Abstract

Ultrasound (US)-guided diffuse optical tomography (DOT) is a promising low-cost imaging technique for diagnosis and assessment of breast cancer. US-guided DOT is best implemented in reflection geometry, which can be co-registered with US pulse-echo imaging and also minimizes the tissue depth for adequate light penetration. However, due to intense light scattering, the DOT reconstruction problem is ill-posed. In this communication, we describe a new non-linear Born iterative reconstruction method with US-guided depth-dependent l1 sparse regularization for improving DOT reconstruction by incorporating a priori lesion depth and shape information from the co-registered US image. Our method iteratively solves the inverse problem by updating the photon-density wave using the finite difference method, computing the weight matrix based on Born approximation, and reconstructing the absorption map using the fast iterative shrinkage-thresholding optimization algorithm (FISTA). We validate our method using both phantom and patient data and compare the results with those using the first order linear Born method. Phantom experiments demonstrate that the non-linear Born method provides more accurate target absorption reconstruction and better resolution than the linear Born method. Clinical studies on 20 patients show that non-linear Born reconstructs more realistic tumor shapes than linear Born, and improves the malignant-to-benign lesion contrast ratio from 2.73 to 3.07, which is a 12.5% improvement. For lesions approximately more than 2.0 cm in diameter, the average malignant-to-benign lesion contrast ratio is increased from 2.68 to 3.31, which is a 23.5% improvement.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Two step imaging reconstruction using truncated pseudoinverse as a preliminary estimate in ultrasound guided diffuse optical tomography

K. M. Shihab Uddin, Atahar Mostafa, Mark Anastasio, and Quing Zhu
Biomed. Opt. Express 8(12) 5437-5449 (2017)

Automated data selection method to improve robustness of diffuse optical tomography for breast cancer imaging

Hamed Vavadi and Quing Zhu
Biomed. Opt. Express 7(10) 4007-4020 (2016)

Optical mammography combined with fluorescence imaging: lesion detection using scatterplots

Anaïs Leproux, Marjolein van der Voort, Martin B. van der Mark, Rik Harbers, Stephanie M. W. Y. van de Ven, and Ton G. van Leeuwen
Biomed. Opt. Express 2(4) 1007-1020 (2011)

References

  • View by:
  • |
  • |
  • |

  1. B. W. Pogue, S. P. Poplack, T. O. McBride, W. A. Wells, K. S. Osterman, U. L. Osterberg, and K. D. Paulsen, “Quantitative hemoglobin tomography with diffuse near-infrared spectroscopy: pilot results in the breast,” Radiology 218, 261–266 (2001).
    [Crossref] [PubMed]
  2. B. J. Tromberg, B. W. Pogue, K. D. Paulsen, A. G. Yodh, D. A. Boas, and A. E. Cerussi, “Assessing the future of diffuse optical imaging technologies for breast cancer management,” Med. Phys. 35, 2443–2451 (2008).
    [Crossref] [PubMed]
  3. J. Culver, R. Choe, M. Holboke, L. Zubkov, T. Durduran, A. Slemp, V. Ntziachristos, B. Chance, and A. Yodh, “Three-dimensional diffuse optical tomography in the parallel plane transmission geometry: Evaluation of a hybrid frequency domain/continuous wave clinical system for breast imaging,” Med. Phys. 30, 235–247 (2003).
    [Crossref] [PubMed]
  4. Q. Zhu, A. Ricci Jr, P. Hegde, M. Kane, E. Cronin, A. Merkulov, Y. Xu, B. Tavakoli, and S. Tannenbaum, “Assessment of functional differences in malignant and benign breast lesions and improvement of diagnostic accuracy by using us-guided diffuse optical tomography in conjunction with conventional us,” Radiology 280, 387–397 (2016).
    [Crossref] [PubMed]
  5. S. Jiang, B. W. Pogue, P. A. Kaufman, J. Gui, M. Jermyn, T. E. Frazee, S. P. Poplack, R. DiFlorio-Alexander, W. A. Wells, and K. D. Paulsen, “Predicting breast tumor response to neoadjuvant chemotherapy with diffuse optical spectroscopic tomography prior to treatment,” Clin. Cancer Res. 20, 6006–6015 (2014).
    [Crossref] [PubMed]
  6. Z. Deng, Y. Lin, J. Zimmermann, and G. Gulsen, “Fully automatic ultrasound guided diffuse optical tomography (us-dot) system for whole breast imaging,” in Biomedical Optics, (Optical Society of America, 2012), pp. BTu3A–6.
  7. B. Brooksby, B. W. Pogue, S. Jiang, H. Dehghani, S. Srinivasan, C. Kogel, T. D. Tosteson, J. Weaver, S. P. Poplack, and K. D. Paulsen, “Imaging breast adipose and fibroglandular tissue molecular signatures by using hybrid mri-guided near-infrared spectral tomography,” Proc. Natl. Acad. Sci. 103, 8828–8833 (2006).
    [Crossref] [PubMed]
  8. V. Ntziachristos, A. Yodh, M. D. Schnall, and B. Chance, “Mri-guided diffuse optical spectroscopy of malignant and benign breast lesions,” Neoplasia 4, 347–354 (2002).
    [Crossref] [PubMed]
  9. Q. Fang, J. Selb, S. A. Carp, G. Boverman, E. L. Miller, D. H. Brooks, R. H. Moore, D. B. Kopans, and D. A. Boas, “Combined optical and x-ray tomosynthesis breast imaging,” Radiology 258, 89–97 (2011).
    [Crossref]
  10. V. Krishnaswamy, K. E. Michaelsen, B. W. Pogue, S. P. Poplack, I. Shaw, K. Defrietas, K. Brooks, and K. D. Paulsen, “A digital x-ray tomosynthesis coupled near infrared spectral tomography system for dual-modality breast imaging,” Opt. Express 20, 19125–19136 (2012).
    [Crossref] [PubMed]
  11. Q. Zhu, M. Huang, N. Chen, K. Zarfos, B. Jagjivan, M. Kane, P. Hedge, and S. H. Kurtzman, “Ultrasound-guided optical tomographic imaging of malignant and benign breast lesions: initial clinical results of 19 cases,” Neoplasia 5, 379–388 (2003).
    [Crossref] [PubMed]
  12. Q. Zhu, E. B. Cronin, A. A. Currier, H. S. Vine, M. Huang, N. Chen, and C. Xu, “Benign versus malignant breast masses: optical differentiation with us-guided optical imaging reconstruction,” Radiology 237, 57–66 (2005).
    [Crossref] [PubMed]
  13. Q. Zhu, P. U. Hegde, A. Ricci Jr, M. Kane, E. B. Cronin, Y. Ardeshirpour, C. Xu, A. Aguirre, S. H. Kurtzman, P. J. Deckers, and et al., “Early-stage invasive breast cancers: potential role of optical tomography with us localization in assisting diagnosis,” Radiology 256, 367–378 (2010).
    [Crossref] [PubMed]
  14. S. R. Arridge and J. C. Schotland, “Optical tomography: forward and inverse problems,” Inverse Probl. 25, 123010 (2009).
    [Crossref]
  15. H. Dehghani, S. Srinivasan, B. W. Pogue, and A. Gibson, “Numerical modelling and image reconstruction in diffuse optical tomography,” Philos. Transactions Royal Soc. A: Math. Phys. Eng. Sci. 367, 3073–3093 (2009).
    [Crossref]
  16. Y. Yao, Y. Wang, Y. Pei, W. Zhu, and R. L. Barbour, “Frequency-domain optical imaging of absorption and scattering distributions by a born iterative method,” JOSA A 14, 325–342 (1997).
    [Crossref] [PubMed]
  17. T. Correia, J. Aguirre, A. Sisniega, J. Chamorro-Servent, J. Abascal, J. J. Vaquero, M. Desco, V. Kolehmainen, and S. Arridge, “Split operator method for fluorescence diffuse optical tomography using anisotropic diffusion regularisation with prior anatomical information,” Biomed. Opt. Express 2, 2632–2648 (2011).
    [Crossref] [PubMed]
  18. O. Lee, J. M. Kim, Y. Bresler, and J. C. Ye, “Compressive diffuse optical tomography: noniterative exact reconstruction using joint sparsity,” IEEE Transactions on Med. Imaging 30, 1129–1142 (2011).
    [Crossref]
  19. E. J. Candès, J. Romberg, and T. Tao, “Robust uncertainty principles: Exact signal reconstruction from highly incomplete frequency information,” IEEE Transactions on Inf. Theory 52, 489–509 (2006).
    [Crossref]
  20. M. Lustig, D. Donoho, and J. M. Pauly, “Sparse mri: The application of compressed sensing for rapid mr imaging,” Magn. Reson. Medicine: An Off. J. Int. Soc. for Magn. Reson. Medicine 58, 1182–1195 (2007).
    [Crossref]
  21. J. B. Fishkin and E. Gratton, “Propagation of photon-density waves in strongly scattering media containing an absorbing semi-infinite plane bounded by a straight edge,” JOSA A 10, 127–140 (1993).
    [Crossref]
  22. L. V. Wang and H.-i. Wu, Biomedical Optics: Principles and Imaging(John Wiley & Sons, 2012).
  23. R. Aronson, “Boundary conditions for diffusion of light,” JOSA A 12, 2532–2539 (1995).
    [Crossref] [PubMed]
  24. V. G. Peters, D. Wyman, M. Patterson, and G. Frank, “Optical properties of normal and diseased human breast tissues in the visible and near infrared,” Phys. Medicine & Biol. 35, 1317 (1990).
    [Crossref]
  25. A. Beck and M. Teboulle, “A fast iterative shrinkage-thresholding algorithm for linear inverse problems,” SIAM J. on Imaging Sci. 2, 183–202 (2009).
    [Crossref]
  26. Y. Nesterov and et al., “Gradient methods for minimizing composite objective function,” (2007).
  27. B. W. Pogue, M. S. Patterson, and T. J. Farrell, “Forward and inverse calculations for 3d frequency-domain diffuse optical tomography,” in Optical Tomography, Photon Migration, and Spectroscopy of Tissue and Model Media: Theory, Human Studies, and Instrumentation, vol. 2389 (International Society for Optics and Photonics, 1995), pp. 328–340.
  28. F. Zhou, A. Mostafa, and Q. Zhu, “Improving breast cancer diagnosis by reducing chest wall effect in diffuse optical tomography,” J. Biomed. Opt. 22, 036004 (2017).
    [Crossref]
  29. C. Xu, H. Vavadi, A. Merkulov, H. Li, M. Erfanzadeh, A. Mostafa, Y. Gong, H. Salehi, S. Tannenbaum, and Q. Zhu, “Ultrasound-guided diffuse optical tomography for predicting and monitoring neoadjuvant chemotherapy of breast cancers: recent progress,” Ultrason. Imaging 38, 5–18 (2016).
    [Crossref]
  30. H. Vavadi and Q. Zhu, “A calibration method for diffuse optical tomography based on extracted target depth and size from ultrasound images,” in Optical Tomography and Spectroscopy, (Optical Society of America, 2018), pp. OF1D–4.
  31. K. S. Uddin, A. Mostafa, M. Anastasio, and Q. Zhu, “Two step imaging reconstruction using truncated pseudoinverse as a preliminary estimate in ultrasound guided diffuse optical tomography,” Biomed. Opt. Express 8, 5437–5449 (2017).
    [Crossref]
  32. H. Dehghani, B. W. Pogue, J. Shudong, B. Brooksby, and K. D. Paulsen, “Three-dimensional optical tomography: resolution in small-object imaging,” Appl. Opt. 42, 3117–3128 (2003).
    [Crossref] [PubMed]
  33. Y. Xu, C. Xu, and Q. Zhu, “Clustered targets imaged by optical tomography guided by ultrasound,” J. Biomed. Opt. 16, 076018 (2011).
    [Crossref] [PubMed]
  34. M. Cope, “The application of near infrared spectroscopy to non invasive monitoring of cerebral oxygenation in the newborn infant,” Dep. Med. Phys. Bioeng.342 (1991).
  35. A. Siegel, J. Marota, and D. A. Boas, “Design and evaluation of a continuous-wave diffuse optical tomography system,” Opt. Express 4, 287–298 (1999).
    [Crossref] [PubMed]
  36. B. Tavakoli and Q. Zhu, “Two-step reconstruction method using global optimization and conjugate gradient for ultrasound-guided diffuse optical tomography,” J. Biomed. Opt. 18, 016006 (2013).
    [Crossref]

2017 (2)

2016 (2)

C. Xu, H. Vavadi, A. Merkulov, H. Li, M. Erfanzadeh, A. Mostafa, Y. Gong, H. Salehi, S. Tannenbaum, and Q. Zhu, “Ultrasound-guided diffuse optical tomography for predicting and monitoring neoadjuvant chemotherapy of breast cancers: recent progress,” Ultrason. Imaging 38, 5–18 (2016).
[Crossref]

Q. Zhu, A. Ricci Jr, P. Hegde, M. Kane, E. Cronin, A. Merkulov, Y. Xu, B. Tavakoli, and S. Tannenbaum, “Assessment of functional differences in malignant and benign breast lesions and improvement of diagnostic accuracy by using us-guided diffuse optical tomography in conjunction with conventional us,” Radiology 280, 387–397 (2016).
[Crossref] [PubMed]

2014 (1)

S. Jiang, B. W. Pogue, P. A. Kaufman, J. Gui, M. Jermyn, T. E. Frazee, S. P. Poplack, R. DiFlorio-Alexander, W. A. Wells, and K. D. Paulsen, “Predicting breast tumor response to neoadjuvant chemotherapy with diffuse optical spectroscopic tomography prior to treatment,” Clin. Cancer Res. 20, 6006–6015 (2014).
[Crossref] [PubMed]

2013 (1)

B. Tavakoli and Q. Zhu, “Two-step reconstruction method using global optimization and conjugate gradient for ultrasound-guided diffuse optical tomography,” J. Biomed. Opt. 18, 016006 (2013).
[Crossref]

2012 (1)

2011 (4)

T. Correia, J. Aguirre, A. Sisniega, J. Chamorro-Servent, J. Abascal, J. J. Vaquero, M. Desco, V. Kolehmainen, and S. Arridge, “Split operator method for fluorescence diffuse optical tomography using anisotropic diffusion regularisation with prior anatomical information,” Biomed. Opt. Express 2, 2632–2648 (2011).
[Crossref] [PubMed]

O. Lee, J. M. Kim, Y. Bresler, and J. C. Ye, “Compressive diffuse optical tomography: noniterative exact reconstruction using joint sparsity,” IEEE Transactions on Med. Imaging 30, 1129–1142 (2011).
[Crossref]

Q. Fang, J. Selb, S. A. Carp, G. Boverman, E. L. Miller, D. H. Brooks, R. H. Moore, D. B. Kopans, and D. A. Boas, “Combined optical and x-ray tomosynthesis breast imaging,” Radiology 258, 89–97 (2011).
[Crossref]

Y. Xu, C. Xu, and Q. Zhu, “Clustered targets imaged by optical tomography guided by ultrasound,” J. Biomed. Opt. 16, 076018 (2011).
[Crossref] [PubMed]

2010 (1)

Q. Zhu, P. U. Hegde, A. Ricci Jr, M. Kane, E. B. Cronin, Y. Ardeshirpour, C. Xu, A. Aguirre, S. H. Kurtzman, P. J. Deckers, and et al., “Early-stage invasive breast cancers: potential role of optical tomography with us localization in assisting diagnosis,” Radiology 256, 367–378 (2010).
[Crossref] [PubMed]

2009 (3)

S. R. Arridge and J. C. Schotland, “Optical tomography: forward and inverse problems,” Inverse Probl. 25, 123010 (2009).
[Crossref]

H. Dehghani, S. Srinivasan, B. W. Pogue, and A. Gibson, “Numerical modelling and image reconstruction in diffuse optical tomography,” Philos. Transactions Royal Soc. A: Math. Phys. Eng. Sci. 367, 3073–3093 (2009).
[Crossref]

A. Beck and M. Teboulle, “A fast iterative shrinkage-thresholding algorithm for linear inverse problems,” SIAM J. on Imaging Sci. 2, 183–202 (2009).
[Crossref]

2008 (1)

B. J. Tromberg, B. W. Pogue, K. D. Paulsen, A. G. Yodh, D. A. Boas, and A. E. Cerussi, “Assessing the future of diffuse optical imaging technologies for breast cancer management,” Med. Phys. 35, 2443–2451 (2008).
[Crossref] [PubMed]

2007 (1)

M. Lustig, D. Donoho, and J. M. Pauly, “Sparse mri: The application of compressed sensing for rapid mr imaging,” Magn. Reson. Medicine: An Off. J. Int. Soc. for Magn. Reson. Medicine 58, 1182–1195 (2007).
[Crossref]

2006 (2)

B. Brooksby, B. W. Pogue, S. Jiang, H. Dehghani, S. Srinivasan, C. Kogel, T. D. Tosteson, J. Weaver, S. P. Poplack, and K. D. Paulsen, “Imaging breast adipose and fibroglandular tissue molecular signatures by using hybrid mri-guided near-infrared spectral tomography,” Proc. Natl. Acad. Sci. 103, 8828–8833 (2006).
[Crossref] [PubMed]

E. J. Candès, J. Romberg, and T. Tao, “Robust uncertainty principles: Exact signal reconstruction from highly incomplete frequency information,” IEEE Transactions on Inf. Theory 52, 489–509 (2006).
[Crossref]

2005 (1)

Q. Zhu, E. B. Cronin, A. A. Currier, H. S. Vine, M. Huang, N. Chen, and C. Xu, “Benign versus malignant breast masses: optical differentiation with us-guided optical imaging reconstruction,” Radiology 237, 57–66 (2005).
[Crossref] [PubMed]

2003 (3)

H. Dehghani, B. W. Pogue, J. Shudong, B. Brooksby, and K. D. Paulsen, “Three-dimensional optical tomography: resolution in small-object imaging,” Appl. Opt. 42, 3117–3128 (2003).
[Crossref] [PubMed]

Q. Zhu, M. Huang, N. Chen, K. Zarfos, B. Jagjivan, M. Kane, P. Hedge, and S. H. Kurtzman, “Ultrasound-guided optical tomographic imaging of malignant and benign breast lesions: initial clinical results of 19 cases,” Neoplasia 5, 379–388 (2003).
[Crossref] [PubMed]

J. Culver, R. Choe, M. Holboke, L. Zubkov, T. Durduran, A. Slemp, V. Ntziachristos, B. Chance, and A. Yodh, “Three-dimensional diffuse optical tomography in the parallel plane transmission geometry: Evaluation of a hybrid frequency domain/continuous wave clinical system for breast imaging,” Med. Phys. 30, 235–247 (2003).
[Crossref] [PubMed]

2002 (1)

V. Ntziachristos, A. Yodh, M. D. Schnall, and B. Chance, “Mri-guided diffuse optical spectroscopy of malignant and benign breast lesions,” Neoplasia 4, 347–354 (2002).
[Crossref] [PubMed]

2001 (1)

B. W. Pogue, S. P. Poplack, T. O. McBride, W. A. Wells, K. S. Osterman, U. L. Osterberg, and K. D. Paulsen, “Quantitative hemoglobin tomography with diffuse near-infrared spectroscopy: pilot results in the breast,” Radiology 218, 261–266 (2001).
[Crossref] [PubMed]

1999 (1)

1997 (1)

Y. Yao, Y. Wang, Y. Pei, W. Zhu, and R. L. Barbour, “Frequency-domain optical imaging of absorption and scattering distributions by a born iterative method,” JOSA A 14, 325–342 (1997).
[Crossref] [PubMed]

1995 (1)

R. Aronson, “Boundary conditions for diffusion of light,” JOSA A 12, 2532–2539 (1995).
[Crossref] [PubMed]

1993 (1)

J. B. Fishkin and E. Gratton, “Propagation of photon-density waves in strongly scattering media containing an absorbing semi-infinite plane bounded by a straight edge,” JOSA A 10, 127–140 (1993).
[Crossref]

1990 (1)

V. G. Peters, D. Wyman, M. Patterson, and G. Frank, “Optical properties of normal and diseased human breast tissues in the visible and near infrared,” Phys. Medicine & Biol. 35, 1317 (1990).
[Crossref]

Abascal, J.

Aguirre, A.

Q. Zhu, P. U. Hegde, A. Ricci Jr, M. Kane, E. B. Cronin, Y. Ardeshirpour, C. Xu, A. Aguirre, S. H. Kurtzman, P. J. Deckers, and et al., “Early-stage invasive breast cancers: potential role of optical tomography with us localization in assisting diagnosis,” Radiology 256, 367–378 (2010).
[Crossref] [PubMed]

Aguirre, J.

Anastasio, M.

Ardeshirpour, Y.

Q. Zhu, P. U. Hegde, A. Ricci Jr, M. Kane, E. B. Cronin, Y. Ardeshirpour, C. Xu, A. Aguirre, S. H. Kurtzman, P. J. Deckers, and et al., “Early-stage invasive breast cancers: potential role of optical tomography with us localization in assisting diagnosis,” Radiology 256, 367–378 (2010).
[Crossref] [PubMed]

Aronson, R.

R. Aronson, “Boundary conditions for diffusion of light,” JOSA A 12, 2532–2539 (1995).
[Crossref] [PubMed]

Arridge, S.

Arridge, S. R.

S. R. Arridge and J. C. Schotland, “Optical tomography: forward and inverse problems,” Inverse Probl. 25, 123010 (2009).
[Crossref]

Barbour, R. L.

Y. Yao, Y. Wang, Y. Pei, W. Zhu, and R. L. Barbour, “Frequency-domain optical imaging of absorption and scattering distributions by a born iterative method,” JOSA A 14, 325–342 (1997).
[Crossref] [PubMed]

Beck, A.

A. Beck and M. Teboulle, “A fast iterative shrinkage-thresholding algorithm for linear inverse problems,” SIAM J. on Imaging Sci. 2, 183–202 (2009).
[Crossref]

Boas, D. A.

Q. Fang, J. Selb, S. A. Carp, G. Boverman, E. L. Miller, D. H. Brooks, R. H. Moore, D. B. Kopans, and D. A. Boas, “Combined optical and x-ray tomosynthesis breast imaging,” Radiology 258, 89–97 (2011).
[Crossref]

B. J. Tromberg, B. W. Pogue, K. D. Paulsen, A. G. Yodh, D. A. Boas, and A. E. Cerussi, “Assessing the future of diffuse optical imaging technologies for breast cancer management,” Med. Phys. 35, 2443–2451 (2008).
[Crossref] [PubMed]

A. Siegel, J. Marota, and D. A. Boas, “Design and evaluation of a continuous-wave diffuse optical tomography system,” Opt. Express 4, 287–298 (1999).
[Crossref] [PubMed]

Boverman, G.

Q. Fang, J. Selb, S. A. Carp, G. Boverman, E. L. Miller, D. H. Brooks, R. H. Moore, D. B. Kopans, and D. A. Boas, “Combined optical and x-ray tomosynthesis breast imaging,” Radiology 258, 89–97 (2011).
[Crossref]

Bresler, Y.

O. Lee, J. M. Kim, Y. Bresler, and J. C. Ye, “Compressive diffuse optical tomography: noniterative exact reconstruction using joint sparsity,” IEEE Transactions on Med. Imaging 30, 1129–1142 (2011).
[Crossref]

Brooks, D. H.

Q. Fang, J. Selb, S. A. Carp, G. Boverman, E. L. Miller, D. H. Brooks, R. H. Moore, D. B. Kopans, and D. A. Boas, “Combined optical and x-ray tomosynthesis breast imaging,” Radiology 258, 89–97 (2011).
[Crossref]

Brooks, K.

Brooksby, B.

B. Brooksby, B. W. Pogue, S. Jiang, H. Dehghani, S. Srinivasan, C. Kogel, T. D. Tosteson, J. Weaver, S. P. Poplack, and K. D. Paulsen, “Imaging breast adipose and fibroglandular tissue molecular signatures by using hybrid mri-guided near-infrared spectral tomography,” Proc. Natl. Acad. Sci. 103, 8828–8833 (2006).
[Crossref] [PubMed]

H. Dehghani, B. W. Pogue, J. Shudong, B. Brooksby, and K. D. Paulsen, “Three-dimensional optical tomography: resolution in small-object imaging,” Appl. Opt. 42, 3117–3128 (2003).
[Crossref] [PubMed]

Candès, E. J.

E. J. Candès, J. Romberg, and T. Tao, “Robust uncertainty principles: Exact signal reconstruction from highly incomplete frequency information,” IEEE Transactions on Inf. Theory 52, 489–509 (2006).
[Crossref]

Carp, S. A.

Q. Fang, J. Selb, S. A. Carp, G. Boverman, E. L. Miller, D. H. Brooks, R. H. Moore, D. B. Kopans, and D. A. Boas, “Combined optical and x-ray tomosynthesis breast imaging,” Radiology 258, 89–97 (2011).
[Crossref]

Cerussi, A. E.

B. J. Tromberg, B. W. Pogue, K. D. Paulsen, A. G. Yodh, D. A. Boas, and A. E. Cerussi, “Assessing the future of diffuse optical imaging technologies for breast cancer management,” Med. Phys. 35, 2443–2451 (2008).
[Crossref] [PubMed]

Chamorro-Servent, J.

Chance, B.

J. Culver, R. Choe, M. Holboke, L. Zubkov, T. Durduran, A. Slemp, V. Ntziachristos, B. Chance, and A. Yodh, “Three-dimensional diffuse optical tomography in the parallel plane transmission geometry: Evaluation of a hybrid frequency domain/continuous wave clinical system for breast imaging,” Med. Phys. 30, 235–247 (2003).
[Crossref] [PubMed]

V. Ntziachristos, A. Yodh, M. D. Schnall, and B. Chance, “Mri-guided diffuse optical spectroscopy of malignant and benign breast lesions,” Neoplasia 4, 347–354 (2002).
[Crossref] [PubMed]

Chen, N.

Q. Zhu, E. B. Cronin, A. A. Currier, H. S. Vine, M. Huang, N. Chen, and C. Xu, “Benign versus malignant breast masses: optical differentiation with us-guided optical imaging reconstruction,” Radiology 237, 57–66 (2005).
[Crossref] [PubMed]

Q. Zhu, M. Huang, N. Chen, K. Zarfos, B. Jagjivan, M. Kane, P. Hedge, and S. H. Kurtzman, “Ultrasound-guided optical tomographic imaging of malignant and benign breast lesions: initial clinical results of 19 cases,” Neoplasia 5, 379–388 (2003).
[Crossref] [PubMed]

Choe, R.

J. Culver, R. Choe, M. Holboke, L. Zubkov, T. Durduran, A. Slemp, V. Ntziachristos, B. Chance, and A. Yodh, “Three-dimensional diffuse optical tomography in the parallel plane transmission geometry: Evaluation of a hybrid frequency domain/continuous wave clinical system for breast imaging,” Med. Phys. 30, 235–247 (2003).
[Crossref] [PubMed]

Cope, M.

M. Cope, “The application of near infrared spectroscopy to non invasive monitoring of cerebral oxygenation in the newborn infant,” Dep. Med. Phys. Bioeng.342 (1991).

Correia, T.

Cronin, E.

Q. Zhu, A. Ricci Jr, P. Hegde, M. Kane, E. Cronin, A. Merkulov, Y. Xu, B. Tavakoli, and S. Tannenbaum, “Assessment of functional differences in malignant and benign breast lesions and improvement of diagnostic accuracy by using us-guided diffuse optical tomography in conjunction with conventional us,” Radiology 280, 387–397 (2016).
[Crossref] [PubMed]

Cronin, E. B.

Q. Zhu, P. U. Hegde, A. Ricci Jr, M. Kane, E. B. Cronin, Y. Ardeshirpour, C. Xu, A. Aguirre, S. H. Kurtzman, P. J. Deckers, and et al., “Early-stage invasive breast cancers: potential role of optical tomography with us localization in assisting diagnosis,” Radiology 256, 367–378 (2010).
[Crossref] [PubMed]

Q. Zhu, E. B. Cronin, A. A. Currier, H. S. Vine, M. Huang, N. Chen, and C. Xu, “Benign versus malignant breast masses: optical differentiation with us-guided optical imaging reconstruction,” Radiology 237, 57–66 (2005).
[Crossref] [PubMed]

Culver, J.

J. Culver, R. Choe, M. Holboke, L. Zubkov, T. Durduran, A. Slemp, V. Ntziachristos, B. Chance, and A. Yodh, “Three-dimensional diffuse optical tomography in the parallel plane transmission geometry: Evaluation of a hybrid frequency domain/continuous wave clinical system for breast imaging,” Med. Phys. 30, 235–247 (2003).
[Crossref] [PubMed]

Currier, A. A.

Q. Zhu, E. B. Cronin, A. A. Currier, H. S. Vine, M. Huang, N. Chen, and C. Xu, “Benign versus malignant breast masses: optical differentiation with us-guided optical imaging reconstruction,” Radiology 237, 57–66 (2005).
[Crossref] [PubMed]

Deckers, P. J.

Q. Zhu, P. U. Hegde, A. Ricci Jr, M. Kane, E. B. Cronin, Y. Ardeshirpour, C. Xu, A. Aguirre, S. H. Kurtzman, P. J. Deckers, and et al., “Early-stage invasive breast cancers: potential role of optical tomography with us localization in assisting diagnosis,” Radiology 256, 367–378 (2010).
[Crossref] [PubMed]

Defrietas, K.

Dehghani, H.

H. Dehghani, S. Srinivasan, B. W. Pogue, and A. Gibson, “Numerical modelling and image reconstruction in diffuse optical tomography,” Philos. Transactions Royal Soc. A: Math. Phys. Eng. Sci. 367, 3073–3093 (2009).
[Crossref]

B. Brooksby, B. W. Pogue, S. Jiang, H. Dehghani, S. Srinivasan, C. Kogel, T. D. Tosteson, J. Weaver, S. P. Poplack, and K. D. Paulsen, “Imaging breast adipose and fibroglandular tissue molecular signatures by using hybrid mri-guided near-infrared spectral tomography,” Proc. Natl. Acad. Sci. 103, 8828–8833 (2006).
[Crossref] [PubMed]

H. Dehghani, B. W. Pogue, J. Shudong, B. Brooksby, and K. D. Paulsen, “Three-dimensional optical tomography: resolution in small-object imaging,” Appl. Opt. 42, 3117–3128 (2003).
[Crossref] [PubMed]

Deng, Z.

Z. Deng, Y. Lin, J. Zimmermann, and G. Gulsen, “Fully automatic ultrasound guided diffuse optical tomography (us-dot) system for whole breast imaging,” in Biomedical Optics, (Optical Society of America, 2012), pp. BTu3A–6.

Desco, M.

DiFlorio-Alexander, R.

S. Jiang, B. W. Pogue, P. A. Kaufman, J. Gui, M. Jermyn, T. E. Frazee, S. P. Poplack, R. DiFlorio-Alexander, W. A. Wells, and K. D. Paulsen, “Predicting breast tumor response to neoadjuvant chemotherapy with diffuse optical spectroscopic tomography prior to treatment,” Clin. Cancer Res. 20, 6006–6015 (2014).
[Crossref] [PubMed]

Donoho, D.

M. Lustig, D. Donoho, and J. M. Pauly, “Sparse mri: The application of compressed sensing for rapid mr imaging,” Magn. Reson. Medicine: An Off. J. Int. Soc. for Magn. Reson. Medicine 58, 1182–1195 (2007).
[Crossref]

Durduran, T.

J. Culver, R. Choe, M. Holboke, L. Zubkov, T. Durduran, A. Slemp, V. Ntziachristos, B. Chance, and A. Yodh, “Three-dimensional diffuse optical tomography in the parallel plane transmission geometry: Evaluation of a hybrid frequency domain/continuous wave clinical system for breast imaging,” Med. Phys. 30, 235–247 (2003).
[Crossref] [PubMed]

Erfanzadeh, M.

C. Xu, H. Vavadi, A. Merkulov, H. Li, M. Erfanzadeh, A. Mostafa, Y. Gong, H. Salehi, S. Tannenbaum, and Q. Zhu, “Ultrasound-guided diffuse optical tomography for predicting and monitoring neoadjuvant chemotherapy of breast cancers: recent progress,” Ultrason. Imaging 38, 5–18 (2016).
[Crossref]

Fang, Q.

Q. Fang, J. Selb, S. A. Carp, G. Boverman, E. L. Miller, D. H. Brooks, R. H. Moore, D. B. Kopans, and D. A. Boas, “Combined optical and x-ray tomosynthesis breast imaging,” Radiology 258, 89–97 (2011).
[Crossref]

Farrell, T. J.

B. W. Pogue, M. S. Patterson, and T. J. Farrell, “Forward and inverse calculations for 3d frequency-domain diffuse optical tomography,” in Optical Tomography, Photon Migration, and Spectroscopy of Tissue and Model Media: Theory, Human Studies, and Instrumentation, vol. 2389 (International Society for Optics and Photonics, 1995), pp. 328–340.

Fishkin, J. B.

J. B. Fishkin and E. Gratton, “Propagation of photon-density waves in strongly scattering media containing an absorbing semi-infinite plane bounded by a straight edge,” JOSA A 10, 127–140 (1993).
[Crossref]

Frank, G.

V. G. Peters, D. Wyman, M. Patterson, and G. Frank, “Optical properties of normal and diseased human breast tissues in the visible and near infrared,” Phys. Medicine & Biol. 35, 1317 (1990).
[Crossref]

Frazee, T. E.

S. Jiang, B. W. Pogue, P. A. Kaufman, J. Gui, M. Jermyn, T. E. Frazee, S. P. Poplack, R. DiFlorio-Alexander, W. A. Wells, and K. D. Paulsen, “Predicting breast tumor response to neoadjuvant chemotherapy with diffuse optical spectroscopic tomography prior to treatment,” Clin. Cancer Res. 20, 6006–6015 (2014).
[Crossref] [PubMed]

Gibson, A.

H. Dehghani, S. Srinivasan, B. W. Pogue, and A. Gibson, “Numerical modelling and image reconstruction in diffuse optical tomography,” Philos. Transactions Royal Soc. A: Math. Phys. Eng. Sci. 367, 3073–3093 (2009).
[Crossref]

Gong, Y.

C. Xu, H. Vavadi, A. Merkulov, H. Li, M. Erfanzadeh, A. Mostafa, Y. Gong, H. Salehi, S. Tannenbaum, and Q. Zhu, “Ultrasound-guided diffuse optical tomography for predicting and monitoring neoadjuvant chemotherapy of breast cancers: recent progress,” Ultrason. Imaging 38, 5–18 (2016).
[Crossref]

Gratton, E.

J. B. Fishkin and E. Gratton, “Propagation of photon-density waves in strongly scattering media containing an absorbing semi-infinite plane bounded by a straight edge,” JOSA A 10, 127–140 (1993).
[Crossref]

Gui, J.

S. Jiang, B. W. Pogue, P. A. Kaufman, J. Gui, M. Jermyn, T. E. Frazee, S. P. Poplack, R. DiFlorio-Alexander, W. A. Wells, and K. D. Paulsen, “Predicting breast tumor response to neoadjuvant chemotherapy with diffuse optical spectroscopic tomography prior to treatment,” Clin. Cancer Res. 20, 6006–6015 (2014).
[Crossref] [PubMed]

Gulsen, G.

Z. Deng, Y. Lin, J. Zimmermann, and G. Gulsen, “Fully automatic ultrasound guided diffuse optical tomography (us-dot) system for whole breast imaging,” in Biomedical Optics, (Optical Society of America, 2012), pp. BTu3A–6.

Hedge, P.

Q. Zhu, M. Huang, N. Chen, K. Zarfos, B. Jagjivan, M. Kane, P. Hedge, and S. H. Kurtzman, “Ultrasound-guided optical tomographic imaging of malignant and benign breast lesions: initial clinical results of 19 cases,” Neoplasia 5, 379–388 (2003).
[Crossref] [PubMed]

Hegde, P.

Q. Zhu, A. Ricci Jr, P. Hegde, M. Kane, E. Cronin, A. Merkulov, Y. Xu, B. Tavakoli, and S. Tannenbaum, “Assessment of functional differences in malignant and benign breast lesions and improvement of diagnostic accuracy by using us-guided diffuse optical tomography in conjunction with conventional us,” Radiology 280, 387–397 (2016).
[Crossref] [PubMed]

Hegde, P. U.

Q. Zhu, P. U. Hegde, A. Ricci Jr, M. Kane, E. B. Cronin, Y. Ardeshirpour, C. Xu, A. Aguirre, S. H. Kurtzman, P. J. Deckers, and et al., “Early-stage invasive breast cancers: potential role of optical tomography with us localization in assisting diagnosis,” Radiology 256, 367–378 (2010).
[Crossref] [PubMed]

Holboke, M.

J. Culver, R. Choe, M. Holboke, L. Zubkov, T. Durduran, A. Slemp, V. Ntziachristos, B. Chance, and A. Yodh, “Three-dimensional diffuse optical tomography in the parallel plane transmission geometry: Evaluation of a hybrid frequency domain/continuous wave clinical system for breast imaging,” Med. Phys. 30, 235–247 (2003).
[Crossref] [PubMed]

Huang, M.

Q. Zhu, E. B. Cronin, A. A. Currier, H. S. Vine, M. Huang, N. Chen, and C. Xu, “Benign versus malignant breast masses: optical differentiation with us-guided optical imaging reconstruction,” Radiology 237, 57–66 (2005).
[Crossref] [PubMed]

Q. Zhu, M. Huang, N. Chen, K. Zarfos, B. Jagjivan, M. Kane, P. Hedge, and S. H. Kurtzman, “Ultrasound-guided optical tomographic imaging of malignant and benign breast lesions: initial clinical results of 19 cases,” Neoplasia 5, 379–388 (2003).
[Crossref] [PubMed]

Jagjivan, B.

Q. Zhu, M. Huang, N. Chen, K. Zarfos, B. Jagjivan, M. Kane, P. Hedge, and S. H. Kurtzman, “Ultrasound-guided optical tomographic imaging of malignant and benign breast lesions: initial clinical results of 19 cases,” Neoplasia 5, 379–388 (2003).
[Crossref] [PubMed]

Jermyn, M.

S. Jiang, B. W. Pogue, P. A. Kaufman, J. Gui, M. Jermyn, T. E. Frazee, S. P. Poplack, R. DiFlorio-Alexander, W. A. Wells, and K. D. Paulsen, “Predicting breast tumor response to neoadjuvant chemotherapy with diffuse optical spectroscopic tomography prior to treatment,” Clin. Cancer Res. 20, 6006–6015 (2014).
[Crossref] [PubMed]

Jiang, S.

S. Jiang, B. W. Pogue, P. A. Kaufman, J. Gui, M. Jermyn, T. E. Frazee, S. P. Poplack, R. DiFlorio-Alexander, W. A. Wells, and K. D. Paulsen, “Predicting breast tumor response to neoadjuvant chemotherapy with diffuse optical spectroscopic tomography prior to treatment,” Clin. Cancer Res. 20, 6006–6015 (2014).
[Crossref] [PubMed]

B. Brooksby, B. W. Pogue, S. Jiang, H. Dehghani, S. Srinivasan, C. Kogel, T. D. Tosteson, J. Weaver, S. P. Poplack, and K. D. Paulsen, “Imaging breast adipose and fibroglandular tissue molecular signatures by using hybrid mri-guided near-infrared spectral tomography,” Proc. Natl. Acad. Sci. 103, 8828–8833 (2006).
[Crossref] [PubMed]

Kane, M.

Q. Zhu, A. Ricci Jr, P. Hegde, M. Kane, E. Cronin, A. Merkulov, Y. Xu, B. Tavakoli, and S. Tannenbaum, “Assessment of functional differences in malignant and benign breast lesions and improvement of diagnostic accuracy by using us-guided diffuse optical tomography in conjunction with conventional us,” Radiology 280, 387–397 (2016).
[Crossref] [PubMed]

Q. Zhu, P. U. Hegde, A. Ricci Jr, M. Kane, E. B. Cronin, Y. Ardeshirpour, C. Xu, A. Aguirre, S. H. Kurtzman, P. J. Deckers, and et al., “Early-stage invasive breast cancers: potential role of optical tomography with us localization in assisting diagnosis,” Radiology 256, 367–378 (2010).
[Crossref] [PubMed]

Q. Zhu, M. Huang, N. Chen, K. Zarfos, B. Jagjivan, M. Kane, P. Hedge, and S. H. Kurtzman, “Ultrasound-guided optical tomographic imaging of malignant and benign breast lesions: initial clinical results of 19 cases,” Neoplasia 5, 379–388 (2003).
[Crossref] [PubMed]

Kaufman, P. A.

S. Jiang, B. W. Pogue, P. A. Kaufman, J. Gui, M. Jermyn, T. E. Frazee, S. P. Poplack, R. DiFlorio-Alexander, W. A. Wells, and K. D. Paulsen, “Predicting breast tumor response to neoadjuvant chemotherapy with diffuse optical spectroscopic tomography prior to treatment,” Clin. Cancer Res. 20, 6006–6015 (2014).
[Crossref] [PubMed]

Kim, J. M.

O. Lee, J. M. Kim, Y. Bresler, and J. C. Ye, “Compressive diffuse optical tomography: noniterative exact reconstruction using joint sparsity,” IEEE Transactions on Med. Imaging 30, 1129–1142 (2011).
[Crossref]

Kogel, C.

B. Brooksby, B. W. Pogue, S. Jiang, H. Dehghani, S. Srinivasan, C. Kogel, T. D. Tosteson, J. Weaver, S. P. Poplack, and K. D. Paulsen, “Imaging breast adipose and fibroglandular tissue molecular signatures by using hybrid mri-guided near-infrared spectral tomography,” Proc. Natl. Acad. Sci. 103, 8828–8833 (2006).
[Crossref] [PubMed]

Kolehmainen, V.

Kopans, D. B.

Q. Fang, J. Selb, S. A. Carp, G. Boverman, E. L. Miller, D. H. Brooks, R. H. Moore, D. B. Kopans, and D. A. Boas, “Combined optical and x-ray tomosynthesis breast imaging,” Radiology 258, 89–97 (2011).
[Crossref]

Krishnaswamy, V.

Kurtzman, S. H.

Q. Zhu, P. U. Hegde, A. Ricci Jr, M. Kane, E. B. Cronin, Y. Ardeshirpour, C. Xu, A. Aguirre, S. H. Kurtzman, P. J. Deckers, and et al., “Early-stage invasive breast cancers: potential role of optical tomography with us localization in assisting diagnosis,” Radiology 256, 367–378 (2010).
[Crossref] [PubMed]

Q. Zhu, M. Huang, N. Chen, K. Zarfos, B. Jagjivan, M. Kane, P. Hedge, and S. H. Kurtzman, “Ultrasound-guided optical tomographic imaging of malignant and benign breast lesions: initial clinical results of 19 cases,” Neoplasia 5, 379–388 (2003).
[Crossref] [PubMed]

Lee, O.

O. Lee, J. M. Kim, Y. Bresler, and J. C. Ye, “Compressive diffuse optical tomography: noniterative exact reconstruction using joint sparsity,” IEEE Transactions on Med. Imaging 30, 1129–1142 (2011).
[Crossref]

Li, H.

C. Xu, H. Vavadi, A. Merkulov, H. Li, M. Erfanzadeh, A. Mostafa, Y. Gong, H. Salehi, S. Tannenbaum, and Q. Zhu, “Ultrasound-guided diffuse optical tomography for predicting and monitoring neoadjuvant chemotherapy of breast cancers: recent progress,” Ultrason. Imaging 38, 5–18 (2016).
[Crossref]

Lin, Y.

Z. Deng, Y. Lin, J. Zimmermann, and G. Gulsen, “Fully automatic ultrasound guided diffuse optical tomography (us-dot) system for whole breast imaging,” in Biomedical Optics, (Optical Society of America, 2012), pp. BTu3A–6.

Lustig, M.

M. Lustig, D. Donoho, and J. M. Pauly, “Sparse mri: The application of compressed sensing for rapid mr imaging,” Magn. Reson. Medicine: An Off. J. Int. Soc. for Magn. Reson. Medicine 58, 1182–1195 (2007).
[Crossref]

Marota, J.

McBride, T. O.

B. W. Pogue, S. P. Poplack, T. O. McBride, W. A. Wells, K. S. Osterman, U. L. Osterberg, and K. D. Paulsen, “Quantitative hemoglobin tomography with diffuse near-infrared spectroscopy: pilot results in the breast,” Radiology 218, 261–266 (2001).
[Crossref] [PubMed]

Merkulov, A.

Q. Zhu, A. Ricci Jr, P. Hegde, M. Kane, E. Cronin, A. Merkulov, Y. Xu, B. Tavakoli, and S. Tannenbaum, “Assessment of functional differences in malignant and benign breast lesions and improvement of diagnostic accuracy by using us-guided diffuse optical tomography in conjunction with conventional us,” Radiology 280, 387–397 (2016).
[Crossref] [PubMed]

C. Xu, H. Vavadi, A. Merkulov, H. Li, M. Erfanzadeh, A. Mostafa, Y. Gong, H. Salehi, S. Tannenbaum, and Q. Zhu, “Ultrasound-guided diffuse optical tomography for predicting and monitoring neoadjuvant chemotherapy of breast cancers: recent progress,” Ultrason. Imaging 38, 5–18 (2016).
[Crossref]

Michaelsen, K. E.

Miller, E. L.

Q. Fang, J. Selb, S. A. Carp, G. Boverman, E. L. Miller, D. H. Brooks, R. H. Moore, D. B. Kopans, and D. A. Boas, “Combined optical and x-ray tomosynthesis breast imaging,” Radiology 258, 89–97 (2011).
[Crossref]

Moore, R. H.

Q. Fang, J. Selb, S. A. Carp, G. Boverman, E. L. Miller, D. H. Brooks, R. H. Moore, D. B. Kopans, and D. A. Boas, “Combined optical and x-ray tomosynthesis breast imaging,” Radiology 258, 89–97 (2011).
[Crossref]

Mostafa, A.

F. Zhou, A. Mostafa, and Q. Zhu, “Improving breast cancer diagnosis by reducing chest wall effect in diffuse optical tomography,” J. Biomed. Opt. 22, 036004 (2017).
[Crossref]

K. S. Uddin, A. Mostafa, M. Anastasio, and Q. Zhu, “Two step imaging reconstruction using truncated pseudoinverse as a preliminary estimate in ultrasound guided diffuse optical tomography,” Biomed. Opt. Express 8, 5437–5449 (2017).
[Crossref]

C. Xu, H. Vavadi, A. Merkulov, H. Li, M. Erfanzadeh, A. Mostafa, Y. Gong, H. Salehi, S. Tannenbaum, and Q. Zhu, “Ultrasound-guided diffuse optical tomography for predicting and monitoring neoadjuvant chemotherapy of breast cancers: recent progress,” Ultrason. Imaging 38, 5–18 (2016).
[Crossref]

Nesterov, Y.

Y. Nesterov and et al., “Gradient methods for minimizing composite objective function,” (2007).

Ntziachristos, V.

J. Culver, R. Choe, M. Holboke, L. Zubkov, T. Durduran, A. Slemp, V. Ntziachristos, B. Chance, and A. Yodh, “Three-dimensional diffuse optical tomography in the parallel plane transmission geometry: Evaluation of a hybrid frequency domain/continuous wave clinical system for breast imaging,” Med. Phys. 30, 235–247 (2003).
[Crossref] [PubMed]

V. Ntziachristos, A. Yodh, M. D. Schnall, and B. Chance, “Mri-guided diffuse optical spectroscopy of malignant and benign breast lesions,” Neoplasia 4, 347–354 (2002).
[Crossref] [PubMed]

Osterberg, U. L.

B. W. Pogue, S. P. Poplack, T. O. McBride, W. A. Wells, K. S. Osterman, U. L. Osterberg, and K. D. Paulsen, “Quantitative hemoglobin tomography with diffuse near-infrared spectroscopy: pilot results in the breast,” Radiology 218, 261–266 (2001).
[Crossref] [PubMed]

Osterman, K. S.

B. W. Pogue, S. P. Poplack, T. O. McBride, W. A. Wells, K. S. Osterman, U. L. Osterberg, and K. D. Paulsen, “Quantitative hemoglobin tomography with diffuse near-infrared spectroscopy: pilot results in the breast,” Radiology 218, 261–266 (2001).
[Crossref] [PubMed]

Patterson, M.

V. G. Peters, D. Wyman, M. Patterson, and G. Frank, “Optical properties of normal and diseased human breast tissues in the visible and near infrared,” Phys. Medicine & Biol. 35, 1317 (1990).
[Crossref]

Patterson, M. S.

B. W. Pogue, M. S. Patterson, and T. J. Farrell, “Forward and inverse calculations for 3d frequency-domain diffuse optical tomography,” in Optical Tomography, Photon Migration, and Spectroscopy of Tissue and Model Media: Theory, Human Studies, and Instrumentation, vol. 2389 (International Society for Optics and Photonics, 1995), pp. 328–340.

Paulsen, K. D.

S. Jiang, B. W. Pogue, P. A. Kaufman, J. Gui, M. Jermyn, T. E. Frazee, S. P. Poplack, R. DiFlorio-Alexander, W. A. Wells, and K. D. Paulsen, “Predicting breast tumor response to neoadjuvant chemotherapy with diffuse optical spectroscopic tomography prior to treatment,” Clin. Cancer Res. 20, 6006–6015 (2014).
[Crossref] [PubMed]

V. Krishnaswamy, K. E. Michaelsen, B. W. Pogue, S. P. Poplack, I. Shaw, K. Defrietas, K. Brooks, and K. D. Paulsen, “A digital x-ray tomosynthesis coupled near infrared spectral tomography system for dual-modality breast imaging,” Opt. Express 20, 19125–19136 (2012).
[Crossref] [PubMed]

B. J. Tromberg, B. W. Pogue, K. D. Paulsen, A. G. Yodh, D. A. Boas, and A. E. Cerussi, “Assessing the future of diffuse optical imaging technologies for breast cancer management,” Med. Phys. 35, 2443–2451 (2008).
[Crossref] [PubMed]

B. Brooksby, B. W. Pogue, S. Jiang, H. Dehghani, S. Srinivasan, C. Kogel, T. D. Tosteson, J. Weaver, S. P. Poplack, and K. D. Paulsen, “Imaging breast adipose and fibroglandular tissue molecular signatures by using hybrid mri-guided near-infrared spectral tomography,” Proc. Natl. Acad. Sci. 103, 8828–8833 (2006).
[Crossref] [PubMed]

H. Dehghani, B. W. Pogue, J. Shudong, B. Brooksby, and K. D. Paulsen, “Three-dimensional optical tomography: resolution in small-object imaging,” Appl. Opt. 42, 3117–3128 (2003).
[Crossref] [PubMed]

B. W. Pogue, S. P. Poplack, T. O. McBride, W. A. Wells, K. S. Osterman, U. L. Osterberg, and K. D. Paulsen, “Quantitative hemoglobin tomography with diffuse near-infrared spectroscopy: pilot results in the breast,” Radiology 218, 261–266 (2001).
[Crossref] [PubMed]

Pauly, J. M.

M. Lustig, D. Donoho, and J. M. Pauly, “Sparse mri: The application of compressed sensing for rapid mr imaging,” Magn. Reson. Medicine: An Off. J. Int. Soc. for Magn. Reson. Medicine 58, 1182–1195 (2007).
[Crossref]

Pei, Y.

Y. Yao, Y. Wang, Y. Pei, W. Zhu, and R. L. Barbour, “Frequency-domain optical imaging of absorption and scattering distributions by a born iterative method,” JOSA A 14, 325–342 (1997).
[Crossref] [PubMed]

Peters, V. G.

V. G. Peters, D. Wyman, M. Patterson, and G. Frank, “Optical properties of normal and diseased human breast tissues in the visible and near infrared,” Phys. Medicine & Biol. 35, 1317 (1990).
[Crossref]

Pogue, B. W.

S. Jiang, B. W. Pogue, P. A. Kaufman, J. Gui, M. Jermyn, T. E. Frazee, S. P. Poplack, R. DiFlorio-Alexander, W. A. Wells, and K. D. Paulsen, “Predicting breast tumor response to neoadjuvant chemotherapy with diffuse optical spectroscopic tomography prior to treatment,” Clin. Cancer Res. 20, 6006–6015 (2014).
[Crossref] [PubMed]

V. Krishnaswamy, K. E. Michaelsen, B. W. Pogue, S. P. Poplack, I. Shaw, K. Defrietas, K. Brooks, and K. D. Paulsen, “A digital x-ray tomosynthesis coupled near infrared spectral tomography system for dual-modality breast imaging,” Opt. Express 20, 19125–19136 (2012).
[Crossref] [PubMed]

H. Dehghani, S. Srinivasan, B. W. Pogue, and A. Gibson, “Numerical modelling and image reconstruction in diffuse optical tomography,” Philos. Transactions Royal Soc. A: Math. Phys. Eng. Sci. 367, 3073–3093 (2009).
[Crossref]

B. J. Tromberg, B. W. Pogue, K. D. Paulsen, A. G. Yodh, D. A. Boas, and A. E. Cerussi, “Assessing the future of diffuse optical imaging technologies for breast cancer management,” Med. Phys. 35, 2443–2451 (2008).
[Crossref] [PubMed]

B. Brooksby, B. W. Pogue, S. Jiang, H. Dehghani, S. Srinivasan, C. Kogel, T. D. Tosteson, J. Weaver, S. P. Poplack, and K. D. Paulsen, “Imaging breast adipose and fibroglandular tissue molecular signatures by using hybrid mri-guided near-infrared spectral tomography,” Proc. Natl. Acad. Sci. 103, 8828–8833 (2006).
[Crossref] [PubMed]

H. Dehghani, B. W. Pogue, J. Shudong, B. Brooksby, and K. D. Paulsen, “Three-dimensional optical tomography: resolution in small-object imaging,” Appl. Opt. 42, 3117–3128 (2003).
[Crossref] [PubMed]

B. W. Pogue, S. P. Poplack, T. O. McBride, W. A. Wells, K. S. Osterman, U. L. Osterberg, and K. D. Paulsen, “Quantitative hemoglobin tomography with diffuse near-infrared spectroscopy: pilot results in the breast,” Radiology 218, 261–266 (2001).
[Crossref] [PubMed]

B. W. Pogue, M. S. Patterson, and T. J. Farrell, “Forward and inverse calculations for 3d frequency-domain diffuse optical tomography,” in Optical Tomography, Photon Migration, and Spectroscopy of Tissue and Model Media: Theory, Human Studies, and Instrumentation, vol. 2389 (International Society for Optics and Photonics, 1995), pp. 328–340.

Poplack, S. P.

S. Jiang, B. W. Pogue, P. A. Kaufman, J. Gui, M. Jermyn, T. E. Frazee, S. P. Poplack, R. DiFlorio-Alexander, W. A. Wells, and K. D. Paulsen, “Predicting breast tumor response to neoadjuvant chemotherapy with diffuse optical spectroscopic tomography prior to treatment,” Clin. Cancer Res. 20, 6006–6015 (2014).
[Crossref] [PubMed]

V. Krishnaswamy, K. E. Michaelsen, B. W. Pogue, S. P. Poplack, I. Shaw, K. Defrietas, K. Brooks, and K. D. Paulsen, “A digital x-ray tomosynthesis coupled near infrared spectral tomography system for dual-modality breast imaging,” Opt. Express 20, 19125–19136 (2012).
[Crossref] [PubMed]

B. Brooksby, B. W. Pogue, S. Jiang, H. Dehghani, S. Srinivasan, C. Kogel, T. D. Tosteson, J. Weaver, S. P. Poplack, and K. D. Paulsen, “Imaging breast adipose and fibroglandular tissue molecular signatures by using hybrid mri-guided near-infrared spectral tomography,” Proc. Natl. Acad. Sci. 103, 8828–8833 (2006).
[Crossref] [PubMed]

B. W. Pogue, S. P. Poplack, T. O. McBride, W. A. Wells, K. S. Osterman, U. L. Osterberg, and K. D. Paulsen, “Quantitative hemoglobin tomography with diffuse near-infrared spectroscopy: pilot results in the breast,” Radiology 218, 261–266 (2001).
[Crossref] [PubMed]

Ricci Jr, A.

Q. Zhu, A. Ricci Jr, P. Hegde, M. Kane, E. Cronin, A. Merkulov, Y. Xu, B. Tavakoli, and S. Tannenbaum, “Assessment of functional differences in malignant and benign breast lesions and improvement of diagnostic accuracy by using us-guided diffuse optical tomography in conjunction with conventional us,” Radiology 280, 387–397 (2016).
[Crossref] [PubMed]

Q. Zhu, P. U. Hegde, A. Ricci Jr, M. Kane, E. B. Cronin, Y. Ardeshirpour, C. Xu, A. Aguirre, S. H. Kurtzman, P. J. Deckers, and et al., “Early-stage invasive breast cancers: potential role of optical tomography with us localization in assisting diagnosis,” Radiology 256, 367–378 (2010).
[Crossref] [PubMed]

Romberg, J.

E. J. Candès, J. Romberg, and T. Tao, “Robust uncertainty principles: Exact signal reconstruction from highly incomplete frequency information,” IEEE Transactions on Inf. Theory 52, 489–509 (2006).
[Crossref]

Salehi, H.

C. Xu, H. Vavadi, A. Merkulov, H. Li, M. Erfanzadeh, A. Mostafa, Y. Gong, H. Salehi, S. Tannenbaum, and Q. Zhu, “Ultrasound-guided diffuse optical tomography for predicting and monitoring neoadjuvant chemotherapy of breast cancers: recent progress,” Ultrason. Imaging 38, 5–18 (2016).
[Crossref]

Schnall, M. D.

V. Ntziachristos, A. Yodh, M. D. Schnall, and B. Chance, “Mri-guided diffuse optical spectroscopy of malignant and benign breast lesions,” Neoplasia 4, 347–354 (2002).
[Crossref] [PubMed]

Schotland, J. C.

S. R. Arridge and J. C. Schotland, “Optical tomography: forward and inverse problems,” Inverse Probl. 25, 123010 (2009).
[Crossref]

Selb, J.

Q. Fang, J. Selb, S. A. Carp, G. Boverman, E. L. Miller, D. H. Brooks, R. H. Moore, D. B. Kopans, and D. A. Boas, “Combined optical and x-ray tomosynthesis breast imaging,” Radiology 258, 89–97 (2011).
[Crossref]

Shaw, I.

Shudong, J.

Siegel, A.

Sisniega, A.

Slemp, A.

J. Culver, R. Choe, M. Holboke, L. Zubkov, T. Durduran, A. Slemp, V. Ntziachristos, B. Chance, and A. Yodh, “Three-dimensional diffuse optical tomography in the parallel plane transmission geometry: Evaluation of a hybrid frequency domain/continuous wave clinical system for breast imaging,” Med. Phys. 30, 235–247 (2003).
[Crossref] [PubMed]

Srinivasan, S.

H. Dehghani, S. Srinivasan, B. W. Pogue, and A. Gibson, “Numerical modelling and image reconstruction in diffuse optical tomography,” Philos. Transactions Royal Soc. A: Math. Phys. Eng. Sci. 367, 3073–3093 (2009).
[Crossref]

B. Brooksby, B. W. Pogue, S. Jiang, H. Dehghani, S. Srinivasan, C. Kogel, T. D. Tosteson, J. Weaver, S. P. Poplack, and K. D. Paulsen, “Imaging breast adipose and fibroglandular tissue molecular signatures by using hybrid mri-guided near-infrared spectral tomography,” Proc. Natl. Acad. Sci. 103, 8828–8833 (2006).
[Crossref] [PubMed]

Tannenbaum, S.

Q. Zhu, A. Ricci Jr, P. Hegde, M. Kane, E. Cronin, A. Merkulov, Y. Xu, B. Tavakoli, and S. Tannenbaum, “Assessment of functional differences in malignant and benign breast lesions and improvement of diagnostic accuracy by using us-guided diffuse optical tomography in conjunction with conventional us,” Radiology 280, 387–397 (2016).
[Crossref] [PubMed]

C. Xu, H. Vavadi, A. Merkulov, H. Li, M. Erfanzadeh, A. Mostafa, Y. Gong, H. Salehi, S. Tannenbaum, and Q. Zhu, “Ultrasound-guided diffuse optical tomography for predicting and monitoring neoadjuvant chemotherapy of breast cancers: recent progress,” Ultrason. Imaging 38, 5–18 (2016).
[Crossref]

Tao, T.

E. J. Candès, J. Romberg, and T. Tao, “Robust uncertainty principles: Exact signal reconstruction from highly incomplete frequency information,” IEEE Transactions on Inf. Theory 52, 489–509 (2006).
[Crossref]

Tavakoli, B.

Q. Zhu, A. Ricci Jr, P. Hegde, M. Kane, E. Cronin, A. Merkulov, Y. Xu, B. Tavakoli, and S. Tannenbaum, “Assessment of functional differences in malignant and benign breast lesions and improvement of diagnostic accuracy by using us-guided diffuse optical tomography in conjunction with conventional us,” Radiology 280, 387–397 (2016).
[Crossref] [PubMed]

B. Tavakoli and Q. Zhu, “Two-step reconstruction method using global optimization and conjugate gradient for ultrasound-guided diffuse optical tomography,” J. Biomed. Opt. 18, 016006 (2013).
[Crossref]

Teboulle, M.

A. Beck and M. Teboulle, “A fast iterative shrinkage-thresholding algorithm for linear inverse problems,” SIAM J. on Imaging Sci. 2, 183–202 (2009).
[Crossref]

Tosteson, T. D.

B. Brooksby, B. W. Pogue, S. Jiang, H. Dehghani, S. Srinivasan, C. Kogel, T. D. Tosteson, J. Weaver, S. P. Poplack, and K. D. Paulsen, “Imaging breast adipose and fibroglandular tissue molecular signatures by using hybrid mri-guided near-infrared spectral tomography,” Proc. Natl. Acad. Sci. 103, 8828–8833 (2006).
[Crossref] [PubMed]

Tromberg, B. J.

B. J. Tromberg, B. W. Pogue, K. D. Paulsen, A. G. Yodh, D. A. Boas, and A. E. Cerussi, “Assessing the future of diffuse optical imaging technologies for breast cancer management,” Med. Phys. 35, 2443–2451 (2008).
[Crossref] [PubMed]

Uddin, K. S.

Vaquero, J. J.

Vavadi, H.

C. Xu, H. Vavadi, A. Merkulov, H. Li, M. Erfanzadeh, A. Mostafa, Y. Gong, H. Salehi, S. Tannenbaum, and Q. Zhu, “Ultrasound-guided diffuse optical tomography for predicting and monitoring neoadjuvant chemotherapy of breast cancers: recent progress,” Ultrason. Imaging 38, 5–18 (2016).
[Crossref]

H. Vavadi and Q. Zhu, “A calibration method for diffuse optical tomography based on extracted target depth and size from ultrasound images,” in Optical Tomography and Spectroscopy, (Optical Society of America, 2018), pp. OF1D–4.

Vine, H. S.

Q. Zhu, E. B. Cronin, A. A. Currier, H. S. Vine, M. Huang, N. Chen, and C. Xu, “Benign versus malignant breast masses: optical differentiation with us-guided optical imaging reconstruction,” Radiology 237, 57–66 (2005).
[Crossref] [PubMed]

Wang, L. V.

L. V. Wang and H.-i. Wu, Biomedical Optics: Principles and Imaging(John Wiley & Sons, 2012).

Wang, Y.

Y. Yao, Y. Wang, Y. Pei, W. Zhu, and R. L. Barbour, “Frequency-domain optical imaging of absorption and scattering distributions by a born iterative method,” JOSA A 14, 325–342 (1997).
[Crossref] [PubMed]

Weaver, J.

B. Brooksby, B. W. Pogue, S. Jiang, H. Dehghani, S. Srinivasan, C. Kogel, T. D. Tosteson, J. Weaver, S. P. Poplack, and K. D. Paulsen, “Imaging breast adipose and fibroglandular tissue molecular signatures by using hybrid mri-guided near-infrared spectral tomography,” Proc. Natl. Acad. Sci. 103, 8828–8833 (2006).
[Crossref] [PubMed]

Wells, W. A.

S. Jiang, B. W. Pogue, P. A. Kaufman, J. Gui, M. Jermyn, T. E. Frazee, S. P. Poplack, R. DiFlorio-Alexander, W. A. Wells, and K. D. Paulsen, “Predicting breast tumor response to neoadjuvant chemotherapy with diffuse optical spectroscopic tomography prior to treatment,” Clin. Cancer Res. 20, 6006–6015 (2014).
[Crossref] [PubMed]

B. W. Pogue, S. P. Poplack, T. O. McBride, W. A. Wells, K. S. Osterman, U. L. Osterberg, and K. D. Paulsen, “Quantitative hemoglobin tomography with diffuse near-infrared spectroscopy: pilot results in the breast,” Radiology 218, 261–266 (2001).
[Crossref] [PubMed]

Wu, H.-i.

L. V. Wang and H.-i. Wu, Biomedical Optics: Principles and Imaging(John Wiley & Sons, 2012).

Wyman, D.

V. G. Peters, D. Wyman, M. Patterson, and G. Frank, “Optical properties of normal and diseased human breast tissues in the visible and near infrared,” Phys. Medicine & Biol. 35, 1317 (1990).
[Crossref]

Xu, C.

C. Xu, H. Vavadi, A. Merkulov, H. Li, M. Erfanzadeh, A. Mostafa, Y. Gong, H. Salehi, S. Tannenbaum, and Q. Zhu, “Ultrasound-guided diffuse optical tomography for predicting and monitoring neoadjuvant chemotherapy of breast cancers: recent progress,” Ultrason. Imaging 38, 5–18 (2016).
[Crossref]

Y. Xu, C. Xu, and Q. Zhu, “Clustered targets imaged by optical tomography guided by ultrasound,” J. Biomed. Opt. 16, 076018 (2011).
[Crossref] [PubMed]

Q. Zhu, P. U. Hegde, A. Ricci Jr, M. Kane, E. B. Cronin, Y. Ardeshirpour, C. Xu, A. Aguirre, S. H. Kurtzman, P. J. Deckers, and et al., “Early-stage invasive breast cancers: potential role of optical tomography with us localization in assisting diagnosis,” Radiology 256, 367–378 (2010).
[Crossref] [PubMed]

Q. Zhu, E. B. Cronin, A. A. Currier, H. S. Vine, M. Huang, N. Chen, and C. Xu, “Benign versus malignant breast masses: optical differentiation with us-guided optical imaging reconstruction,” Radiology 237, 57–66 (2005).
[Crossref] [PubMed]

Xu, Y.

Q. Zhu, A. Ricci Jr, P. Hegde, M. Kane, E. Cronin, A. Merkulov, Y. Xu, B. Tavakoli, and S. Tannenbaum, “Assessment of functional differences in malignant and benign breast lesions and improvement of diagnostic accuracy by using us-guided diffuse optical tomography in conjunction with conventional us,” Radiology 280, 387–397 (2016).
[Crossref] [PubMed]

Y. Xu, C. Xu, and Q. Zhu, “Clustered targets imaged by optical tomography guided by ultrasound,” J. Biomed. Opt. 16, 076018 (2011).
[Crossref] [PubMed]

Yao, Y.

Y. Yao, Y. Wang, Y. Pei, W. Zhu, and R. L. Barbour, “Frequency-domain optical imaging of absorption and scattering distributions by a born iterative method,” JOSA A 14, 325–342 (1997).
[Crossref] [PubMed]

Ye, J. C.

O. Lee, J. M. Kim, Y. Bresler, and J. C. Ye, “Compressive diffuse optical tomography: noniterative exact reconstruction using joint sparsity,” IEEE Transactions on Med. Imaging 30, 1129–1142 (2011).
[Crossref]

Yodh, A.

J. Culver, R. Choe, M. Holboke, L. Zubkov, T. Durduran, A. Slemp, V. Ntziachristos, B. Chance, and A. Yodh, “Three-dimensional diffuse optical tomography in the parallel plane transmission geometry: Evaluation of a hybrid frequency domain/continuous wave clinical system for breast imaging,” Med. Phys. 30, 235–247 (2003).
[Crossref] [PubMed]

V. Ntziachristos, A. Yodh, M. D. Schnall, and B. Chance, “Mri-guided diffuse optical spectroscopy of malignant and benign breast lesions,” Neoplasia 4, 347–354 (2002).
[Crossref] [PubMed]

Yodh, A. G.

B. J. Tromberg, B. W. Pogue, K. D. Paulsen, A. G. Yodh, D. A. Boas, and A. E. Cerussi, “Assessing the future of diffuse optical imaging technologies for breast cancer management,” Med. Phys. 35, 2443–2451 (2008).
[Crossref] [PubMed]

Zarfos, K.

Q. Zhu, M. Huang, N. Chen, K. Zarfos, B. Jagjivan, M. Kane, P. Hedge, and S. H. Kurtzman, “Ultrasound-guided optical tomographic imaging of malignant and benign breast lesions: initial clinical results of 19 cases,” Neoplasia 5, 379–388 (2003).
[Crossref] [PubMed]

Zhou, F.

F. Zhou, A. Mostafa, and Q. Zhu, “Improving breast cancer diagnosis by reducing chest wall effect in diffuse optical tomography,” J. Biomed. Opt. 22, 036004 (2017).
[Crossref]

Zhu, Q.

F. Zhou, A. Mostafa, and Q. Zhu, “Improving breast cancer diagnosis by reducing chest wall effect in diffuse optical tomography,” J. Biomed. Opt. 22, 036004 (2017).
[Crossref]

K. S. Uddin, A. Mostafa, M. Anastasio, and Q. Zhu, “Two step imaging reconstruction using truncated pseudoinverse as a preliminary estimate in ultrasound guided diffuse optical tomography,” Biomed. Opt. Express 8, 5437–5449 (2017).
[Crossref]

C. Xu, H. Vavadi, A. Merkulov, H. Li, M. Erfanzadeh, A. Mostafa, Y. Gong, H. Salehi, S. Tannenbaum, and Q. Zhu, “Ultrasound-guided diffuse optical tomography for predicting and monitoring neoadjuvant chemotherapy of breast cancers: recent progress,” Ultrason. Imaging 38, 5–18 (2016).
[Crossref]

Q. Zhu, A. Ricci Jr, P. Hegde, M. Kane, E. Cronin, A. Merkulov, Y. Xu, B. Tavakoli, and S. Tannenbaum, “Assessment of functional differences in malignant and benign breast lesions and improvement of diagnostic accuracy by using us-guided diffuse optical tomography in conjunction with conventional us,” Radiology 280, 387–397 (2016).
[Crossref] [PubMed]

B. Tavakoli and Q. Zhu, “Two-step reconstruction method using global optimization and conjugate gradient for ultrasound-guided diffuse optical tomography,” J. Biomed. Opt. 18, 016006 (2013).
[Crossref]

Y. Xu, C. Xu, and Q. Zhu, “Clustered targets imaged by optical tomography guided by ultrasound,” J. Biomed. Opt. 16, 076018 (2011).
[Crossref] [PubMed]

Q. Zhu, P. U. Hegde, A. Ricci Jr, M. Kane, E. B. Cronin, Y. Ardeshirpour, C. Xu, A. Aguirre, S. H. Kurtzman, P. J. Deckers, and et al., “Early-stage invasive breast cancers: potential role of optical tomography with us localization in assisting diagnosis,” Radiology 256, 367–378 (2010).
[Crossref] [PubMed]

Q. Zhu, E. B. Cronin, A. A. Currier, H. S. Vine, M. Huang, N. Chen, and C. Xu, “Benign versus malignant breast masses: optical differentiation with us-guided optical imaging reconstruction,” Radiology 237, 57–66 (2005).
[Crossref] [PubMed]

Q. Zhu, M. Huang, N. Chen, K. Zarfos, B. Jagjivan, M. Kane, P. Hedge, and S. H. Kurtzman, “Ultrasound-guided optical tomographic imaging of malignant and benign breast lesions: initial clinical results of 19 cases,” Neoplasia 5, 379–388 (2003).
[Crossref] [PubMed]

H. Vavadi and Q. Zhu, “A calibration method for diffuse optical tomography based on extracted target depth and size from ultrasound images,” in Optical Tomography and Spectroscopy, (Optical Society of America, 2018), pp. OF1D–4.

Zhu, W.

Y. Yao, Y. Wang, Y. Pei, W. Zhu, and R. L. Barbour, “Frequency-domain optical imaging of absorption and scattering distributions by a born iterative method,” JOSA A 14, 325–342 (1997).
[Crossref] [PubMed]

Zimmermann, J.

Z. Deng, Y. Lin, J. Zimmermann, and G. Gulsen, “Fully automatic ultrasound guided diffuse optical tomography (us-dot) system for whole breast imaging,” in Biomedical Optics, (Optical Society of America, 2012), pp. BTu3A–6.

Zubkov, L.

J. Culver, R. Choe, M. Holboke, L. Zubkov, T. Durduran, A. Slemp, V. Ntziachristos, B. Chance, and A. Yodh, “Three-dimensional diffuse optical tomography in the parallel plane transmission geometry: Evaluation of a hybrid frequency domain/continuous wave clinical system for breast imaging,” Med. Phys. 30, 235–247 (2003).
[Crossref] [PubMed]

Appl. Opt. (1)

Biomed. Opt. Express (2)

Clin. Cancer Res. (1)

S. Jiang, B. W. Pogue, P. A. Kaufman, J. Gui, M. Jermyn, T. E. Frazee, S. P. Poplack, R. DiFlorio-Alexander, W. A. Wells, and K. D. Paulsen, “Predicting breast tumor response to neoadjuvant chemotherapy with diffuse optical spectroscopic tomography prior to treatment,” Clin. Cancer Res. 20, 6006–6015 (2014).
[Crossref] [PubMed]

IEEE Transactions on Inf. Theory (1)

E. J. Candès, J. Romberg, and T. Tao, “Robust uncertainty principles: Exact signal reconstruction from highly incomplete frequency information,” IEEE Transactions on Inf. Theory 52, 489–509 (2006).
[Crossref]

IEEE Transactions on Med. Imaging (1)

O. Lee, J. M. Kim, Y. Bresler, and J. C. Ye, “Compressive diffuse optical tomography: noniterative exact reconstruction using joint sparsity,” IEEE Transactions on Med. Imaging 30, 1129–1142 (2011).
[Crossref]

Inverse Probl. (1)

S. R. Arridge and J. C. Schotland, “Optical tomography: forward and inverse problems,” Inverse Probl. 25, 123010 (2009).
[Crossref]

J. Biomed. Opt. (3)

F. Zhou, A. Mostafa, and Q. Zhu, “Improving breast cancer diagnosis by reducing chest wall effect in diffuse optical tomography,” J. Biomed. Opt. 22, 036004 (2017).
[Crossref]

Y. Xu, C. Xu, and Q. Zhu, “Clustered targets imaged by optical tomography guided by ultrasound,” J. Biomed. Opt. 16, 076018 (2011).
[Crossref] [PubMed]

B. Tavakoli and Q. Zhu, “Two-step reconstruction method using global optimization and conjugate gradient for ultrasound-guided diffuse optical tomography,” J. Biomed. Opt. 18, 016006 (2013).
[Crossref]

JOSA A (3)

Y. Yao, Y. Wang, Y. Pei, W. Zhu, and R. L. Barbour, “Frequency-domain optical imaging of absorption and scattering distributions by a born iterative method,” JOSA A 14, 325–342 (1997).
[Crossref] [PubMed]

J. B. Fishkin and E. Gratton, “Propagation of photon-density waves in strongly scattering media containing an absorbing semi-infinite plane bounded by a straight edge,” JOSA A 10, 127–140 (1993).
[Crossref]

R. Aronson, “Boundary conditions for diffusion of light,” JOSA A 12, 2532–2539 (1995).
[Crossref] [PubMed]

Magn. Reson. Medicine: An Off. J. Int. Soc. for Magn. Reson. Medicine (1)

M. Lustig, D. Donoho, and J. M. Pauly, “Sparse mri: The application of compressed sensing for rapid mr imaging,” Magn. Reson. Medicine: An Off. J. Int. Soc. for Magn. Reson. Medicine 58, 1182–1195 (2007).
[Crossref]

Med. Phys. (2)

B. J. Tromberg, B. W. Pogue, K. D. Paulsen, A. G. Yodh, D. A. Boas, and A. E. Cerussi, “Assessing the future of diffuse optical imaging technologies for breast cancer management,” Med. Phys. 35, 2443–2451 (2008).
[Crossref] [PubMed]

J. Culver, R. Choe, M. Holboke, L. Zubkov, T. Durduran, A. Slemp, V. Ntziachristos, B. Chance, and A. Yodh, “Three-dimensional diffuse optical tomography in the parallel plane transmission geometry: Evaluation of a hybrid frequency domain/continuous wave clinical system for breast imaging,” Med. Phys. 30, 235–247 (2003).
[Crossref] [PubMed]

Neoplasia (2)

V. Ntziachristos, A. Yodh, M. D. Schnall, and B. Chance, “Mri-guided diffuse optical spectroscopy of malignant and benign breast lesions,” Neoplasia 4, 347–354 (2002).
[Crossref] [PubMed]

Q. Zhu, M. Huang, N. Chen, K. Zarfos, B. Jagjivan, M. Kane, P. Hedge, and S. H. Kurtzman, “Ultrasound-guided optical tomographic imaging of malignant and benign breast lesions: initial clinical results of 19 cases,” Neoplasia 5, 379–388 (2003).
[Crossref] [PubMed]

Opt. Express (2)

Philos. Transactions Royal Soc. A: Math. Phys. Eng. Sci. (1)

H. Dehghani, S. Srinivasan, B. W. Pogue, and A. Gibson, “Numerical modelling and image reconstruction in diffuse optical tomography,” Philos. Transactions Royal Soc. A: Math. Phys. Eng. Sci. 367, 3073–3093 (2009).
[Crossref]

Phys. Medicine & Biol. (1)

V. G. Peters, D. Wyman, M. Patterson, and G. Frank, “Optical properties of normal and diseased human breast tissues in the visible and near infrared,” Phys. Medicine & Biol. 35, 1317 (1990).
[Crossref]

Proc. Natl. Acad. Sci. (1)

B. Brooksby, B. W. Pogue, S. Jiang, H. Dehghani, S. Srinivasan, C. Kogel, T. D. Tosteson, J. Weaver, S. P. Poplack, and K. D. Paulsen, “Imaging breast adipose and fibroglandular tissue molecular signatures by using hybrid mri-guided near-infrared spectral tomography,” Proc. Natl. Acad. Sci. 103, 8828–8833 (2006).
[Crossref] [PubMed]

Radiology (5)

B. W. Pogue, S. P. Poplack, T. O. McBride, W. A. Wells, K. S. Osterman, U. L. Osterberg, and K. D. Paulsen, “Quantitative hemoglobin tomography with diffuse near-infrared spectroscopy: pilot results in the breast,” Radiology 218, 261–266 (2001).
[Crossref] [PubMed]

Q. Fang, J. Selb, S. A. Carp, G. Boverman, E. L. Miller, D. H. Brooks, R. H. Moore, D. B. Kopans, and D. A. Boas, “Combined optical and x-ray tomosynthesis breast imaging,” Radiology 258, 89–97 (2011).
[Crossref]

Q. Zhu, A. Ricci Jr, P. Hegde, M. Kane, E. Cronin, A. Merkulov, Y. Xu, B. Tavakoli, and S. Tannenbaum, “Assessment of functional differences in malignant and benign breast lesions and improvement of diagnostic accuracy by using us-guided diffuse optical tomography in conjunction with conventional us,” Radiology 280, 387–397 (2016).
[Crossref] [PubMed]

Q. Zhu, E. B. Cronin, A. A. Currier, H. S. Vine, M. Huang, N. Chen, and C. Xu, “Benign versus malignant breast masses: optical differentiation with us-guided optical imaging reconstruction,” Radiology 237, 57–66 (2005).
[Crossref] [PubMed]

Q. Zhu, P. U. Hegde, A. Ricci Jr, M. Kane, E. B. Cronin, Y. Ardeshirpour, C. Xu, A. Aguirre, S. H. Kurtzman, P. J. Deckers, and et al., “Early-stage invasive breast cancers: potential role of optical tomography with us localization in assisting diagnosis,” Radiology 256, 367–378 (2010).
[Crossref] [PubMed]

SIAM J. on Imaging Sci. (1)

A. Beck and M. Teboulle, “A fast iterative shrinkage-thresholding algorithm for linear inverse problems,” SIAM J. on Imaging Sci. 2, 183–202 (2009).
[Crossref]

Ultrason. Imaging (1)

C. Xu, H. Vavadi, A. Merkulov, H. Li, M. Erfanzadeh, A. Mostafa, Y. Gong, H. Salehi, S. Tannenbaum, and Q. Zhu, “Ultrasound-guided diffuse optical tomography for predicting and monitoring neoadjuvant chemotherapy of breast cancers: recent progress,” Ultrason. Imaging 38, 5–18 (2016).
[Crossref]

Other (6)

H. Vavadi and Q. Zhu, “A calibration method for diffuse optical tomography based on extracted target depth and size from ultrasound images,” in Optical Tomography and Spectroscopy, (Optical Society of America, 2018), pp. OF1D–4.

M. Cope, “The application of near infrared spectroscopy to non invasive monitoring of cerebral oxygenation in the newborn infant,” Dep. Med. Phys. Bioeng.342 (1991).

Y. Nesterov and et al., “Gradient methods for minimizing composite objective function,” (2007).

B. W. Pogue, M. S. Patterson, and T. J. Farrell, “Forward and inverse calculations for 3d frequency-domain diffuse optical tomography,” in Optical Tomography, Photon Migration, and Spectroscopy of Tissue and Model Media: Theory, Human Studies, and Instrumentation, vol. 2389 (International Society for Optics and Photonics, 1995), pp. 328–340.

L. V. Wang and H.-i. Wu, Biomedical Optics: Principles and Imaging(John Wiley & Sons, 2012).

Z. Deng, Y. Lin, J. Zimmermann, and G. Gulsen, “Fully automatic ultrasound guided diffuse optical tomography (us-dot) system for whole breast imaging,” in Biomedical Optics, (Optical Society of America, 2012), pp. BTu3A–6.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1 Flowchart of the proposed algorithm as summarized in Section 2.6
Fig. 2
Fig. 2 (a) 3D contour plot of the phantom target. (b-g) Reconstructed absorption maps from a high contrast 2.0 cm diameter ball phantom placed at 1.5 cm (top surface) depth. The 3D absorption distribution is displayed as slices at different depthslabeled above each column. (b-d) and (e-g) are reconstructions using linear Born ( μ a m a x = 0.18 cm 1) and non-linear Born ( μ a m a x = 0.22 cm 1), respectively. The target depth distribution is reconstructed more accurately using the proposed non-linear Born than with the linear Born. The color bar and the scale bar are used used for all images in this figure.
Fig. 3
Fig. 3 Accuracy of the absorption coefficients reconstructed using non-linear Born for phantoms submerged at various depths. HC and LC stand for high contrast and low contrast, respectively. S,M, and L stand for small, medium, and large, respectively. Color bars in the legend indicate the depth of the top layer of the target.
Fig. 4
Fig. 4 (a) Schematic of the probe used for phantom experiments.(b) Normalized least squares error of the conjugate gradient method for linear Born (CG linear) and FISTA for non-linear Born (FISTA non-linear) using phantom data.
Fig. 5
Fig. 5 Reconstructed absorption maps of two 1 cm diameter high contrast ball phantoms placed at 1.5 cm depth, using linear Born with regularization ( μ a m a x = 0.23 cm 1) and non-linear Born ( μ a m a x = 0.23 cm 1), respectively. Both targets are resolved better using non-linear Born without regularization. The color bar and the scale bar are used for (b)-(c).
Fig. 6
Fig. 6 Reconstructed Hb map of a stage 3 malignant lesion. The 3D Hb distribution is displayed as slices at different depths, labeled above each column. (a) A co-registered US image. (b) A center slice of the reconstructed tHb distribution at the orthogonal plane. (c)-(e) Reconstructed tHb concentration distributions using linear Born without regularization; maximum tHb = 84.4 µM. (f)-(h) Reconstructed tHb concentration distributions using non-linear Born with regularization; maximum tHb = 95.0 µM. (i)-(k) Reconstructed oxyHb concentration distributions using non-linear Born with regularization; maximum oxyHb = 65.33 µM. (l)-(n) Reconstructed deoxyHb concentration distributions using non-linear Born with regularization; maximum deoxyHb = 47.88 µM. The color bar in (n) is used for (b)-(n) and the scale bar in (n) is used for (c)-(n).
Fig. 7
Fig. 7 Reconstructed Hb map of a benign but proliferative lesion. The 3D Hb distribution is displayed as slices at different depths, labeled above each column. (a) A co-registered US image. (b) A center slice of the reconstructed tHb distribution at the orthogonal plane. (c)-(e) Reconstructed tHb concentration distributions using linear Born without regularization; maximum tHb = 28.7 µM. (f)-(h) Reconstructed tHb concentration distributions using non-linear Born with regularization; maximum tHb = 29.8 µM. (i)-(k) Reconstructed oxyHb concentration distributions using non-linear Born with regularization; maximum oxyHb = 8.2 µM. (l)-(n) Reconstructed deoxyHb concentration distributions using non-linear Born with regularization; maximum deoxyHb = 25.3 µM. The color bar in (n) is used for (b)-(n) and the scale bar in (n) is used for (c)-(n).
Fig. 8
Fig. 8 Box plot of maximum tHb,oxyHb, and deoxyHb concentrations obtained from 10 malignant and 10 benign cases using linear Born with regularization and non-linear Born without regularization, respectively. The p-values from a t-test are labeled

Tables (1)

Tables Icon

Table 1 Sparsely regularized DOT reconstruction

Equations (14)

Equations on this page are rendered with MathJax. Learn more.

2 U ( r ) + k 2 ( r ) U ( r ) = S ( r ) ,
k ( r ) = ( i ω v μ a ( r ) ) / D ( r ) ,
U S C ( r , r s ) = U ( r , r s ) O ( r ) G ( r r ) d r ,
k 0 = ( i ω v μ a 0 ) / D 0 , O ( r ) = δ μ a ( r ) D 0 .
y = Wx + ϵ ,
W L = [ 1 D 0 G ( r v j , r d i ) U ( r v j , r s i ) ] M × N L
W B = [ 1 D 0 G ( r v j , r d i ) U ( r v j , r s i ) ] M × N B
x ^ = argmin x N { 1 2 y Wx 2 2 + diag ( λ ) x 1 } ,
x D ( x ) = W H ( Wx y ) ,
prox R ( x ) = argmin z N { R ( x ) + 1 2 x z 2 2 } ,
S γ ( z ) = sgn ( z ) max  ( 0 , | z | γ ) ,
U i + 1 , j , k + U i 1 , j , k Δ x 2 + U i , j + 1 , k + U i , j 1 , k Δ y 2 + U i , j , k + 1 + U i , j , k 1 Δ z 2 ( 2 Δ x 2 + 2 Δ y 2 + 2 Δ z 2 k i , j , k 2 ) U i , j , k = S i , j , k ,
Lu = s ,
U l e s i o n U r e f e r e n c e U r e f e r e n c e ,

Metrics