Abstract

Differential artery-vein analysis promises better sensitivity for retinal disease detection and classification. However, clinical optical coherence tomography angiography (OCTA) instruments lack the function of artery-vein differentiation. This study aims to verify the feasibility of using OCT intensity feature analysis to guide artery-vein differentiation in OCTA. Four OCT intensity profile features, including i) ratio of vessel width to central reflex, ii) average of maximum profile brightness, iii) average of median profile intensity, and iv) optical density of vessel boundary intensity compared to background intensity, are used to classify artery-vein source nodes in OCT. A blood vessel tracking algorithm is then employed to automatically generate the OCT artery-vein map. Given the fact that OCT and OCTA are intrinsically reconstructed from the same raw spectrogram, the OCT artery-vein map is able to guide artery-vein differentiation in OCTA directly.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Computer-aided classification of sickle cell retinopathy using quantitative features in optical coherence tomography angiography

Minhaj Alam, Damber Thapa, Jennifer I. Lim, Dingcai Cao, and Xincheng Yao
Biomed. Opt. Express 8(9) 4206-4216 (2017)

Method for quantitative assessment of retinal vessel tortuosity in optical coherence tomography angiography applied to sickle cell retinopathy

Maziyar M. Khansari, William O’Neill, Jennifer Lim, and Mahnaz Shahidi
Biomed. Opt. Express 8(8) 3796-3806 (2017)

Simultaneous arteriole and venule segmentation with domain-specific loss function on a new public database

Xiayu Xu, Rendong Wang, Peilin Lv, Bin Gao, Chan Li, Zhiqiang Tian, Tao Tan, and Feng Xu
Biomed. Opt. Express 9(7) 3153-3166 (2018)

References

  • View by:
  • |
  • |
  • |

  1. R. A. Fonseca and M. A. Dantas, “Retinal venous beading associated with recurrent branch vein occlusion,” Can. J. Ophthalmol. 37(3), 182–183 (2002).
    [Crossref] [PubMed]
  2. P. H. Gregson, Z. Shen, R. C. Scott, and V. Kozousek, “Automated grading of venous beading,” Comput. Biomed. Res. 28(4), 291–304 (1995).
    [Crossref] [PubMed]
  3. V. Kozousek, Z. Shen, P. Gregson, and R. C. Scott, “Automated detection and quantification of venous beading using Fourier analysis,” Can. J. Ophthalmol. 27(6), 288–294 (1992).
    [PubMed]
  4. B. Piguet, M. Gross-Jendroska, F. G. Holz, and A. C. Bird, “Inherited venous beading,” Eye (Lond.) 8(1), 84–88 (1994).
    [Crossref] [PubMed]
  5. L. Pedersen, P. Jeppesen, S. T. Knudsen, P. L. Poulsen, and T. Bek, “Improvement of mild retinopathy in type 2 diabetic patients correlates with narrowing of retinal arterioles. A prospective observational study,” Graefes Arch. Clin. Exp. Ophthalmol. 252(10), 1561–1567 (2014).
    [Crossref] [PubMed]
  6. R. Klein, B. E. Klein, S. E. Moss, and Q. Wang, “Hypertension and retinopathy, arteriolar narrowing, and arteriovenous nicking in a population,” Arch. Ophthalmol. 112(1), 92–98 (1994).
    [Crossref] [PubMed]
  7. N. Cheung, D. A. Bluemke, R. Klein, A. R. Sharrett, F. M. Islam, M. F. Cotch, B. E. Klein, M. H. Criqui, and T. Y. Wong, “Retinal arteriolar narrowing and left ventricular remodeling: the multi-ethnic study of atherosclerosis,” J. Am. Coll. Cardiol. 50(1), 48–55 (2007).
    [Crossref] [PubMed]
  8. M. Niemeijer, X. Xu, A. V. Dumitrescu, P. Gupta, B. van Ginneken, J. C. Folk, and M. D. Abramoff, “Automated measurement of the arteriolar-to-venular width ratio in digital color fundus photographs,” IEEE Trans. Med. Imaging 30(11), 1941–1950 (2011).
    [Crossref] [PubMed]
  9. L. D. Hubbard, R. J. Brothers, W. N. King, L. X. Clegg, R. Klein, L. S. Cooper, A. R. Sharrett, M. D. Davis, and J. Cai, “Methods for evaluation of retinal microvascular abnormalities associated with hypertension/sclerosis in the Atherosclerosis Risk in Communities Study,” Ophthalmology 106(12), 2269–2280 (1999).
    [Crossref] [PubMed]
  10. M. K. Ikram, J. C. Witteman, J. R. Vingerling, M. M. Breteler, A. Hofman, and P. T. de Jong, “Retinal vessel diameters and risk of hypertension: the Rotterdam Study,” Hypertension 47(2), 189–194 (2006).
    [Crossref] [PubMed]
  11. G. Liew, T. Y. Wong, P. Mitchell, N. Cheung, and J. J. Wang, “Retinopathy predicts coronary heart disease mortality,” Heart 95(5), 391–394 (2008).
    [Crossref] [PubMed]
  12. T. Y. Wong, M. D. Knudtson, R. Klein, B. E. Klein, S. M. Meuer, and L. D. Hubbard, “Computer-assisted measurement of retinal vessel diameters in the Beaver Dam Eye Study: methodology, correlation between eyes, and effect of refractive errors,” Ophthalmology 111(6), 1183–1190 (2004).
    [Crossref] [PubMed]
  13. W. Aguilar, M. E. Martinez-Perez, Y. Frauel, F. Escolano, M. A. Lozano, and A. Espinosa-Romero, “Graph-based methods for retinal mosaicing and vascular characterization,” Lect. Notes Comput. Sci. 4538, 25–36 (2007).
    [Crossref]
  14. R. Chrástek, M. Wolf, K. Donath, H. Niemann, and G. Michelson, “Automated Calculation of Retinal Arteriovenous Ratio for Detection and Monitoring of Cerebrovascular Disease Based on Assessment of Morphological Changes of Retinal Vascular System,” in MVA, 2002), 240–243.
  15. E. Grisan and A. Ruggeri, “A divide et impera strategy for automatic classification of retinal vessels into arteries and veins,” in Engineering in medicine and biology society,2003.Proceedings of the 25th annual international conference of the IEEE, (IEEE, 2003), 890–893.
    [Crossref]
  16. H. Jelinek, C. Depardieu, C. Lucas, D. Cornforth, W. Huang, and M. Cree, “Towards vessel characterization in the vicinity of the optic disc in digital retinal images,” in Image Vis Comput Conf, 2005), 2–7.
  17. H. Li, W. Hsu, M.-L. Lee, and H. Wang, “A piecewise Gaussian model for profiling and differentiating retinal vessels,” in Image Processing,2003. ICIP 2003. Proceedings. 2003 International Conference on, (IEEE, 2003), I-1069.
    [Crossref]
  18. M. Niemeijer, B. van Ginneken, and M. D. Abràmoff, “Automatic classification of retinal vessels into arteries and veins,” Medical imaging, 72601F–72601F (2009).
    [Crossref]
  19. K. Rothaus, X. Jiang, and P. Rhiem, “Separation of the retinal vascular graph in arteries and veins based upon structural knowledge,” Image Vis. Comput. 27(7), 864–875 (2009).
    [Crossref]
  20. A. Simó and E. de Ves, “Segmentation of macular fluorescein angiographies. A statistical approach,” Pattern Recognit. 34(4), 795–809 (2001).
    [Crossref]
  21. S. Vázquez, N. Barreira, M. Penedo, M. Penas, and A. Pose-Reino, “Automatic classification of retinal vessels into arteries and veins,” in 7th international conference biomedical engineering (BioMED 2010), 2010), 230–236.
    [Crossref]
  22. S. Vázquez, B. Cancela, N. Barreira, M. G. Penedo, M. Rodríguez-Blanco, M. P. Seijo, G. C. de Tuero, M. A. Barceló, and M. Saez, “Improving retinal artery and vein classification by means of a minimal path approach,” Mach. Vis. Appl. 24(5), 919–930 (2013).
    [Crossref]
  23. S. Zahid, R. Dolz-Marco, K. B. Freund, C. Balaratnasingam, K. Dansingani, F. Gilani, N. Mehta, E. Young, M. R. Klifto, B. Chae, L. A. Yannuzzi, and J. A. Young, “Fractal Dimensional Analysis of Optical Coherence Tomography Angiography in Eyes With Diabetic Retinopathy,” Invest. Ophthalmol. Vis. Sci. 57(11), 4940–4947 (2016).
    [Crossref] [PubMed]
  24. B. I. Gramatikov, “Modern technologies for retinal scanning and imaging: an introduction for the biomedical engineer,” Biomed. Eng. Online 13(1), 52 (2014).
    [Crossref] [PubMed]
  25. K. R. Mendis, C. Balaratnasingam, P. Yu, C. J. Barry, I. L. McAllister, S. J. Cringle, and D.-Y. Yu, “Correlation of histologic and clinical images to determine the diagnostic value of fluorescein angiography for studying retinal capillary detail,” Invest. Ophthalmol. Vis. Sci. 51(11), 5864–5869 (2010).
    [Crossref] [PubMed]
  26. S.-C. Cheng and Y.-M. Huang, “A novel approach to diagnose diabetes based on the fractal characteristics of retinal images,” IEEE Trans. Inf. Technol. Biomed. 7(3), 163–170 (2003).
    [Crossref] [PubMed]
  27. A. Y. Kim, Z. Chu, A. Shahidzadeh, R. K. Wang, C. A. Puliafito, and A. H. Kashani, “Quantifying Microvascular Density and Morphology in Diabetic Retinopathy Using Spectral-Domain Optical Coherence Tomography Angiography,” Invest. Ophthalmol. Vis. Sci. 57(9), OCT362 (2016).
    [Crossref] [PubMed]
  28. N. V. Palejwala, Y. Jia, S. S. Gao, L. Liu, C. J. Flaxel, T. S. Hwang, A. K. Lauer, D. J. Wilson, D. Huang, and S. T. Bailey, “Detection of non-exudative choroidal neovascularization in age-related macular degeneration with optical coherence tomography angiography,” Retina 35(11), 2204–2211 (2015).
    [Crossref] [PubMed]
  29. G. Holló, “Vessel density calculated from OCT angiography in 3 peripapillary sectors in normal, ocular hypertensive, and glaucoma eyes,” Eur. J. Ophthalmol. 26(3), e42–e45 (2016).
    [Crossref] [PubMed]
  30. M. Alam, D. Thapa, J. I. Lim, D. Cao, and X. Yao, “Quantitative characteristics of sickle cell retinopathy in optical coherence tomography angiography,” Biomed. Opt. Express 8(3), 1741–1753 (2017).
    [Crossref] [PubMed]
  31. M. Alam, D. Thapa, J. I. Lim, D. Cao, and X. Yao, “Computer-aided classification of sickle cell retinopathy using quantitative features in optical coherence tomography angiography,” Biomed. Opt. Express 8(9), 4206–4216 (2017).
    [Crossref] [PubMed]
  32. M. Alam, D. Toslak, J. I. Lim, and X. Yao, “Color fundus image guided artery-vein differentiation in optical coherence tomography angiography (Accepted, in production),” Invest. Ophthalmol. Vis. Sci. 59(12), 4953 (2018).
    [Crossref]
  33. C. Kondermann, D. Kondermann, and M. Yan, “Blood vessel classification into arteries and veins in retinal images,” in Medical Imaging 2007: Image Processing, (International Society for Optics and Photonics, 2007), 651247.
  34. U. Vovk, F. Pernus, and B. Likar, “A review of methods for correction of intensity inhomogeneity in MRI,” IEEE Trans. Med. Imaging 26(3), 405–421 (2007).
    [Crossref] [PubMed]
  35. C. Li, J. C. Gore, and C. Davatzikos, “Multiplicative intrinsic component optimization (MICO) for MRI bias field estimation and tissue segmentation,” Magn. Reson. Imaging 32(7), 913–923 (2014).
    [Crossref] [PubMed]
  36. C. Li, C. Xu, A. W. Anderson, and J. C. Gore, “MRI tissue classification and bias field estimation based on coherent local intensity clustering: A unified energy minimization framework,” in International conference on information processing in medical imaging, (Springer, 2009), 288–299.
    [Crossref]
  37. S. Vázquez, N. Barreira, M. G. Penedo, M. Saez, and A. Pose-Reino, “Using retinex image enhancement to improve the artery/vein classification in retinal images,” in International Conference Image Analysis and Recognition, (Springer, 2010), 50–59.
    [Crossref]
  38. M. Alam, T. Son, D. Toslak, J. I. Lim, and X. Yao, “Combining ODR and Blood Vessel Tracking for Artery-Vein Classification and Analysis in Color Fundus Images,” Transl. Vis. Sci. Technol. 7(2), 23 (2018).
    [Crossref] [PubMed]

2018 (2)

M. Alam, D. Toslak, J. I. Lim, and X. Yao, “Color fundus image guided artery-vein differentiation in optical coherence tomography angiography (Accepted, in production),” Invest. Ophthalmol. Vis. Sci. 59(12), 4953 (2018).
[Crossref]

M. Alam, T. Son, D. Toslak, J. I. Lim, and X. Yao, “Combining ODR and Blood Vessel Tracking for Artery-Vein Classification and Analysis in Color Fundus Images,” Transl. Vis. Sci. Technol. 7(2), 23 (2018).
[Crossref] [PubMed]

2017 (2)

2016 (3)

G. Holló, “Vessel density calculated from OCT angiography in 3 peripapillary sectors in normal, ocular hypertensive, and glaucoma eyes,” Eur. J. Ophthalmol. 26(3), e42–e45 (2016).
[Crossref] [PubMed]

A. Y. Kim, Z. Chu, A. Shahidzadeh, R. K. Wang, C. A. Puliafito, and A. H. Kashani, “Quantifying Microvascular Density and Morphology in Diabetic Retinopathy Using Spectral-Domain Optical Coherence Tomography Angiography,” Invest. Ophthalmol. Vis. Sci. 57(9), OCT362 (2016).
[Crossref] [PubMed]

S. Zahid, R. Dolz-Marco, K. B. Freund, C. Balaratnasingam, K. Dansingani, F. Gilani, N. Mehta, E. Young, M. R. Klifto, B. Chae, L. A. Yannuzzi, and J. A. Young, “Fractal Dimensional Analysis of Optical Coherence Tomography Angiography in Eyes With Diabetic Retinopathy,” Invest. Ophthalmol. Vis. Sci. 57(11), 4940–4947 (2016).
[Crossref] [PubMed]

2015 (1)

N. V. Palejwala, Y. Jia, S. S. Gao, L. Liu, C. J. Flaxel, T. S. Hwang, A. K. Lauer, D. J. Wilson, D. Huang, and S. T. Bailey, “Detection of non-exudative choroidal neovascularization in age-related macular degeneration with optical coherence tomography angiography,” Retina 35(11), 2204–2211 (2015).
[Crossref] [PubMed]

2014 (3)

C. Li, J. C. Gore, and C. Davatzikos, “Multiplicative intrinsic component optimization (MICO) for MRI bias field estimation and tissue segmentation,” Magn. Reson. Imaging 32(7), 913–923 (2014).
[Crossref] [PubMed]

B. I. Gramatikov, “Modern technologies for retinal scanning and imaging: an introduction for the biomedical engineer,” Biomed. Eng. Online 13(1), 52 (2014).
[Crossref] [PubMed]

L. Pedersen, P. Jeppesen, S. T. Knudsen, P. L. Poulsen, and T. Bek, “Improvement of mild retinopathy in type 2 diabetic patients correlates with narrowing of retinal arterioles. A prospective observational study,” Graefes Arch. Clin. Exp. Ophthalmol. 252(10), 1561–1567 (2014).
[Crossref] [PubMed]

2013 (1)

S. Vázquez, B. Cancela, N. Barreira, M. G. Penedo, M. Rodríguez-Blanco, M. P. Seijo, G. C. de Tuero, M. A. Barceló, and M. Saez, “Improving retinal artery and vein classification by means of a minimal path approach,” Mach. Vis. Appl. 24(5), 919–930 (2013).
[Crossref]

2011 (1)

M. Niemeijer, X. Xu, A. V. Dumitrescu, P. Gupta, B. van Ginneken, J. C. Folk, and M. D. Abramoff, “Automated measurement of the arteriolar-to-venular width ratio in digital color fundus photographs,” IEEE Trans. Med. Imaging 30(11), 1941–1950 (2011).
[Crossref] [PubMed]

2010 (1)

K. R. Mendis, C. Balaratnasingam, P. Yu, C. J. Barry, I. L. McAllister, S. J. Cringle, and D.-Y. Yu, “Correlation of histologic and clinical images to determine the diagnostic value of fluorescein angiography for studying retinal capillary detail,” Invest. Ophthalmol. Vis. Sci. 51(11), 5864–5869 (2010).
[Crossref] [PubMed]

2009 (1)

K. Rothaus, X. Jiang, and P. Rhiem, “Separation of the retinal vascular graph in arteries and veins based upon structural knowledge,” Image Vis. Comput. 27(7), 864–875 (2009).
[Crossref]

2008 (1)

G. Liew, T. Y. Wong, P. Mitchell, N. Cheung, and J. J. Wang, “Retinopathy predicts coronary heart disease mortality,” Heart 95(5), 391–394 (2008).
[Crossref] [PubMed]

2007 (3)

W. Aguilar, M. E. Martinez-Perez, Y. Frauel, F. Escolano, M. A. Lozano, and A. Espinosa-Romero, “Graph-based methods for retinal mosaicing and vascular characterization,” Lect. Notes Comput. Sci. 4538, 25–36 (2007).
[Crossref]

N. Cheung, D. A. Bluemke, R. Klein, A. R. Sharrett, F. M. Islam, M. F. Cotch, B. E. Klein, M. H. Criqui, and T. Y. Wong, “Retinal arteriolar narrowing and left ventricular remodeling: the multi-ethnic study of atherosclerosis,” J. Am. Coll. Cardiol. 50(1), 48–55 (2007).
[Crossref] [PubMed]

U. Vovk, F. Pernus, and B. Likar, “A review of methods for correction of intensity inhomogeneity in MRI,” IEEE Trans. Med. Imaging 26(3), 405–421 (2007).
[Crossref] [PubMed]

2006 (1)

M. K. Ikram, J. C. Witteman, J. R. Vingerling, M. M. Breteler, A. Hofman, and P. T. de Jong, “Retinal vessel diameters and risk of hypertension: the Rotterdam Study,” Hypertension 47(2), 189–194 (2006).
[Crossref] [PubMed]

2004 (1)

T. Y. Wong, M. D. Knudtson, R. Klein, B. E. Klein, S. M. Meuer, and L. D. Hubbard, “Computer-assisted measurement of retinal vessel diameters in the Beaver Dam Eye Study: methodology, correlation between eyes, and effect of refractive errors,” Ophthalmology 111(6), 1183–1190 (2004).
[Crossref] [PubMed]

2003 (1)

S.-C. Cheng and Y.-M. Huang, “A novel approach to diagnose diabetes based on the fractal characteristics of retinal images,” IEEE Trans. Inf. Technol. Biomed. 7(3), 163–170 (2003).
[Crossref] [PubMed]

2002 (1)

R. A. Fonseca and M. A. Dantas, “Retinal venous beading associated with recurrent branch vein occlusion,” Can. J. Ophthalmol. 37(3), 182–183 (2002).
[Crossref] [PubMed]

2001 (1)

A. Simó and E. de Ves, “Segmentation of macular fluorescein angiographies. A statistical approach,” Pattern Recognit. 34(4), 795–809 (2001).
[Crossref]

1999 (1)

L. D. Hubbard, R. J. Brothers, W. N. King, L. X. Clegg, R. Klein, L. S. Cooper, A. R. Sharrett, M. D. Davis, and J. Cai, “Methods for evaluation of retinal microvascular abnormalities associated with hypertension/sclerosis in the Atherosclerosis Risk in Communities Study,” Ophthalmology 106(12), 2269–2280 (1999).
[Crossref] [PubMed]

1995 (1)

P. H. Gregson, Z. Shen, R. C. Scott, and V. Kozousek, “Automated grading of venous beading,” Comput. Biomed. Res. 28(4), 291–304 (1995).
[Crossref] [PubMed]

1994 (2)

R. Klein, B. E. Klein, S. E. Moss, and Q. Wang, “Hypertension and retinopathy, arteriolar narrowing, and arteriovenous nicking in a population,” Arch. Ophthalmol. 112(1), 92–98 (1994).
[Crossref] [PubMed]

B. Piguet, M. Gross-Jendroska, F. G. Holz, and A. C. Bird, “Inherited venous beading,” Eye (Lond.) 8(1), 84–88 (1994).
[Crossref] [PubMed]

1992 (1)

V. Kozousek, Z. Shen, P. Gregson, and R. C. Scott, “Automated detection and quantification of venous beading using Fourier analysis,” Can. J. Ophthalmol. 27(6), 288–294 (1992).
[PubMed]

Abramoff, M. D.

M. Niemeijer, X. Xu, A. V. Dumitrescu, P. Gupta, B. van Ginneken, J. C. Folk, and M. D. Abramoff, “Automated measurement of the arteriolar-to-venular width ratio in digital color fundus photographs,” IEEE Trans. Med. Imaging 30(11), 1941–1950 (2011).
[Crossref] [PubMed]

Aguilar, W.

W. Aguilar, M. E. Martinez-Perez, Y. Frauel, F. Escolano, M. A. Lozano, and A. Espinosa-Romero, “Graph-based methods for retinal mosaicing and vascular characterization,” Lect. Notes Comput. Sci. 4538, 25–36 (2007).
[Crossref]

Alam, M.

M. Alam, D. Toslak, J. I. Lim, and X. Yao, “Color fundus image guided artery-vein differentiation in optical coherence tomography angiography (Accepted, in production),” Invest. Ophthalmol. Vis. Sci. 59(12), 4953 (2018).
[Crossref]

M. Alam, T. Son, D. Toslak, J. I. Lim, and X. Yao, “Combining ODR and Blood Vessel Tracking for Artery-Vein Classification and Analysis in Color Fundus Images,” Transl. Vis. Sci. Technol. 7(2), 23 (2018).
[Crossref] [PubMed]

M. Alam, D. Thapa, J. I. Lim, D. Cao, and X. Yao, “Quantitative characteristics of sickle cell retinopathy in optical coherence tomography angiography,” Biomed. Opt. Express 8(3), 1741–1753 (2017).
[Crossref] [PubMed]

M. Alam, D. Thapa, J. I. Lim, D. Cao, and X. Yao, “Computer-aided classification of sickle cell retinopathy using quantitative features in optical coherence tomography angiography,” Biomed. Opt. Express 8(9), 4206–4216 (2017).
[Crossref] [PubMed]

Anderson, A. W.

C. Li, C. Xu, A. W. Anderson, and J. C. Gore, “MRI tissue classification and bias field estimation based on coherent local intensity clustering: A unified energy minimization framework,” in International conference on information processing in medical imaging, (Springer, 2009), 288–299.
[Crossref]

Bailey, S. T.

N. V. Palejwala, Y. Jia, S. S. Gao, L. Liu, C. J. Flaxel, T. S. Hwang, A. K. Lauer, D. J. Wilson, D. Huang, and S. T. Bailey, “Detection of non-exudative choroidal neovascularization in age-related macular degeneration with optical coherence tomography angiography,” Retina 35(11), 2204–2211 (2015).
[Crossref] [PubMed]

Balaratnasingam, C.

S. Zahid, R. Dolz-Marco, K. B. Freund, C. Balaratnasingam, K. Dansingani, F. Gilani, N. Mehta, E. Young, M. R. Klifto, B. Chae, L. A. Yannuzzi, and J. A. Young, “Fractal Dimensional Analysis of Optical Coherence Tomography Angiography in Eyes With Diabetic Retinopathy,” Invest. Ophthalmol. Vis. Sci. 57(11), 4940–4947 (2016).
[Crossref] [PubMed]

K. R. Mendis, C. Balaratnasingam, P. Yu, C. J. Barry, I. L. McAllister, S. J. Cringle, and D.-Y. Yu, “Correlation of histologic and clinical images to determine the diagnostic value of fluorescein angiography for studying retinal capillary detail,” Invest. Ophthalmol. Vis. Sci. 51(11), 5864–5869 (2010).
[Crossref] [PubMed]

Barceló, M. A.

S. Vázquez, B. Cancela, N. Barreira, M. G. Penedo, M. Rodríguez-Blanco, M. P. Seijo, G. C. de Tuero, M. A. Barceló, and M. Saez, “Improving retinal artery and vein classification by means of a minimal path approach,” Mach. Vis. Appl. 24(5), 919–930 (2013).
[Crossref]

Barreira, N.

S. Vázquez, B. Cancela, N. Barreira, M. G. Penedo, M. Rodríguez-Blanco, M. P. Seijo, G. C. de Tuero, M. A. Barceló, and M. Saez, “Improving retinal artery and vein classification by means of a minimal path approach,” Mach. Vis. Appl. 24(5), 919–930 (2013).
[Crossref]

S. Vázquez, N. Barreira, M. G. Penedo, M. Saez, and A. Pose-Reino, “Using retinex image enhancement to improve the artery/vein classification in retinal images,” in International Conference Image Analysis and Recognition, (Springer, 2010), 50–59.
[Crossref]

Barry, C. J.

K. R. Mendis, C. Balaratnasingam, P. Yu, C. J. Barry, I. L. McAllister, S. J. Cringle, and D.-Y. Yu, “Correlation of histologic and clinical images to determine the diagnostic value of fluorescein angiography for studying retinal capillary detail,” Invest. Ophthalmol. Vis. Sci. 51(11), 5864–5869 (2010).
[Crossref] [PubMed]

Bek, T.

L. Pedersen, P. Jeppesen, S. T. Knudsen, P. L. Poulsen, and T. Bek, “Improvement of mild retinopathy in type 2 diabetic patients correlates with narrowing of retinal arterioles. A prospective observational study,” Graefes Arch. Clin. Exp. Ophthalmol. 252(10), 1561–1567 (2014).
[Crossref] [PubMed]

Bird, A. C.

B. Piguet, M. Gross-Jendroska, F. G. Holz, and A. C. Bird, “Inherited venous beading,” Eye (Lond.) 8(1), 84–88 (1994).
[Crossref] [PubMed]

Bluemke, D. A.

N. Cheung, D. A. Bluemke, R. Klein, A. R. Sharrett, F. M. Islam, M. F. Cotch, B. E. Klein, M. H. Criqui, and T. Y. Wong, “Retinal arteriolar narrowing and left ventricular remodeling: the multi-ethnic study of atherosclerosis,” J. Am. Coll. Cardiol. 50(1), 48–55 (2007).
[Crossref] [PubMed]

Breteler, M. M.

M. K. Ikram, J. C. Witteman, J. R. Vingerling, M. M. Breteler, A. Hofman, and P. T. de Jong, “Retinal vessel diameters and risk of hypertension: the Rotterdam Study,” Hypertension 47(2), 189–194 (2006).
[Crossref] [PubMed]

Brothers, R. J.

L. D. Hubbard, R. J. Brothers, W. N. King, L. X. Clegg, R. Klein, L. S. Cooper, A. R. Sharrett, M. D. Davis, and J. Cai, “Methods for evaluation of retinal microvascular abnormalities associated with hypertension/sclerosis in the Atherosclerosis Risk in Communities Study,” Ophthalmology 106(12), 2269–2280 (1999).
[Crossref] [PubMed]

Cai, J.

L. D. Hubbard, R. J. Brothers, W. N. King, L. X. Clegg, R. Klein, L. S. Cooper, A. R. Sharrett, M. D. Davis, and J. Cai, “Methods for evaluation of retinal microvascular abnormalities associated with hypertension/sclerosis in the Atherosclerosis Risk in Communities Study,” Ophthalmology 106(12), 2269–2280 (1999).
[Crossref] [PubMed]

Cancela, B.

S. Vázquez, B. Cancela, N. Barreira, M. G. Penedo, M. Rodríguez-Blanco, M. P. Seijo, G. C. de Tuero, M. A. Barceló, and M. Saez, “Improving retinal artery and vein classification by means of a minimal path approach,” Mach. Vis. Appl. 24(5), 919–930 (2013).
[Crossref]

Cao, D.

Chae, B.

S. Zahid, R. Dolz-Marco, K. B. Freund, C. Balaratnasingam, K. Dansingani, F. Gilani, N. Mehta, E. Young, M. R. Klifto, B. Chae, L. A. Yannuzzi, and J. A. Young, “Fractal Dimensional Analysis of Optical Coherence Tomography Angiography in Eyes With Diabetic Retinopathy,” Invest. Ophthalmol. Vis. Sci. 57(11), 4940–4947 (2016).
[Crossref] [PubMed]

Cheng, S.-C.

S.-C. Cheng and Y.-M. Huang, “A novel approach to diagnose diabetes based on the fractal characteristics of retinal images,” IEEE Trans. Inf. Technol. Biomed. 7(3), 163–170 (2003).
[Crossref] [PubMed]

Cheung, N.

G. Liew, T. Y. Wong, P. Mitchell, N. Cheung, and J. J. Wang, “Retinopathy predicts coronary heart disease mortality,” Heart 95(5), 391–394 (2008).
[Crossref] [PubMed]

N. Cheung, D. A. Bluemke, R. Klein, A. R. Sharrett, F. M. Islam, M. F. Cotch, B. E. Klein, M. H. Criqui, and T. Y. Wong, “Retinal arteriolar narrowing and left ventricular remodeling: the multi-ethnic study of atherosclerosis,” J. Am. Coll. Cardiol. 50(1), 48–55 (2007).
[Crossref] [PubMed]

Chu, Z.

A. Y. Kim, Z. Chu, A. Shahidzadeh, R. K. Wang, C. A. Puliafito, and A. H. Kashani, “Quantifying Microvascular Density and Morphology in Diabetic Retinopathy Using Spectral-Domain Optical Coherence Tomography Angiography,” Invest. Ophthalmol. Vis. Sci. 57(9), OCT362 (2016).
[Crossref] [PubMed]

Clegg, L. X.

L. D. Hubbard, R. J. Brothers, W. N. King, L. X. Clegg, R. Klein, L. S. Cooper, A. R. Sharrett, M. D. Davis, and J. Cai, “Methods for evaluation of retinal microvascular abnormalities associated with hypertension/sclerosis in the Atherosclerosis Risk in Communities Study,” Ophthalmology 106(12), 2269–2280 (1999).
[Crossref] [PubMed]

Cooper, L. S.

L. D. Hubbard, R. J. Brothers, W. N. King, L. X. Clegg, R. Klein, L. S. Cooper, A. R. Sharrett, M. D. Davis, and J. Cai, “Methods for evaluation of retinal microvascular abnormalities associated with hypertension/sclerosis in the Atherosclerosis Risk in Communities Study,” Ophthalmology 106(12), 2269–2280 (1999).
[Crossref] [PubMed]

Cornforth, D.

H. Jelinek, C. Depardieu, C. Lucas, D. Cornforth, W. Huang, and M. Cree, “Towards vessel characterization in the vicinity of the optic disc in digital retinal images,” in Image Vis Comput Conf, 2005), 2–7.

Cotch, M. F.

N. Cheung, D. A. Bluemke, R. Klein, A. R. Sharrett, F. M. Islam, M. F. Cotch, B. E. Klein, M. H. Criqui, and T. Y. Wong, “Retinal arteriolar narrowing and left ventricular remodeling: the multi-ethnic study of atherosclerosis,” J. Am. Coll. Cardiol. 50(1), 48–55 (2007).
[Crossref] [PubMed]

Cree, M.

H. Jelinek, C. Depardieu, C. Lucas, D. Cornforth, W. Huang, and M. Cree, “Towards vessel characterization in the vicinity of the optic disc in digital retinal images,” in Image Vis Comput Conf, 2005), 2–7.

Cringle, S. J.

K. R. Mendis, C. Balaratnasingam, P. Yu, C. J. Barry, I. L. McAllister, S. J. Cringle, and D.-Y. Yu, “Correlation of histologic and clinical images to determine the diagnostic value of fluorescein angiography for studying retinal capillary detail,” Invest. Ophthalmol. Vis. Sci. 51(11), 5864–5869 (2010).
[Crossref] [PubMed]

Criqui, M. H.

N. Cheung, D. A. Bluemke, R. Klein, A. R. Sharrett, F. M. Islam, M. F. Cotch, B. E. Klein, M. H. Criqui, and T. Y. Wong, “Retinal arteriolar narrowing and left ventricular remodeling: the multi-ethnic study of atherosclerosis,” J. Am. Coll. Cardiol. 50(1), 48–55 (2007).
[Crossref] [PubMed]

Dansingani, K.

S. Zahid, R. Dolz-Marco, K. B. Freund, C. Balaratnasingam, K. Dansingani, F. Gilani, N. Mehta, E. Young, M. R. Klifto, B. Chae, L. A. Yannuzzi, and J. A. Young, “Fractal Dimensional Analysis of Optical Coherence Tomography Angiography in Eyes With Diabetic Retinopathy,” Invest. Ophthalmol. Vis. Sci. 57(11), 4940–4947 (2016).
[Crossref] [PubMed]

Dantas, M. A.

R. A. Fonseca and M. A. Dantas, “Retinal venous beading associated with recurrent branch vein occlusion,” Can. J. Ophthalmol. 37(3), 182–183 (2002).
[Crossref] [PubMed]

Davatzikos, C.

C. Li, J. C. Gore, and C. Davatzikos, “Multiplicative intrinsic component optimization (MICO) for MRI bias field estimation and tissue segmentation,” Magn. Reson. Imaging 32(7), 913–923 (2014).
[Crossref] [PubMed]

Davis, M. D.

L. D. Hubbard, R. J. Brothers, W. N. King, L. X. Clegg, R. Klein, L. S. Cooper, A. R. Sharrett, M. D. Davis, and J. Cai, “Methods for evaluation of retinal microvascular abnormalities associated with hypertension/sclerosis in the Atherosclerosis Risk in Communities Study,” Ophthalmology 106(12), 2269–2280 (1999).
[Crossref] [PubMed]

de Jong, P. T.

M. K. Ikram, J. C. Witteman, J. R. Vingerling, M. M. Breteler, A. Hofman, and P. T. de Jong, “Retinal vessel diameters and risk of hypertension: the Rotterdam Study,” Hypertension 47(2), 189–194 (2006).
[Crossref] [PubMed]

de Tuero, G. C.

S. Vázquez, B. Cancela, N. Barreira, M. G. Penedo, M. Rodríguez-Blanco, M. P. Seijo, G. C. de Tuero, M. A. Barceló, and M. Saez, “Improving retinal artery and vein classification by means of a minimal path approach,” Mach. Vis. Appl. 24(5), 919–930 (2013).
[Crossref]

de Ves, E.

A. Simó and E. de Ves, “Segmentation of macular fluorescein angiographies. A statistical approach,” Pattern Recognit. 34(4), 795–809 (2001).
[Crossref]

Depardieu, C.

H. Jelinek, C. Depardieu, C. Lucas, D. Cornforth, W. Huang, and M. Cree, “Towards vessel characterization in the vicinity of the optic disc in digital retinal images,” in Image Vis Comput Conf, 2005), 2–7.

Dolz-Marco, R.

S. Zahid, R. Dolz-Marco, K. B. Freund, C. Balaratnasingam, K. Dansingani, F. Gilani, N. Mehta, E. Young, M. R. Klifto, B. Chae, L. A. Yannuzzi, and J. A. Young, “Fractal Dimensional Analysis of Optical Coherence Tomography Angiography in Eyes With Diabetic Retinopathy,” Invest. Ophthalmol. Vis. Sci. 57(11), 4940–4947 (2016).
[Crossref] [PubMed]

Dumitrescu, A. V.

M. Niemeijer, X. Xu, A. V. Dumitrescu, P. Gupta, B. van Ginneken, J. C. Folk, and M. D. Abramoff, “Automated measurement of the arteriolar-to-venular width ratio in digital color fundus photographs,” IEEE Trans. Med. Imaging 30(11), 1941–1950 (2011).
[Crossref] [PubMed]

Escolano, F.

W. Aguilar, M. E. Martinez-Perez, Y. Frauel, F. Escolano, M. A. Lozano, and A. Espinosa-Romero, “Graph-based methods for retinal mosaicing and vascular characterization,” Lect. Notes Comput. Sci. 4538, 25–36 (2007).
[Crossref]

Espinosa-Romero, A.

W. Aguilar, M. E. Martinez-Perez, Y. Frauel, F. Escolano, M. A. Lozano, and A. Espinosa-Romero, “Graph-based methods for retinal mosaicing and vascular characterization,” Lect. Notes Comput. Sci. 4538, 25–36 (2007).
[Crossref]

Flaxel, C. J.

N. V. Palejwala, Y. Jia, S. S. Gao, L. Liu, C. J. Flaxel, T. S. Hwang, A. K. Lauer, D. J. Wilson, D. Huang, and S. T. Bailey, “Detection of non-exudative choroidal neovascularization in age-related macular degeneration with optical coherence tomography angiography,” Retina 35(11), 2204–2211 (2015).
[Crossref] [PubMed]

Folk, J. C.

M. Niemeijer, X. Xu, A. V. Dumitrescu, P. Gupta, B. van Ginneken, J. C. Folk, and M. D. Abramoff, “Automated measurement of the arteriolar-to-venular width ratio in digital color fundus photographs,” IEEE Trans. Med. Imaging 30(11), 1941–1950 (2011).
[Crossref] [PubMed]

Fonseca, R. A.

R. A. Fonseca and M. A. Dantas, “Retinal venous beading associated with recurrent branch vein occlusion,” Can. J. Ophthalmol. 37(3), 182–183 (2002).
[Crossref] [PubMed]

Frauel, Y.

W. Aguilar, M. E. Martinez-Perez, Y. Frauel, F. Escolano, M. A. Lozano, and A. Espinosa-Romero, “Graph-based methods for retinal mosaicing and vascular characterization,” Lect. Notes Comput. Sci. 4538, 25–36 (2007).
[Crossref]

Freund, K. B.

S. Zahid, R. Dolz-Marco, K. B. Freund, C. Balaratnasingam, K. Dansingani, F. Gilani, N. Mehta, E. Young, M. R. Klifto, B. Chae, L. A. Yannuzzi, and J. A. Young, “Fractal Dimensional Analysis of Optical Coherence Tomography Angiography in Eyes With Diabetic Retinopathy,” Invest. Ophthalmol. Vis. Sci. 57(11), 4940–4947 (2016).
[Crossref] [PubMed]

Gao, S. S.

N. V. Palejwala, Y. Jia, S. S. Gao, L. Liu, C. J. Flaxel, T. S. Hwang, A. K. Lauer, D. J. Wilson, D. Huang, and S. T. Bailey, “Detection of non-exudative choroidal neovascularization in age-related macular degeneration with optical coherence tomography angiography,” Retina 35(11), 2204–2211 (2015).
[Crossref] [PubMed]

Gilani, F.

S. Zahid, R. Dolz-Marco, K. B. Freund, C. Balaratnasingam, K. Dansingani, F. Gilani, N. Mehta, E. Young, M. R. Klifto, B. Chae, L. A. Yannuzzi, and J. A. Young, “Fractal Dimensional Analysis of Optical Coherence Tomography Angiography in Eyes With Diabetic Retinopathy,” Invest. Ophthalmol. Vis. Sci. 57(11), 4940–4947 (2016).
[Crossref] [PubMed]

Gore, J. C.

C. Li, J. C. Gore, and C. Davatzikos, “Multiplicative intrinsic component optimization (MICO) for MRI bias field estimation and tissue segmentation,” Magn. Reson. Imaging 32(7), 913–923 (2014).
[Crossref] [PubMed]

C. Li, C. Xu, A. W. Anderson, and J. C. Gore, “MRI tissue classification and bias field estimation based on coherent local intensity clustering: A unified energy minimization framework,” in International conference on information processing in medical imaging, (Springer, 2009), 288–299.
[Crossref]

Gramatikov, B. I.

B. I. Gramatikov, “Modern technologies for retinal scanning and imaging: an introduction for the biomedical engineer,” Biomed. Eng. Online 13(1), 52 (2014).
[Crossref] [PubMed]

Gregson, P.

V. Kozousek, Z. Shen, P. Gregson, and R. C. Scott, “Automated detection and quantification of venous beading using Fourier analysis,” Can. J. Ophthalmol. 27(6), 288–294 (1992).
[PubMed]

Gregson, P. H.

P. H. Gregson, Z. Shen, R. C. Scott, and V. Kozousek, “Automated grading of venous beading,” Comput. Biomed. Res. 28(4), 291–304 (1995).
[Crossref] [PubMed]

Gross-Jendroska, M.

B. Piguet, M. Gross-Jendroska, F. G. Holz, and A. C. Bird, “Inherited venous beading,” Eye (Lond.) 8(1), 84–88 (1994).
[Crossref] [PubMed]

Gupta, P.

M. Niemeijer, X. Xu, A. V. Dumitrescu, P. Gupta, B. van Ginneken, J. C. Folk, and M. D. Abramoff, “Automated measurement of the arteriolar-to-venular width ratio in digital color fundus photographs,” IEEE Trans. Med. Imaging 30(11), 1941–1950 (2011).
[Crossref] [PubMed]

Hofman, A.

M. K. Ikram, J. C. Witteman, J. R. Vingerling, M. M. Breteler, A. Hofman, and P. T. de Jong, “Retinal vessel diameters and risk of hypertension: the Rotterdam Study,” Hypertension 47(2), 189–194 (2006).
[Crossref] [PubMed]

Holló, G.

G. Holló, “Vessel density calculated from OCT angiography in 3 peripapillary sectors in normal, ocular hypertensive, and glaucoma eyes,” Eur. J. Ophthalmol. 26(3), e42–e45 (2016).
[Crossref] [PubMed]

Holz, F. G.

B. Piguet, M. Gross-Jendroska, F. G. Holz, and A. C. Bird, “Inherited venous beading,” Eye (Lond.) 8(1), 84–88 (1994).
[Crossref] [PubMed]

Huang, D.

N. V. Palejwala, Y. Jia, S. S. Gao, L. Liu, C. J. Flaxel, T. S. Hwang, A. K. Lauer, D. J. Wilson, D. Huang, and S. T. Bailey, “Detection of non-exudative choroidal neovascularization in age-related macular degeneration with optical coherence tomography angiography,” Retina 35(11), 2204–2211 (2015).
[Crossref] [PubMed]

Huang, W.

H. Jelinek, C. Depardieu, C. Lucas, D. Cornforth, W. Huang, and M. Cree, “Towards vessel characterization in the vicinity of the optic disc in digital retinal images,” in Image Vis Comput Conf, 2005), 2–7.

Huang, Y.-M.

S.-C. Cheng and Y.-M. Huang, “A novel approach to diagnose diabetes based on the fractal characteristics of retinal images,” IEEE Trans. Inf. Technol. Biomed. 7(3), 163–170 (2003).
[Crossref] [PubMed]

Hubbard, L. D.

T. Y. Wong, M. D. Knudtson, R. Klein, B. E. Klein, S. M. Meuer, and L. D. Hubbard, “Computer-assisted measurement of retinal vessel diameters in the Beaver Dam Eye Study: methodology, correlation between eyes, and effect of refractive errors,” Ophthalmology 111(6), 1183–1190 (2004).
[Crossref] [PubMed]

L. D. Hubbard, R. J. Brothers, W. N. King, L. X. Clegg, R. Klein, L. S. Cooper, A. R. Sharrett, M. D. Davis, and J. Cai, “Methods for evaluation of retinal microvascular abnormalities associated with hypertension/sclerosis in the Atherosclerosis Risk in Communities Study,” Ophthalmology 106(12), 2269–2280 (1999).
[Crossref] [PubMed]

Hwang, T. S.

N. V. Palejwala, Y. Jia, S. S. Gao, L. Liu, C. J. Flaxel, T. S. Hwang, A. K. Lauer, D. J. Wilson, D. Huang, and S. T. Bailey, “Detection of non-exudative choroidal neovascularization in age-related macular degeneration with optical coherence tomography angiography,” Retina 35(11), 2204–2211 (2015).
[Crossref] [PubMed]

Ikram, M. K.

M. K. Ikram, J. C. Witteman, J. R. Vingerling, M. M. Breteler, A. Hofman, and P. T. de Jong, “Retinal vessel diameters and risk of hypertension: the Rotterdam Study,” Hypertension 47(2), 189–194 (2006).
[Crossref] [PubMed]

Islam, F. M.

N. Cheung, D. A. Bluemke, R. Klein, A. R. Sharrett, F. M. Islam, M. F. Cotch, B. E. Klein, M. H. Criqui, and T. Y. Wong, “Retinal arteriolar narrowing and left ventricular remodeling: the multi-ethnic study of atherosclerosis,” J. Am. Coll. Cardiol. 50(1), 48–55 (2007).
[Crossref] [PubMed]

Jelinek, H.

H. Jelinek, C. Depardieu, C. Lucas, D. Cornforth, W. Huang, and M. Cree, “Towards vessel characterization in the vicinity of the optic disc in digital retinal images,” in Image Vis Comput Conf, 2005), 2–7.

Jeppesen, P.

L. Pedersen, P. Jeppesen, S. T. Knudsen, P. L. Poulsen, and T. Bek, “Improvement of mild retinopathy in type 2 diabetic patients correlates with narrowing of retinal arterioles. A prospective observational study,” Graefes Arch. Clin. Exp. Ophthalmol. 252(10), 1561–1567 (2014).
[Crossref] [PubMed]

Jia, Y.

N. V. Palejwala, Y. Jia, S. S. Gao, L. Liu, C. J. Flaxel, T. S. Hwang, A. K. Lauer, D. J. Wilson, D. Huang, and S. T. Bailey, “Detection of non-exudative choroidal neovascularization in age-related macular degeneration with optical coherence tomography angiography,” Retina 35(11), 2204–2211 (2015).
[Crossref] [PubMed]

Jiang, X.

K. Rothaus, X. Jiang, and P. Rhiem, “Separation of the retinal vascular graph in arteries and veins based upon structural knowledge,” Image Vis. Comput. 27(7), 864–875 (2009).
[Crossref]

Kashani, A. H.

A. Y. Kim, Z. Chu, A. Shahidzadeh, R. K. Wang, C. A. Puliafito, and A. H. Kashani, “Quantifying Microvascular Density and Morphology in Diabetic Retinopathy Using Spectral-Domain Optical Coherence Tomography Angiography,” Invest. Ophthalmol. Vis. Sci. 57(9), OCT362 (2016).
[Crossref] [PubMed]

Kim, A. Y.

A. Y. Kim, Z. Chu, A. Shahidzadeh, R. K. Wang, C. A. Puliafito, and A. H. Kashani, “Quantifying Microvascular Density and Morphology in Diabetic Retinopathy Using Spectral-Domain Optical Coherence Tomography Angiography,” Invest. Ophthalmol. Vis. Sci. 57(9), OCT362 (2016).
[Crossref] [PubMed]

King, W. N.

L. D. Hubbard, R. J. Brothers, W. N. King, L. X. Clegg, R. Klein, L. S. Cooper, A. R. Sharrett, M. D. Davis, and J. Cai, “Methods for evaluation of retinal microvascular abnormalities associated with hypertension/sclerosis in the Atherosclerosis Risk in Communities Study,” Ophthalmology 106(12), 2269–2280 (1999).
[Crossref] [PubMed]

Klein, B. E.

N. Cheung, D. A. Bluemke, R. Klein, A. R. Sharrett, F. M. Islam, M. F. Cotch, B. E. Klein, M. H. Criqui, and T. Y. Wong, “Retinal arteriolar narrowing and left ventricular remodeling: the multi-ethnic study of atherosclerosis,” J. Am. Coll. Cardiol. 50(1), 48–55 (2007).
[Crossref] [PubMed]

T. Y. Wong, M. D. Knudtson, R. Klein, B. E. Klein, S. M. Meuer, and L. D. Hubbard, “Computer-assisted measurement of retinal vessel diameters in the Beaver Dam Eye Study: methodology, correlation between eyes, and effect of refractive errors,” Ophthalmology 111(6), 1183–1190 (2004).
[Crossref] [PubMed]

R. Klein, B. E. Klein, S. E. Moss, and Q. Wang, “Hypertension and retinopathy, arteriolar narrowing, and arteriovenous nicking in a population,” Arch. Ophthalmol. 112(1), 92–98 (1994).
[Crossref] [PubMed]

Klein, R.

N. Cheung, D. A. Bluemke, R. Klein, A. R. Sharrett, F. M. Islam, M. F. Cotch, B. E. Klein, M. H. Criqui, and T. Y. Wong, “Retinal arteriolar narrowing and left ventricular remodeling: the multi-ethnic study of atherosclerosis,” J. Am. Coll. Cardiol. 50(1), 48–55 (2007).
[Crossref] [PubMed]

T. Y. Wong, M. D. Knudtson, R. Klein, B. E. Klein, S. M. Meuer, and L. D. Hubbard, “Computer-assisted measurement of retinal vessel diameters in the Beaver Dam Eye Study: methodology, correlation between eyes, and effect of refractive errors,” Ophthalmology 111(6), 1183–1190 (2004).
[Crossref] [PubMed]

L. D. Hubbard, R. J. Brothers, W. N. King, L. X. Clegg, R. Klein, L. S. Cooper, A. R. Sharrett, M. D. Davis, and J. Cai, “Methods for evaluation of retinal microvascular abnormalities associated with hypertension/sclerosis in the Atherosclerosis Risk in Communities Study,” Ophthalmology 106(12), 2269–2280 (1999).
[Crossref] [PubMed]

R. Klein, B. E. Klein, S. E. Moss, and Q. Wang, “Hypertension and retinopathy, arteriolar narrowing, and arteriovenous nicking in a population,” Arch. Ophthalmol. 112(1), 92–98 (1994).
[Crossref] [PubMed]

Klifto, M. R.

S. Zahid, R. Dolz-Marco, K. B. Freund, C. Balaratnasingam, K. Dansingani, F. Gilani, N. Mehta, E. Young, M. R. Klifto, B. Chae, L. A. Yannuzzi, and J. A. Young, “Fractal Dimensional Analysis of Optical Coherence Tomography Angiography in Eyes With Diabetic Retinopathy,” Invest. Ophthalmol. Vis. Sci. 57(11), 4940–4947 (2016).
[Crossref] [PubMed]

Knudsen, S. T.

L. Pedersen, P. Jeppesen, S. T. Knudsen, P. L. Poulsen, and T. Bek, “Improvement of mild retinopathy in type 2 diabetic patients correlates with narrowing of retinal arterioles. A prospective observational study,” Graefes Arch. Clin. Exp. Ophthalmol. 252(10), 1561–1567 (2014).
[Crossref] [PubMed]

Knudtson, M. D.

T. Y. Wong, M. D. Knudtson, R. Klein, B. E. Klein, S. M. Meuer, and L. D. Hubbard, “Computer-assisted measurement of retinal vessel diameters in the Beaver Dam Eye Study: methodology, correlation between eyes, and effect of refractive errors,” Ophthalmology 111(6), 1183–1190 (2004).
[Crossref] [PubMed]

Kozousek, V.

P. H. Gregson, Z. Shen, R. C. Scott, and V. Kozousek, “Automated grading of venous beading,” Comput. Biomed. Res. 28(4), 291–304 (1995).
[Crossref] [PubMed]

V. Kozousek, Z. Shen, P. Gregson, and R. C. Scott, “Automated detection and quantification of venous beading using Fourier analysis,” Can. J. Ophthalmol. 27(6), 288–294 (1992).
[PubMed]

Lauer, A. K.

N. V. Palejwala, Y. Jia, S. S. Gao, L. Liu, C. J. Flaxel, T. S. Hwang, A. K. Lauer, D. J. Wilson, D. Huang, and S. T. Bailey, “Detection of non-exudative choroidal neovascularization in age-related macular degeneration with optical coherence tomography angiography,” Retina 35(11), 2204–2211 (2015).
[Crossref] [PubMed]

Li, C.

C. Li, J. C. Gore, and C. Davatzikos, “Multiplicative intrinsic component optimization (MICO) for MRI bias field estimation and tissue segmentation,” Magn. Reson. Imaging 32(7), 913–923 (2014).
[Crossref] [PubMed]

C. Li, C. Xu, A. W. Anderson, and J. C. Gore, “MRI tissue classification and bias field estimation based on coherent local intensity clustering: A unified energy minimization framework,” in International conference on information processing in medical imaging, (Springer, 2009), 288–299.
[Crossref]

Liew, G.

G. Liew, T. Y. Wong, P. Mitchell, N. Cheung, and J. J. Wang, “Retinopathy predicts coronary heart disease mortality,” Heart 95(5), 391–394 (2008).
[Crossref] [PubMed]

Likar, B.

U. Vovk, F. Pernus, and B. Likar, “A review of methods for correction of intensity inhomogeneity in MRI,” IEEE Trans. Med. Imaging 26(3), 405–421 (2007).
[Crossref] [PubMed]

Lim, J. I.

M. Alam, D. Toslak, J. I. Lim, and X. Yao, “Color fundus image guided artery-vein differentiation in optical coherence tomography angiography (Accepted, in production),” Invest. Ophthalmol. Vis. Sci. 59(12), 4953 (2018).
[Crossref]

M. Alam, T. Son, D. Toslak, J. I. Lim, and X. Yao, “Combining ODR and Blood Vessel Tracking for Artery-Vein Classification and Analysis in Color Fundus Images,” Transl. Vis. Sci. Technol. 7(2), 23 (2018).
[Crossref] [PubMed]

M. Alam, D. Thapa, J. I. Lim, D. Cao, and X. Yao, “Quantitative characteristics of sickle cell retinopathy in optical coherence tomography angiography,” Biomed. Opt. Express 8(3), 1741–1753 (2017).
[Crossref] [PubMed]

M. Alam, D. Thapa, J. I. Lim, D. Cao, and X. Yao, “Computer-aided classification of sickle cell retinopathy using quantitative features in optical coherence tomography angiography,” Biomed. Opt. Express 8(9), 4206–4216 (2017).
[Crossref] [PubMed]

Liu, L.

N. V. Palejwala, Y. Jia, S. S. Gao, L. Liu, C. J. Flaxel, T. S. Hwang, A. K. Lauer, D. J. Wilson, D. Huang, and S. T. Bailey, “Detection of non-exudative choroidal neovascularization in age-related macular degeneration with optical coherence tomography angiography,” Retina 35(11), 2204–2211 (2015).
[Crossref] [PubMed]

Lozano, M. A.

W. Aguilar, M. E. Martinez-Perez, Y. Frauel, F. Escolano, M. A. Lozano, and A. Espinosa-Romero, “Graph-based methods for retinal mosaicing and vascular characterization,” Lect. Notes Comput. Sci. 4538, 25–36 (2007).
[Crossref]

Lucas, C.

H. Jelinek, C. Depardieu, C. Lucas, D. Cornforth, W. Huang, and M. Cree, “Towards vessel characterization in the vicinity of the optic disc in digital retinal images,” in Image Vis Comput Conf, 2005), 2–7.

Martinez-Perez, M. E.

W. Aguilar, M. E. Martinez-Perez, Y. Frauel, F. Escolano, M. A. Lozano, and A. Espinosa-Romero, “Graph-based methods for retinal mosaicing and vascular characterization,” Lect. Notes Comput. Sci. 4538, 25–36 (2007).
[Crossref]

McAllister, I. L.

K. R. Mendis, C. Balaratnasingam, P. Yu, C. J. Barry, I. L. McAllister, S. J. Cringle, and D.-Y. Yu, “Correlation of histologic and clinical images to determine the diagnostic value of fluorescein angiography for studying retinal capillary detail,” Invest. Ophthalmol. Vis. Sci. 51(11), 5864–5869 (2010).
[Crossref] [PubMed]

Mehta, N.

S. Zahid, R. Dolz-Marco, K. B. Freund, C. Balaratnasingam, K. Dansingani, F. Gilani, N. Mehta, E. Young, M. R. Klifto, B. Chae, L. A. Yannuzzi, and J. A. Young, “Fractal Dimensional Analysis of Optical Coherence Tomography Angiography in Eyes With Diabetic Retinopathy,” Invest. Ophthalmol. Vis. Sci. 57(11), 4940–4947 (2016).
[Crossref] [PubMed]

Mendis, K. R.

K. R. Mendis, C. Balaratnasingam, P. Yu, C. J. Barry, I. L. McAllister, S. J. Cringle, and D.-Y. Yu, “Correlation of histologic and clinical images to determine the diagnostic value of fluorescein angiography for studying retinal capillary detail,” Invest. Ophthalmol. Vis. Sci. 51(11), 5864–5869 (2010).
[Crossref] [PubMed]

Meuer, S. M.

T. Y. Wong, M. D. Knudtson, R. Klein, B. E. Klein, S. M. Meuer, and L. D. Hubbard, “Computer-assisted measurement of retinal vessel diameters in the Beaver Dam Eye Study: methodology, correlation between eyes, and effect of refractive errors,” Ophthalmology 111(6), 1183–1190 (2004).
[Crossref] [PubMed]

Mitchell, P.

G. Liew, T. Y. Wong, P. Mitchell, N. Cheung, and J. J. Wang, “Retinopathy predicts coronary heart disease mortality,” Heart 95(5), 391–394 (2008).
[Crossref] [PubMed]

Moss, S. E.

R. Klein, B. E. Klein, S. E. Moss, and Q. Wang, “Hypertension and retinopathy, arteriolar narrowing, and arteriovenous nicking in a population,” Arch. Ophthalmol. 112(1), 92–98 (1994).
[Crossref] [PubMed]

Niemeijer, M.

M. Niemeijer, X. Xu, A. V. Dumitrescu, P. Gupta, B. van Ginneken, J. C. Folk, and M. D. Abramoff, “Automated measurement of the arteriolar-to-venular width ratio in digital color fundus photographs,” IEEE Trans. Med. Imaging 30(11), 1941–1950 (2011).
[Crossref] [PubMed]

Palejwala, N. V.

N. V. Palejwala, Y. Jia, S. S. Gao, L. Liu, C. J. Flaxel, T. S. Hwang, A. K. Lauer, D. J. Wilson, D. Huang, and S. T. Bailey, “Detection of non-exudative choroidal neovascularization in age-related macular degeneration with optical coherence tomography angiography,” Retina 35(11), 2204–2211 (2015).
[Crossref] [PubMed]

Pedersen, L.

L. Pedersen, P. Jeppesen, S. T. Knudsen, P. L. Poulsen, and T. Bek, “Improvement of mild retinopathy in type 2 diabetic patients correlates with narrowing of retinal arterioles. A prospective observational study,” Graefes Arch. Clin. Exp. Ophthalmol. 252(10), 1561–1567 (2014).
[Crossref] [PubMed]

Penedo, M. G.

S. Vázquez, B. Cancela, N. Barreira, M. G. Penedo, M. Rodríguez-Blanco, M. P. Seijo, G. C. de Tuero, M. A. Barceló, and M. Saez, “Improving retinal artery and vein classification by means of a minimal path approach,” Mach. Vis. Appl. 24(5), 919–930 (2013).
[Crossref]

S. Vázquez, N. Barreira, M. G. Penedo, M. Saez, and A. Pose-Reino, “Using retinex image enhancement to improve the artery/vein classification in retinal images,” in International Conference Image Analysis and Recognition, (Springer, 2010), 50–59.
[Crossref]

Pernus, F.

U. Vovk, F. Pernus, and B. Likar, “A review of methods for correction of intensity inhomogeneity in MRI,” IEEE Trans. Med. Imaging 26(3), 405–421 (2007).
[Crossref] [PubMed]

Piguet, B.

B. Piguet, M. Gross-Jendroska, F. G. Holz, and A. C. Bird, “Inherited venous beading,” Eye (Lond.) 8(1), 84–88 (1994).
[Crossref] [PubMed]

Pose-Reino, A.

S. Vázquez, N. Barreira, M. G. Penedo, M. Saez, and A. Pose-Reino, “Using retinex image enhancement to improve the artery/vein classification in retinal images,” in International Conference Image Analysis and Recognition, (Springer, 2010), 50–59.
[Crossref]

Poulsen, P. L.

L. Pedersen, P. Jeppesen, S. T. Knudsen, P. L. Poulsen, and T. Bek, “Improvement of mild retinopathy in type 2 diabetic patients correlates with narrowing of retinal arterioles. A prospective observational study,” Graefes Arch. Clin. Exp. Ophthalmol. 252(10), 1561–1567 (2014).
[Crossref] [PubMed]

Puliafito, C. A.

A. Y. Kim, Z. Chu, A. Shahidzadeh, R. K. Wang, C. A. Puliafito, and A. H. Kashani, “Quantifying Microvascular Density and Morphology in Diabetic Retinopathy Using Spectral-Domain Optical Coherence Tomography Angiography,” Invest. Ophthalmol. Vis. Sci. 57(9), OCT362 (2016).
[Crossref] [PubMed]

Rhiem, P.

K. Rothaus, X. Jiang, and P. Rhiem, “Separation of the retinal vascular graph in arteries and veins based upon structural knowledge,” Image Vis. Comput. 27(7), 864–875 (2009).
[Crossref]

Rodríguez-Blanco, M.

S. Vázquez, B. Cancela, N. Barreira, M. G. Penedo, M. Rodríguez-Blanco, M. P. Seijo, G. C. de Tuero, M. A. Barceló, and M. Saez, “Improving retinal artery and vein classification by means of a minimal path approach,” Mach. Vis. Appl. 24(5), 919–930 (2013).
[Crossref]

Rothaus, K.

K. Rothaus, X. Jiang, and P. Rhiem, “Separation of the retinal vascular graph in arteries and veins based upon structural knowledge,” Image Vis. Comput. 27(7), 864–875 (2009).
[Crossref]

Saez, M.

S. Vázquez, B. Cancela, N. Barreira, M. G. Penedo, M. Rodríguez-Blanco, M. P. Seijo, G. C. de Tuero, M. A. Barceló, and M. Saez, “Improving retinal artery and vein classification by means of a minimal path approach,” Mach. Vis. Appl. 24(5), 919–930 (2013).
[Crossref]

S. Vázquez, N. Barreira, M. G. Penedo, M. Saez, and A. Pose-Reino, “Using retinex image enhancement to improve the artery/vein classification in retinal images,” in International Conference Image Analysis and Recognition, (Springer, 2010), 50–59.
[Crossref]

Scott, R. C.

P. H. Gregson, Z. Shen, R. C. Scott, and V. Kozousek, “Automated grading of venous beading,” Comput. Biomed. Res. 28(4), 291–304 (1995).
[Crossref] [PubMed]

V. Kozousek, Z. Shen, P. Gregson, and R. C. Scott, “Automated detection and quantification of venous beading using Fourier analysis,” Can. J. Ophthalmol. 27(6), 288–294 (1992).
[PubMed]

Seijo, M. P.

S. Vázquez, B. Cancela, N. Barreira, M. G. Penedo, M. Rodríguez-Blanco, M. P. Seijo, G. C. de Tuero, M. A. Barceló, and M. Saez, “Improving retinal artery and vein classification by means of a minimal path approach,” Mach. Vis. Appl. 24(5), 919–930 (2013).
[Crossref]

Shahidzadeh, A.

A. Y. Kim, Z. Chu, A. Shahidzadeh, R. K. Wang, C. A. Puliafito, and A. H. Kashani, “Quantifying Microvascular Density and Morphology in Diabetic Retinopathy Using Spectral-Domain Optical Coherence Tomography Angiography,” Invest. Ophthalmol. Vis. Sci. 57(9), OCT362 (2016).
[Crossref] [PubMed]

Sharrett, A. R.

N. Cheung, D. A. Bluemke, R. Klein, A. R. Sharrett, F. M. Islam, M. F. Cotch, B. E. Klein, M. H. Criqui, and T. Y. Wong, “Retinal arteriolar narrowing and left ventricular remodeling: the multi-ethnic study of atherosclerosis,” J. Am. Coll. Cardiol. 50(1), 48–55 (2007).
[Crossref] [PubMed]

L. D. Hubbard, R. J. Brothers, W. N. King, L. X. Clegg, R. Klein, L. S. Cooper, A. R. Sharrett, M. D. Davis, and J. Cai, “Methods for evaluation of retinal microvascular abnormalities associated with hypertension/sclerosis in the Atherosclerosis Risk in Communities Study,” Ophthalmology 106(12), 2269–2280 (1999).
[Crossref] [PubMed]

Shen, Z.

P. H. Gregson, Z. Shen, R. C. Scott, and V. Kozousek, “Automated grading of venous beading,” Comput. Biomed. Res. 28(4), 291–304 (1995).
[Crossref] [PubMed]

V. Kozousek, Z. Shen, P. Gregson, and R. C. Scott, “Automated detection and quantification of venous beading using Fourier analysis,” Can. J. Ophthalmol. 27(6), 288–294 (1992).
[PubMed]

Simó, A.

A. Simó and E. de Ves, “Segmentation of macular fluorescein angiographies. A statistical approach,” Pattern Recognit. 34(4), 795–809 (2001).
[Crossref]

Son, T.

M. Alam, T. Son, D. Toslak, J. I. Lim, and X. Yao, “Combining ODR and Blood Vessel Tracking for Artery-Vein Classification and Analysis in Color Fundus Images,” Transl. Vis. Sci. Technol. 7(2), 23 (2018).
[Crossref] [PubMed]

Thapa, D.

Toslak, D.

M. Alam, T. Son, D. Toslak, J. I. Lim, and X. Yao, “Combining ODR and Blood Vessel Tracking for Artery-Vein Classification and Analysis in Color Fundus Images,” Transl. Vis. Sci. Technol. 7(2), 23 (2018).
[Crossref] [PubMed]

M. Alam, D. Toslak, J. I. Lim, and X. Yao, “Color fundus image guided artery-vein differentiation in optical coherence tomography angiography (Accepted, in production),” Invest. Ophthalmol. Vis. Sci. 59(12), 4953 (2018).
[Crossref]

van Ginneken, B.

M. Niemeijer, X. Xu, A. V. Dumitrescu, P. Gupta, B. van Ginneken, J. C. Folk, and M. D. Abramoff, “Automated measurement of the arteriolar-to-venular width ratio in digital color fundus photographs,” IEEE Trans. Med. Imaging 30(11), 1941–1950 (2011).
[Crossref] [PubMed]

Vázquez, S.

S. Vázquez, B. Cancela, N. Barreira, M. G. Penedo, M. Rodríguez-Blanco, M. P. Seijo, G. C. de Tuero, M. A. Barceló, and M. Saez, “Improving retinal artery and vein classification by means of a minimal path approach,” Mach. Vis. Appl. 24(5), 919–930 (2013).
[Crossref]

S. Vázquez, N. Barreira, M. G. Penedo, M. Saez, and A. Pose-Reino, “Using retinex image enhancement to improve the artery/vein classification in retinal images,” in International Conference Image Analysis and Recognition, (Springer, 2010), 50–59.
[Crossref]

Vingerling, J. R.

M. K. Ikram, J. C. Witteman, J. R. Vingerling, M. M. Breteler, A. Hofman, and P. T. de Jong, “Retinal vessel diameters and risk of hypertension: the Rotterdam Study,” Hypertension 47(2), 189–194 (2006).
[Crossref] [PubMed]

Vovk, U.

U. Vovk, F. Pernus, and B. Likar, “A review of methods for correction of intensity inhomogeneity in MRI,” IEEE Trans. Med. Imaging 26(3), 405–421 (2007).
[Crossref] [PubMed]

Wang, J. J.

G. Liew, T. Y. Wong, P. Mitchell, N. Cheung, and J. J. Wang, “Retinopathy predicts coronary heart disease mortality,” Heart 95(5), 391–394 (2008).
[Crossref] [PubMed]

Wang, Q.

R. Klein, B. E. Klein, S. E. Moss, and Q. Wang, “Hypertension and retinopathy, arteriolar narrowing, and arteriovenous nicking in a population,” Arch. Ophthalmol. 112(1), 92–98 (1994).
[Crossref] [PubMed]

Wang, R. K.

A. Y. Kim, Z. Chu, A. Shahidzadeh, R. K. Wang, C. A. Puliafito, and A. H. Kashani, “Quantifying Microvascular Density and Morphology in Diabetic Retinopathy Using Spectral-Domain Optical Coherence Tomography Angiography,” Invest. Ophthalmol. Vis. Sci. 57(9), OCT362 (2016).
[Crossref] [PubMed]

Wilson, D. J.

N. V. Palejwala, Y. Jia, S. S. Gao, L. Liu, C. J. Flaxel, T. S. Hwang, A. K. Lauer, D. J. Wilson, D. Huang, and S. T. Bailey, “Detection of non-exudative choroidal neovascularization in age-related macular degeneration with optical coherence tomography angiography,” Retina 35(11), 2204–2211 (2015).
[Crossref] [PubMed]

Witteman, J. C.

M. K. Ikram, J. C. Witteman, J. R. Vingerling, M. M. Breteler, A. Hofman, and P. T. de Jong, “Retinal vessel diameters and risk of hypertension: the Rotterdam Study,” Hypertension 47(2), 189–194 (2006).
[Crossref] [PubMed]

Wong, T. Y.

G. Liew, T. Y. Wong, P. Mitchell, N. Cheung, and J. J. Wang, “Retinopathy predicts coronary heart disease mortality,” Heart 95(5), 391–394 (2008).
[Crossref] [PubMed]

N. Cheung, D. A. Bluemke, R. Klein, A. R. Sharrett, F. M. Islam, M. F. Cotch, B. E. Klein, M. H. Criqui, and T. Y. Wong, “Retinal arteriolar narrowing and left ventricular remodeling: the multi-ethnic study of atherosclerosis,” J. Am. Coll. Cardiol. 50(1), 48–55 (2007).
[Crossref] [PubMed]

T. Y. Wong, M. D. Knudtson, R. Klein, B. E. Klein, S. M. Meuer, and L. D. Hubbard, “Computer-assisted measurement of retinal vessel diameters in the Beaver Dam Eye Study: methodology, correlation between eyes, and effect of refractive errors,” Ophthalmology 111(6), 1183–1190 (2004).
[Crossref] [PubMed]

Xu, C.

C. Li, C. Xu, A. W. Anderson, and J. C. Gore, “MRI tissue classification and bias field estimation based on coherent local intensity clustering: A unified energy minimization framework,” in International conference on information processing in medical imaging, (Springer, 2009), 288–299.
[Crossref]

Xu, X.

M. Niemeijer, X. Xu, A. V. Dumitrescu, P. Gupta, B. van Ginneken, J. C. Folk, and M. D. Abramoff, “Automated measurement of the arteriolar-to-venular width ratio in digital color fundus photographs,” IEEE Trans. Med. Imaging 30(11), 1941–1950 (2011).
[Crossref] [PubMed]

Yannuzzi, L. A.

S. Zahid, R. Dolz-Marco, K. B. Freund, C. Balaratnasingam, K. Dansingani, F. Gilani, N. Mehta, E. Young, M. R. Klifto, B. Chae, L. A. Yannuzzi, and J. A. Young, “Fractal Dimensional Analysis of Optical Coherence Tomography Angiography in Eyes With Diabetic Retinopathy,” Invest. Ophthalmol. Vis. Sci. 57(11), 4940–4947 (2016).
[Crossref] [PubMed]

Yao, X.

M. Alam, D. Toslak, J. I. Lim, and X. Yao, “Color fundus image guided artery-vein differentiation in optical coherence tomography angiography (Accepted, in production),” Invest. Ophthalmol. Vis. Sci. 59(12), 4953 (2018).
[Crossref]

M. Alam, T. Son, D. Toslak, J. I. Lim, and X. Yao, “Combining ODR and Blood Vessel Tracking for Artery-Vein Classification and Analysis in Color Fundus Images,” Transl. Vis. Sci. Technol. 7(2), 23 (2018).
[Crossref] [PubMed]

M. Alam, D. Thapa, J. I. Lim, D. Cao, and X. Yao, “Computer-aided classification of sickle cell retinopathy using quantitative features in optical coherence tomography angiography,” Biomed. Opt. Express 8(9), 4206–4216 (2017).
[Crossref] [PubMed]

M. Alam, D. Thapa, J. I. Lim, D. Cao, and X. Yao, “Quantitative characteristics of sickle cell retinopathy in optical coherence tomography angiography,” Biomed. Opt. Express 8(3), 1741–1753 (2017).
[Crossref] [PubMed]

Young, E.

S. Zahid, R. Dolz-Marco, K. B. Freund, C. Balaratnasingam, K. Dansingani, F. Gilani, N. Mehta, E. Young, M. R. Klifto, B. Chae, L. A. Yannuzzi, and J. A. Young, “Fractal Dimensional Analysis of Optical Coherence Tomography Angiography in Eyes With Diabetic Retinopathy,” Invest. Ophthalmol. Vis. Sci. 57(11), 4940–4947 (2016).
[Crossref] [PubMed]

Young, J. A.

S. Zahid, R. Dolz-Marco, K. B. Freund, C. Balaratnasingam, K. Dansingani, F. Gilani, N. Mehta, E. Young, M. R. Klifto, B. Chae, L. A. Yannuzzi, and J. A. Young, “Fractal Dimensional Analysis of Optical Coherence Tomography Angiography in Eyes With Diabetic Retinopathy,” Invest. Ophthalmol. Vis. Sci. 57(11), 4940–4947 (2016).
[Crossref] [PubMed]

Yu, D.-Y.

K. R. Mendis, C. Balaratnasingam, P. Yu, C. J. Barry, I. L. McAllister, S. J. Cringle, and D.-Y. Yu, “Correlation of histologic and clinical images to determine the diagnostic value of fluorescein angiography for studying retinal capillary detail,” Invest. Ophthalmol. Vis. Sci. 51(11), 5864–5869 (2010).
[Crossref] [PubMed]

Yu, P.

K. R. Mendis, C. Balaratnasingam, P. Yu, C. J. Barry, I. L. McAllister, S. J. Cringle, and D.-Y. Yu, “Correlation of histologic and clinical images to determine the diagnostic value of fluorescein angiography for studying retinal capillary detail,” Invest. Ophthalmol. Vis. Sci. 51(11), 5864–5869 (2010).
[Crossref] [PubMed]

Zahid, S.

S. Zahid, R. Dolz-Marco, K. B. Freund, C. Balaratnasingam, K. Dansingani, F. Gilani, N. Mehta, E. Young, M. R. Klifto, B. Chae, L. A. Yannuzzi, and J. A. Young, “Fractal Dimensional Analysis of Optical Coherence Tomography Angiography in Eyes With Diabetic Retinopathy,” Invest. Ophthalmol. Vis. Sci. 57(11), 4940–4947 (2016).
[Crossref] [PubMed]

Arch. Ophthalmol. (1)

R. Klein, B. E. Klein, S. E. Moss, and Q. Wang, “Hypertension and retinopathy, arteriolar narrowing, and arteriovenous nicking in a population,” Arch. Ophthalmol. 112(1), 92–98 (1994).
[Crossref] [PubMed]

Biomed. Eng. Online (1)

B. I. Gramatikov, “Modern technologies for retinal scanning and imaging: an introduction for the biomedical engineer,” Biomed. Eng. Online 13(1), 52 (2014).
[Crossref] [PubMed]

Biomed. Opt. Express (2)

Can. J. Ophthalmol. (2)

R. A. Fonseca and M. A. Dantas, “Retinal venous beading associated with recurrent branch vein occlusion,” Can. J. Ophthalmol. 37(3), 182–183 (2002).
[Crossref] [PubMed]

V. Kozousek, Z. Shen, P. Gregson, and R. C. Scott, “Automated detection and quantification of venous beading using Fourier analysis,” Can. J. Ophthalmol. 27(6), 288–294 (1992).
[PubMed]

Comput. Biomed. Res. (1)

P. H. Gregson, Z. Shen, R. C. Scott, and V. Kozousek, “Automated grading of venous beading,” Comput. Biomed. Res. 28(4), 291–304 (1995).
[Crossref] [PubMed]

Eur. J. Ophthalmol. (1)

G. Holló, “Vessel density calculated from OCT angiography in 3 peripapillary sectors in normal, ocular hypertensive, and glaucoma eyes,” Eur. J. Ophthalmol. 26(3), e42–e45 (2016).
[Crossref] [PubMed]

Eye (Lond.) (1)

B. Piguet, M. Gross-Jendroska, F. G. Holz, and A. C. Bird, “Inherited venous beading,” Eye (Lond.) 8(1), 84–88 (1994).
[Crossref] [PubMed]

Graefes Arch. Clin. Exp. Ophthalmol. (1)

L. Pedersen, P. Jeppesen, S. T. Knudsen, P. L. Poulsen, and T. Bek, “Improvement of mild retinopathy in type 2 diabetic patients correlates with narrowing of retinal arterioles. A prospective observational study,” Graefes Arch. Clin. Exp. Ophthalmol. 252(10), 1561–1567 (2014).
[Crossref] [PubMed]

Heart (1)

G. Liew, T. Y. Wong, P. Mitchell, N. Cheung, and J. J. Wang, “Retinopathy predicts coronary heart disease mortality,” Heart 95(5), 391–394 (2008).
[Crossref] [PubMed]

Hypertension (1)

M. K. Ikram, J. C. Witteman, J. R. Vingerling, M. M. Breteler, A. Hofman, and P. T. de Jong, “Retinal vessel diameters and risk of hypertension: the Rotterdam Study,” Hypertension 47(2), 189–194 (2006).
[Crossref] [PubMed]

IEEE Trans. Inf. Technol. Biomed. (1)

S.-C. Cheng and Y.-M. Huang, “A novel approach to diagnose diabetes based on the fractal characteristics of retinal images,” IEEE Trans. Inf. Technol. Biomed. 7(3), 163–170 (2003).
[Crossref] [PubMed]

IEEE Trans. Med. Imaging (2)

U. Vovk, F. Pernus, and B. Likar, “A review of methods for correction of intensity inhomogeneity in MRI,” IEEE Trans. Med. Imaging 26(3), 405–421 (2007).
[Crossref] [PubMed]

M. Niemeijer, X. Xu, A. V. Dumitrescu, P. Gupta, B. van Ginneken, J. C. Folk, and M. D. Abramoff, “Automated measurement of the arteriolar-to-venular width ratio in digital color fundus photographs,” IEEE Trans. Med. Imaging 30(11), 1941–1950 (2011).
[Crossref] [PubMed]

Image Vis. Comput. (1)

K. Rothaus, X. Jiang, and P. Rhiem, “Separation of the retinal vascular graph in arteries and veins based upon structural knowledge,” Image Vis. Comput. 27(7), 864–875 (2009).
[Crossref]

Invest. Ophthalmol. Vis. Sci. (4)

M. Alam, D. Toslak, J. I. Lim, and X. Yao, “Color fundus image guided artery-vein differentiation in optical coherence tomography angiography (Accepted, in production),” Invest. Ophthalmol. Vis. Sci. 59(12), 4953 (2018).
[Crossref]

A. Y. Kim, Z. Chu, A. Shahidzadeh, R. K. Wang, C. A. Puliafito, and A. H. Kashani, “Quantifying Microvascular Density and Morphology in Diabetic Retinopathy Using Spectral-Domain Optical Coherence Tomography Angiography,” Invest. Ophthalmol. Vis. Sci. 57(9), OCT362 (2016).
[Crossref] [PubMed]

S. Zahid, R. Dolz-Marco, K. B. Freund, C. Balaratnasingam, K. Dansingani, F. Gilani, N. Mehta, E. Young, M. R. Klifto, B. Chae, L. A. Yannuzzi, and J. A. Young, “Fractal Dimensional Analysis of Optical Coherence Tomography Angiography in Eyes With Diabetic Retinopathy,” Invest. Ophthalmol. Vis. Sci. 57(11), 4940–4947 (2016).
[Crossref] [PubMed]

K. R. Mendis, C. Balaratnasingam, P. Yu, C. J. Barry, I. L. McAllister, S. J. Cringle, and D.-Y. Yu, “Correlation of histologic and clinical images to determine the diagnostic value of fluorescein angiography for studying retinal capillary detail,” Invest. Ophthalmol. Vis. Sci. 51(11), 5864–5869 (2010).
[Crossref] [PubMed]

J. Am. Coll. Cardiol. (1)

N. Cheung, D. A. Bluemke, R. Klein, A. R. Sharrett, F. M. Islam, M. F. Cotch, B. E. Klein, M. H. Criqui, and T. Y. Wong, “Retinal arteriolar narrowing and left ventricular remodeling: the multi-ethnic study of atherosclerosis,” J. Am. Coll. Cardiol. 50(1), 48–55 (2007).
[Crossref] [PubMed]

Lect. Notes Comput. Sci. (1)

W. Aguilar, M. E. Martinez-Perez, Y. Frauel, F. Escolano, M. A. Lozano, and A. Espinosa-Romero, “Graph-based methods for retinal mosaicing and vascular characterization,” Lect. Notes Comput. Sci. 4538, 25–36 (2007).
[Crossref]

Mach. Vis. Appl. (1)

S. Vázquez, B. Cancela, N. Barreira, M. G. Penedo, M. Rodríguez-Blanco, M. P. Seijo, G. C. de Tuero, M. A. Barceló, and M. Saez, “Improving retinal artery and vein classification by means of a minimal path approach,” Mach. Vis. Appl. 24(5), 919–930 (2013).
[Crossref]

Magn. Reson. Imaging (1)

C. Li, J. C. Gore, and C. Davatzikos, “Multiplicative intrinsic component optimization (MICO) for MRI bias field estimation and tissue segmentation,” Magn. Reson. Imaging 32(7), 913–923 (2014).
[Crossref] [PubMed]

Ophthalmology (2)

T. Y. Wong, M. D. Knudtson, R. Klein, B. E. Klein, S. M. Meuer, and L. D. Hubbard, “Computer-assisted measurement of retinal vessel diameters in the Beaver Dam Eye Study: methodology, correlation between eyes, and effect of refractive errors,” Ophthalmology 111(6), 1183–1190 (2004).
[Crossref] [PubMed]

L. D. Hubbard, R. J. Brothers, W. N. King, L. X. Clegg, R. Klein, L. S. Cooper, A. R. Sharrett, M. D. Davis, and J. Cai, “Methods for evaluation of retinal microvascular abnormalities associated with hypertension/sclerosis in the Atherosclerosis Risk in Communities Study,” Ophthalmology 106(12), 2269–2280 (1999).
[Crossref] [PubMed]

Pattern Recognit. (1)

A. Simó and E. de Ves, “Segmentation of macular fluorescein angiographies. A statistical approach,” Pattern Recognit. 34(4), 795–809 (2001).
[Crossref]

Retina (1)

N. V. Palejwala, Y. Jia, S. S. Gao, L. Liu, C. J. Flaxel, T. S. Hwang, A. K. Lauer, D. J. Wilson, D. Huang, and S. T. Bailey, “Detection of non-exudative choroidal neovascularization in age-related macular degeneration with optical coherence tomography angiography,” Retina 35(11), 2204–2211 (2015).
[Crossref] [PubMed]

Transl. Vis. Sci. Technol. (1)

M. Alam, T. Son, D. Toslak, J. I. Lim, and X. Yao, “Combining ODR and Blood Vessel Tracking for Artery-Vein Classification and Analysis in Color Fundus Images,” Transl. Vis. Sci. Technol. 7(2), 23 (2018).
[Crossref] [PubMed]

Other (9)

C. Li, C. Xu, A. W. Anderson, and J. C. Gore, “MRI tissue classification and bias field estimation based on coherent local intensity clustering: A unified energy minimization framework,” in International conference on information processing in medical imaging, (Springer, 2009), 288–299.
[Crossref]

S. Vázquez, N. Barreira, M. G. Penedo, M. Saez, and A. Pose-Reino, “Using retinex image enhancement to improve the artery/vein classification in retinal images,” in International Conference Image Analysis and Recognition, (Springer, 2010), 50–59.
[Crossref]

C. Kondermann, D. Kondermann, and M. Yan, “Blood vessel classification into arteries and veins in retinal images,” in Medical Imaging 2007: Image Processing, (International Society for Optics and Photonics, 2007), 651247.

S. Vázquez, N. Barreira, M. Penedo, M. Penas, and A. Pose-Reino, “Automatic classification of retinal vessels into arteries and veins,” in 7th international conference biomedical engineering (BioMED 2010), 2010), 230–236.
[Crossref]

R. Chrástek, M. Wolf, K. Donath, H. Niemann, and G. Michelson, “Automated Calculation of Retinal Arteriovenous Ratio for Detection and Monitoring of Cerebrovascular Disease Based on Assessment of Morphological Changes of Retinal Vascular System,” in MVA, 2002), 240–243.

E. Grisan and A. Ruggeri, “A divide et impera strategy for automatic classification of retinal vessels into arteries and veins,” in Engineering in medicine and biology society,2003.Proceedings of the 25th annual international conference of the IEEE, (IEEE, 2003), 890–893.
[Crossref]

H. Jelinek, C. Depardieu, C. Lucas, D. Cornforth, W. Huang, and M. Cree, “Towards vessel characterization in the vicinity of the optic disc in digital retinal images,” in Image Vis Comput Conf, 2005), 2–7.

H. Li, W. Hsu, M.-L. Lee, and H. Wang, “A piecewise Gaussian model for profiling and differentiating retinal vessels,” in Image Processing,2003. ICIP 2003. Proceedings. 2003 International Conference on, (IEEE, 2003), I-1069.
[Crossref]

M. Niemeijer, B. van Ginneken, and M. D. Abràmoff, “Automatic classification of retinal vessels into arteries and veins,” Medical imaging, 72601F–72601F (2009).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 Core steps of OCT guided artery-vein classification in OCTA.
Fig. 2
Fig. 2 OCT normalization and vessel segmentation. (A) Original en face OCT image. (B) Bias field estimation generated from the original en face OCT image. (C) Normalized intensity after bias field correction. (D) Edge enhanced using bottom hat filtering. (E) Binary vessel mask. (F) Segmented vessel map by multiplying images C and E.
Fig. 3
Fig. 3 (A) En face OCT vessel map with source nodes identified with yellow crosses. (B) An enlarged sample source node segment (marked with red circle in (A)). Sample profiles (marked with yellow arrows) are extracted from each segment like this for further feature extraction and artery-vein classification. (C) En face OCT vessel map with identified source nodes as artery (red) or vein (blue).
Fig. 4
Fig. 4 Normalized feature distribution in artery and vein vessels. RWCR: ratio of width to central reflex; AMPB: average of maximum profile brightness; AMPI: average of median profile intensity; ODVB: optical density of vessel boundary.
Fig. 5
Fig. 5 Illustration of quadrant rotation relative to the fovea center.
Fig. 6
Fig. 6 Artery-vein classification in OCTA. (A) En face OCT vessel map with artery-vein classified source nodes (B) En face OCT artery-vein map. (C) Original OCTA image, (D) OCTA binary vessel map, (E) En face OCT artery-vein map overlaid onto the OCTA binary vessel map, (F) Final OCTA artery-vein map.
Fig. 7
Fig. 7 Mean ROC curves for artery-vein classification. (A) En face OCT, (B) OCTA.

Tables (2)

Tables Icon

Table 1 Performance of Artery-Vein Classification: En Face OCT Image

Tables Icon

Table 2 Performance of Artery-Vein Classification: OCTA Image

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

I(x,y)=b( x,y ) I true (x,y)
b( x,y )= k=1 M w k . G k
I( x,y )= 1 σ 2π e ( ycosθxsinθ ) 2 2 σ 2
P SA = n A n A + n V   and P SV = n V n A + n V

Metrics