Abstract

Visualization of blood vessels is a fundamental task in the evaluation of the health and biological integrity of tissue. Laser speckle contrast imaging (LSCI) is a non-invasive technique to determine the blood flow in superficial or exposed vasculature. However, the high scattering of biological tissue hinders the visualization of those structures. In this paper, we propose the use of principal component analysis (PCA) in combination with LSCI to improve the visualization of deep blood vessels by selecting the most significant principal components. This analysis was applied to in vitro samples, and our results demonstrate that this approach allows for the visualization and localization of blood vessels as deep as 1000 μm.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Photothermal laser speckle imaging

Caitlin Regan, Julio C. Ramirez-San-Juan, and Bernard Choi
Opt. Lett. 39(17) 5006-5009 (2014)

Three-dimensional quantitative imaging of retinal and choroidal blood flow velocity using joint Spectral and Time domain Optical Coherence Tomography

Anna Szkulmowska, Maciej Szkulmowski, Daniel Szlag, Andrzej Kowalczyk, and Maciej Wojtkowski
Opt. Express 17(13) 10584-10598 (2009)

Momentum transfer Monte Carlo for the simulation of laser speckle imaging and its application in the skin

Caitlin Regan, Carole Hayakawa, and Bernard Choi
Biomed. Opt. Express 8(12) 5708-5723 (2017)

References

  • View by:
  • |
  • |
  • |

  1. J. D. Briers, “Laser Doppler, speckle and related techniques for blood perfusion mapping and imaging,” Physiol. Meas. 22(4), R35–R66 (2001).
    [Crossref] [PubMed]
  2. A. K. Dunn, H. Bolay, M. A. Moskowitz, and D. A. Boas, “Dynamic imaging of cerebral blood flow using laser speckle,” J. Cereb. Blood Flow Metab. 21(3), 195–201 (2001).
    [Crossref] [PubMed]
  3. K. R. Forrester, C. Stewart, J. Tulip, C. Leonard, and R. C. Bray, “Comparison of laser speckle and laser Doppler perfusion imaging: Measurement in human skin and rabbit articular tissue,” Med. Biol. Eng. Comput. 40(6), 687–697 (2002).
    [Crossref] [PubMed]
  4. J. Kim, J. Oh, and B. Choi, “Magnetomotive laser speckle imaging,” J. Biomed. Opt. 15(1), 011110 (2010).
    [Crossref] [PubMed]
  5. B. Li, B. Majaron, J. A. Viator, T. E. Milner, Z. Chen, Y. Zhao, H. Ren, and J. S. Nelson, “Accurate measurement of blood vessel depth in port wine stained human skin in vivo using pulsed photothermal radiometry,” J. Biomed. Opt. 9(5), 961–966 (2004).
    [Crossref] [PubMed]
  6. S. A. Prahl, I. A. Vitkin, U. Bruggemann, B. C. Wilson, and R. R. Anderson, “Determination of optical properties of turbid media using pulsed photothermal radiometry,” Phys. Med. Biol. 37(6), 1203–1217 (1992).
    [Crossref] [PubMed]
  7. C. Regan, J. C. Ramirez-San-Juan, and B. Choi, “Photothermal laser speckle imaging,” Opt. Lett. 39(17), 5006–5009 (2014).
    [Crossref] [PubMed]
  8. C. Regan and B. Choi, “Laser speckle imaging based on photothermally driven convection,” J. Biomed. Opt. 21(2), 026011 (2016).
    [Crossref] [PubMed]
  9. K. M. Ribeiro, R. A. Braga, G. W. Horgan, D. D. Ferreira, and T. Safadi, “Principal component analysis in the spectral analysis of the dynamic laser speckle patterns,” J. Eur. Opt. Soc. 9, 14009 (2014).
    [Crossref]
  10. J. M. López-Alonso, E. Grumel, N. L. Cap, M. Trivi, H. Rabal, and J. Alda, “Characterization of spatial–temporal patterns in dynamic speckle sequences using principal component analysis,” Opt. Eng. 55(12), 121705 (2016).
    [Crossref]
  11. C. Li and R. Wang, “Dynamic laser speckle angiography achieved by eigen-decomposition filtering,” J. Biophotonics 10(6-7), 805–810 (2017).
    [Crossref] [PubMed]
  12. M. Wang, C. Guan, W. Mao, H. Xiong, H. Tan, D. Hang, and Y. Zeng, “Real-time full-field optical angiography utilizing principal component analysis,” Opt. Lett. 43(11), 2559–2562 (2018).
    [Crossref] [PubMed]
  13. S. Jung, A. Sen, and J. S. Marron, “Boundary behavior in High Dimension, Low Sample Size asymptotics of PCA,” J. Multivariate Anal. 109, 190–203 (2012).
    [Crossref]
  14. H. Abdi and L. J. Williams, “Principal component analysis,” Wiley Interdiscip. Rev. Comput. Stat. 2(4), 433–459 (2010).
    [Crossref]
  15. A. F. Fercher and J. D. Briers, “Flow visualization by means of single-exposure speckle photography,” Opt. Commun. 37(5), 326–330 (1981).
    [Crossref]
  16. A. B. Parthasarathy, W. J. Tom, A. Gopal, X. Zhang, and A. K. Dunn, “Robust flow measurement with multi-exposure speckle imaging,” Opt. Express 16(3), 1975–1989 (2008).
    [Crossref] [PubMed]
  17. J. C. Ramirez-San-Juan, R. Ramos-Garcia, G. Martinez-Niconoff, and B. Choi, “Simple correction factor for laser speckle imaging of flow dynamics,” Opt. Lett. 39(3), 678–681 (2014).
    [Crossref] [PubMed]
  18. Y. Yang, A. Lü, W. Li, and Z. Qian, “Microfluidic-based laser speckle contrast imaging of erythrocyte flow and magnetic nanoparticle retention in blood,” AIP Adv. 9(1), 150031 (2019).
    [Crossref]
  19. F. Ayers, A. Grant, D. Kuo, D. J. Cuccia, and A. J. Durkin, “Fabrication and characterization of silicone-based tissue phantoms with tunable optical properties in the visible and near infrared domain,” Proc. SPIE Design and, 687007 (2008).
    [Crossref]
  20. V. S. Kalambur, H. Mahaseth, J. C. Bischof, M. C. Kielbik, T. E. Welch, A. Vilbäck, D. J. Swanlund, R. P. Hebbel, J. D. Belcher, and G. M. Vercellotti, “Microvascular blood flow and stasis in transgenic sickle mice: utility of a dorsal skin fold chamber for intravital microscopy,” Am. J. Hematol. 77(2), 117–125 (2004).
    [Crossref] [PubMed]
  21. H. F. Kaiser, “a Note on Guttman’S Lower Bound for the Number of Common Factors,” Br. J. Stat. Psychol. 14(1), 1–2 (1961).
    [Crossref]
  22. R. C. Gonzalez, R. E. Woods, and B. R. Masters, “Digital Image Processing, Third Edition,” J. Biomed. Opt. 14, 029901 (2009).
  23. H. Peregrina-Barreto, E. Perez-Corona, J. Rangel-Magdaleno, R. Ramos-Garcia, R. Chiu, and J. C. Ramirez-San-Juan, “Use of kurtosis for locating deep blood vessels in raw speckle imaging using a homogeneity representation,” J. Biomed. Opt. 22(6), 066004 (2017).
    [Crossref] [PubMed]

2019 (1)

Y. Yang, A. Lü, W. Li, and Z. Qian, “Microfluidic-based laser speckle contrast imaging of erythrocyte flow and magnetic nanoparticle retention in blood,” AIP Adv. 9(1), 150031 (2019).
[Crossref]

2018 (1)

2017 (2)

C. Li and R. Wang, “Dynamic laser speckle angiography achieved by eigen-decomposition filtering,” J. Biophotonics 10(6-7), 805–810 (2017).
[Crossref] [PubMed]

H. Peregrina-Barreto, E. Perez-Corona, J. Rangel-Magdaleno, R. Ramos-Garcia, R. Chiu, and J. C. Ramirez-San-Juan, “Use of kurtosis for locating deep blood vessels in raw speckle imaging using a homogeneity representation,” J. Biomed. Opt. 22(6), 066004 (2017).
[Crossref] [PubMed]

2016 (2)

C. Regan and B. Choi, “Laser speckle imaging based on photothermally driven convection,” J. Biomed. Opt. 21(2), 026011 (2016).
[Crossref] [PubMed]

J. M. López-Alonso, E. Grumel, N. L. Cap, M. Trivi, H. Rabal, and J. Alda, “Characterization of spatial–temporal patterns in dynamic speckle sequences using principal component analysis,” Opt. Eng. 55(12), 121705 (2016).
[Crossref]

2014 (2)

2012 (1)

S. Jung, A. Sen, and J. S. Marron, “Boundary behavior in High Dimension, Low Sample Size asymptotics of PCA,” J. Multivariate Anal. 109, 190–203 (2012).
[Crossref]

2010 (2)

H. Abdi and L. J. Williams, “Principal component analysis,” Wiley Interdiscip. Rev. Comput. Stat. 2(4), 433–459 (2010).
[Crossref]

J. Kim, J. Oh, and B. Choi, “Magnetomotive laser speckle imaging,” J. Biomed. Opt. 15(1), 011110 (2010).
[Crossref] [PubMed]

2008 (1)

2004 (2)

V. S. Kalambur, H. Mahaseth, J. C. Bischof, M. C. Kielbik, T. E. Welch, A. Vilbäck, D. J. Swanlund, R. P. Hebbel, J. D. Belcher, and G. M. Vercellotti, “Microvascular blood flow and stasis in transgenic sickle mice: utility of a dorsal skin fold chamber for intravital microscopy,” Am. J. Hematol. 77(2), 117–125 (2004).
[Crossref] [PubMed]

B. Li, B. Majaron, J. A. Viator, T. E. Milner, Z. Chen, Y. Zhao, H. Ren, and J. S. Nelson, “Accurate measurement of blood vessel depth in port wine stained human skin in vivo using pulsed photothermal radiometry,” J. Biomed. Opt. 9(5), 961–966 (2004).
[Crossref] [PubMed]

2002 (1)

K. R. Forrester, C. Stewart, J. Tulip, C. Leonard, and R. C. Bray, “Comparison of laser speckle and laser Doppler perfusion imaging: Measurement in human skin and rabbit articular tissue,” Med. Biol. Eng. Comput. 40(6), 687–697 (2002).
[Crossref] [PubMed]

2001 (2)

J. D. Briers, “Laser Doppler, speckle and related techniques for blood perfusion mapping and imaging,” Physiol. Meas. 22(4), R35–R66 (2001).
[Crossref] [PubMed]

A. K. Dunn, H. Bolay, M. A. Moskowitz, and D. A. Boas, “Dynamic imaging of cerebral blood flow using laser speckle,” J. Cereb. Blood Flow Metab. 21(3), 195–201 (2001).
[Crossref] [PubMed]

1992 (1)

S. A. Prahl, I. A. Vitkin, U. Bruggemann, B. C. Wilson, and R. R. Anderson, “Determination of optical properties of turbid media using pulsed photothermal radiometry,” Phys. Med. Biol. 37(6), 1203–1217 (1992).
[Crossref] [PubMed]

1981 (1)

A. F. Fercher and J. D. Briers, “Flow visualization by means of single-exposure speckle photography,” Opt. Commun. 37(5), 326–330 (1981).
[Crossref]

1961 (1)

H. F. Kaiser, “a Note on Guttman’S Lower Bound for the Number of Common Factors,” Br. J. Stat. Psychol. 14(1), 1–2 (1961).
[Crossref]

Abdi, H.

H. Abdi and L. J. Williams, “Principal component analysis,” Wiley Interdiscip. Rev. Comput. Stat. 2(4), 433–459 (2010).
[Crossref]

Alda, J.

J. M. López-Alonso, E. Grumel, N. L. Cap, M. Trivi, H. Rabal, and J. Alda, “Characterization of spatial–temporal patterns in dynamic speckle sequences using principal component analysis,” Opt. Eng. 55(12), 121705 (2016).
[Crossref]

Anderson, R. R.

S. A. Prahl, I. A. Vitkin, U. Bruggemann, B. C. Wilson, and R. R. Anderson, “Determination of optical properties of turbid media using pulsed photothermal radiometry,” Phys. Med. Biol. 37(6), 1203–1217 (1992).
[Crossref] [PubMed]

Belcher, J. D.

V. S. Kalambur, H. Mahaseth, J. C. Bischof, M. C. Kielbik, T. E. Welch, A. Vilbäck, D. J. Swanlund, R. P. Hebbel, J. D. Belcher, and G. M. Vercellotti, “Microvascular blood flow and stasis in transgenic sickle mice: utility of a dorsal skin fold chamber for intravital microscopy,” Am. J. Hematol. 77(2), 117–125 (2004).
[Crossref] [PubMed]

Bischof, J. C.

V. S. Kalambur, H. Mahaseth, J. C. Bischof, M. C. Kielbik, T. E. Welch, A. Vilbäck, D. J. Swanlund, R. P. Hebbel, J. D. Belcher, and G. M. Vercellotti, “Microvascular blood flow and stasis in transgenic sickle mice: utility of a dorsal skin fold chamber for intravital microscopy,” Am. J. Hematol. 77(2), 117–125 (2004).
[Crossref] [PubMed]

Boas, D. A.

A. K. Dunn, H. Bolay, M. A. Moskowitz, and D. A. Boas, “Dynamic imaging of cerebral blood flow using laser speckle,” J. Cereb. Blood Flow Metab. 21(3), 195–201 (2001).
[Crossref] [PubMed]

Bolay, H.

A. K. Dunn, H. Bolay, M. A. Moskowitz, and D. A. Boas, “Dynamic imaging of cerebral blood flow using laser speckle,” J. Cereb. Blood Flow Metab. 21(3), 195–201 (2001).
[Crossref] [PubMed]

Bray, R. C.

K. R. Forrester, C. Stewart, J. Tulip, C. Leonard, and R. C. Bray, “Comparison of laser speckle and laser Doppler perfusion imaging: Measurement in human skin and rabbit articular tissue,” Med. Biol. Eng. Comput. 40(6), 687–697 (2002).
[Crossref] [PubMed]

Briers, J. D.

J. D. Briers, “Laser Doppler, speckle and related techniques for blood perfusion mapping and imaging,” Physiol. Meas. 22(4), R35–R66 (2001).
[Crossref] [PubMed]

A. F. Fercher and J. D. Briers, “Flow visualization by means of single-exposure speckle photography,” Opt. Commun. 37(5), 326–330 (1981).
[Crossref]

Bruggemann, U.

S. A. Prahl, I. A. Vitkin, U. Bruggemann, B. C. Wilson, and R. R. Anderson, “Determination of optical properties of turbid media using pulsed photothermal radiometry,” Phys. Med. Biol. 37(6), 1203–1217 (1992).
[Crossref] [PubMed]

Cap, N. L.

J. M. López-Alonso, E. Grumel, N. L. Cap, M. Trivi, H. Rabal, and J. Alda, “Characterization of spatial–temporal patterns in dynamic speckle sequences using principal component analysis,” Opt. Eng. 55(12), 121705 (2016).
[Crossref]

Chen, Z.

B. Li, B. Majaron, J. A. Viator, T. E. Milner, Z. Chen, Y. Zhao, H. Ren, and J. S. Nelson, “Accurate measurement of blood vessel depth in port wine stained human skin in vivo using pulsed photothermal radiometry,” J. Biomed. Opt. 9(5), 961–966 (2004).
[Crossref] [PubMed]

Chiu, R.

H. Peregrina-Barreto, E. Perez-Corona, J. Rangel-Magdaleno, R. Ramos-Garcia, R. Chiu, and J. C. Ramirez-San-Juan, “Use of kurtosis for locating deep blood vessels in raw speckle imaging using a homogeneity representation,” J. Biomed. Opt. 22(6), 066004 (2017).
[Crossref] [PubMed]

Choi, B.

Dunn, A. K.

A. B. Parthasarathy, W. J. Tom, A. Gopal, X. Zhang, and A. K. Dunn, “Robust flow measurement with multi-exposure speckle imaging,” Opt. Express 16(3), 1975–1989 (2008).
[Crossref] [PubMed]

A. K. Dunn, H. Bolay, M. A. Moskowitz, and D. A. Boas, “Dynamic imaging of cerebral blood flow using laser speckle,” J. Cereb. Blood Flow Metab. 21(3), 195–201 (2001).
[Crossref] [PubMed]

Fercher, A. F.

A. F. Fercher and J. D. Briers, “Flow visualization by means of single-exposure speckle photography,” Opt. Commun. 37(5), 326–330 (1981).
[Crossref]

Forrester, K. R.

K. R. Forrester, C. Stewart, J. Tulip, C. Leonard, and R. C. Bray, “Comparison of laser speckle and laser Doppler perfusion imaging: Measurement in human skin and rabbit articular tissue,” Med. Biol. Eng. Comput. 40(6), 687–697 (2002).
[Crossref] [PubMed]

Gopal, A.

Grumel, E.

J. M. López-Alonso, E. Grumel, N. L. Cap, M. Trivi, H. Rabal, and J. Alda, “Characterization of spatial–temporal patterns in dynamic speckle sequences using principal component analysis,” Opt. Eng. 55(12), 121705 (2016).
[Crossref]

Guan, C.

Hang, D.

Hebbel, R. P.

V. S. Kalambur, H. Mahaseth, J. C. Bischof, M. C. Kielbik, T. E. Welch, A. Vilbäck, D. J. Swanlund, R. P. Hebbel, J. D. Belcher, and G. M. Vercellotti, “Microvascular blood flow and stasis in transgenic sickle mice: utility of a dorsal skin fold chamber for intravital microscopy,” Am. J. Hematol. 77(2), 117–125 (2004).
[Crossref] [PubMed]

Jung, S.

S. Jung, A. Sen, and J. S. Marron, “Boundary behavior in High Dimension, Low Sample Size asymptotics of PCA,” J. Multivariate Anal. 109, 190–203 (2012).
[Crossref]

Kaiser, H. F.

H. F. Kaiser, “a Note on Guttman’S Lower Bound for the Number of Common Factors,” Br. J. Stat. Psychol. 14(1), 1–2 (1961).
[Crossref]

Kalambur, V. S.

V. S. Kalambur, H. Mahaseth, J. C. Bischof, M. C. Kielbik, T. E. Welch, A. Vilbäck, D. J. Swanlund, R. P. Hebbel, J. D. Belcher, and G. M. Vercellotti, “Microvascular blood flow and stasis in transgenic sickle mice: utility of a dorsal skin fold chamber for intravital microscopy,” Am. J. Hematol. 77(2), 117–125 (2004).
[Crossref] [PubMed]

Kielbik, M. C.

V. S. Kalambur, H. Mahaseth, J. C. Bischof, M. C. Kielbik, T. E. Welch, A. Vilbäck, D. J. Swanlund, R. P. Hebbel, J. D. Belcher, and G. M. Vercellotti, “Microvascular blood flow and stasis in transgenic sickle mice: utility of a dorsal skin fold chamber for intravital microscopy,” Am. J. Hematol. 77(2), 117–125 (2004).
[Crossref] [PubMed]

Kim, J.

J. Kim, J. Oh, and B. Choi, “Magnetomotive laser speckle imaging,” J. Biomed. Opt. 15(1), 011110 (2010).
[Crossref] [PubMed]

Leonard, C.

K. R. Forrester, C. Stewart, J. Tulip, C. Leonard, and R. C. Bray, “Comparison of laser speckle and laser Doppler perfusion imaging: Measurement in human skin and rabbit articular tissue,” Med. Biol. Eng. Comput. 40(6), 687–697 (2002).
[Crossref] [PubMed]

Li, B.

B. Li, B. Majaron, J. A. Viator, T. E. Milner, Z. Chen, Y. Zhao, H. Ren, and J. S. Nelson, “Accurate measurement of blood vessel depth in port wine stained human skin in vivo using pulsed photothermal radiometry,” J. Biomed. Opt. 9(5), 961–966 (2004).
[Crossref] [PubMed]

Li, C.

C. Li and R. Wang, “Dynamic laser speckle angiography achieved by eigen-decomposition filtering,” J. Biophotonics 10(6-7), 805–810 (2017).
[Crossref] [PubMed]

Li, W.

Y. Yang, A. Lü, W. Li, and Z. Qian, “Microfluidic-based laser speckle contrast imaging of erythrocyte flow and magnetic nanoparticle retention in blood,” AIP Adv. 9(1), 150031 (2019).
[Crossref]

López-Alonso, J. M.

J. M. López-Alonso, E. Grumel, N. L. Cap, M. Trivi, H. Rabal, and J. Alda, “Characterization of spatial–temporal patterns in dynamic speckle sequences using principal component analysis,” Opt. Eng. 55(12), 121705 (2016).
[Crossref]

Lü, A.

Y. Yang, A. Lü, W. Li, and Z. Qian, “Microfluidic-based laser speckle contrast imaging of erythrocyte flow and magnetic nanoparticle retention in blood,” AIP Adv. 9(1), 150031 (2019).
[Crossref]

Mahaseth, H.

V. S. Kalambur, H. Mahaseth, J. C. Bischof, M. C. Kielbik, T. E. Welch, A. Vilbäck, D. J. Swanlund, R. P. Hebbel, J. D. Belcher, and G. M. Vercellotti, “Microvascular blood flow and stasis in transgenic sickle mice: utility of a dorsal skin fold chamber for intravital microscopy,” Am. J. Hematol. 77(2), 117–125 (2004).
[Crossref] [PubMed]

Majaron, B.

B. Li, B. Majaron, J. A. Viator, T. E. Milner, Z. Chen, Y. Zhao, H. Ren, and J. S. Nelson, “Accurate measurement of blood vessel depth in port wine stained human skin in vivo using pulsed photothermal radiometry,” J. Biomed. Opt. 9(5), 961–966 (2004).
[Crossref] [PubMed]

Mao, W.

Marron, J. S.

S. Jung, A. Sen, and J. S. Marron, “Boundary behavior in High Dimension, Low Sample Size asymptotics of PCA,” J. Multivariate Anal. 109, 190–203 (2012).
[Crossref]

Martinez-Niconoff, G.

Milner, T. E.

B. Li, B. Majaron, J. A. Viator, T. E. Milner, Z. Chen, Y. Zhao, H. Ren, and J. S. Nelson, “Accurate measurement of blood vessel depth in port wine stained human skin in vivo using pulsed photothermal radiometry,” J. Biomed. Opt. 9(5), 961–966 (2004).
[Crossref] [PubMed]

Moskowitz, M. A.

A. K. Dunn, H. Bolay, M. A. Moskowitz, and D. A. Boas, “Dynamic imaging of cerebral blood flow using laser speckle,” J. Cereb. Blood Flow Metab. 21(3), 195–201 (2001).
[Crossref] [PubMed]

Nelson, J. S.

B. Li, B. Majaron, J. A. Viator, T. E. Milner, Z. Chen, Y. Zhao, H. Ren, and J. S. Nelson, “Accurate measurement of blood vessel depth in port wine stained human skin in vivo using pulsed photothermal radiometry,” J. Biomed. Opt. 9(5), 961–966 (2004).
[Crossref] [PubMed]

Oh, J.

J. Kim, J. Oh, and B. Choi, “Magnetomotive laser speckle imaging,” J. Biomed. Opt. 15(1), 011110 (2010).
[Crossref] [PubMed]

Parthasarathy, A. B.

Peregrina-Barreto, H.

H. Peregrina-Barreto, E. Perez-Corona, J. Rangel-Magdaleno, R. Ramos-Garcia, R. Chiu, and J. C. Ramirez-San-Juan, “Use of kurtosis for locating deep blood vessels in raw speckle imaging using a homogeneity representation,” J. Biomed. Opt. 22(6), 066004 (2017).
[Crossref] [PubMed]

Perez-Corona, E.

H. Peregrina-Barreto, E. Perez-Corona, J. Rangel-Magdaleno, R. Ramos-Garcia, R. Chiu, and J. C. Ramirez-San-Juan, “Use of kurtosis for locating deep blood vessels in raw speckle imaging using a homogeneity representation,” J. Biomed. Opt. 22(6), 066004 (2017).
[Crossref] [PubMed]

Prahl, S. A.

S. A. Prahl, I. A. Vitkin, U. Bruggemann, B. C. Wilson, and R. R. Anderson, “Determination of optical properties of turbid media using pulsed photothermal radiometry,” Phys. Med. Biol. 37(6), 1203–1217 (1992).
[Crossref] [PubMed]

Qian, Z.

Y. Yang, A. Lü, W. Li, and Z. Qian, “Microfluidic-based laser speckle contrast imaging of erythrocyte flow and magnetic nanoparticle retention in blood,” AIP Adv. 9(1), 150031 (2019).
[Crossref]

Rabal, H.

J. M. López-Alonso, E. Grumel, N. L. Cap, M. Trivi, H. Rabal, and J. Alda, “Characterization of spatial–temporal patterns in dynamic speckle sequences using principal component analysis,” Opt. Eng. 55(12), 121705 (2016).
[Crossref]

Ramirez-San-Juan, J. C.

H. Peregrina-Barreto, E. Perez-Corona, J. Rangel-Magdaleno, R. Ramos-Garcia, R. Chiu, and J. C. Ramirez-San-Juan, “Use of kurtosis for locating deep blood vessels in raw speckle imaging using a homogeneity representation,” J. Biomed. Opt. 22(6), 066004 (2017).
[Crossref] [PubMed]

C. Regan, J. C. Ramirez-San-Juan, and B. Choi, “Photothermal laser speckle imaging,” Opt. Lett. 39(17), 5006–5009 (2014).
[Crossref] [PubMed]

J. C. Ramirez-San-Juan, R. Ramos-Garcia, G. Martinez-Niconoff, and B. Choi, “Simple correction factor for laser speckle imaging of flow dynamics,” Opt. Lett. 39(3), 678–681 (2014).
[Crossref] [PubMed]

Ramos-Garcia, R.

H. Peregrina-Barreto, E. Perez-Corona, J. Rangel-Magdaleno, R. Ramos-Garcia, R. Chiu, and J. C. Ramirez-San-Juan, “Use of kurtosis for locating deep blood vessels in raw speckle imaging using a homogeneity representation,” J. Biomed. Opt. 22(6), 066004 (2017).
[Crossref] [PubMed]

J. C. Ramirez-San-Juan, R. Ramos-Garcia, G. Martinez-Niconoff, and B. Choi, “Simple correction factor for laser speckle imaging of flow dynamics,” Opt. Lett. 39(3), 678–681 (2014).
[Crossref] [PubMed]

Rangel-Magdaleno, J.

H. Peregrina-Barreto, E. Perez-Corona, J. Rangel-Magdaleno, R. Ramos-Garcia, R. Chiu, and J. C. Ramirez-San-Juan, “Use of kurtosis for locating deep blood vessels in raw speckle imaging using a homogeneity representation,” J. Biomed. Opt. 22(6), 066004 (2017).
[Crossref] [PubMed]

Regan, C.

C. Regan and B. Choi, “Laser speckle imaging based on photothermally driven convection,” J. Biomed. Opt. 21(2), 026011 (2016).
[Crossref] [PubMed]

C. Regan, J. C. Ramirez-San-Juan, and B. Choi, “Photothermal laser speckle imaging,” Opt. Lett. 39(17), 5006–5009 (2014).
[Crossref] [PubMed]

Ren, H.

B. Li, B. Majaron, J. A. Viator, T. E. Milner, Z. Chen, Y. Zhao, H. Ren, and J. S. Nelson, “Accurate measurement of blood vessel depth in port wine stained human skin in vivo using pulsed photothermal radiometry,” J. Biomed. Opt. 9(5), 961–966 (2004).
[Crossref] [PubMed]

Sen, A.

S. Jung, A. Sen, and J. S. Marron, “Boundary behavior in High Dimension, Low Sample Size asymptotics of PCA,” J. Multivariate Anal. 109, 190–203 (2012).
[Crossref]

Stewart, C.

K. R. Forrester, C. Stewart, J. Tulip, C. Leonard, and R. C. Bray, “Comparison of laser speckle and laser Doppler perfusion imaging: Measurement in human skin and rabbit articular tissue,” Med. Biol. Eng. Comput. 40(6), 687–697 (2002).
[Crossref] [PubMed]

Swanlund, D. J.

V. S. Kalambur, H. Mahaseth, J. C. Bischof, M. C. Kielbik, T. E. Welch, A. Vilbäck, D. J. Swanlund, R. P. Hebbel, J. D. Belcher, and G. M. Vercellotti, “Microvascular blood flow and stasis in transgenic sickle mice: utility of a dorsal skin fold chamber for intravital microscopy,” Am. J. Hematol. 77(2), 117–125 (2004).
[Crossref] [PubMed]

Tan, H.

Tom, W. J.

Trivi, M.

J. M. López-Alonso, E. Grumel, N. L. Cap, M. Trivi, H. Rabal, and J. Alda, “Characterization of spatial–temporal patterns in dynamic speckle sequences using principal component analysis,” Opt. Eng. 55(12), 121705 (2016).
[Crossref]

Tulip, J.

K. R. Forrester, C. Stewart, J. Tulip, C. Leonard, and R. C. Bray, “Comparison of laser speckle and laser Doppler perfusion imaging: Measurement in human skin and rabbit articular tissue,” Med. Biol. Eng. Comput. 40(6), 687–697 (2002).
[Crossref] [PubMed]

Vercellotti, G. M.

V. S. Kalambur, H. Mahaseth, J. C. Bischof, M. C. Kielbik, T. E. Welch, A. Vilbäck, D. J. Swanlund, R. P. Hebbel, J. D. Belcher, and G. M. Vercellotti, “Microvascular blood flow and stasis in transgenic sickle mice: utility of a dorsal skin fold chamber for intravital microscopy,” Am. J. Hematol. 77(2), 117–125 (2004).
[Crossref] [PubMed]

Viator, J. A.

B. Li, B. Majaron, J. A. Viator, T. E. Milner, Z. Chen, Y. Zhao, H. Ren, and J. S. Nelson, “Accurate measurement of blood vessel depth in port wine stained human skin in vivo using pulsed photothermal radiometry,” J. Biomed. Opt. 9(5), 961–966 (2004).
[Crossref] [PubMed]

Vilbäck, A.

V. S. Kalambur, H. Mahaseth, J. C. Bischof, M. C. Kielbik, T. E. Welch, A. Vilbäck, D. J. Swanlund, R. P. Hebbel, J. D. Belcher, and G. M. Vercellotti, “Microvascular blood flow and stasis in transgenic sickle mice: utility of a dorsal skin fold chamber for intravital microscopy,” Am. J. Hematol. 77(2), 117–125 (2004).
[Crossref] [PubMed]

Vitkin, I. A.

S. A. Prahl, I. A. Vitkin, U. Bruggemann, B. C. Wilson, and R. R. Anderson, “Determination of optical properties of turbid media using pulsed photothermal radiometry,” Phys. Med. Biol. 37(6), 1203–1217 (1992).
[Crossref] [PubMed]

Wang, M.

Wang, R.

C. Li and R. Wang, “Dynamic laser speckle angiography achieved by eigen-decomposition filtering,” J. Biophotonics 10(6-7), 805–810 (2017).
[Crossref] [PubMed]

Welch, T. E.

V. S. Kalambur, H. Mahaseth, J. C. Bischof, M. C. Kielbik, T. E. Welch, A. Vilbäck, D. J. Swanlund, R. P. Hebbel, J. D. Belcher, and G. M. Vercellotti, “Microvascular blood flow and stasis in transgenic sickle mice: utility of a dorsal skin fold chamber for intravital microscopy,” Am. J. Hematol. 77(2), 117–125 (2004).
[Crossref] [PubMed]

Williams, L. J.

H. Abdi and L. J. Williams, “Principal component analysis,” Wiley Interdiscip. Rev. Comput. Stat. 2(4), 433–459 (2010).
[Crossref]

Wilson, B. C.

S. A. Prahl, I. A. Vitkin, U. Bruggemann, B. C. Wilson, and R. R. Anderson, “Determination of optical properties of turbid media using pulsed photothermal radiometry,” Phys. Med. Biol. 37(6), 1203–1217 (1992).
[Crossref] [PubMed]

Xiong, H.

Yang, Y.

Y. Yang, A. Lü, W. Li, and Z. Qian, “Microfluidic-based laser speckle contrast imaging of erythrocyte flow and magnetic nanoparticle retention in blood,” AIP Adv. 9(1), 150031 (2019).
[Crossref]

Zeng, Y.

Zhang, X.

Zhao, Y.

B. Li, B. Majaron, J. A. Viator, T. E. Milner, Z. Chen, Y. Zhao, H. Ren, and J. S. Nelson, “Accurate measurement of blood vessel depth in port wine stained human skin in vivo using pulsed photothermal radiometry,” J. Biomed. Opt. 9(5), 961–966 (2004).
[Crossref] [PubMed]

AIP Adv. (1)

Y. Yang, A. Lü, W. Li, and Z. Qian, “Microfluidic-based laser speckle contrast imaging of erythrocyte flow and magnetic nanoparticle retention in blood,” AIP Adv. 9(1), 150031 (2019).
[Crossref]

Am. J. Hematol. (1)

V. S. Kalambur, H. Mahaseth, J. C. Bischof, M. C. Kielbik, T. E. Welch, A. Vilbäck, D. J. Swanlund, R. P. Hebbel, J. D. Belcher, and G. M. Vercellotti, “Microvascular blood flow and stasis in transgenic sickle mice: utility of a dorsal skin fold chamber for intravital microscopy,” Am. J. Hematol. 77(2), 117–125 (2004).
[Crossref] [PubMed]

Br. J. Stat. Psychol. (1)

H. F. Kaiser, “a Note on Guttman’S Lower Bound for the Number of Common Factors,” Br. J. Stat. Psychol. 14(1), 1–2 (1961).
[Crossref]

J. Biomed. Opt. (4)

H. Peregrina-Barreto, E. Perez-Corona, J. Rangel-Magdaleno, R. Ramos-Garcia, R. Chiu, and J. C. Ramirez-San-Juan, “Use of kurtosis for locating deep blood vessels in raw speckle imaging using a homogeneity representation,” J. Biomed. Opt. 22(6), 066004 (2017).
[Crossref] [PubMed]

J. Kim, J. Oh, and B. Choi, “Magnetomotive laser speckle imaging,” J. Biomed. Opt. 15(1), 011110 (2010).
[Crossref] [PubMed]

B. Li, B. Majaron, J. A. Viator, T. E. Milner, Z. Chen, Y. Zhao, H. Ren, and J. S. Nelson, “Accurate measurement of blood vessel depth in port wine stained human skin in vivo using pulsed photothermal radiometry,” J. Biomed. Opt. 9(5), 961–966 (2004).
[Crossref] [PubMed]

C. Regan and B. Choi, “Laser speckle imaging based on photothermally driven convection,” J. Biomed. Opt. 21(2), 026011 (2016).
[Crossref] [PubMed]

J. Biophotonics (1)

C. Li and R. Wang, “Dynamic laser speckle angiography achieved by eigen-decomposition filtering,” J. Biophotonics 10(6-7), 805–810 (2017).
[Crossref] [PubMed]

J. Cereb. Blood Flow Metab. (1)

A. K. Dunn, H. Bolay, M. A. Moskowitz, and D. A. Boas, “Dynamic imaging of cerebral blood flow using laser speckle,” J. Cereb. Blood Flow Metab. 21(3), 195–201 (2001).
[Crossref] [PubMed]

J. Multivariate Anal. (1)

S. Jung, A. Sen, and J. S. Marron, “Boundary behavior in High Dimension, Low Sample Size asymptotics of PCA,” J. Multivariate Anal. 109, 190–203 (2012).
[Crossref]

Med. Biol. Eng. Comput. (1)

K. R. Forrester, C. Stewart, J. Tulip, C. Leonard, and R. C. Bray, “Comparison of laser speckle and laser Doppler perfusion imaging: Measurement in human skin and rabbit articular tissue,” Med. Biol. Eng. Comput. 40(6), 687–697 (2002).
[Crossref] [PubMed]

Opt. Commun. (1)

A. F. Fercher and J. D. Briers, “Flow visualization by means of single-exposure speckle photography,” Opt. Commun. 37(5), 326–330 (1981).
[Crossref]

Opt. Eng. (1)

J. M. López-Alonso, E. Grumel, N. L. Cap, M. Trivi, H. Rabal, and J. Alda, “Characterization of spatial–temporal patterns in dynamic speckle sequences using principal component analysis,” Opt. Eng. 55(12), 121705 (2016).
[Crossref]

Opt. Express (1)

Opt. Lett. (3)

Phys. Med. Biol. (1)

S. A. Prahl, I. A. Vitkin, U. Bruggemann, B. C. Wilson, and R. R. Anderson, “Determination of optical properties of turbid media using pulsed photothermal radiometry,” Phys. Med. Biol. 37(6), 1203–1217 (1992).
[Crossref] [PubMed]

Physiol. Meas. (1)

J. D. Briers, “Laser Doppler, speckle and related techniques for blood perfusion mapping and imaging,” Physiol. Meas. 22(4), R35–R66 (2001).
[Crossref] [PubMed]

Wiley Interdiscip. Rev. Comput. Stat. (1)

H. Abdi and L. J. Williams, “Principal component analysis,” Wiley Interdiscip. Rev. Comput. Stat. 2(4), 433–459 (2010).
[Crossref]

Other (3)

F. Ayers, A. Grant, D. Kuo, D. J. Cuccia, and A. J. Durkin, “Fabrication and characterization of silicone-based tissue phantoms with tunable optical properties in the visible and near infrared domain,” Proc. SPIE Design and, 687007 (2008).
[Crossref]

K. M. Ribeiro, R. A. Braga, G. W. Horgan, D. D. Ferreira, and T. Safadi, “Principal component analysis in the spectral analysis of the dynamic laser speckle patterns,” J. Eur. Opt. Soc. 9, 14009 (2014).
[Crossref]

R. C. Gonzalez, R. E. Woods, and B. R. Masters, “Digital Image Processing, Third Edition,” J. Biomed. Opt. 14, 029901 (2009).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1 Organization of images in a Г matrix. A set of 30 raw speckle images are arrangement into matrix Г, given by Eq. (5). N corresponds to number of image (N = 30) and M corresponds to image pixels (M = 640x480).
Fig. 2
Fig. 2 a) Eigenvalue vs the number of PC, the thick red horizontal line establishes the separation by means of the Guttan-Kaiser Criterion for a sample with δ = 0 at three different exposures times. b) Schematic experimental setup.
Fig. 3
Fig. 3 Sum of the eigenvalues above λ ¯ (group A) for all the exposure times and top layer thickness employed in this study.
Fig. 4
Fig. 4 Contrast images for groups A, B and C. The static region is highlighted in the group A and the dynamic region is highlighted in the group B. Group C includes groups A and B, and therefore corresponds to the traditional LSCI processing. The scale bar is the same for all figures.
Fig. 5
Fig. 5 Region of interest (ROI) centered on the blood vessel phantom and where the values of K 2 where evaluated by averaging in this region.
Fig. 6
Fig. 6 Experimental K 2 (symbols) as function of T for different δ and its theoretical adjustment to Eq. (3) (dashed lines). a). values of group C, b) values of group A.
Fig. 7
Fig. 7 Group C-A (symbols) and theoretical adjustment of Eq. (4) (dashed lines).
Fig. 8
Fig. 8 Comparison between the traditional LSCI (C) and our proposal C-A with their corresponding segmentation by K-means (2nd and 4th columns). The scale bar is the same for all figures.
Fig. 9
Fig. 9 a) Location of the capillary (vertical lines) of the profiles for C, b) similarly for C-A.

Tables (1)

Tables Icon

Table 1 Actual and estimated capillary (vessel) width for different δ values

Equations (12)

Equations on this page are rendered with MathJax. Learn more.

K= σ <I>
K 2 (x)=β ρ 2 exp(2x)1+2x 2 x 2 +4βρ(1ρ) exp(x)1+x x 2 +β (1ρ) 2
K 2 (x) | x1 K s 2 =β (1ρ) 2
K D 2 β ρ 2 exp(2x)1+2x 2 x 2 +4βρ(1ρ) exp(x)1+x x 2
Γ=[ γ 11 γ 12 γ 1N γ 21 γ 22 γ 2N γ M1 γ M2 γ MN ]
Φ i = γ i μ( γ i )
μ( γ i )= 1 M j=1 M γ i (j)
C=Φ Φ T
C=Λλ Λ T
PC= Λ T Φ
Γ=(ΛPC)+μ(γ)
λ ¯ = j=1 N λ j N

Metrics