Abstract

The aim of the current study was to establish animal scar models in a simple and rapid manner by comparing three methods. Wounds were created on the buttocks of Sprague Dawley rats. For Group 1, the initial wound was created by surgical incision. For Groups 2 and 3, a 1470-nm laser was employed to generate dermal burns as the initial wound. The wounds in Groups 1 and 3 were then sutured for three days. After the wound healing, Group 2 generated the largest collagen proportion with abundant collagen type I and significant increases in α-SMA and TGF-β1. The proposed method can be an efficient way to develop rat scar models in a simple manner for evaluating scar treatment.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
A polarized multispectral imaging system for quantitative assessment of hypertrophic scars

Pejhman Ghassemi, Taryn E. Travis, Lauren T. Moffatt, Jeffrey W. Shupp, and Jessica C. Ramella-Roman
Biomed. Opt. Express 5(10) 3337-3354 (2014)

Multimodal evaluation of ultra-short laser pulses treatment for skin burn injuries

Moises Oliveira Dos Santos, Anne Latrive, Pedro Arthur Augusto De Castro, Wagner De Rossi, Telma Maria Tenorio Zorn, Ricardo Elgul Samad, Anderson Zanardi Freitas, Carlos Lenz Cesar, Nilson Dias Vieira Junior, and Denise Maria Zezell
Biomed. Opt. Express 8(3) 1575-1588 (2017)

Wound healing monitoring using near infrared fluorescent fibrinogen

Chia-Pin Pan, Yihui Shi, Khalid Amin, Charles S. Greenberg, Zishan Haroon, and Gregory W. Faris
Biomed. Opt. Express 1(1) 285-294 (2010)

References

  • View by:
  • |
  • |
  • |

  1. B. Sund and A. K. Arrow, “New developments in wound care,” Clin. Rep. 45, 379 (2000).
  2. M. Xue and C. J. Jackson, “Extracellular matrix reorganization during wound healing and its impact on abnormal scarring,” Adv. Wound Care (New Rochelle) 4(3), 119–136 (2015).
    [Crossref] [PubMed]
  3. A. J. Singer and R. A. Clark, “Cutaneous wound healing,” N. Engl. J. Med. 341(10), 738–746 (1999).
    [Crossref] [PubMed]
  4. S. Ghatak, V. C. Hascall, R. M. Rodriguez, R. R. Markwald, and S. Misra, “Inflammation, Wound Healing, and Fibrosis,” Wound Healing: Stem Cells Repair and Restorations, Basic and Clinical Aspects, 195 (2017).
  5. R. S. Kirsner and W. H. Eaglstein, “The wound healing process,” Dermatol. Clin. 11(4), 629–640 (1993).
    [Crossref] [PubMed]
  6. I. A. Darby, B. Laverdet, F. Bonté, and A. Desmoulière, “Fibroblasts and myofibroblasts in wound healing,” Clin. Cosmet. Investig. Dermatol. 7, 301–311 (2014).
    [PubMed]
  7. T. Velnar, T. Bailey, and V. Smrkolj, “The wound healing process: an overview of the cellular and molecular mechanisms,” J. Int. Med. Res. 37(5), 1528–1542 (2009).
    [Crossref] [PubMed]
  8. S. E. Mutsaers, J. E. Bishop, G. McGrouther, and G. J. Laurent, “Mechanisms of tissue repair: from wound healing to fibrosis,” Int. J. Biochem. Cell Biol. 29(1), 5–17 (1997).
    [Crossref] [PubMed]
  9. A. Bayat and D. A. McGrouther, “Clinical management of skin scarring,” Skinmed 4(3), 165–173 (2005).
    [Crossref] [PubMed]
  10. V. Sarrazy, F. Billet, L. Micallef, B. Coulomb, and A. Desmoulière, “Mechanisms of pathological scarring: role of myofibroblasts and current developments,” Wound Repair Regen. 19(Suppl 1), s10–s15 (2011).
    [Crossref] [PubMed]
  11. J. Wang, J. Ding, H. Jiao, D. Honardoust, M. Momtazi, H. A. Shankowsky, and E. E. Tredget, “Human hypertrophic scar-like nude mouse model: characterization of the molecular and cellular biology of the scar process,” Wound Repair Regen. 19(2), 274–285 (2011).
    [Crossref] [PubMed]
  12. N. E. Van Loey, M. Bremer, A. W. Faber, E. Middelkoop, M. K. Nieuwenhuis, and R. Group, “Itching following burns: epidemiology and predictors,” Br. J. Dermatol. 158(1), 95–100 (2008).
    [PubMed]
  13. O. Bock, G. Schmid-Ott, P. Malewski, and U. Mrowietz, “Quality of life of patients with keloid and hypertrophic scarring,” Arch. Dermatol. Res. 297(10), 433–438 (2006).
    [Crossref] [PubMed]
  14. M. L. C. Ramos, A. Gragnani, and L. M. Ferreira, “Is there an ideal animal model to study hypertrophic scarring?” J. Burn Care Res. 29(2), 363–368 (2008).
    [Crossref] [PubMed]
  15. M. P. Hillmer and S. M. MacLeod, “Experimental keloid scar models: a review of methodological issues,” J. Cutan. Med. Surg. 6(4), 354–359 (2002).
    [Crossref] [PubMed]
  16. S. Aarabi, K. A. Bhatt, Y. Shi, J. Paterno, E. I. Chang, S. A. Loh, J. W. Holmes, M. T. Longaker, H. Yee, and G. C. Gurtner, “Mechanical load initiates hypertrophic scar formation through decreased cellular apoptosis,” FASEB J. 21(12), 3250–3261 (2007).
    [Crossref] [PubMed]
  17. L. Cuttle, M. Kempf, G. E. Phillips, J. Mill, M. T. Hayes, J. F. Fraser, X.-Q. Wang, and R. M. Kimble, “A porcine deep dermal partial thickness burn model with hypertrophic scarring,” Burns 32(7), 806–820 (2006).
    [Crossref] [PubMed]
  18. D. M. DeBruler, B. N. Blackstone, K. L. McFarland, M. E. Baumann, D. M. Supp, J. K. Bailey, and H. M. Powell, “Effect of skin graft thickness on scar development in a porcine burn model,” Burns 44(4), 917–930 (2018).
    [Crossref] [PubMed]
  19. R. D. Galiano, J. Michaels, M. Dobryansky, J. P. Levine, and G. C. Gurtner, “Quantitative and reproducible murine model of excisional wound healing,” Wound Repair Regen. 12(4), 485–492 (2004).
    [Crossref] [PubMed]
  20. P. Li, P. Liu, R. P. Xiong, X. Y. Chen, Y. Zhao, W. P. Lu, X. Liu, Y. L. Ning, N. Yang, and Y. G. Zhou, “Ski, a modulator of wound healing and scar formation in the rat skin and rabbit ear,” J. Pathol. 223(5), 659–671 (2011).
    [Crossref] [PubMed]
  21. J. K. Mitsunaga Junior, A. Gragnani, M. L. C. Ramos, and L. M. Ferreira, “Rat an experimental model for burns: a systematic review,” Acta Cir. Bras. 27(6), 417–423 (2012).
    [Crossref] [PubMed]
  22. S. Roy, S. Biswas, S. Khanna, G. Gordillo, V. Bergdall, J. Green, C. B. Marsh, L. J. Gould, and C. K. Sen, “Characterization of a preclinical model of chronic ischemic wound,” Physiol. Genomics 37(3), 211–224 (2009).
    [Crossref] [PubMed]
  23. A. S. Saulis, J. H. Mogford, T. A. Mustoe, E. E. Tredget, and A. Anzarut, “Effect of Mederma on hypertrophic scarring in the rabbit ear model,” Plast. Reconstr. Surg. 110(1), 177–183, discussion 184–186 (2002).
    [Crossref] [PubMed]
  24. V. W. Wong, M. Sorkin, J. P. Glotzbach, M. T. Longaker, and G. C. Gurtner, “Surgical approaches to create murine models of human wound healing,” J. Biomed. Biotechnol. 2011, 969618 (2011).
    [Crossref] [PubMed]
  25. A. Abdullahi, S. Amini-Nik, and M. G. Jeschke, “Animal models in burn research,” Cell. Mol. Life Sci. 71(17), 3241–3255 (2014).
    [Crossref] [PubMed]
  26. M. Kim, H. Kim, and H. W. Kang, “Comparative evaluations of hypertrophic scar formation in in vivo models,” Lasers Surg. Med. 50(6), 661–668 (2018).
    [Crossref] [PubMed]
  27. Q. Zhai, F. Zhou, M. M. Ibrahim, J. Zhao, X. Liu, J. Wu, L. Chen, and S. Qi, “An immune-competent rat split thickness skin graft model: useful tools to develop new therapies to improve skin graft survival,” Am. J. Transl. Res. 10(6), 1600–1610 (2018).
    [PubMed]
  28. A. A. Poluektova, W. S. Malskat, M. J. van Gemert, M. E. Vuylsteke, C. M. Bruijninckx, H. A. Neumann, and C. W. van der Geld, “Some controversies in endovenous laser ablation of varicose veins addressed by optical-thermal mathematical modeling,” Lasers Med. Sci. 29(2), 441–452 (2014).
    [Crossref] [PubMed]
  29. T. Hayakawa, Y. Hashimoto, Y. Myokei, H. Aoyama, and Y. Izawa, “Changes in type of collagen during the development of human post-burn hypertrophic scars,” Clin. Chim. Acta 93(1), 119–125 (1979).
    [Crossref] [PubMed]
  30. A. I. Arno, G. G. Gauglitz, J. P. Barret, and M. G. Jeschke, “Up-to-date approach to manage keloids and hypertrophic scars: a useful guide,” Burns 40(7), 1255–1266 (2014).
    [Crossref] [PubMed]
  31. G. V. Oliveira, H. K. Hawkins, D. Chinkes, A. Burke, A. L. P. Tavares, M. Ramos-e-Silva, T. B. Albrecht, G. T. Kitten, and D. N. Herndon, “Hypertrophic versus non hypertrophic scars compared by immunohistochemistry and laser confocal microscopy: type I and III collagens,” Int. Wound J. 6(6), 445–452 (2009).
    [Crossref] [PubMed]
  32. R. Ogawa, “Mechanobiology of scarring,” Wound Repair Regen. 19(Suppl 1), s2–s9 (2011).
    [Crossref] [PubMed]
  33. C. Theoret, “Physiology of wound healing,” Equine wound management, 1–13 (2016).
    [Crossref]
  34. S. Velidandla, P. Gaikwad, K. K. R. Ealla, K. D. Bhorgonde, P. Hunsingi, and A. Kumar, “Histochemical analysis of polarizing colors of collagen using Picrosirius Red staining in oral submucous fibrosis,” J. Int. Oral Health 6(1), 33–38 (2014).
    [PubMed]
  35. B. Smitha and M. Donoghue, “Clinical and histopathological evaluation of collagen fiber orientation in patients with oral submucous fibrosis,” J. Oral Maxillofac. Pathol. 15(2), 154–160 (2011).
    [Crossref] [PubMed]
  36. Y. Riaz, H. T. Cook, A. Wangoo, B. Glenville, and R. J. Shaw, “Type 1 procollagen as a marker of severity of scarring after sternotomy: effects of topical corticosteroids,” J. Clin. Pathol. 47(10), 892–899 (1994).
    [Crossref] [PubMed]
  37. R. A. O. Grbavac, E. B. Veeck, J.-P. Bernard, L. M. P. Ramalho, and A. L. B. Pinheiro, “Effects of laser therapy in CO2 laser wounds in rats,” Photomed. Laser Surg. 24(3), 389–396 (2006).
    [Crossref] [PubMed]
  38. X. Chen, L.-H. Peng, N. Li, Q.-M. Li, P. Li, K.-P. Fung, P.-C. Leung, and J.-Q. Gao, “The healing and anti-scar effects of astragaloside IV on the wound repair in vitro and in vivo,” J. Ethnopharmacol. 139(3), 721–727 (2012).
    [Crossref] [PubMed]
  39. N. Boucard, C. Viton, D. Agay, E. Mari, T. Roger, Y. Chancerelle, and A. Domard, “The use of physical hydrogels of chitosan for skin regeneration following third-degree burns,” Biomaterials 28(24), 3478–3488 (2007).
    [Crossref] [PubMed]

2018 (3)

D. M. DeBruler, B. N. Blackstone, K. L. McFarland, M. E. Baumann, D. M. Supp, J. K. Bailey, and H. M. Powell, “Effect of skin graft thickness on scar development in a porcine burn model,” Burns 44(4), 917–930 (2018).
[Crossref] [PubMed]

M. Kim, H. Kim, and H. W. Kang, “Comparative evaluations of hypertrophic scar formation in in vivo models,” Lasers Surg. Med. 50(6), 661–668 (2018).
[Crossref] [PubMed]

Q. Zhai, F. Zhou, M. M. Ibrahim, J. Zhao, X. Liu, J. Wu, L. Chen, and S. Qi, “An immune-competent rat split thickness skin graft model: useful tools to develop new therapies to improve skin graft survival,” Am. J. Transl. Res. 10(6), 1600–1610 (2018).
[PubMed]

2015 (1)

M. Xue and C. J. Jackson, “Extracellular matrix reorganization during wound healing and its impact on abnormal scarring,” Adv. Wound Care (New Rochelle) 4(3), 119–136 (2015).
[Crossref] [PubMed]

2014 (5)

I. A. Darby, B. Laverdet, F. Bonté, and A. Desmoulière, “Fibroblasts and myofibroblasts in wound healing,” Clin. Cosmet. Investig. Dermatol. 7, 301–311 (2014).
[PubMed]

A. A. Poluektova, W. S. Malskat, M. J. van Gemert, M. E. Vuylsteke, C. M. Bruijninckx, H. A. Neumann, and C. W. van der Geld, “Some controversies in endovenous laser ablation of varicose veins addressed by optical-thermal mathematical modeling,” Lasers Med. Sci. 29(2), 441–452 (2014).
[Crossref] [PubMed]

A. I. Arno, G. G. Gauglitz, J. P. Barret, and M. G. Jeschke, “Up-to-date approach to manage keloids and hypertrophic scars: a useful guide,” Burns 40(7), 1255–1266 (2014).
[Crossref] [PubMed]

A. Abdullahi, S. Amini-Nik, and M. G. Jeschke, “Animal models in burn research,” Cell. Mol. Life Sci. 71(17), 3241–3255 (2014).
[Crossref] [PubMed]

S. Velidandla, P. Gaikwad, K. K. R. Ealla, K. D. Bhorgonde, P. Hunsingi, and A. Kumar, “Histochemical analysis of polarizing colors of collagen using Picrosirius Red staining in oral submucous fibrosis,” J. Int. Oral Health 6(1), 33–38 (2014).
[PubMed]

2012 (2)

X. Chen, L.-H. Peng, N. Li, Q.-M. Li, P. Li, K.-P. Fung, P.-C. Leung, and J.-Q. Gao, “The healing and anti-scar effects of astragaloside IV on the wound repair in vitro and in vivo,” J. Ethnopharmacol. 139(3), 721–727 (2012).
[Crossref] [PubMed]

J. K. Mitsunaga Junior, A. Gragnani, M. L. C. Ramos, and L. M. Ferreira, “Rat an experimental model for burns: a systematic review,” Acta Cir. Bras. 27(6), 417–423 (2012).
[Crossref] [PubMed]

2011 (6)

P. Li, P. Liu, R. P. Xiong, X. Y. Chen, Y. Zhao, W. P. Lu, X. Liu, Y. L. Ning, N. Yang, and Y. G. Zhou, “Ski, a modulator of wound healing and scar formation in the rat skin and rabbit ear,” J. Pathol. 223(5), 659–671 (2011).
[Crossref] [PubMed]

V. W. Wong, M. Sorkin, J. P. Glotzbach, M. T. Longaker, and G. C. Gurtner, “Surgical approaches to create murine models of human wound healing,” J. Biomed. Biotechnol. 2011, 969618 (2011).
[Crossref] [PubMed]

B. Smitha and M. Donoghue, “Clinical and histopathological evaluation of collagen fiber orientation in patients with oral submucous fibrosis,” J. Oral Maxillofac. Pathol. 15(2), 154–160 (2011).
[Crossref] [PubMed]

R. Ogawa, “Mechanobiology of scarring,” Wound Repair Regen. 19(Suppl 1), s2–s9 (2011).
[Crossref] [PubMed]

V. Sarrazy, F. Billet, L. Micallef, B. Coulomb, and A. Desmoulière, “Mechanisms of pathological scarring: role of myofibroblasts and current developments,” Wound Repair Regen. 19(Suppl 1), s10–s15 (2011).
[Crossref] [PubMed]

J. Wang, J. Ding, H. Jiao, D. Honardoust, M. Momtazi, H. A. Shankowsky, and E. E. Tredget, “Human hypertrophic scar-like nude mouse model: characterization of the molecular and cellular biology of the scar process,” Wound Repair Regen. 19(2), 274–285 (2011).
[Crossref] [PubMed]

2009 (3)

T. Velnar, T. Bailey, and V. Smrkolj, “The wound healing process: an overview of the cellular and molecular mechanisms,” J. Int. Med. Res. 37(5), 1528–1542 (2009).
[Crossref] [PubMed]

G. V. Oliveira, H. K. Hawkins, D. Chinkes, A. Burke, A. L. P. Tavares, M. Ramos-e-Silva, T. B. Albrecht, G. T. Kitten, and D. N. Herndon, “Hypertrophic versus non hypertrophic scars compared by immunohistochemistry and laser confocal microscopy: type I and III collagens,” Int. Wound J. 6(6), 445–452 (2009).
[Crossref] [PubMed]

S. Roy, S. Biswas, S. Khanna, G. Gordillo, V. Bergdall, J. Green, C. B. Marsh, L. J. Gould, and C. K. Sen, “Characterization of a preclinical model of chronic ischemic wound,” Physiol. Genomics 37(3), 211–224 (2009).
[Crossref] [PubMed]

2008 (2)

N. E. Van Loey, M. Bremer, A. W. Faber, E. Middelkoop, M. K. Nieuwenhuis, and R. Group, “Itching following burns: epidemiology and predictors,” Br. J. Dermatol. 158(1), 95–100 (2008).
[PubMed]

M. L. C. Ramos, A. Gragnani, and L. M. Ferreira, “Is there an ideal animal model to study hypertrophic scarring?” J. Burn Care Res. 29(2), 363–368 (2008).
[Crossref] [PubMed]

2007 (2)

S. Aarabi, K. A. Bhatt, Y. Shi, J. Paterno, E. I. Chang, S. A. Loh, J. W. Holmes, M. T. Longaker, H. Yee, and G. C. Gurtner, “Mechanical load initiates hypertrophic scar formation through decreased cellular apoptosis,” FASEB J. 21(12), 3250–3261 (2007).
[Crossref] [PubMed]

N. Boucard, C. Viton, D. Agay, E. Mari, T. Roger, Y. Chancerelle, and A. Domard, “The use of physical hydrogels of chitosan for skin regeneration following third-degree burns,” Biomaterials 28(24), 3478–3488 (2007).
[Crossref] [PubMed]

2006 (3)

L. Cuttle, M. Kempf, G. E. Phillips, J. Mill, M. T. Hayes, J. F. Fraser, X.-Q. Wang, and R. M. Kimble, “A porcine deep dermal partial thickness burn model with hypertrophic scarring,” Burns 32(7), 806–820 (2006).
[Crossref] [PubMed]

O. Bock, G. Schmid-Ott, P. Malewski, and U. Mrowietz, “Quality of life of patients with keloid and hypertrophic scarring,” Arch. Dermatol. Res. 297(10), 433–438 (2006).
[Crossref] [PubMed]

R. A. O. Grbavac, E. B. Veeck, J.-P. Bernard, L. M. P. Ramalho, and A. L. B. Pinheiro, “Effects of laser therapy in CO2 laser wounds in rats,” Photomed. Laser Surg. 24(3), 389–396 (2006).
[Crossref] [PubMed]

2005 (1)

A. Bayat and D. A. McGrouther, “Clinical management of skin scarring,” Skinmed 4(3), 165–173 (2005).
[Crossref] [PubMed]

2004 (1)

R. D. Galiano, J. Michaels, M. Dobryansky, J. P. Levine, and G. C. Gurtner, “Quantitative and reproducible murine model of excisional wound healing,” Wound Repair Regen. 12(4), 485–492 (2004).
[Crossref] [PubMed]

2002 (2)

M. P. Hillmer and S. M. MacLeod, “Experimental keloid scar models: a review of methodological issues,” J. Cutan. Med. Surg. 6(4), 354–359 (2002).
[Crossref] [PubMed]

A. S. Saulis, J. H. Mogford, T. A. Mustoe, E. E. Tredget, and A. Anzarut, “Effect of Mederma on hypertrophic scarring in the rabbit ear model,” Plast. Reconstr. Surg. 110(1), 177–183, discussion 184–186 (2002).
[Crossref] [PubMed]

2000 (1)

B. Sund and A. K. Arrow, “New developments in wound care,” Clin. Rep. 45, 379 (2000).

1999 (1)

A. J. Singer and R. A. Clark, “Cutaneous wound healing,” N. Engl. J. Med. 341(10), 738–746 (1999).
[Crossref] [PubMed]

1997 (1)

S. E. Mutsaers, J. E. Bishop, G. McGrouther, and G. J. Laurent, “Mechanisms of tissue repair: from wound healing to fibrosis,” Int. J. Biochem. Cell Biol. 29(1), 5–17 (1997).
[Crossref] [PubMed]

1994 (1)

Y. Riaz, H. T. Cook, A. Wangoo, B. Glenville, and R. J. Shaw, “Type 1 procollagen as a marker of severity of scarring after sternotomy: effects of topical corticosteroids,” J. Clin. Pathol. 47(10), 892–899 (1994).
[Crossref] [PubMed]

1993 (1)

R. S. Kirsner and W. H. Eaglstein, “The wound healing process,” Dermatol. Clin. 11(4), 629–640 (1993).
[Crossref] [PubMed]

1979 (1)

T. Hayakawa, Y. Hashimoto, Y. Myokei, H. Aoyama, and Y. Izawa, “Changes in type of collagen during the development of human post-burn hypertrophic scars,” Clin. Chim. Acta 93(1), 119–125 (1979).
[Crossref] [PubMed]

Aarabi, S.

S. Aarabi, K. A. Bhatt, Y. Shi, J. Paterno, E. I. Chang, S. A. Loh, J. W. Holmes, M. T. Longaker, H. Yee, and G. C. Gurtner, “Mechanical load initiates hypertrophic scar formation through decreased cellular apoptosis,” FASEB J. 21(12), 3250–3261 (2007).
[Crossref] [PubMed]

Abdullahi, A.

A. Abdullahi, S. Amini-Nik, and M. G. Jeschke, “Animal models in burn research,” Cell. Mol. Life Sci. 71(17), 3241–3255 (2014).
[Crossref] [PubMed]

Agay, D.

N. Boucard, C. Viton, D. Agay, E. Mari, T. Roger, Y. Chancerelle, and A. Domard, “The use of physical hydrogels of chitosan for skin regeneration following third-degree burns,” Biomaterials 28(24), 3478–3488 (2007).
[Crossref] [PubMed]

Albrecht, T. B.

G. V. Oliveira, H. K. Hawkins, D. Chinkes, A. Burke, A. L. P. Tavares, M. Ramos-e-Silva, T. B. Albrecht, G. T. Kitten, and D. N. Herndon, “Hypertrophic versus non hypertrophic scars compared by immunohistochemistry and laser confocal microscopy: type I and III collagens,” Int. Wound J. 6(6), 445–452 (2009).
[Crossref] [PubMed]

Amini-Nik, S.

A. Abdullahi, S. Amini-Nik, and M. G. Jeschke, “Animal models in burn research,” Cell. Mol. Life Sci. 71(17), 3241–3255 (2014).
[Crossref] [PubMed]

Anzarut, A.

A. S. Saulis, J. H. Mogford, T. A. Mustoe, E. E. Tredget, and A. Anzarut, “Effect of Mederma on hypertrophic scarring in the rabbit ear model,” Plast. Reconstr. Surg. 110(1), 177–183, discussion 184–186 (2002).
[Crossref] [PubMed]

Aoyama, H.

T. Hayakawa, Y. Hashimoto, Y. Myokei, H. Aoyama, and Y. Izawa, “Changes in type of collagen during the development of human post-burn hypertrophic scars,” Clin. Chim. Acta 93(1), 119–125 (1979).
[Crossref] [PubMed]

Arno, A. I.

A. I. Arno, G. G. Gauglitz, J. P. Barret, and M. G. Jeschke, “Up-to-date approach to manage keloids and hypertrophic scars: a useful guide,” Burns 40(7), 1255–1266 (2014).
[Crossref] [PubMed]

Arrow, A. K.

B. Sund and A. K. Arrow, “New developments in wound care,” Clin. Rep. 45, 379 (2000).

Bailey, J. K.

D. M. DeBruler, B. N. Blackstone, K. L. McFarland, M. E. Baumann, D. M. Supp, J. K. Bailey, and H. M. Powell, “Effect of skin graft thickness on scar development in a porcine burn model,” Burns 44(4), 917–930 (2018).
[Crossref] [PubMed]

Bailey, T.

T. Velnar, T. Bailey, and V. Smrkolj, “The wound healing process: an overview of the cellular and molecular mechanisms,” J. Int. Med. Res. 37(5), 1528–1542 (2009).
[Crossref] [PubMed]

Barret, J. P.

A. I. Arno, G. G. Gauglitz, J. P. Barret, and M. G. Jeschke, “Up-to-date approach to manage keloids and hypertrophic scars: a useful guide,” Burns 40(7), 1255–1266 (2014).
[Crossref] [PubMed]

Baumann, M. E.

D. M. DeBruler, B. N. Blackstone, K. L. McFarland, M. E. Baumann, D. M. Supp, J. K. Bailey, and H. M. Powell, “Effect of skin graft thickness on scar development in a porcine burn model,” Burns 44(4), 917–930 (2018).
[Crossref] [PubMed]

Bayat, A.

A. Bayat and D. A. McGrouther, “Clinical management of skin scarring,” Skinmed 4(3), 165–173 (2005).
[Crossref] [PubMed]

Bergdall, V.

S. Roy, S. Biswas, S. Khanna, G. Gordillo, V. Bergdall, J. Green, C. B. Marsh, L. J. Gould, and C. K. Sen, “Characterization of a preclinical model of chronic ischemic wound,” Physiol. Genomics 37(3), 211–224 (2009).
[Crossref] [PubMed]

Bernard, J.-P.

R. A. O. Grbavac, E. B. Veeck, J.-P. Bernard, L. M. P. Ramalho, and A. L. B. Pinheiro, “Effects of laser therapy in CO2 laser wounds in rats,” Photomed. Laser Surg. 24(3), 389–396 (2006).
[Crossref] [PubMed]

Bhatt, K. A.

S. Aarabi, K. A. Bhatt, Y. Shi, J. Paterno, E. I. Chang, S. A. Loh, J. W. Holmes, M. T. Longaker, H. Yee, and G. C. Gurtner, “Mechanical load initiates hypertrophic scar formation through decreased cellular apoptosis,” FASEB J. 21(12), 3250–3261 (2007).
[Crossref] [PubMed]

Bhorgonde, K. D.

S. Velidandla, P. Gaikwad, K. K. R. Ealla, K. D. Bhorgonde, P. Hunsingi, and A. Kumar, “Histochemical analysis of polarizing colors of collagen using Picrosirius Red staining in oral submucous fibrosis,” J. Int. Oral Health 6(1), 33–38 (2014).
[PubMed]

Billet, F.

V. Sarrazy, F. Billet, L. Micallef, B. Coulomb, and A. Desmoulière, “Mechanisms of pathological scarring: role of myofibroblasts and current developments,” Wound Repair Regen. 19(Suppl 1), s10–s15 (2011).
[Crossref] [PubMed]

Bishop, J. E.

S. E. Mutsaers, J. E. Bishop, G. McGrouther, and G. J. Laurent, “Mechanisms of tissue repair: from wound healing to fibrosis,” Int. J. Biochem. Cell Biol. 29(1), 5–17 (1997).
[Crossref] [PubMed]

Biswas, S.

S. Roy, S. Biswas, S. Khanna, G. Gordillo, V. Bergdall, J. Green, C. B. Marsh, L. J. Gould, and C. K. Sen, “Characterization of a preclinical model of chronic ischemic wound,” Physiol. Genomics 37(3), 211–224 (2009).
[Crossref] [PubMed]

Blackstone, B. N.

D. M. DeBruler, B. N. Blackstone, K. L. McFarland, M. E. Baumann, D. M. Supp, J. K. Bailey, and H. M. Powell, “Effect of skin graft thickness on scar development in a porcine burn model,” Burns 44(4), 917–930 (2018).
[Crossref] [PubMed]

Bock, O.

O. Bock, G. Schmid-Ott, P. Malewski, and U. Mrowietz, “Quality of life of patients with keloid and hypertrophic scarring,” Arch. Dermatol. Res. 297(10), 433–438 (2006).
[Crossref] [PubMed]

Bonté, F.

I. A. Darby, B. Laverdet, F. Bonté, and A. Desmoulière, “Fibroblasts and myofibroblasts in wound healing,” Clin. Cosmet. Investig. Dermatol. 7, 301–311 (2014).
[PubMed]

Boucard, N.

N. Boucard, C. Viton, D. Agay, E. Mari, T. Roger, Y. Chancerelle, and A. Domard, “The use of physical hydrogels of chitosan for skin regeneration following third-degree burns,” Biomaterials 28(24), 3478–3488 (2007).
[Crossref] [PubMed]

Bremer, M.

N. E. Van Loey, M. Bremer, A. W. Faber, E. Middelkoop, M. K. Nieuwenhuis, and R. Group, “Itching following burns: epidemiology and predictors,” Br. J. Dermatol. 158(1), 95–100 (2008).
[PubMed]

Bruijninckx, C. M.

A. A. Poluektova, W. S. Malskat, M. J. van Gemert, M. E. Vuylsteke, C. M. Bruijninckx, H. A. Neumann, and C. W. van der Geld, “Some controversies in endovenous laser ablation of varicose veins addressed by optical-thermal mathematical modeling,” Lasers Med. Sci. 29(2), 441–452 (2014).
[Crossref] [PubMed]

Burke, A.

G. V. Oliveira, H. K. Hawkins, D. Chinkes, A. Burke, A. L. P. Tavares, M. Ramos-e-Silva, T. B. Albrecht, G. T. Kitten, and D. N. Herndon, “Hypertrophic versus non hypertrophic scars compared by immunohistochemistry and laser confocal microscopy: type I and III collagens,” Int. Wound J. 6(6), 445–452 (2009).
[Crossref] [PubMed]

Chancerelle, Y.

N. Boucard, C. Viton, D. Agay, E. Mari, T. Roger, Y. Chancerelle, and A. Domard, “The use of physical hydrogels of chitosan for skin regeneration following third-degree burns,” Biomaterials 28(24), 3478–3488 (2007).
[Crossref] [PubMed]

Chang, E. I.

S. Aarabi, K. A. Bhatt, Y. Shi, J. Paterno, E. I. Chang, S. A. Loh, J. W. Holmes, M. T. Longaker, H. Yee, and G. C. Gurtner, “Mechanical load initiates hypertrophic scar formation through decreased cellular apoptosis,” FASEB J. 21(12), 3250–3261 (2007).
[Crossref] [PubMed]

Chen, L.

Q. Zhai, F. Zhou, M. M. Ibrahim, J. Zhao, X. Liu, J. Wu, L. Chen, and S. Qi, “An immune-competent rat split thickness skin graft model: useful tools to develop new therapies to improve skin graft survival,” Am. J. Transl. Res. 10(6), 1600–1610 (2018).
[PubMed]

Chen, X.

X. Chen, L.-H. Peng, N. Li, Q.-M. Li, P. Li, K.-P. Fung, P.-C. Leung, and J.-Q. Gao, “The healing and anti-scar effects of astragaloside IV on the wound repair in vitro and in vivo,” J. Ethnopharmacol. 139(3), 721–727 (2012).
[Crossref] [PubMed]

Chen, X. Y.

P. Li, P. Liu, R. P. Xiong, X. Y. Chen, Y. Zhao, W. P. Lu, X. Liu, Y. L. Ning, N. Yang, and Y. G. Zhou, “Ski, a modulator of wound healing and scar formation in the rat skin and rabbit ear,” J. Pathol. 223(5), 659–671 (2011).
[Crossref] [PubMed]

Chinkes, D.

G. V. Oliveira, H. K. Hawkins, D. Chinkes, A. Burke, A. L. P. Tavares, M. Ramos-e-Silva, T. B. Albrecht, G. T. Kitten, and D. N. Herndon, “Hypertrophic versus non hypertrophic scars compared by immunohistochemistry and laser confocal microscopy: type I and III collagens,” Int. Wound J. 6(6), 445–452 (2009).
[Crossref] [PubMed]

Clark, R. A.

A. J. Singer and R. A. Clark, “Cutaneous wound healing,” N. Engl. J. Med. 341(10), 738–746 (1999).
[Crossref] [PubMed]

Cook, H. T.

Y. Riaz, H. T. Cook, A. Wangoo, B. Glenville, and R. J. Shaw, “Type 1 procollagen as a marker of severity of scarring after sternotomy: effects of topical corticosteroids,” J. Clin. Pathol. 47(10), 892–899 (1994).
[Crossref] [PubMed]

Coulomb, B.

V. Sarrazy, F. Billet, L. Micallef, B. Coulomb, and A. Desmoulière, “Mechanisms of pathological scarring: role of myofibroblasts and current developments,” Wound Repair Regen. 19(Suppl 1), s10–s15 (2011).
[Crossref] [PubMed]

Cuttle, L.

L. Cuttle, M. Kempf, G. E. Phillips, J. Mill, M. T. Hayes, J. F. Fraser, X.-Q. Wang, and R. M. Kimble, “A porcine deep dermal partial thickness burn model with hypertrophic scarring,” Burns 32(7), 806–820 (2006).
[Crossref] [PubMed]

Darby, I. A.

I. A. Darby, B. Laverdet, F. Bonté, and A. Desmoulière, “Fibroblasts and myofibroblasts in wound healing,” Clin. Cosmet. Investig. Dermatol. 7, 301–311 (2014).
[PubMed]

DeBruler, D. M.

D. M. DeBruler, B. N. Blackstone, K. L. McFarland, M. E. Baumann, D. M. Supp, J. K. Bailey, and H. M. Powell, “Effect of skin graft thickness on scar development in a porcine burn model,” Burns 44(4), 917–930 (2018).
[Crossref] [PubMed]

Desmoulière, A.

I. A. Darby, B. Laverdet, F. Bonté, and A. Desmoulière, “Fibroblasts and myofibroblasts in wound healing,” Clin. Cosmet. Investig. Dermatol. 7, 301–311 (2014).
[PubMed]

V. Sarrazy, F. Billet, L. Micallef, B. Coulomb, and A. Desmoulière, “Mechanisms of pathological scarring: role of myofibroblasts and current developments,” Wound Repair Regen. 19(Suppl 1), s10–s15 (2011).
[Crossref] [PubMed]

Ding, J.

J. Wang, J. Ding, H. Jiao, D. Honardoust, M. Momtazi, H. A. Shankowsky, and E. E. Tredget, “Human hypertrophic scar-like nude mouse model: characterization of the molecular and cellular biology of the scar process,” Wound Repair Regen. 19(2), 274–285 (2011).
[Crossref] [PubMed]

Dobryansky, M.

R. D. Galiano, J. Michaels, M. Dobryansky, J. P. Levine, and G. C. Gurtner, “Quantitative and reproducible murine model of excisional wound healing,” Wound Repair Regen. 12(4), 485–492 (2004).
[Crossref] [PubMed]

Domard, A.

N. Boucard, C. Viton, D. Agay, E. Mari, T. Roger, Y. Chancerelle, and A. Domard, “The use of physical hydrogels of chitosan for skin regeneration following third-degree burns,” Biomaterials 28(24), 3478–3488 (2007).
[Crossref] [PubMed]

Donoghue, M.

B. Smitha and M. Donoghue, “Clinical and histopathological evaluation of collagen fiber orientation in patients with oral submucous fibrosis,” J. Oral Maxillofac. Pathol. 15(2), 154–160 (2011).
[Crossref] [PubMed]

Eaglstein, W. H.

R. S. Kirsner and W. H. Eaglstein, “The wound healing process,” Dermatol. Clin. 11(4), 629–640 (1993).
[Crossref] [PubMed]

Ealla, K. K. R.

S. Velidandla, P. Gaikwad, K. K. R. Ealla, K. D. Bhorgonde, P. Hunsingi, and A. Kumar, “Histochemical analysis of polarizing colors of collagen using Picrosirius Red staining in oral submucous fibrosis,” J. Int. Oral Health 6(1), 33–38 (2014).
[PubMed]

Faber, A. W.

N. E. Van Loey, M. Bremer, A. W. Faber, E. Middelkoop, M. K. Nieuwenhuis, and R. Group, “Itching following burns: epidemiology and predictors,” Br. J. Dermatol. 158(1), 95–100 (2008).
[PubMed]

Ferreira, L. M.

J. K. Mitsunaga Junior, A. Gragnani, M. L. C. Ramos, and L. M. Ferreira, “Rat an experimental model for burns: a systematic review,” Acta Cir. Bras. 27(6), 417–423 (2012).
[Crossref] [PubMed]

M. L. C. Ramos, A. Gragnani, and L. M. Ferreira, “Is there an ideal animal model to study hypertrophic scarring?” J. Burn Care Res. 29(2), 363–368 (2008).
[Crossref] [PubMed]

Fraser, J. F.

L. Cuttle, M. Kempf, G. E. Phillips, J. Mill, M. T. Hayes, J. F. Fraser, X.-Q. Wang, and R. M. Kimble, “A porcine deep dermal partial thickness burn model with hypertrophic scarring,” Burns 32(7), 806–820 (2006).
[Crossref] [PubMed]

Fung, K.-P.

X. Chen, L.-H. Peng, N. Li, Q.-M. Li, P. Li, K.-P. Fung, P.-C. Leung, and J.-Q. Gao, “The healing and anti-scar effects of astragaloside IV on the wound repair in vitro and in vivo,” J. Ethnopharmacol. 139(3), 721–727 (2012).
[Crossref] [PubMed]

Gaikwad, P.

S. Velidandla, P. Gaikwad, K. K. R. Ealla, K. D. Bhorgonde, P. Hunsingi, and A. Kumar, “Histochemical analysis of polarizing colors of collagen using Picrosirius Red staining in oral submucous fibrosis,” J. Int. Oral Health 6(1), 33–38 (2014).
[PubMed]

Galiano, R. D.

R. D. Galiano, J. Michaels, M. Dobryansky, J. P. Levine, and G. C. Gurtner, “Quantitative and reproducible murine model of excisional wound healing,” Wound Repair Regen. 12(4), 485–492 (2004).
[Crossref] [PubMed]

Gao, J.-Q.

X. Chen, L.-H. Peng, N. Li, Q.-M. Li, P. Li, K.-P. Fung, P.-C. Leung, and J.-Q. Gao, “The healing and anti-scar effects of astragaloside IV on the wound repair in vitro and in vivo,” J. Ethnopharmacol. 139(3), 721–727 (2012).
[Crossref] [PubMed]

Gauglitz, G. G.

A. I. Arno, G. G. Gauglitz, J. P. Barret, and M. G. Jeschke, “Up-to-date approach to manage keloids and hypertrophic scars: a useful guide,” Burns 40(7), 1255–1266 (2014).
[Crossref] [PubMed]

Glenville, B.

Y. Riaz, H. T. Cook, A. Wangoo, B. Glenville, and R. J. Shaw, “Type 1 procollagen as a marker of severity of scarring after sternotomy: effects of topical corticosteroids,” J. Clin. Pathol. 47(10), 892–899 (1994).
[Crossref] [PubMed]

Glotzbach, J. P.

V. W. Wong, M. Sorkin, J. P. Glotzbach, M. T. Longaker, and G. C. Gurtner, “Surgical approaches to create murine models of human wound healing,” J. Biomed. Biotechnol. 2011, 969618 (2011).
[Crossref] [PubMed]

Gordillo, G.

S. Roy, S. Biswas, S. Khanna, G. Gordillo, V. Bergdall, J. Green, C. B. Marsh, L. J. Gould, and C. K. Sen, “Characterization of a preclinical model of chronic ischemic wound,” Physiol. Genomics 37(3), 211–224 (2009).
[Crossref] [PubMed]

Gould, L. J.

S. Roy, S. Biswas, S. Khanna, G. Gordillo, V. Bergdall, J. Green, C. B. Marsh, L. J. Gould, and C. K. Sen, “Characterization of a preclinical model of chronic ischemic wound,” Physiol. Genomics 37(3), 211–224 (2009).
[Crossref] [PubMed]

Gragnani, A.

J. K. Mitsunaga Junior, A. Gragnani, M. L. C. Ramos, and L. M. Ferreira, “Rat an experimental model for burns: a systematic review,” Acta Cir. Bras. 27(6), 417–423 (2012).
[Crossref] [PubMed]

M. L. C. Ramos, A. Gragnani, and L. M. Ferreira, “Is there an ideal animal model to study hypertrophic scarring?” J. Burn Care Res. 29(2), 363–368 (2008).
[Crossref] [PubMed]

Grbavac, R. A. O.

R. A. O. Grbavac, E. B. Veeck, J.-P. Bernard, L. M. P. Ramalho, and A. L. B. Pinheiro, “Effects of laser therapy in CO2 laser wounds in rats,” Photomed. Laser Surg. 24(3), 389–396 (2006).
[Crossref] [PubMed]

Green, J.

S. Roy, S. Biswas, S. Khanna, G. Gordillo, V. Bergdall, J. Green, C. B. Marsh, L. J. Gould, and C. K. Sen, “Characterization of a preclinical model of chronic ischemic wound,” Physiol. Genomics 37(3), 211–224 (2009).
[Crossref] [PubMed]

Group, R.

N. E. Van Loey, M. Bremer, A. W. Faber, E. Middelkoop, M. K. Nieuwenhuis, and R. Group, “Itching following burns: epidemiology and predictors,” Br. J. Dermatol. 158(1), 95–100 (2008).
[PubMed]

Gurtner, G. C.

V. W. Wong, M. Sorkin, J. P. Glotzbach, M. T. Longaker, and G. C. Gurtner, “Surgical approaches to create murine models of human wound healing,” J. Biomed. Biotechnol. 2011, 969618 (2011).
[Crossref] [PubMed]

S. Aarabi, K. A. Bhatt, Y. Shi, J. Paterno, E. I. Chang, S. A. Loh, J. W. Holmes, M. T. Longaker, H. Yee, and G. C. Gurtner, “Mechanical load initiates hypertrophic scar formation through decreased cellular apoptosis,” FASEB J. 21(12), 3250–3261 (2007).
[Crossref] [PubMed]

R. D. Galiano, J. Michaels, M. Dobryansky, J. P. Levine, and G. C. Gurtner, “Quantitative and reproducible murine model of excisional wound healing,” Wound Repair Regen. 12(4), 485–492 (2004).
[Crossref] [PubMed]

Hashimoto, Y.

T. Hayakawa, Y. Hashimoto, Y. Myokei, H. Aoyama, and Y. Izawa, “Changes in type of collagen during the development of human post-burn hypertrophic scars,” Clin. Chim. Acta 93(1), 119–125 (1979).
[Crossref] [PubMed]

Hawkins, H. K.

G. V. Oliveira, H. K. Hawkins, D. Chinkes, A. Burke, A. L. P. Tavares, M. Ramos-e-Silva, T. B. Albrecht, G. T. Kitten, and D. N. Herndon, “Hypertrophic versus non hypertrophic scars compared by immunohistochemistry and laser confocal microscopy: type I and III collagens,” Int. Wound J. 6(6), 445–452 (2009).
[Crossref] [PubMed]

Hayakawa, T.

T. Hayakawa, Y. Hashimoto, Y. Myokei, H. Aoyama, and Y. Izawa, “Changes in type of collagen during the development of human post-burn hypertrophic scars,” Clin. Chim. Acta 93(1), 119–125 (1979).
[Crossref] [PubMed]

Hayes, M. T.

L. Cuttle, M. Kempf, G. E. Phillips, J. Mill, M. T. Hayes, J. F. Fraser, X.-Q. Wang, and R. M. Kimble, “A porcine deep dermal partial thickness burn model with hypertrophic scarring,” Burns 32(7), 806–820 (2006).
[Crossref] [PubMed]

Herndon, D. N.

G. V. Oliveira, H. K. Hawkins, D. Chinkes, A. Burke, A. L. P. Tavares, M. Ramos-e-Silva, T. B. Albrecht, G. T. Kitten, and D. N. Herndon, “Hypertrophic versus non hypertrophic scars compared by immunohistochemistry and laser confocal microscopy: type I and III collagens,” Int. Wound J. 6(6), 445–452 (2009).
[Crossref] [PubMed]

Hillmer, M. P.

M. P. Hillmer and S. M. MacLeod, “Experimental keloid scar models: a review of methodological issues,” J. Cutan. Med. Surg. 6(4), 354–359 (2002).
[Crossref] [PubMed]

Holmes, J. W.

S. Aarabi, K. A. Bhatt, Y. Shi, J. Paterno, E. I. Chang, S. A. Loh, J. W. Holmes, M. T. Longaker, H. Yee, and G. C. Gurtner, “Mechanical load initiates hypertrophic scar formation through decreased cellular apoptosis,” FASEB J. 21(12), 3250–3261 (2007).
[Crossref] [PubMed]

Honardoust, D.

J. Wang, J. Ding, H. Jiao, D. Honardoust, M. Momtazi, H. A. Shankowsky, and E. E. Tredget, “Human hypertrophic scar-like nude mouse model: characterization of the molecular and cellular biology of the scar process,” Wound Repair Regen. 19(2), 274–285 (2011).
[Crossref] [PubMed]

Hunsingi, P.

S. Velidandla, P. Gaikwad, K. K. R. Ealla, K. D. Bhorgonde, P. Hunsingi, and A. Kumar, “Histochemical analysis of polarizing colors of collagen using Picrosirius Red staining in oral submucous fibrosis,” J. Int. Oral Health 6(1), 33–38 (2014).
[PubMed]

Ibrahim, M. M.

Q. Zhai, F. Zhou, M. M. Ibrahim, J. Zhao, X. Liu, J. Wu, L. Chen, and S. Qi, “An immune-competent rat split thickness skin graft model: useful tools to develop new therapies to improve skin graft survival,” Am. J. Transl. Res. 10(6), 1600–1610 (2018).
[PubMed]

Izawa, Y.

T. Hayakawa, Y. Hashimoto, Y. Myokei, H. Aoyama, and Y. Izawa, “Changes in type of collagen during the development of human post-burn hypertrophic scars,” Clin. Chim. Acta 93(1), 119–125 (1979).
[Crossref] [PubMed]

Jackson, C. J.

M. Xue and C. J. Jackson, “Extracellular matrix reorganization during wound healing and its impact on abnormal scarring,” Adv. Wound Care (New Rochelle) 4(3), 119–136 (2015).
[Crossref] [PubMed]

Jeschke, M. G.

A. I. Arno, G. G. Gauglitz, J. P. Barret, and M. G. Jeschke, “Up-to-date approach to manage keloids and hypertrophic scars: a useful guide,” Burns 40(7), 1255–1266 (2014).
[Crossref] [PubMed]

A. Abdullahi, S. Amini-Nik, and M. G. Jeschke, “Animal models in burn research,” Cell. Mol. Life Sci. 71(17), 3241–3255 (2014).
[Crossref] [PubMed]

Jiao, H.

J. Wang, J. Ding, H. Jiao, D. Honardoust, M. Momtazi, H. A. Shankowsky, and E. E. Tredget, “Human hypertrophic scar-like nude mouse model: characterization of the molecular and cellular biology of the scar process,” Wound Repair Regen. 19(2), 274–285 (2011).
[Crossref] [PubMed]

Kang, H. W.

M. Kim, H. Kim, and H. W. Kang, “Comparative evaluations of hypertrophic scar formation in in vivo models,” Lasers Surg. Med. 50(6), 661–668 (2018).
[Crossref] [PubMed]

Kempf, M.

L. Cuttle, M. Kempf, G. E. Phillips, J. Mill, M. T. Hayes, J. F. Fraser, X.-Q. Wang, and R. M. Kimble, “A porcine deep dermal partial thickness burn model with hypertrophic scarring,” Burns 32(7), 806–820 (2006).
[Crossref] [PubMed]

Khanna, S.

S. Roy, S. Biswas, S. Khanna, G. Gordillo, V. Bergdall, J. Green, C. B. Marsh, L. J. Gould, and C. K. Sen, “Characterization of a preclinical model of chronic ischemic wound,” Physiol. Genomics 37(3), 211–224 (2009).
[Crossref] [PubMed]

Kim, H.

M. Kim, H. Kim, and H. W. Kang, “Comparative evaluations of hypertrophic scar formation in in vivo models,” Lasers Surg. Med. 50(6), 661–668 (2018).
[Crossref] [PubMed]

Kim, M.

M. Kim, H. Kim, and H. W. Kang, “Comparative evaluations of hypertrophic scar formation in in vivo models,” Lasers Surg. Med. 50(6), 661–668 (2018).
[Crossref] [PubMed]

Kimble, R. M.

L. Cuttle, M. Kempf, G. E. Phillips, J. Mill, M. T. Hayes, J. F. Fraser, X.-Q. Wang, and R. M. Kimble, “A porcine deep dermal partial thickness burn model with hypertrophic scarring,” Burns 32(7), 806–820 (2006).
[Crossref] [PubMed]

Kirsner, R. S.

R. S. Kirsner and W. H. Eaglstein, “The wound healing process,” Dermatol. Clin. 11(4), 629–640 (1993).
[Crossref] [PubMed]

Kitten, G. T.

G. V. Oliveira, H. K. Hawkins, D. Chinkes, A. Burke, A. L. P. Tavares, M. Ramos-e-Silva, T. B. Albrecht, G. T. Kitten, and D. N. Herndon, “Hypertrophic versus non hypertrophic scars compared by immunohistochemistry and laser confocal microscopy: type I and III collagens,” Int. Wound J. 6(6), 445–452 (2009).
[Crossref] [PubMed]

Kumar, A.

S. Velidandla, P. Gaikwad, K. K. R. Ealla, K. D. Bhorgonde, P. Hunsingi, and A. Kumar, “Histochemical analysis of polarizing colors of collagen using Picrosirius Red staining in oral submucous fibrosis,” J. Int. Oral Health 6(1), 33–38 (2014).
[PubMed]

Laurent, G. J.

S. E. Mutsaers, J. E. Bishop, G. McGrouther, and G. J. Laurent, “Mechanisms of tissue repair: from wound healing to fibrosis,” Int. J. Biochem. Cell Biol. 29(1), 5–17 (1997).
[Crossref] [PubMed]

Laverdet, B.

I. A. Darby, B. Laverdet, F. Bonté, and A. Desmoulière, “Fibroblasts and myofibroblasts in wound healing,” Clin. Cosmet. Investig. Dermatol. 7, 301–311 (2014).
[PubMed]

Leung, P.-C.

X. Chen, L.-H. Peng, N. Li, Q.-M. Li, P. Li, K.-P. Fung, P.-C. Leung, and J.-Q. Gao, “The healing and anti-scar effects of astragaloside IV on the wound repair in vitro and in vivo,” J. Ethnopharmacol. 139(3), 721–727 (2012).
[Crossref] [PubMed]

Levine, J. P.

R. D. Galiano, J. Michaels, M. Dobryansky, J. P. Levine, and G. C. Gurtner, “Quantitative and reproducible murine model of excisional wound healing,” Wound Repair Regen. 12(4), 485–492 (2004).
[Crossref] [PubMed]

Li, N.

X. Chen, L.-H. Peng, N. Li, Q.-M. Li, P. Li, K.-P. Fung, P.-C. Leung, and J.-Q. Gao, “The healing and anti-scar effects of astragaloside IV on the wound repair in vitro and in vivo,” J. Ethnopharmacol. 139(3), 721–727 (2012).
[Crossref] [PubMed]

Li, P.

X. Chen, L.-H. Peng, N. Li, Q.-M. Li, P. Li, K.-P. Fung, P.-C. Leung, and J.-Q. Gao, “The healing and anti-scar effects of astragaloside IV on the wound repair in vitro and in vivo,” J. Ethnopharmacol. 139(3), 721–727 (2012).
[Crossref] [PubMed]

P. Li, P. Liu, R. P. Xiong, X. Y. Chen, Y. Zhao, W. P. Lu, X. Liu, Y. L. Ning, N. Yang, and Y. G. Zhou, “Ski, a modulator of wound healing and scar formation in the rat skin and rabbit ear,” J. Pathol. 223(5), 659–671 (2011).
[Crossref] [PubMed]

Li, Q.-M.

X. Chen, L.-H. Peng, N. Li, Q.-M. Li, P. Li, K.-P. Fung, P.-C. Leung, and J.-Q. Gao, “The healing and anti-scar effects of astragaloside IV on the wound repair in vitro and in vivo,” J. Ethnopharmacol. 139(3), 721–727 (2012).
[Crossref] [PubMed]

Liu, P.

P. Li, P. Liu, R. P. Xiong, X. Y. Chen, Y. Zhao, W. P. Lu, X. Liu, Y. L. Ning, N. Yang, and Y. G. Zhou, “Ski, a modulator of wound healing and scar formation in the rat skin and rabbit ear,” J. Pathol. 223(5), 659–671 (2011).
[Crossref] [PubMed]

Liu, X.

Q. Zhai, F. Zhou, M. M. Ibrahim, J. Zhao, X. Liu, J. Wu, L. Chen, and S. Qi, “An immune-competent rat split thickness skin graft model: useful tools to develop new therapies to improve skin graft survival,” Am. J. Transl. Res. 10(6), 1600–1610 (2018).
[PubMed]

P. Li, P. Liu, R. P. Xiong, X. Y. Chen, Y. Zhao, W. P. Lu, X. Liu, Y. L. Ning, N. Yang, and Y. G. Zhou, “Ski, a modulator of wound healing and scar formation in the rat skin and rabbit ear,” J. Pathol. 223(5), 659–671 (2011).
[Crossref] [PubMed]

Loh, S. A.

S. Aarabi, K. A. Bhatt, Y. Shi, J. Paterno, E. I. Chang, S. A. Loh, J. W. Holmes, M. T. Longaker, H. Yee, and G. C. Gurtner, “Mechanical load initiates hypertrophic scar formation through decreased cellular apoptosis,” FASEB J. 21(12), 3250–3261 (2007).
[Crossref] [PubMed]

Longaker, M. T.

V. W. Wong, M. Sorkin, J. P. Glotzbach, M. T. Longaker, and G. C. Gurtner, “Surgical approaches to create murine models of human wound healing,” J. Biomed. Biotechnol. 2011, 969618 (2011).
[Crossref] [PubMed]

S. Aarabi, K. A. Bhatt, Y. Shi, J. Paterno, E. I. Chang, S. A. Loh, J. W. Holmes, M. T. Longaker, H. Yee, and G. C. Gurtner, “Mechanical load initiates hypertrophic scar formation through decreased cellular apoptosis,” FASEB J. 21(12), 3250–3261 (2007).
[Crossref] [PubMed]

Lu, W. P.

P. Li, P. Liu, R. P. Xiong, X. Y. Chen, Y. Zhao, W. P. Lu, X. Liu, Y. L. Ning, N. Yang, and Y. G. Zhou, “Ski, a modulator of wound healing and scar formation in the rat skin and rabbit ear,” J. Pathol. 223(5), 659–671 (2011).
[Crossref] [PubMed]

MacLeod, S. M.

M. P. Hillmer and S. M. MacLeod, “Experimental keloid scar models: a review of methodological issues,” J. Cutan. Med. Surg. 6(4), 354–359 (2002).
[Crossref] [PubMed]

Malewski, P.

O. Bock, G. Schmid-Ott, P. Malewski, and U. Mrowietz, “Quality of life of patients with keloid and hypertrophic scarring,” Arch. Dermatol. Res. 297(10), 433–438 (2006).
[Crossref] [PubMed]

Malskat, W. S.

A. A. Poluektova, W. S. Malskat, M. J. van Gemert, M. E. Vuylsteke, C. M. Bruijninckx, H. A. Neumann, and C. W. van der Geld, “Some controversies in endovenous laser ablation of varicose veins addressed by optical-thermal mathematical modeling,” Lasers Med. Sci. 29(2), 441–452 (2014).
[Crossref] [PubMed]

Mari, E.

N. Boucard, C. Viton, D. Agay, E. Mari, T. Roger, Y. Chancerelle, and A. Domard, “The use of physical hydrogels of chitosan for skin regeneration following third-degree burns,” Biomaterials 28(24), 3478–3488 (2007).
[Crossref] [PubMed]

Marsh, C. B.

S. Roy, S. Biswas, S. Khanna, G. Gordillo, V. Bergdall, J. Green, C. B. Marsh, L. J. Gould, and C. K. Sen, “Characterization of a preclinical model of chronic ischemic wound,” Physiol. Genomics 37(3), 211–224 (2009).
[Crossref] [PubMed]

McFarland, K. L.

D. M. DeBruler, B. N. Blackstone, K. L. McFarland, M. E. Baumann, D. M. Supp, J. K. Bailey, and H. M. Powell, “Effect of skin graft thickness on scar development in a porcine burn model,” Burns 44(4), 917–930 (2018).
[Crossref] [PubMed]

McGrouther, D. A.

A. Bayat and D. A. McGrouther, “Clinical management of skin scarring,” Skinmed 4(3), 165–173 (2005).
[Crossref] [PubMed]

McGrouther, G.

S. E. Mutsaers, J. E. Bishop, G. McGrouther, and G. J. Laurent, “Mechanisms of tissue repair: from wound healing to fibrosis,” Int. J. Biochem. Cell Biol. 29(1), 5–17 (1997).
[Crossref] [PubMed]

Micallef, L.

V. Sarrazy, F. Billet, L. Micallef, B. Coulomb, and A. Desmoulière, “Mechanisms of pathological scarring: role of myofibroblasts and current developments,” Wound Repair Regen. 19(Suppl 1), s10–s15 (2011).
[Crossref] [PubMed]

Michaels, J.

R. D. Galiano, J. Michaels, M. Dobryansky, J. P. Levine, and G. C. Gurtner, “Quantitative and reproducible murine model of excisional wound healing,” Wound Repair Regen. 12(4), 485–492 (2004).
[Crossref] [PubMed]

Middelkoop, E.

N. E. Van Loey, M. Bremer, A. W. Faber, E. Middelkoop, M. K. Nieuwenhuis, and R. Group, “Itching following burns: epidemiology and predictors,” Br. J. Dermatol. 158(1), 95–100 (2008).
[PubMed]

Mill, J.

L. Cuttle, M. Kempf, G. E. Phillips, J. Mill, M. T. Hayes, J. F. Fraser, X.-Q. Wang, and R. M. Kimble, “A porcine deep dermal partial thickness burn model with hypertrophic scarring,” Burns 32(7), 806–820 (2006).
[Crossref] [PubMed]

Mitsunaga Junior, J. K.

J. K. Mitsunaga Junior, A. Gragnani, M. L. C. Ramos, and L. M. Ferreira, “Rat an experimental model for burns: a systematic review,” Acta Cir. Bras. 27(6), 417–423 (2012).
[Crossref] [PubMed]

Mogford, J. H.

A. S. Saulis, J. H. Mogford, T. A. Mustoe, E. E. Tredget, and A. Anzarut, “Effect of Mederma on hypertrophic scarring in the rabbit ear model,” Plast. Reconstr. Surg. 110(1), 177–183, discussion 184–186 (2002).
[Crossref] [PubMed]

Momtazi, M.

J. Wang, J. Ding, H. Jiao, D. Honardoust, M. Momtazi, H. A. Shankowsky, and E. E. Tredget, “Human hypertrophic scar-like nude mouse model: characterization of the molecular and cellular biology of the scar process,” Wound Repair Regen. 19(2), 274–285 (2011).
[Crossref] [PubMed]

Mrowietz, U.

O. Bock, G. Schmid-Ott, P. Malewski, and U. Mrowietz, “Quality of life of patients with keloid and hypertrophic scarring,” Arch. Dermatol. Res. 297(10), 433–438 (2006).
[Crossref] [PubMed]

Mustoe, T. A.

A. S. Saulis, J. H. Mogford, T. A. Mustoe, E. E. Tredget, and A. Anzarut, “Effect of Mederma on hypertrophic scarring in the rabbit ear model,” Plast. Reconstr. Surg. 110(1), 177–183, discussion 184–186 (2002).
[Crossref] [PubMed]

Mutsaers, S. E.

S. E. Mutsaers, J. E. Bishop, G. McGrouther, and G. J. Laurent, “Mechanisms of tissue repair: from wound healing to fibrosis,” Int. J. Biochem. Cell Biol. 29(1), 5–17 (1997).
[Crossref] [PubMed]

Myokei, Y.

T. Hayakawa, Y. Hashimoto, Y. Myokei, H. Aoyama, and Y. Izawa, “Changes in type of collagen during the development of human post-burn hypertrophic scars,” Clin. Chim. Acta 93(1), 119–125 (1979).
[Crossref] [PubMed]

Neumann, H. A.

A. A. Poluektova, W. S. Malskat, M. J. van Gemert, M. E. Vuylsteke, C. M. Bruijninckx, H. A. Neumann, and C. W. van der Geld, “Some controversies in endovenous laser ablation of varicose veins addressed by optical-thermal mathematical modeling,” Lasers Med. Sci. 29(2), 441–452 (2014).
[Crossref] [PubMed]

Nieuwenhuis, M. K.

N. E. Van Loey, M. Bremer, A. W. Faber, E. Middelkoop, M. K. Nieuwenhuis, and R. Group, “Itching following burns: epidemiology and predictors,” Br. J. Dermatol. 158(1), 95–100 (2008).
[PubMed]

Ning, Y. L.

P. Li, P. Liu, R. P. Xiong, X. Y. Chen, Y. Zhao, W. P. Lu, X. Liu, Y. L. Ning, N. Yang, and Y. G. Zhou, “Ski, a modulator of wound healing and scar formation in the rat skin and rabbit ear,” J. Pathol. 223(5), 659–671 (2011).
[Crossref] [PubMed]

Ogawa, R.

R. Ogawa, “Mechanobiology of scarring,” Wound Repair Regen. 19(Suppl 1), s2–s9 (2011).
[Crossref] [PubMed]

Oliveira, G. V.

G. V. Oliveira, H. K. Hawkins, D. Chinkes, A. Burke, A. L. P. Tavares, M. Ramos-e-Silva, T. B. Albrecht, G. T. Kitten, and D. N. Herndon, “Hypertrophic versus non hypertrophic scars compared by immunohistochemistry and laser confocal microscopy: type I and III collagens,” Int. Wound J. 6(6), 445–452 (2009).
[Crossref] [PubMed]

Paterno, J.

S. Aarabi, K. A. Bhatt, Y. Shi, J. Paterno, E. I. Chang, S. A. Loh, J. W. Holmes, M. T. Longaker, H. Yee, and G. C. Gurtner, “Mechanical load initiates hypertrophic scar formation through decreased cellular apoptosis,” FASEB J. 21(12), 3250–3261 (2007).
[Crossref] [PubMed]

Peng, L.-H.

X. Chen, L.-H. Peng, N. Li, Q.-M. Li, P. Li, K.-P. Fung, P.-C. Leung, and J.-Q. Gao, “The healing and anti-scar effects of astragaloside IV on the wound repair in vitro and in vivo,” J. Ethnopharmacol. 139(3), 721–727 (2012).
[Crossref] [PubMed]

Phillips, G. E.

L. Cuttle, M. Kempf, G. E. Phillips, J. Mill, M. T. Hayes, J. F. Fraser, X.-Q. Wang, and R. M. Kimble, “A porcine deep dermal partial thickness burn model with hypertrophic scarring,” Burns 32(7), 806–820 (2006).
[Crossref] [PubMed]

Pinheiro, A. L. B.

R. A. O. Grbavac, E. B. Veeck, J.-P. Bernard, L. M. P. Ramalho, and A. L. B. Pinheiro, “Effects of laser therapy in CO2 laser wounds in rats,” Photomed. Laser Surg. 24(3), 389–396 (2006).
[Crossref] [PubMed]

Poluektova, A. A.

A. A. Poluektova, W. S. Malskat, M. J. van Gemert, M. E. Vuylsteke, C. M. Bruijninckx, H. A. Neumann, and C. W. van der Geld, “Some controversies in endovenous laser ablation of varicose veins addressed by optical-thermal mathematical modeling,” Lasers Med. Sci. 29(2), 441–452 (2014).
[Crossref] [PubMed]

Powell, H. M.

D. M. DeBruler, B. N. Blackstone, K. L. McFarland, M. E. Baumann, D. M. Supp, J. K. Bailey, and H. M. Powell, “Effect of skin graft thickness on scar development in a porcine burn model,” Burns 44(4), 917–930 (2018).
[Crossref] [PubMed]

Qi, S.

Q. Zhai, F. Zhou, M. M. Ibrahim, J. Zhao, X. Liu, J. Wu, L. Chen, and S. Qi, “An immune-competent rat split thickness skin graft model: useful tools to develop new therapies to improve skin graft survival,” Am. J. Transl. Res. 10(6), 1600–1610 (2018).
[PubMed]

Ramalho, L. M. P.

R. A. O. Grbavac, E. B. Veeck, J.-P. Bernard, L. M. P. Ramalho, and A. L. B. Pinheiro, “Effects of laser therapy in CO2 laser wounds in rats,” Photomed. Laser Surg. 24(3), 389–396 (2006).
[Crossref] [PubMed]

Ramos, M. L. C.

J. K. Mitsunaga Junior, A. Gragnani, M. L. C. Ramos, and L. M. Ferreira, “Rat an experimental model for burns: a systematic review,” Acta Cir. Bras. 27(6), 417–423 (2012).
[Crossref] [PubMed]

M. L. C. Ramos, A. Gragnani, and L. M. Ferreira, “Is there an ideal animal model to study hypertrophic scarring?” J. Burn Care Res. 29(2), 363–368 (2008).
[Crossref] [PubMed]

Ramos-e-Silva, M.

G. V. Oliveira, H. K. Hawkins, D. Chinkes, A. Burke, A. L. P. Tavares, M. Ramos-e-Silva, T. B. Albrecht, G. T. Kitten, and D. N. Herndon, “Hypertrophic versus non hypertrophic scars compared by immunohistochemistry and laser confocal microscopy: type I and III collagens,” Int. Wound J. 6(6), 445–452 (2009).
[Crossref] [PubMed]

Riaz, Y.

Y. Riaz, H. T. Cook, A. Wangoo, B. Glenville, and R. J. Shaw, “Type 1 procollagen as a marker of severity of scarring after sternotomy: effects of topical corticosteroids,” J. Clin. Pathol. 47(10), 892–899 (1994).
[Crossref] [PubMed]

Roger, T.

N. Boucard, C. Viton, D. Agay, E. Mari, T. Roger, Y. Chancerelle, and A. Domard, “The use of physical hydrogels of chitosan for skin regeneration following third-degree burns,” Biomaterials 28(24), 3478–3488 (2007).
[Crossref] [PubMed]

Roy, S.

S. Roy, S. Biswas, S. Khanna, G. Gordillo, V. Bergdall, J. Green, C. B. Marsh, L. J. Gould, and C. K. Sen, “Characterization of a preclinical model of chronic ischemic wound,” Physiol. Genomics 37(3), 211–224 (2009).
[Crossref] [PubMed]

Sarrazy, V.

V. Sarrazy, F. Billet, L. Micallef, B. Coulomb, and A. Desmoulière, “Mechanisms of pathological scarring: role of myofibroblasts and current developments,” Wound Repair Regen. 19(Suppl 1), s10–s15 (2011).
[Crossref] [PubMed]

Saulis, A. S.

A. S. Saulis, J. H. Mogford, T. A. Mustoe, E. E. Tredget, and A. Anzarut, “Effect of Mederma on hypertrophic scarring in the rabbit ear model,” Plast. Reconstr. Surg. 110(1), 177–183, discussion 184–186 (2002).
[Crossref] [PubMed]

Schmid-Ott, G.

O. Bock, G. Schmid-Ott, P. Malewski, and U. Mrowietz, “Quality of life of patients with keloid and hypertrophic scarring,” Arch. Dermatol. Res. 297(10), 433–438 (2006).
[Crossref] [PubMed]

Sen, C. K.

S. Roy, S. Biswas, S. Khanna, G. Gordillo, V. Bergdall, J. Green, C. B. Marsh, L. J. Gould, and C. K. Sen, “Characterization of a preclinical model of chronic ischemic wound,” Physiol. Genomics 37(3), 211–224 (2009).
[Crossref] [PubMed]

Shankowsky, H. A.

J. Wang, J. Ding, H. Jiao, D. Honardoust, M. Momtazi, H. A. Shankowsky, and E. E. Tredget, “Human hypertrophic scar-like nude mouse model: characterization of the molecular and cellular biology of the scar process,” Wound Repair Regen. 19(2), 274–285 (2011).
[Crossref] [PubMed]

Shaw, R. J.

Y. Riaz, H. T. Cook, A. Wangoo, B. Glenville, and R. J. Shaw, “Type 1 procollagen as a marker of severity of scarring after sternotomy: effects of topical corticosteroids,” J. Clin. Pathol. 47(10), 892–899 (1994).
[Crossref] [PubMed]

Shi, Y.

S. Aarabi, K. A. Bhatt, Y. Shi, J. Paterno, E. I. Chang, S. A. Loh, J. W. Holmes, M. T. Longaker, H. Yee, and G. C. Gurtner, “Mechanical load initiates hypertrophic scar formation through decreased cellular apoptosis,” FASEB J. 21(12), 3250–3261 (2007).
[Crossref] [PubMed]

Singer, A. J.

A. J. Singer and R. A. Clark, “Cutaneous wound healing,” N. Engl. J. Med. 341(10), 738–746 (1999).
[Crossref] [PubMed]

Smitha, B.

B. Smitha and M. Donoghue, “Clinical and histopathological evaluation of collagen fiber orientation in patients with oral submucous fibrosis,” J. Oral Maxillofac. Pathol. 15(2), 154–160 (2011).
[Crossref] [PubMed]

Smrkolj, V.

T. Velnar, T. Bailey, and V. Smrkolj, “The wound healing process: an overview of the cellular and molecular mechanisms,” J. Int. Med. Res. 37(5), 1528–1542 (2009).
[Crossref] [PubMed]

Sorkin, M.

V. W. Wong, M. Sorkin, J. P. Glotzbach, M. T. Longaker, and G. C. Gurtner, “Surgical approaches to create murine models of human wound healing,” J. Biomed. Biotechnol. 2011, 969618 (2011).
[Crossref] [PubMed]

Sund, B.

B. Sund and A. K. Arrow, “New developments in wound care,” Clin. Rep. 45, 379 (2000).

Supp, D. M.

D. M. DeBruler, B. N. Blackstone, K. L. McFarland, M. E. Baumann, D. M. Supp, J. K. Bailey, and H. M. Powell, “Effect of skin graft thickness on scar development in a porcine burn model,” Burns 44(4), 917–930 (2018).
[Crossref] [PubMed]

Tavares, A. L. P.

G. V. Oliveira, H. K. Hawkins, D. Chinkes, A. Burke, A. L. P. Tavares, M. Ramos-e-Silva, T. B. Albrecht, G. T. Kitten, and D. N. Herndon, “Hypertrophic versus non hypertrophic scars compared by immunohistochemistry and laser confocal microscopy: type I and III collagens,” Int. Wound J. 6(6), 445–452 (2009).
[Crossref] [PubMed]

Tredget, E. E.

J. Wang, J. Ding, H. Jiao, D. Honardoust, M. Momtazi, H. A. Shankowsky, and E. E. Tredget, “Human hypertrophic scar-like nude mouse model: characterization of the molecular and cellular biology of the scar process,” Wound Repair Regen. 19(2), 274–285 (2011).
[Crossref] [PubMed]

A. S. Saulis, J. H. Mogford, T. A. Mustoe, E. E. Tredget, and A. Anzarut, “Effect of Mederma on hypertrophic scarring in the rabbit ear model,” Plast. Reconstr. Surg. 110(1), 177–183, discussion 184–186 (2002).
[Crossref] [PubMed]

van der Geld, C. W.

A. A. Poluektova, W. S. Malskat, M. J. van Gemert, M. E. Vuylsteke, C. M. Bruijninckx, H. A. Neumann, and C. W. van der Geld, “Some controversies in endovenous laser ablation of varicose veins addressed by optical-thermal mathematical modeling,” Lasers Med. Sci. 29(2), 441–452 (2014).
[Crossref] [PubMed]

van Gemert, M. J.

A. A. Poluektova, W. S. Malskat, M. J. van Gemert, M. E. Vuylsteke, C. M. Bruijninckx, H. A. Neumann, and C. W. van der Geld, “Some controversies in endovenous laser ablation of varicose veins addressed by optical-thermal mathematical modeling,” Lasers Med. Sci. 29(2), 441–452 (2014).
[Crossref] [PubMed]

Van Loey, N. E.

N. E. Van Loey, M. Bremer, A. W. Faber, E. Middelkoop, M. K. Nieuwenhuis, and R. Group, “Itching following burns: epidemiology and predictors,” Br. J. Dermatol. 158(1), 95–100 (2008).
[PubMed]

Veeck, E. B.

R. A. O. Grbavac, E. B. Veeck, J.-P. Bernard, L. M. P. Ramalho, and A. L. B. Pinheiro, “Effects of laser therapy in CO2 laser wounds in rats,” Photomed. Laser Surg. 24(3), 389–396 (2006).
[Crossref] [PubMed]

Velidandla, S.

S. Velidandla, P. Gaikwad, K. K. R. Ealla, K. D. Bhorgonde, P. Hunsingi, and A. Kumar, “Histochemical analysis of polarizing colors of collagen using Picrosirius Red staining in oral submucous fibrosis,” J. Int. Oral Health 6(1), 33–38 (2014).
[PubMed]

Velnar, T.

T. Velnar, T. Bailey, and V. Smrkolj, “The wound healing process: an overview of the cellular and molecular mechanisms,” J. Int. Med. Res. 37(5), 1528–1542 (2009).
[Crossref] [PubMed]

Viton, C.

N. Boucard, C. Viton, D. Agay, E. Mari, T. Roger, Y. Chancerelle, and A. Domard, “The use of physical hydrogels of chitosan for skin regeneration following third-degree burns,” Biomaterials 28(24), 3478–3488 (2007).
[Crossref] [PubMed]

Vuylsteke, M. E.

A. A. Poluektova, W. S. Malskat, M. J. van Gemert, M. E. Vuylsteke, C. M. Bruijninckx, H. A. Neumann, and C. W. van der Geld, “Some controversies in endovenous laser ablation of varicose veins addressed by optical-thermal mathematical modeling,” Lasers Med. Sci. 29(2), 441–452 (2014).
[Crossref] [PubMed]

Wang, J.

J. Wang, J. Ding, H. Jiao, D. Honardoust, M. Momtazi, H. A. Shankowsky, and E. E. Tredget, “Human hypertrophic scar-like nude mouse model: characterization of the molecular and cellular biology of the scar process,” Wound Repair Regen. 19(2), 274–285 (2011).
[Crossref] [PubMed]

Wang, X.-Q.

L. Cuttle, M. Kempf, G. E. Phillips, J. Mill, M. T. Hayes, J. F. Fraser, X.-Q. Wang, and R. M. Kimble, “A porcine deep dermal partial thickness burn model with hypertrophic scarring,” Burns 32(7), 806–820 (2006).
[Crossref] [PubMed]

Wangoo, A.

Y. Riaz, H. T. Cook, A. Wangoo, B. Glenville, and R. J. Shaw, “Type 1 procollagen as a marker of severity of scarring after sternotomy: effects of topical corticosteroids,” J. Clin. Pathol. 47(10), 892–899 (1994).
[Crossref] [PubMed]

Wong, V. W.

V. W. Wong, M. Sorkin, J. P. Glotzbach, M. T. Longaker, and G. C. Gurtner, “Surgical approaches to create murine models of human wound healing,” J. Biomed. Biotechnol. 2011, 969618 (2011).
[Crossref] [PubMed]

Wu, J.

Q. Zhai, F. Zhou, M. M. Ibrahim, J. Zhao, X. Liu, J. Wu, L. Chen, and S. Qi, “An immune-competent rat split thickness skin graft model: useful tools to develop new therapies to improve skin graft survival,” Am. J. Transl. Res. 10(6), 1600–1610 (2018).
[PubMed]

Xiong, R. P.

P. Li, P. Liu, R. P. Xiong, X. Y. Chen, Y. Zhao, W. P. Lu, X. Liu, Y. L. Ning, N. Yang, and Y. G. Zhou, “Ski, a modulator of wound healing and scar formation in the rat skin and rabbit ear,” J. Pathol. 223(5), 659–671 (2011).
[Crossref] [PubMed]

Xue, M.

M. Xue and C. J. Jackson, “Extracellular matrix reorganization during wound healing and its impact on abnormal scarring,” Adv. Wound Care (New Rochelle) 4(3), 119–136 (2015).
[Crossref] [PubMed]

Yang, N.

P. Li, P. Liu, R. P. Xiong, X. Y. Chen, Y. Zhao, W. P. Lu, X. Liu, Y. L. Ning, N. Yang, and Y. G. Zhou, “Ski, a modulator of wound healing and scar formation in the rat skin and rabbit ear,” J. Pathol. 223(5), 659–671 (2011).
[Crossref] [PubMed]

Yee, H.

S. Aarabi, K. A. Bhatt, Y. Shi, J. Paterno, E. I. Chang, S. A. Loh, J. W. Holmes, M. T. Longaker, H. Yee, and G. C. Gurtner, “Mechanical load initiates hypertrophic scar formation through decreased cellular apoptosis,” FASEB J. 21(12), 3250–3261 (2007).
[Crossref] [PubMed]

Zhai, Q.

Q. Zhai, F. Zhou, M. M. Ibrahim, J. Zhao, X. Liu, J. Wu, L. Chen, and S. Qi, “An immune-competent rat split thickness skin graft model: useful tools to develop new therapies to improve skin graft survival,” Am. J. Transl. Res. 10(6), 1600–1610 (2018).
[PubMed]

Zhao, J.

Q. Zhai, F. Zhou, M. M. Ibrahim, J. Zhao, X. Liu, J. Wu, L. Chen, and S. Qi, “An immune-competent rat split thickness skin graft model: useful tools to develop new therapies to improve skin graft survival,” Am. J. Transl. Res. 10(6), 1600–1610 (2018).
[PubMed]

Zhao, Y.

P. Li, P. Liu, R. P. Xiong, X. Y. Chen, Y. Zhao, W. P. Lu, X. Liu, Y. L. Ning, N. Yang, and Y. G. Zhou, “Ski, a modulator of wound healing and scar formation in the rat skin and rabbit ear,” J. Pathol. 223(5), 659–671 (2011).
[Crossref] [PubMed]

Zhou, F.

Q. Zhai, F. Zhou, M. M. Ibrahim, J. Zhao, X. Liu, J. Wu, L. Chen, and S. Qi, “An immune-competent rat split thickness skin graft model: useful tools to develop new therapies to improve skin graft survival,” Am. J. Transl. Res. 10(6), 1600–1610 (2018).
[PubMed]

Zhou, Y. G.

P. Li, P. Liu, R. P. Xiong, X. Y. Chen, Y. Zhao, W. P. Lu, X. Liu, Y. L. Ning, N. Yang, and Y. G. Zhou, “Ski, a modulator of wound healing and scar formation in the rat skin and rabbit ear,” J. Pathol. 223(5), 659–671 (2011).
[Crossref] [PubMed]

Acta Cir. Bras. (1)

J. K. Mitsunaga Junior, A. Gragnani, M. L. C. Ramos, and L. M. Ferreira, “Rat an experimental model for burns: a systematic review,” Acta Cir. Bras. 27(6), 417–423 (2012).
[Crossref] [PubMed]

Adv. Wound Care (New Rochelle) (1)

M. Xue and C. J. Jackson, “Extracellular matrix reorganization during wound healing and its impact on abnormal scarring,” Adv. Wound Care (New Rochelle) 4(3), 119–136 (2015).
[Crossref] [PubMed]

Am. J. Transl. Res. (1)

Q. Zhai, F. Zhou, M. M. Ibrahim, J. Zhao, X. Liu, J. Wu, L. Chen, and S. Qi, “An immune-competent rat split thickness skin graft model: useful tools to develop new therapies to improve skin graft survival,” Am. J. Transl. Res. 10(6), 1600–1610 (2018).
[PubMed]

Arch. Dermatol. Res. (1)

O. Bock, G. Schmid-Ott, P. Malewski, and U. Mrowietz, “Quality of life of patients with keloid and hypertrophic scarring,” Arch. Dermatol. Res. 297(10), 433–438 (2006).
[Crossref] [PubMed]

Biomaterials (1)

N. Boucard, C. Viton, D. Agay, E. Mari, T. Roger, Y. Chancerelle, and A. Domard, “The use of physical hydrogels of chitosan for skin regeneration following third-degree burns,” Biomaterials 28(24), 3478–3488 (2007).
[Crossref] [PubMed]

Br. J. Dermatol. (1)

N. E. Van Loey, M. Bremer, A. W. Faber, E. Middelkoop, M. K. Nieuwenhuis, and R. Group, “Itching following burns: epidemiology and predictors,” Br. J. Dermatol. 158(1), 95–100 (2008).
[PubMed]

Burns (3)

L. Cuttle, M. Kempf, G. E. Phillips, J. Mill, M. T. Hayes, J. F. Fraser, X.-Q. Wang, and R. M. Kimble, “A porcine deep dermal partial thickness burn model with hypertrophic scarring,” Burns 32(7), 806–820 (2006).
[Crossref] [PubMed]

D. M. DeBruler, B. N. Blackstone, K. L. McFarland, M. E. Baumann, D. M. Supp, J. K. Bailey, and H. M. Powell, “Effect of skin graft thickness on scar development in a porcine burn model,” Burns 44(4), 917–930 (2018).
[Crossref] [PubMed]

A. I. Arno, G. G. Gauglitz, J. P. Barret, and M. G. Jeschke, “Up-to-date approach to manage keloids and hypertrophic scars: a useful guide,” Burns 40(7), 1255–1266 (2014).
[Crossref] [PubMed]

Cell. Mol. Life Sci. (1)

A. Abdullahi, S. Amini-Nik, and M. G. Jeschke, “Animal models in burn research,” Cell. Mol. Life Sci. 71(17), 3241–3255 (2014).
[Crossref] [PubMed]

Clin. Chim. Acta (1)

T. Hayakawa, Y. Hashimoto, Y. Myokei, H. Aoyama, and Y. Izawa, “Changes in type of collagen during the development of human post-burn hypertrophic scars,” Clin. Chim. Acta 93(1), 119–125 (1979).
[Crossref] [PubMed]

Clin. Cosmet. Investig. Dermatol. (1)

I. A. Darby, B. Laverdet, F. Bonté, and A. Desmoulière, “Fibroblasts and myofibroblasts in wound healing,” Clin. Cosmet. Investig. Dermatol. 7, 301–311 (2014).
[PubMed]

Clin. Rep. (1)

B. Sund and A. K. Arrow, “New developments in wound care,” Clin. Rep. 45, 379 (2000).

Dermatol. Clin. (1)

R. S. Kirsner and W. H. Eaglstein, “The wound healing process,” Dermatol. Clin. 11(4), 629–640 (1993).
[Crossref] [PubMed]

FASEB J. (1)

S. Aarabi, K. A. Bhatt, Y. Shi, J. Paterno, E. I. Chang, S. A. Loh, J. W. Holmes, M. T. Longaker, H. Yee, and G. C. Gurtner, “Mechanical load initiates hypertrophic scar formation through decreased cellular apoptosis,” FASEB J. 21(12), 3250–3261 (2007).
[Crossref] [PubMed]

Int. J. Biochem. Cell Biol. (1)

S. E. Mutsaers, J. E. Bishop, G. McGrouther, and G. J. Laurent, “Mechanisms of tissue repair: from wound healing to fibrosis,” Int. J. Biochem. Cell Biol. 29(1), 5–17 (1997).
[Crossref] [PubMed]

Int. Wound J. (1)

G. V. Oliveira, H. K. Hawkins, D. Chinkes, A. Burke, A. L. P. Tavares, M. Ramos-e-Silva, T. B. Albrecht, G. T. Kitten, and D. N. Herndon, “Hypertrophic versus non hypertrophic scars compared by immunohistochemistry and laser confocal microscopy: type I and III collagens,” Int. Wound J. 6(6), 445–452 (2009).
[Crossref] [PubMed]

J. Biomed. Biotechnol. (1)

V. W. Wong, M. Sorkin, J. P. Glotzbach, M. T. Longaker, and G. C. Gurtner, “Surgical approaches to create murine models of human wound healing,” J. Biomed. Biotechnol. 2011, 969618 (2011).
[Crossref] [PubMed]

J. Burn Care Res. (1)

M. L. C. Ramos, A. Gragnani, and L. M. Ferreira, “Is there an ideal animal model to study hypertrophic scarring?” J. Burn Care Res. 29(2), 363–368 (2008).
[Crossref] [PubMed]

J. Clin. Pathol. (1)

Y. Riaz, H. T. Cook, A. Wangoo, B. Glenville, and R. J. Shaw, “Type 1 procollagen as a marker of severity of scarring after sternotomy: effects of topical corticosteroids,” J. Clin. Pathol. 47(10), 892–899 (1994).
[Crossref] [PubMed]

J. Cutan. Med. Surg. (1)

M. P. Hillmer and S. M. MacLeod, “Experimental keloid scar models: a review of methodological issues,” J. Cutan. Med. Surg. 6(4), 354–359 (2002).
[Crossref] [PubMed]

J. Ethnopharmacol. (1)

X. Chen, L.-H. Peng, N. Li, Q.-M. Li, P. Li, K.-P. Fung, P.-C. Leung, and J.-Q. Gao, “The healing and anti-scar effects of astragaloside IV on the wound repair in vitro and in vivo,” J. Ethnopharmacol. 139(3), 721–727 (2012).
[Crossref] [PubMed]

J. Int. Med. Res. (1)

T. Velnar, T. Bailey, and V. Smrkolj, “The wound healing process: an overview of the cellular and molecular mechanisms,” J. Int. Med. Res. 37(5), 1528–1542 (2009).
[Crossref] [PubMed]

J. Int. Oral Health (1)

S. Velidandla, P. Gaikwad, K. K. R. Ealla, K. D. Bhorgonde, P. Hunsingi, and A. Kumar, “Histochemical analysis of polarizing colors of collagen using Picrosirius Red staining in oral submucous fibrosis,” J. Int. Oral Health 6(1), 33–38 (2014).
[PubMed]

J. Oral Maxillofac. Pathol. (1)

B. Smitha and M. Donoghue, “Clinical and histopathological evaluation of collagen fiber orientation in patients with oral submucous fibrosis,” J. Oral Maxillofac. Pathol. 15(2), 154–160 (2011).
[Crossref] [PubMed]

J. Pathol. (1)

P. Li, P. Liu, R. P. Xiong, X. Y. Chen, Y. Zhao, W. P. Lu, X. Liu, Y. L. Ning, N. Yang, and Y. G. Zhou, “Ski, a modulator of wound healing and scar formation in the rat skin and rabbit ear,” J. Pathol. 223(5), 659–671 (2011).
[Crossref] [PubMed]

Lasers Med. Sci. (1)

A. A. Poluektova, W. S. Malskat, M. J. van Gemert, M. E. Vuylsteke, C. M. Bruijninckx, H. A. Neumann, and C. W. van der Geld, “Some controversies in endovenous laser ablation of varicose veins addressed by optical-thermal mathematical modeling,” Lasers Med. Sci. 29(2), 441–452 (2014).
[Crossref] [PubMed]

Lasers Surg. Med. (1)

M. Kim, H. Kim, and H. W. Kang, “Comparative evaluations of hypertrophic scar formation in in vivo models,” Lasers Surg. Med. 50(6), 661–668 (2018).
[Crossref] [PubMed]

N. Engl. J. Med. (1)

A. J. Singer and R. A. Clark, “Cutaneous wound healing,” N. Engl. J. Med. 341(10), 738–746 (1999).
[Crossref] [PubMed]

Photomed. Laser Surg. (1)

R. A. O. Grbavac, E. B. Veeck, J.-P. Bernard, L. M. P. Ramalho, and A. L. B. Pinheiro, “Effects of laser therapy in CO2 laser wounds in rats,” Photomed. Laser Surg. 24(3), 389–396 (2006).
[Crossref] [PubMed]

Physiol. Genomics (1)

S. Roy, S. Biswas, S. Khanna, G. Gordillo, V. Bergdall, J. Green, C. B. Marsh, L. J. Gould, and C. K. Sen, “Characterization of a preclinical model of chronic ischemic wound,” Physiol. Genomics 37(3), 211–224 (2009).
[Crossref] [PubMed]

Plast. Reconstr. Surg. (1)

A. S. Saulis, J. H. Mogford, T. A. Mustoe, E. E. Tredget, and A. Anzarut, “Effect of Mederma on hypertrophic scarring in the rabbit ear model,” Plast. Reconstr. Surg. 110(1), 177–183, discussion 184–186 (2002).
[Crossref] [PubMed]

Skinmed (1)

A. Bayat and D. A. McGrouther, “Clinical management of skin scarring,” Skinmed 4(3), 165–173 (2005).
[Crossref] [PubMed]

Wound Repair Regen. (4)

V. Sarrazy, F. Billet, L. Micallef, B. Coulomb, and A. Desmoulière, “Mechanisms of pathological scarring: role of myofibroblasts and current developments,” Wound Repair Regen. 19(Suppl 1), s10–s15 (2011).
[Crossref] [PubMed]

J. Wang, J. Ding, H. Jiao, D. Honardoust, M. Momtazi, H. A. Shankowsky, and E. E. Tredget, “Human hypertrophic scar-like nude mouse model: characterization of the molecular and cellular biology of the scar process,” Wound Repair Regen. 19(2), 274–285 (2011).
[Crossref] [PubMed]

R. D. Galiano, J. Michaels, M. Dobryansky, J. P. Levine, and G. C. Gurtner, “Quantitative and reproducible murine model of excisional wound healing,” Wound Repair Regen. 12(4), 485–492 (2004).
[Crossref] [PubMed]

R. Ogawa, “Mechanobiology of scarring,” Wound Repair Regen. 19(Suppl 1), s2–s9 (2011).
[Crossref] [PubMed]

Other (2)

C. Theoret, “Physiology of wound healing,” Equine wound management, 1–13 (2016).
[Crossref]

S. Ghatak, V. C. Hascall, R. M. Rodriguez, R. R. Markwald, and S. Misra, “Inflammation, Wound Healing, and Fibrosis,” Wound Healing: Stem Cells Repair and Restorations, Basic and Clinical Aspects, 195 (2017).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 Experimental conditions for wound generation in SD rats: Group 1 (incision and suture), Group 2 (burn), and Group 3 (burn and suture)
Fig. 2
Fig. 2 Top-view images of wound on days 0, 7, 14, 21, and 28 after injury: (a) Group 1 (incision and suture), (b) Group 2 (burn), and (c) Group 3 (burn and suture). Scale bar = 5 mm
Fig. 3
Fig. 3 Masson’s trichrome staining of normal skin and wounded regions: (a) Group 1 (incision and suture), (b) Group 2 (burn), and (c) Group 3 (burn and suture) and graph of collagen area: (d). Scale bar = 500 μm. (*p < 0.001 vs. Group 1)
Fig. 4
Fig. 4 Picrosirius red with polarization microscope. (a) normal skin, (b) Group 1 (incision and suture), (c) Group 2 (burn), (d) Group 3 (burn and suture), (e) red intensity graph, and (f) red/green intensity graph. Scale bar = 200 μm. (*p < 0.05).
Fig. 5
Fig. 5 Immunohistochemistry: (a) normal skin, (b) Group 1 (incision and suture), (c) Group 2 (burn), (d) Group 3 (burn and suture), (e) α-SMA expressing graph, and (f) TGF β1 expressing graph. Scale bar = 200 μm. (*p < 0.05).

Tables (1)

Tables Icon

Table 1 Comparison of scalding and laser-induced rat models

Metrics