. McLin, and P. K. Kennedy, “Variation of laser induced retinal-damage threshold with retinal image size,” J. Laser Appl. 12(2), 74–80 (2000).
[Crossref]

J. A. Zuclich, S. T. Schuschereba, H. Zwick, S. A. Boppart, J. G. Fujimoto, F. E. Cheney, and B. E. Stuck, “A comparison of laser-induced retinal damage from infrared wavelengths from that from visible wavelengths,” Laser Light Ophthalmol. 8(1), 15–29 (1997).

J. A. Zuclich, D. A. Gagliano, F. Cheney, B. E. Stuck, H. Zwick, P. Edsall, and D. J. Lund, “Ocular effects of penetrating IR laser wavelengths,” Proc. SPIE 2391, 112–125 (1995).
[Crossref]

Stuck, B. W.

J. A. Zuclich, H. Zwick, S. T. Schuschereba, B. W. Stuck, and F. E. Cheney, “Ophthalmoscopic and pathologic description of ocular damage induced by infrared laser radiation,” J. Laser Appl. 10(3), 114–120 (1998).
[Crossref]

Sun, D.

H. Y. Lin, D. Sun, N. Copner, and W. Z. Zhu, “Nd:GYSGG laser at 1331.6 nm passively Q-switched by a Co:MgAl2O4 crystal,” Opt. Mater. 69, 250–253 (2017).
[Crossref]

Teatini, F.

M. Turri, F. Teatini, F. Donato, G. Zanette, V. Tugnoli, L. Deotto, B. Bonetti, and G. Squintani, “Pain modulation after oromucosal cannabinoid spray (SATIVEX) in patients with multiple sclerosis: A study with quantitative sensory testing and laser-evoked potentials,” Medicines (Basel) 5(3), 59 (2018).
[Crossref] [PubMed]

Thomas, R. J.

E. L. Towle, M. Rickman, A. K. Dunn, A. J. Welch, and R. J. Thomas, “Quantification of thermal lensing using an artificial eye,” IEEE J. Sel. Top. Quantum Electron. 20(2), 7000108 (2014).
[Crossref]

E. L. Towle, P. V. Garcia, P. A. Smith, R. J. Thomas, A. K. Dunn, A. J. Welch, and B. K. Foutch, “Visual disruption using the thermal lensing effect in the human eye: pilot study,” J. Biomed. Opt. 17(10), 105007 (2012).
[Crossref] [PubMed]

R. L. Vincelette, J. W. Oliver, B. A. Rockwell, R. J. Thomas, and A. J. Welch, “Confocal imaging of thermal lensing induced by near-IR laser radiation in an artificial eye,” IEEE J. Sel. Top. Quantum Electron. 16(4), 740–747 (2010).
[Crossref]

R. L. Vincelette, B. A. Rockwell, J. W. Oliver, S. S. Kumru, R. J. Thomas, K. J. Schuster, G. D. Noojin, A. D. Shingledecker, D. J. Stolarski, and A. J. Welch, “Trends in retinal damage thresholds from 100-millisecond near-infrared laser radiation exposures: a study at 1,110, 1,130, 1,150, and 1,319 nm,” Lasers Surg. Med. 41(5), 382–390 (2009).
[Crossref] [PubMed]

R. L. Vincelette, R. J. Thomas, B. A. Rockwell, C. D. Clark, and A. J. Welch, “First-order model of thermal lensing in a virtual eye,” J. Opt. Soc. Am. A 26(3), 548–558 (2009).
[Crossref] [PubMed]

R. L. Vincelette, A. J. Welch, R. J. Thomas, B. A. Rockwell, and D. J. Lund, “Thermal lensing in ocular media exposed to continuous-wave near-infrared radiation: the 1150-1350-nm region,” J. Biomed. Opt. 13(5), 054005 (2008).
[Crossref] [PubMed]

Thomas, S. J.

M. F. Blankenstein, J. Zuclich, R. G. Allen, H. Davis, S. J. Thomas, and R. F. Harrison, “Retinal hemorrhage thresholds for Q-switched neodymium-Yag laser exposures,” Invest. Ophthalmol. Vis. Sci. 27(7), 1176–1179 (1986).
[PubMed]

Till, S.

J. A. Zuclich, P. R. Edsall, D. J. Lund, B. E. Stuck, R. C. Hollins, S. Till, P. A. Smith, L. N. McLin, and P. K. Kennedy, “Variation of laser induced retinal-damage threshold with retinal image size,” J. Laser Appl. 12(2), 74–80 (2000).
[Crossref]

Towle, E. L.

E. L. Towle, M. Rickman, A. K. Dunn, A. J. Welch, and R. J. Thomas, “Quantification of thermal lensing using an artificial eye,” IEEE J. Sel. Top. Quantum Electron. 20(2), 7000108 (2014).
[Crossref]

E. L. Towle, P. V. Garcia, P. A. Smith, R. J. Thomas, A. K. Dunn, A. J. Welch, and B. K. Foutch, “Visual disruption using the thermal lensing effect in the human eye: pilot study,” J. Biomed. Opt. 17(10), 105007 (2012).
[Crossref] [PubMed]

Tugnoli, V.

M. Turri, F. Teatini, F. Donato, G. Zanette, V. Tugnoli, L. Deotto, B. Bonetti, and G. Squintani, “Pain modulation after oromucosal cannabinoid spray (SATIVEX) in patients with multiple sclerosis: A study with quantitative sensory testing and laser-evoked potentials,” Medicines (Basel) 5(3), 59 (2018).
[Crossref] [PubMed]

Turri, M.

M. Turri, F. Teatini, F. Donato, G. Zanette, V. Tugnoli, L. Deotto, B. Bonetti, and G. Squintani, “Pain modulation after oromucosal cannabinoid spray (SATIVEX) in patients with multiple sclerosis: A study with quantitative sensory testing and laser-evoked potentials,” Medicines (Basel) 5(3), 59 (2018).
[Crossref] [PubMed]

Ullah, R.

K. Schulmeister, R. Ullah, and M. Jean, “Near infrared ex-vivo bovine and computer model thresholds for laser-induced retinal damage,” Photonics Lasers Med. 1(2), 123–131 (2012).
[Crossref]

Vaglica, A.

C. Porrello, R. Gullo, A. Vaglica, G. Scerrino, G. Salamone, L. Licari, C. Raspanti, E. Gulotta, G. Gulotta, and G. Cocorullo, “Pulmonary laser metastasectomy by 1318-nm neodymium-doped yttrium-aluminum garnet laser: a retrospective study about laser metastasectomy of the lung,” Surg. Innov. 25(2), 142–148 (2018).
[Crossref] [PubMed]

Van Gessel, Y. A.

B. Ketzenberger, T. E. Johnson, Y. A. Van Gessel, S. P. Wild, and W. P. Roach, “Study of corneal lesions induced by 1,318-nm laser radiation pulses in Dutch belted rabbits (Oryctolagus cuniculus),” Comp. Med. 52(6), 513–517 (2002).
[PubMed]

Vincelette, R. L.

R. L. Vincelette, J. W. Oliver, B. A. Rockwell, R. J. Thomas, and A. J. Welch, “Confocal imaging of thermal lensing induced by near-IR laser radiation in an artificial eye,” IEEE J. Sel. Top. Quantum Electron. 16(4), 740–747 (2010).
[Crossref]

R. L. Vincelette, B. A. Rockwell, J. W. Oliver, S. S. Kumru, R. J. Thomas, K. J. Schuster, G. D. Noojin, A. D. Shingledecker, D. J. Stolarski, and A. J. Welch, “Trends in retinal damage thresholds from 100-millisecond near-infrared laser radiation exposures: a study at 1,110, 1,130, 1,150, and 1,319 nm,” Lasers Surg. Med. 41(5), 382–390 (2009).
[Crossref] [PubMed]

R. L. Vincelette, R. J. Thomas, B. A. Rockwell, C. D. Clark, and A. J. Welch, “First-order model of thermal lensing in a virtual eye,” J. Opt. Soc. Am. A 26(3), 548–558 (2009).
[Crossref] [PubMed]

R. L. Vincelette, A. J. Welch, R. J. Thomas, B. A. Rockwell, and D. J. Lund, “Thermal lensing in ocular media exposed to continuous-wave near-infrared radiation: the 1150-1350-nm region,” J. Biomed. Opt. 13(5), 054005 (2008).
[Crossref] [PubMed]

von Holst, H.

R. Liljemalm, T. Nyberg, and H. von Holst, “Heating during infrared neural stimulation,” Lasers Surg. Med. 45(7), 469–481 (2013).
[Crossref] [PubMed]

Wang, J.

L. Jiao, J. Wang, X. Jing, H. Chen, and Z. Yang, “Ocular damage effects from 1338-nm pulsed laser radiation in a rabbit eye model,” Biomed. Opt. Express 8(5), 2745–2755 (2017).
[Crossref] [PubMed]

J. Wang, L. Jiao, X. Jing, H. Chen, X. Hu, and Z. Yang, “Retinal thermal damage threshold dependence on exposure duration for the transitional near-infrared laser radiation at 1319 nm,” Biomed. Opt. Express 7(5), 2016–2021 (2016).
[Crossref] [PubMed]

J. Wang, L. Jiao, H. Chen, Z. Yang, and X. Hu, “Corneal thermal damage threshold dependence on the exposure duration for near-infrared laser radiation at 1319 nm,” J. Biomed. Opt. 21(1), 015011 (2016).
[Crossref] [PubMed]

H. Chen, Z. Yang, J. Wang, P. Chen, and H. Qian, “A comparative study on ocular damage induced by 1319nm laser radiation,” Lasers Surg. Med. 43(4), 306–312 (2011).
[Crossref] [PubMed]

Welch, A. J.

E. L. Towle, M. Rickman, A. K. Dunn, A. J. Welch, and R. J. Thomas, “Quantification of thermal lensing using an artificial eye,” IEEE J. Sel. Top. Quantum Electron. 20(2), 7000108 (2014).
[Crossref]

E. L. Towle, P. V. Garcia, P. A. Smith, R. J. Thomas, A. K. Dunn, A. J. Welch, and B. K. Foutch, “Visual disruption using the thermal lensing effect in the human eye: pilot study,” J. Biomed. Opt. 17(10), 105007 (2012).
[Crossref] [PubMed]

R. L. Vincelette, J. W. Oliver, B. A. Rockwell, R. J. Thomas, and A. J. Welch, “Confocal imaging of thermal lensing induced by near-IR laser radiation in an artificial eye,” IEEE J. Sel. Top. Quantum Electron. 16(4), 740–747 (2010).
[Crossref]

R. L. Vincelette, B. A. Rockwell, J. W. Oliver, S. S. Kumru, R. J. Thomas, K. J. Schuster, G. D. Noojin, A. D. Shingledecker, D. J. Stolarski, and A. J. Welch, “Trends in retinal damage thresholds from 100-millisecond near-infrared laser radiation exposures: a study at 1,110, 1,130, 1,150, and 1,319 nm,” Lasers Surg. Med. 41(5), 382–390 (2009).
[Crossref] [PubMed]

R. L. Vincelette, R. J. Thomas, B. A. Rockwell, C. D. Clark, and A. J. Welch, “First-order model of thermal lensing in a virtual eye,” J. Opt. Soc. Am. A 26(3), 548–558 (2009).
[Crossref] [PubMed]

R. L. Vincelette, A. J. Welch, R. J. Thomas, B. A. Rockwell, and D. J. Lund, “Thermal lensing in ocular media exposed to continuous-wave near-infrared radiation: the 1150-1350-nm region,” J. Biomed. Opt. 13(5), 054005 (2008).
[Crossref] [PubMed]

Wild, S. P.

B. Ketzenberger, T. E. Johnson, Y. A. Van Gessel, S. P. Wild, and W. P. Roach, “Study of corneal lesions induced by 1,318-nm laser radiation pulses in Dutch belted rabbits (Oryctolagus cuniculus),” Comp. Med. 52(6), 513–517 (2002).
[PubMed]

Xu, X.

Yang, Z.

L. Jiao, J. Wang, X. Jing, H. Chen, and Z. Yang, “Ocular damage effects from 1338-nm pulsed laser radiation in a rabbit eye model,” Biomed. Opt. Express 8(5), 2745–2755 (2017).
[Crossref] [PubMed]

J. Wang, L. Jiao, X. Jing, H. Chen, X. Hu, and Z. Yang, “Retinal thermal damage threshold dependence on exposure duration for the transitional near-infrared laser radiation at 1319 nm,” Biomed. Opt. Express 7(5), 2016–2021 (2016).
[Crossref] [PubMed]

J. Wang, L. Jiao, H. Chen, Z. Yang, and X. Hu, “Corneal thermal damage threshold dependence on the exposure duration for near-infrared laser radiation at 1319 nm,” J. Biomed. Opt. 21(1), 015011 (2016).
[Crossref] [PubMed]

H. Chen, Z. Yang, J. Wang, P. Chen, and H. Qian, “A comparative study on ocular damage induced by 1319nm laser radiation,” Lasers Surg. Med. 43(4), 306–312 (2011).
[Crossref] [PubMed]

Zanette, G.

M. Turri, F. Teatini, F. Donato, G. Zanette, V. Tugnoli, L. Deotto, B. Bonetti, and G. Squintani, “Pain modulation after oromucosal cannabinoid spray (SATIVEX) in patients with multiple sclerosis: A study with quantitative sensory testing and laser-evoked potentials,” Medicines (Basel) 5(3), 59 (2018).
[Crossref] [PubMed]

Zhang, L.

Zhu, W. Z.

H. Y. Lin, D. Sun, N. Copner, and W. Z. Zhu, “Nd:GYSGG laser at 1331.6 nm passively Q-switched by a Co:MgAl2O4 crystal,” Opt. Mater. 69, 250–253 (2017).
[Crossref]

Zuclich, J.

M. F. Blankenstein, J. Zuclich, R. G. Allen, H. Davis, S. J. Thomas, and R. F. Harrison, “Retinal hemorrhage thresholds for Q-switched neodymium-Yag laser exposures,” Invest. Ophthalmol. Vis. Sci. 27(7), 1176–1179 (1986).
[PubMed]

Zuclich, J. A.

J. A. Zuclich, D. J. Lund, and B. E. Stuck, “Wavelength dependence of ocular damage thresholds in the near-ir to far-ir transition region: Proposed revisions to MPES,” Health Phys. 92(1), 15–23 (2007).
[Crossref] [PubMed]

J. A. Zuclich, D. J. Lund, P. R. Edsall, B. E. Stuck, and G. Hengst, “High power lasers in the 1.3-1.4 μm wavelength range: ocular effects and safety standard implications,” Proc. SPIE 4246, 78–88 (2001).
[Crossref]

J. A. Zuclich, P. R. Edsall, D. J. Lund, B. E. Stuck, R. C. Hollins, S. Till, P. A. Smith, L. N. McLin, and P. K. Kennedy, “Variation of laser induced retinal-damage threshold with retinal image size,” J. Laser Appl. 12(2), 74–80 (2000).
[Crossref]

J. A. Zuclich, H. Zwick, S. T. Schuschereba, B. W. Stuck, and F. E. Cheney, “Ophthalmoscopic and pathologic description of ocular damage induced by infrared laser radiation,” J. Laser Appl. 10(3), 114–120 (1998).
[Crossref]

J. A. Zuclich, S. T. Schuschereba, H. Zwick, S. A. Boppart, J. G. Fujimoto, F. E. Cheney, and B. E. Stuck, “A comparison of laser-induced retinal damage from infrared wavelengths from that from visible wavelengths,” Laser Light Ophthalmol. 8(1), 15–29 (1997).

J. A. Zuclich, D. A. Gagliano, F. Cheney, B. E. Stuck, H. Zwick, P. Edsall, and D. J. Lund, “Ocular effects of penetrating IR laser wavelengths,” Proc. SPIE 2391, 112–125 (1995).
[Crossref]

Zwick, H.

J. A. Zuclich, H. Zwick, S. T. Schuschereba, B. W. Stuck, and F. E. Cheney, “Ophthalmoscopic and pathologic description of ocular damage induced by infrared laser radiation,” J. Laser Appl. 10(3), 114–120 (1998).
[Crossref]

J. A. Zuclich, S. T. Schuschereba, H. Zwick, S. A. Boppart, J. G. Fujimoto, F. E. Cheney, and B. E. Stuck, “A comparison of laser-induced retinal damage from infrared wavelengths from that from visible wavelengths,” Laser Light Ophthalmol. 8(1), 15–29 (1997).

J. A. Zuclich, D. A. Gagliano, F. Cheney, B. E. Stuck, H. Zwick, P. Edsall, and D. J. Lund, “Ocular effects of penetrating IR laser wavelengths,” Proc. SPIE 2391, 112–125 (1995).
[Crossref]

Am. J. Ophthalmol. (1)

J. E. Greivenkamp, J. Schwiegerling, J. M. Miller, and M. D. Mellinger, “Visual acuity modeling using optical raytracing of schematic eyes,” Am. J. Ophthalmol. 120(2), 227–240 (1995).
[Crossref] [PubMed]

Appl. Opt. (2)

Arch. Ophthalmol. (1)

R. A. Gordon and P. B. Donzis, “Refractive development of the human eye,” Arch. Ophthalmol. 103(6), 785–789 (1985).
[Crossref] [PubMed]

Biomed. Opt. Express (2)

Comp. Med. (1)

B. Ketzenberger, T. E. Johnson, Y. A. Van Gessel, S. P. Wild, and W. P. Roach, “Study of corneal lesions induced by 1,318-nm laser radiation pulses in Dutch belted rabbits (Oryctolagus cuniculus),” Comp. Med. 52(6), 513–517 (2002).
[PubMed]

Health Phys. (6)

J. A. Zuclich, D. J. Lund, and B. E. Stuck, “Wavelength dependence of ocular damage thresholds in the near-ir to far-ir transition region: Proposed revisions to MPES,” Health Phys. 92(1), 15–23 (2007).
[Crossref] [PubMed]

R. L. McCally, J. Bonney-Ray, and C. B. Bargeron, “Corneal epithelial injury thresholds for exposures to 1.54 µm radiation-dependence on beam diameter,” Health Phys. 87(6), 615–624 (2004).
[Crossref] [PubMed]

C. B. Bargeron, O. J. Deters, R. A. Farrell, and R. L. McCally, “Epithelial damage in rabbit corneas exposed to CO2 laser radiation,” Health Phys. 56(1), 89–95 (1989).
[Crossref] [PubMed]

International Commission on Non-Ionizing Radiation Protection, “Guidelines on limits of exposure to laser radiation of wavelength between 180 nm and 1,000 microns,” Health Phys. 105(3), 271–295 (2013).
[Crossref] [PubMed]

K. Schulmeister, B. E. Stuck, D. J. Lund, and D. H. Sliney, “Review of thresholds and exposure limits for laser and broadband optical radiation for thermally induced retinal injury,” Health Phys. 100(2), 210–220 (2011).
[Crossref] [PubMed]

D. H. Sliney, J. Mellerio, V. P. Gabel, and K. Schulmeister, “What is the meaning of threshold in laser injury experiments? implications for human exposure limits,” Health Phys. 82(3), 335–347 (2002).
[Crossref] [PubMed]

IEEE J. Sel. Top. Quantum Electron. (2)

E. L. Towle, M. Rickman, A. K. Dunn, A. J. Welch, and R. J. Thomas, “Quantification of thermal lensing using an artificial eye,” IEEE J. Sel. Top. Quantum Electron. 20(2), 7000108 (2014).
[Crossref]

R. L. Vincelette, J. W. Oliver, B. A. Rockwell, R. J. Thomas, and A. J. Welch, “Confocal imaging of thermal lensing induced by near-IR laser radiation in an artificial eye,” IEEE J. Sel. Top. Quantum Electron. 16(4), 740–747 (2010).
[Crossref]

Invest. Ophthalmol. Vis. Sci. (1)

M. F. Blankenstein, J. Zuclich, R. G. Allen, H. Davis, S. J. Thomas, and R. F. Harrison, “Retinal hemorrhage thresholds for Q-switched neodymium-Yag laser exposures,” Invest. Ophthalmol. Vis. Sci. 27(7), 1176–1179 (1986).
[PubMed]

J. Biomed. Opt. (4)

E. L. Towle, P. V. Garcia, P. A. Smith, R. J. Thomas, A. K. Dunn, A. J. Welch, and B. K. Foutch, “Visual disruption using the thermal lensing effect in the human eye: pilot study,” J. Biomed. Opt. 17(10), 105007 (2012).
[Crossref] [PubMed]

R. L. Vincelette, A. J. Welch, R. J. Thomas, B. A. Rockwell, and D. J. Lund, “Thermal lensing in ocular media exposed to continuous-wave near-infrared radiation: the 1150-1350-nm region,” J. Biomed. Opt. 13(5), 054005 (2008).
[Crossref] [PubMed]

J. Wang, L. Jiao, H. Chen, Z. Yang, and X. Hu, “Corneal thermal damage threshold dependence on the exposure duration for near-infrared laser radiation at 1319 nm,” J. Biomed. Opt. 21(1), 015011 (2016).
[Crossref] [PubMed]

D. J. Lund, P. Edsall, B. E. Stuck, and K. Schulmeister, “Variation of laser-induced retinal injury thresholds with retinal irradiated area: 0.1-s duration, 514-nm exposures,” J. Biomed. Opt. 12(2), 024023 (2007).
[Crossref] [PubMed]

J. Laser Appl. (4)

J. A. Zuclich, P. R. Edsall, D. J. Lund, B. E. Stuck, R. C. Hollins, S. Till, P. A. Smith, L. N. McLin, and P. K. Kennedy, “Variation of laser induced retinal-damage threshold with retinal image size,” J. Laser Appl. 12(2), 74–80 (2000).
[Crossref]

D. J. Lund, P. R. Edsall, D. R. Fuller, and S. W. Hoxie, “Bioeffects of near-infrared lasers,” J. Laser Appl. 10(3), 140–143 (1998).
[Crossref]

J. A. Zuclich, H. Zwick, S. T. Schuschereba, B. W. Stuck, and F. E. Cheney, “Ophthalmoscopic and pathologic description of ocular damage induced by infrared laser radiation,” J. Laser Appl. 10(3), 114–120 (1998).
[Crossref]

D. J. Lund, P. R. Edsall, D. R. Fuller, and S. W. Hoxie, “Bioeffects of near-infrared lasers,” J. Laser Appl. 10(3), 140–143 (1998).
[Crossref]

J. Opt. Soc. Am. A (1)

Laser Light Ophthalmol. (1)

J. A. Zuclich, S. T. Schuschereba, H. Zwick, S. A. Boppart, J. G. Fujimoto, F. E. Cheney, and B. E. Stuck, “A comparison of laser-induced retinal damage from infrared wavelengths from that from visible wavelengths,” Laser Light Ophthalmol. 8(1), 15–29 (1997).

Lasers Med. Sci. (1)

A. Kirschbaum, D. K. Bartsch, and P. Rexin, “Comparison of the local effects of a 600-μm bare fibre at high laser power on lung parenchyma: Nd:YAG laser 1320 vs. 1064 nm,” Lasers Med. Sci. 32(3), 557–562 (2017).
[Crossref] [PubMed]

Lasers Surg. Med. (6)

M. Milanič and B. Majaron, “Energy deposition profile in human skin upon irradiation with a 1,342 nm Nd:YAP laser,” Lasers Surg. Med. 45(1), 8–14 (2013).
[Crossref] [PubMed]

R. Liljemalm, T. Nyberg, and H. von Holst, “Heating during infrared neural stimulation,” Lasers Surg. Med. 45(7), 469–481 (2013).
[Crossref] [PubMed]

R. L. Vincelette, B. A. Rockwell, J. W. Oliver, S. S. Kumru, R. J. Thomas, K. J. Schuster, G. D. Noojin, A. D. Shingledecker, D. J. Stolarski, and A. J. Welch, “Trends in retinal damage thresholds from 100-millisecond near-infrared laser radiation exposures: a study at 1,110, 1,130, 1,150, and 1,319 nm,” Lasers Surg. Med. 41(5), 382–390 (2009).
[Crossref] [PubMed]

A. Rolle, A. Pereszlenyi, R. Koch, B. Bis, and B. Baier, “Laser resection technique and results of multiple lung metastasectomies using a new 1,318 nm Nd:YAG laser system,” Lasers Surg. Med. 38(1), 26–32 (2006).
[Crossref] [PubMed]

R. L. McCally, R. A. Farrell, and C. B. Bargeron, “Cornea epithelial damage thresholds in rabbits exposed to Tm:YAG laser radiation at 2.02 µm,” Lasers Surg. Med. 12(6), 598–603 (1992).
[Crossref] [PubMed]

H. Chen, Z. Yang, J. Wang, P. Chen, and H. Qian, “A comparative study on ocular damage induced by 1319nm laser radiation,” Lasers Surg. Med. 43(4), 306–312 (2011).
[Crossref] [PubMed]

Medicines (Basel) (1)

M. Turri, F. Teatini, F. Donato, G. Zanette, V. Tugnoli, L. Deotto, B. Bonetti, and G. Squintani, “Pain modulation after oromucosal cannabinoid spray (SATIVEX) in patients with multiple sclerosis: A study with quantitative sensory testing and laser-evoked potentials,” Medicines (Basel) 5(3), 59 (2018).
[Crossref] [PubMed]

Opt. Eng. (1)

J. Cook, “High-energy laser weapons since the early 1960s,” Opt. Eng. 52(2), 021007 (2012).
[Crossref]

Opt. Laser Technol. (1)

A. Saha, R. Debnath, D. S. Hada, and S. K. Beda, “Simultaneous oscillations of twelve wavelengths around 1.3 μm in quasi-CW Nd:YAG laser,” Opt. Laser Technol. 94, 112–118 (2017).
[Crossref]

Opt. Mater. (1)

H. Y. Lin, D. Sun, N. Copner, and W. Z. Zhu, “Nd:GYSGG laser at 1331.6 nm passively Q-switched by a Co:MgAl2O4 crystal,” Opt. Mater. 69, 250–253 (2017).
[Crossref]

Photonics Lasers Med. (1)

K. Schulmeister, R. Ullah, and M. Jean, “Near infrared ex-vivo bovine and computer model thresholds for laser-induced retinal damage,” Photonics Lasers Med. 1(2), 123–131 (2012).
[Crossref]

Proc. SPIE (3)

J. A. Zuclich, D. A. Gagliano, F. Cheney, B. E. Stuck, H. Zwick, P. Edsall, and D. J. Lund, “Ocular effects of penetrating IR laser wavelengths,” Proc. SPIE 2391, 112–125 (1995).
[Crossref]

J. A. Zuclich, D. J. Lund, P. R. Edsall, B. E. Stuck, and G. Hengst, “High power lasers in the 1.3-1.4 μm wavelength range: ocular effects and safety standard implications,” Proc. SPIE 4246, 78–88 (2001).
[Crossref]

G. M. Pocock, J. W. Oliver, G. D. Noojin, K. J. Schuster, D. Stolarski, A. Shingledecker, and B. A. Rockwell, “Follow up study of NIR (1100 to 1319 nm) retinal damage thresholds and trends,” Proc. SPIE 7562, 75620E (2010).
[Crossref]

Surg. Innov. (1)

C. Porrello, R. Gullo, A. Vaglica, G. Scerrino, G. Salamone, L. Licari, C. Raspanti, E. Gulotta, G. Gulotta, and G. Cocorullo, “Pulmonary laser metastasectomy by 1318-nm neodymium-doped yttrium-aluminum garnet laser: a retrospective study about laser metastasectomy of the lung,” Surg. Innov. 25(2), 142–148 (2018).
[Crossref] [PubMed]

Other (3)

ANSI, American National Standard for Safety Use of Lasers, Z136.1, Laser Institute of America, Orlando (2014).

International Electrotechnical Commission, Safety of laser products-Part 1: Equipment classification and requirements, IEC 60825–1 (2014).

ISO 11146–1, Lasers and laser-related equipment – Test methods for laser beam widths, divergence angles and beam propagation ratios – Part 1: Stigmatic and simple astigmatic beams (2005).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (1)

Fig. 1
Fig. 1 Schematic drawing of the laser exposure setup for the determination of rabbit retinal damage thresholds at the wavelength of 1319 nm.

Tables (4)

Tables Icon

Table 1 The Two Groups of Rabbits Selected According to Ocular Axial Lengtha

Tables Icon

Table 2 The Damage Probabilities Corresponding to the Chosen Laser Incident Energy Levels for the Two Groups of Chinchilla Grey Rabbitsa

Tables Icon

Table 3 Retinal Damage Thresholds Induced by 1319 nm Laser at 1 Hour and 24 Hours Post Exposure for the Two Groups of Chinchilla Grey Rabbitsa

Tables Icon

Table 4 A Simple Analysis for Retinal Damage of Rabbit, Rhesus, and Human

Metrics