A. P. Gibson, J. C. Hebden, and S. R. Arridge, “Recent advances in diffuse optical tomography,” Phys. Med. Biol. 50(4), 31–9155 (2005).

[Crossref]

S. R. Arridge and J. C. Hebden, “Optical imaging in medicine: ii. modelling and reconstruction,” Phys. Med. Biol. 42(5), 841 (1997).

[Crossref]
[PubMed]

S. R. Arridge and M Schweiger, “Photon-measurement density functions. part 2: Finite-element-method calculations,” Appl. Opt. 34(34), 8026–8037 (1995).

[Crossref]
[PubMed]

J. Ashburner and K. J. Friston, “Image segmentation,” Human Brain Function 2003, 2 (2003).

J. Duan, W. OC. Ward, L. Sibbett, Z. Pan, and L. Bai, “Introducing diffusion tensor to high order variational model for image reconstruction,” Digit. Signal Process. 69, 323–336 (2017).

[Crossref]

J. Duan, Z. Qiu, W. Lu, G. Wang, Z. Pan, and L. Bai, “An edge-weighted second order variational model for image decomposition,” Digit. Signal Process. 49, 162–181 (2016).

[Crossref]

W. Lu, J. Duan, Z. Qiu, Z. Pan, R. W. Liu, and L. Bai, “Implementation of high-order variational models made easy for image processing,” Math. Methods Appl. Sci. 39, 4208–4233 (2016).

[Crossref]

T. Goldstein, C. Studer, and R. Baraniuk, “A field guide to forward-backward splitting with a FASTA implementation,” arXiv preprint arXiv:1411.3406 (2014).

J. C. Baritaux, K. Hassler, M. Bucher, S. Sanyal, and M. Unser, “Sparsity-driven reconstruction for FDOT with anatomical priors,” IEEE Trans. Med. Imaging 30(5), 1143–1153 (2011).

[Crossref]
[PubMed]

A. Beck and M. Teboulle, “A fast iterative shrinkage-thresholding algorithm for linear inverse problems,” SIAM J. Imaging Sci. 2(1), 183–202 (2009).

[Crossref]

M. Clancy, A. Belli, D. Davies, S. JE. Lucas, Z. Su, and H. Dehghani, “Comparison of neurological NIRS signals during standing valsalva maneuvers, pre and post vasopressor injection,” In European Conference on Biomedical Optics, 953817 (Optical Society of America, 2015).

C. Fowlkes, S. Belongie, F. Chung, and J. Malik, “Spectral grouping using the Nystrom method,” IEEE Trans. Pattern Anal. Mach. Intell. 26(2), 214–225 (2004).

[Crossref]
[PubMed]

E. Merkurjev, T. Kostic, and A. L. Bertozzi, “An mbo scheme on graphs for classification and image processing,” SIAM J. Imaging Sci. 6(4), 1903–1930 (2013).

[Crossref]

A. L. Bertozzi and A. Flenner, “Diffuse interface models on graphs for classification of high dimensional data,” Multiscale Model. Simul. 10(3), 1090–1118 (2012).

[Crossref]

J. Tang, B. Han, W. Han, B. Bi, and L. Li, “Mixed total variation and regularization method for optical tomography based on radiative transfer equation,” Comput. Math. Methods Med. 2017, 2953560 (2017).

[Crossref]

T. Pock, D. Cremers, H. Bischof, and A. Chambolle, “An algorithm for minimizing the Mumford-Shah functional,” In Computer Vision, 2009 IEEE 12th International Conference on, 1133–1140. IEEE (2009).

[Crossref]

A. Custo, D. A. Boas, D. Tsuzuki, I. Dan, R. Mesquita, B. Fischl, W. Eric, L. Grimson, and W. Wells, “Anatomical atlas-guided diffuse optical tomography of brain activation,” Neuroimage 49(1), 561–567 (2010).

[Crossref]

D. A. Boas, K. Chen, D. Grebert, and M. A. Franceschini, “Improving the diffuse optical imaging spatial resolution of the cerebral hemodynamic response to brain activation in humans,” Opt. Lett. 29(13), 1506–1508 (2004).

[Crossref]
[PubMed]

A. Elmoataz, O. Lezoray, and S. Bougleux, “Nonlocal discrete regularization on weighted graphs: a framework for image and manifold processing,” IEEE T. Image Process. 17(7), 1047–1060 (2008).

[Crossref]

X. Bresson, X. C. Tai, T. F. Chan, and A. Szlam, “Multi-class transductive learning based on ?1 relaxations of cheeger cut and Mumford-Shah-Potts model,” J. Math. Imaging Vis. 49(1), 191–201 (2014).

[Crossref]

J. C. Baritaux, K. Hassler, M. Bucher, S. Sanyal, and M. Unser, “Sparsity-driven reconstruction for FDOT with anatomical priors,” IEEE Trans. Med. Imaging 30(5), 1143–1153 (2011).

[Crossref]
[PubMed]

S. Osher, M. Burger, D. Goldfarb, J. Xu, and W. Yin, “An iterative regularization method for total variation-based image restoration,” Multiscale Model. Simul. 4(2), 460–489 (2005).

[Crossref]

T. Pock, D. Cremers, H. Bischof, and A. Chambolle, “An algorithm for minimizing the Mumford-Shah functional,” In Computer Vision, 2009 IEEE 12th International Conference on, 1133–1140. IEEE (2009).

[Crossref]

X. Bresson, X. C. Tai, T. F. Chan, and A. Szlam, “Multi-class transductive learning based on ?1 relaxations of cheeger cut and Mumford-Shah-Potts model,” J. Math. Imaging Vis. 49(1), 191–201 (2014).

[Crossref]

A. T. Eggebrecht, B. R. White, S. L. Ferradal, C. Chen, Y. Zhan, and et al., “A quantitative spatial comparison of high-density diffuse optical tomography and FMRI cortical mapping,” Neuroimage 61(4), 1120–1128 (2012).

[Crossref]
[PubMed]

C. Fowlkes, S. Belongie, F. Chung, and J. Malik, “Spectral grouping using the Nystrom method,” IEEE Trans. Pattern Anal. Mach. Intell. 26(2), 214–225 (2004).

[Crossref]
[PubMed]

M. Clancy, A. Belli, D. Davies, S. JE. Lucas, Z. Su, and H. Dehghani, “Comparison of neurological NIRS signals during standing valsalva maneuvers, pre and post vasopressor injection,” In European Conference on Biomedical Optics, 953817 (Optical Society of America, 2015).

T. Pock, D. Cremers, H. Bischof, and A. Chambolle, “An algorithm for minimizing the Mumford-Shah functional,” In Computer Vision, 2009 IEEE 12th International Conference on, 1133–1140. IEEE (2009).

[Crossref]

A. T. Eggebrecht, S. L. Ferradal, A. R. Viehoever, M. S. Hassanpour, H. Dehghani, A. Z. Snyder, T. Hershey, and J. P. Culver, “Mapping distributed brain function and networks with diffuse optical tomography,” Nat. Photon. 8(6), 448–454 (2014).

[Crossref]

X. Wu, A. T. Eggebrecht, S. L. Ferradal, J. P. Culver, and H. Dehghani, “Quantitative evaluation of atlas-based high-density diffuse optical tomography for imaging of the human visual cortex,” Biomed. Opt. Express 5(11), 3882–3900 (2014).

[Crossref]
[PubMed]

H. Dehghani, B. R. White, B. W. Zeff, A. Tizzard, and J. P. Culver, “Depth sensitivity and image reconstruction analysis of dense imaging arrays for mapping brain function with diffuse optical tomography,” Appl. Opt. 48(10), D137–D143 (2009).

[Crossref]
[PubMed]

A. Custo, D. A. Boas, D. Tsuzuki, I. Dan, R. Mesquita, B. Fischl, W. Eric, L. Grimson, and W. Wells, “Anatomical atlas-guided diffuse optical tomography of brain activation,” Neuroimage 49(1), 561–567 (2010).

[Crossref]

A. Custo, D. A. Boas, D. Tsuzuki, I. Dan, R. Mesquita, B. Fischl, W. Eric, L. Grimson, and W. Wells, “Anatomical atlas-guided diffuse optical tomography of brain activation,” Neuroimage 49(1), 561–567 (2010).

[Crossref]

I. Daubechies, R. DeVore, M. Fornasier, and C. S. Güntürk, “Iteratively reweighted least squares minimization for sparse recovery,” Commun. Pure Appl. Math. 63(1), 1–38 (2010).

[Crossref]

M. Clancy, A. Belli, D. Davies, S. JE. Lucas, Z. Su, and H. Dehghani, “Comparison of neurological NIRS signals during standing valsalva maneuvers, pre and post vasopressor injection,” In European Conference on Biomedical Optics, 953817 (Optical Society of America, 2015).

H. Dehghani, M. E. Eames, P. K. Yalavarthy, S. C. Davis, S. Srinivasan, and et al., “Near infrared optical tomography using NIRFAST: Algorithms for numerical model and image reconstruction,” Int. J. Numer. Method. Biomed. Eng. 25(6), 711–732 (2009).

X. Wu, A. T. Eggebrecht, S. L. Ferradal, J. P. Culver, and H. Dehghani, “Quantitative evaluation of atlas-based high-density diffuse optical tomography for imaging of the human visual cortex,” Biomed. Opt. Express 5(11), 3882–3900 (2014).

[Crossref]
[PubMed]

A. T. Eggebrecht, S. L. Ferradal, A. R. Viehoever, M. S. Hassanpour, H. Dehghani, A. Z. Snyder, T. Hershey, and J. P. Culver, “Mapping distributed brain function and networks with diffuse optical tomography,” Nat. Photon. 8(6), 448–454 (2014).

[Crossref]

H. Dehghani, M. E. Eames, P. K. Yalavarthy, S. C. Davis, S. Srinivasan, and et al., “Near infrared optical tomography using NIRFAST: Algorithms for numerical model and image reconstruction,” Int. J. Numer. Method. Biomed. Eng. 25(6), 711–732 (2009).

H. Dehghani, B. R. White, B. W. Zeff, A. Tizzard, and J. P. Culver, “Depth sensitivity and image reconstruction analysis of dense imaging arrays for mapping brain function with diffuse optical tomography,” Appl. Opt. 48(10), D137–D143 (2009).

[Crossref]
[PubMed]

P. K. Yalavarthy, B. W. Pogue, H. Dehghani, C. M. Carpenter, S. Jiang, and K. D. Paulsen, “Structural information within regularization matrices improves near infrared diffuse optical tomography,” Opt. Express 15(13), 8043–8058 (2007).

[Crossref]
[PubMed]

H. Dehghani, B. W. Pogue, S. P. Poplack, and K. D. Paulsen, “Multiwavelength three-dimensional near-infrared tomography of the breast: initial simulation, phantom, and clinical results,” Appl. Opt. 42(1), 135–145 (2003).

[Crossref]
[PubMed]

S. Srinivasan, B. W. Pogue, S. Jiang, H. Dehghani, C. Kogel, S. Soho, J. J. Gibson, T. D. Tosteson, S. P. Poplack, and K. D. Paulsen, “Interpreting hemoglobin and water concentration, oxygen saturation, and scattering measured in vivo by near-infrared breast tomography,” Proc. Natl. Acad. Sci. 100(21), 12349–12354 (2003).

[Crossref]
[PubMed]

M. Clancy, A. Belli, D. Davies, S. JE. Lucas, Z. Su, and H. Dehghani, “Comparison of neurological NIRS signals during standing valsalva maneuvers, pre and post vasopressor injection,” In European Conference on Biomedical Optics, 953817 (Optical Society of America, 2015).

D. Lighter, A. Filer, and H. Dehghani, “Multispectral diffuse optical tomography of finger joints,” In European Conference on Biomedical Optics, 104120N (Optical Society of America, 2017).

I. Daubechies, R. DeVore, M. Fornasier, and C. S. Güntürk, “Iteratively reweighted least squares minimization for sparse recovery,” Commun. Pure Appl. Math. 63(1), 1–38 (2010).

[Crossref]

J. Duan, W. OC. Ward, L. Sibbett, Z. Pan, and L. Bai, “Introducing diffusion tensor to high order variational model for image reconstruction,” Digit. Signal Process. 69, 323–336 (2017).

[Crossref]

J. Duan, Z. Qiu, W. Lu, G. Wang, Z. Pan, and L. Bai, “An edge-weighted second order variational model for image decomposition,” Digit. Signal Process. 49, 162–181 (2016).

[Crossref]

W. Lu, J. Duan, Z. Qiu, Z. Pan, R. W. Liu, and L. Bai, “Implementation of high-order variational models made easy for image processing,” Math. Methods Appl. Sci. 39, 4208–4233 (2016).

[Crossref]

J. Duan, W. Lu, C. Tench, I. Gottlob, F. Proudlock, and et al., “Denoising optical coherence tomography using second order total generalized variation decomposition,” Biomed. Signal Process. Control 24, 120–127 (2016).

[Crossref]

J. Duan, Z. Pan, B. Zhang, W. Liu, and X. C. Tai, “Fast algorithm for color texture image inpainting using the non-local CTV model,” J. Glob. Optim. 62(4), 853–876 (2015).

[Crossref]

J. Duan, Z. Pan, W. Liu, and X. C. Tai, “Color texture image inpainting using the non local CTV model,” JSIP 4(03), 43 (2013).

[Crossref]

H. Dehghani, M. E. Eames, P. K. Yalavarthy, S. C. Davis, S. Srinivasan, and et al., “Near infrared optical tomography using NIRFAST: Algorithms for numerical model and image reconstruction,” Int. J. Numer. Method. Biomed. Eng. 25(6), 711–732 (2009).

X. Wu, A. T. Eggebrecht, S. L. Ferradal, J. P. Culver, and H. Dehghani, “Quantitative evaluation of atlas-based high-density diffuse optical tomography for imaging of the human visual cortex,” Biomed. Opt. Express 5(11), 3882–3900 (2014).

[Crossref]
[PubMed]

A. T. Eggebrecht, S. L. Ferradal, A. R. Viehoever, M. S. Hassanpour, H. Dehghani, A. Z. Snyder, T. Hershey, and J. P. Culver, “Mapping distributed brain function and networks with diffuse optical tomography,” Nat. Photon. 8(6), 448–454 (2014).

[Crossref]

A. T. Eggebrecht, B. R. White, S. L. Ferradal, C. Chen, Y. Zhan, and et al., “A quantitative spatial comparison of high-density diffuse optical tomography and FMRI cortical mapping,” Neuroimage 61(4), 1120–1128 (2012).

[Crossref]
[PubMed]

A. Elmoataz, O. Lezoray, and S. Bougleux, “Nonlocal discrete regularization on weighted graphs: a framework for image and manifold processing,” IEEE T. Image Process. 17(7), 1047–1060 (2008).

[Crossref]

A. Custo, D. A. Boas, D. Tsuzuki, I. Dan, R. Mesquita, B. Fischl, W. Eric, L. Grimson, and W. Wells, “Anatomical atlas-guided diffuse optical tomography of brain activation,” Neuroimage 49(1), 561–567 (2010).

[Crossref]

A. T. Eggebrecht, S. L. Ferradal, A. R. Viehoever, M. S. Hassanpour, H. Dehghani, A. Z. Snyder, T. Hershey, and J. P. Culver, “Mapping distributed brain function and networks with diffuse optical tomography,” Nat. Photon. 8(6), 448–454 (2014).

[Crossref]

X. Wu, A. T. Eggebrecht, S. L. Ferradal, J. P. Culver, and H. Dehghani, “Quantitative evaluation of atlas-based high-density diffuse optical tomography for imaging of the human visual cortex,” Biomed. Opt. Express 5(11), 3882–3900 (2014).

[Crossref]
[PubMed]

A. T. Eggebrecht, B. R. White, S. L. Ferradal, C. Chen, Y. Zhan, and et al., “A quantitative spatial comparison of high-density diffuse optical tomography and FMRI cortical mapping,” Neuroimage 61(4), 1120–1128 (2012).

[Crossref]
[PubMed]

D. Lighter, A. Filer, and H. Dehghani, “Multispectral diffuse optical tomography of finger joints,” In European Conference on Biomedical Optics, 104120N (Optical Society of America, 2017).

A. Custo, D. A. Boas, D. Tsuzuki, I. Dan, R. Mesquita, B. Fischl, W. Eric, L. Grimson, and W. Wells, “Anatomical atlas-guided diffuse optical tomography of brain activation,” Neuroimage 49(1), 561–567 (2010).

[Crossref]

A. L. Bertozzi and A. Flenner, “Diffuse interface models on graphs for classification of high dimensional data,” Multiscale Model. Simul. 10(3), 1090–1118 (2012).

[Crossref]

I. Daubechies, R. DeVore, M. Fornasier, and C. S. Güntürk, “Iteratively reweighted least squares minimization for sparse recovery,” Commun. Pure Appl. Math. 63(1), 1–38 (2010).

[Crossref]

C. Fowlkes, S. Belongie, F. Chung, and J. Malik, “Spectral grouping using the Nystrom method,” IEEE Trans. Pattern Anal. Mach. Intell. 26(2), 214–225 (2004).

[Crossref]
[PubMed]

J. Ashburner and K. J. Friston, “Image segmentation,” Human Brain Function 2003, 2 (2003).

A. P. Gibson, J. C. Hebden, and S. R. Arridge, “Recent advances in diffuse optical tomography,” Phys. Med. Biol. 50(4), 31–9155 (2005).

[Crossref]

S. Srinivasan, B. W. Pogue, S. Jiang, H. Dehghani, C. Kogel, S. Soho, J. J. Gibson, T. D. Tosteson, S. P. Poplack, and K. D. Paulsen, “Interpreting hemoglobin and water concentration, oxygen saturation, and scattering measured in vivo by near-infrared breast tomography,” Proc. Natl. Acad. Sci. 100(21), 12349–12354 (2003).

[Crossref]
[PubMed]

G. Gilboa and S. Osher, “Nonlocal operators with applications to image processing,” Multiscale Model. Sim. 7(3), 1005–1028 (2008).

[Crossref]

S. Osher, M. Burger, D. Goldfarb, J. Xu, and W. Yin, “An iterative regularization method for total variation-based image restoration,” Multiscale Model. Simul. 4(2), 460–489 (2005).

[Crossref]

T. Goldstein and S. Osher, “The split bregman method for L1-regularized problems,” SIAM J. Imaging Sci. 2(2), 323–343 (2009).

[Crossref]

T. Goldstein, C. Studer, and R. Baraniuk, “A field guide to forward-backward splitting with a FASTA implementation,” arXiv preprint arXiv:1411.3406 (2014).

G. González, V. Kolehmainen, and A. Seppänen, “Isotropic and anisotropic total variation regularization in electrical impedance tomography,” Comput. Math. Appl. 74(3), 564–576 (2017).

[Crossref]

J. Duan, W. Lu, C. Tench, I. Gottlob, F. Proudlock, and et al., “Denoising optical coherence tomography using second order total generalized variation decomposition,” Biomed. Signal Process. Control 24, 120–127 (2016).

[Crossref]

A. Custo, D. A. Boas, D. Tsuzuki, I. Dan, R. Mesquita, B. Fischl, W. Eric, L. Grimson, and W. Wells, “Anatomical atlas-guided diffuse optical tomography of brain activation,” Neuroimage 49(1), 561–567 (2010).

[Crossref]

I. Daubechies, R. DeVore, M. Fornasier, and C. S. Güntürk, “Iteratively reweighted least squares minimization for sparse recovery,” Commun. Pure Appl. Math. 63(1), 1–38 (2010).

[Crossref]

J. Tang, B. Han, W. Han, B. Bi, and L. Li, “Mixed total variation and regularization method for optical tomography based on radiative transfer equation,” Comput. Math. Methods Med. 2017, 2953560 (2017).

[Crossref]

J. Tang, B. Han, W. Han, B. Bi, and L. Li, “Mixed total variation and regularization method for optical tomography based on radiative transfer equation,” Comput. Math. Methods Med. 2017, 2953560 (2017).

[Crossref]

A. T. Eggebrecht, S. L. Ferradal, A. R. Viehoever, M. S. Hassanpour, H. Dehghani, A. Z. Snyder, T. Hershey, and J. P. Culver, “Mapping distributed brain function and networks with diffuse optical tomography,” Nat. Photon. 8(6), 448–454 (2014).

[Crossref]

J. C. Baritaux, K. Hassler, M. Bucher, S. Sanyal, and M. Unser, “Sparsity-driven reconstruction for FDOT with anatomical priors,” IEEE Trans. Med. Imaging 30(5), 1143–1153 (2011).

[Crossref]
[PubMed]

A. P. Gibson, J. C. Hebden, and S. R. Arridge, “Recent advances in diffuse optical tomography,” Phys. Med. Biol. 50(4), 31–9155 (2005).

[Crossref]

S. R. Arridge and J. C. Hebden, “Optical imaging in medicine: ii. modelling and reconstruction,” Phys. Med. Biol. 42(5), 841 (1997).

[Crossref]
[PubMed]

A. T. Eggebrecht, S. L. Ferradal, A. R. Viehoever, M. S. Hassanpour, H. Dehghani, A. Z. Snyder, T. Hershey, and J. P. Culver, “Mapping distributed brain function and networks with diffuse optical tomography,” Nat. Photon. 8(6), 448–454 (2014).

[Crossref]

W. H. Reed and T. R. Hill, “Triangular mesh methods for the neutron transport equation,” Technical report, Los Alamos Scientific Lab., N. Mex.(USA) (1973).

C. Ichai, H. Quintard, and J. C. Orban, Metabolic disorders and critically ill patients: from pathophysiology to treatment (Springer, 2017).

P. K. Yalavarthy, B. W. Pogue, H. Dehghani, C. M. Carpenter, S. Jiang, and K. D. Paulsen, “Structural information within regularization matrices improves near infrared diffuse optical tomography,” Opt. Express 15(13), 8043–8058 (2007).

[Crossref]
[PubMed]

S. Srinivasan, B. W. Pogue, S. Jiang, H. Dehghani, C. Kogel, S. Soho, J. J. Gibson, T. D. Tosteson, S. P. Poplack, and K. D. Paulsen, “Interpreting hemoglobin and water concentration, oxygen saturation, and scattering measured in vivo by near-infrared breast tomography,” Proc. Natl. Acad. Sci. 100(21), 12349–12354 (2003).

[Crossref]
[PubMed]

J. Prakash, C. B. Shaw, R. Manjappa, R. Kanhirodan, and P. K. Yalavarthy, “Sparse recovery methods hold promise for diffuse optical tomographic image reconstruction,” IEEE J. Sel. Top. Quantum. Electron. 20(2), 74–82 (2014).

[Crossref]

H. Niu, S. Khadka, F. Tian, Z. J. Lin, C. Lu, C. Zhu, and H. Liu, “Resting-state functional connectivity assessed with two diffuse optical tomographic systems,” J. Biomed. Opt. 16(4), 046006 (2011).

[Crossref]
[PubMed]

S. Srinivasan, B. W. Pogue, S. Jiang, H. Dehghani, C. Kogel, S. Soho, J. J. Gibson, T. D. Tosteson, S. P. Poplack, and K. D. Paulsen, “Interpreting hemoglobin and water concentration, oxygen saturation, and scattering measured in vivo by near-infrared breast tomography,” Proc. Natl. Acad. Sci. 100(21), 12349–12354 (2003).

[Crossref]
[PubMed]

G. González, V. Kolehmainen, and A. Seppänen, “Isotropic and anisotropic total variation regularization in electrical impedance tomography,” Comput. Math. Appl. 74(3), 564–576 (2017).

[Crossref]

A. B. Konovalov and V. V. Vlasov, “Total variation based reconstruction of scattering inhomogeneities in tissue from time-resolved optical projections,” In PALS 9917: 99170S, International Society for Optics and Photonics (2016).

E. Merkurjev, T. Kostic, and A. L. Bertozzi, “An mbo scheme on graphs for classification and image processing,” SIAM J. Imaging Sci. 6(4), 1903–1930 (2013).

[Crossref]

A. Elmoataz, O. Lezoray, and S. Bougleux, “Nonlocal discrete regularization on weighted graphs: a framework for image and manifold processing,” IEEE T. Image Process. 17(7), 1047–1060 (2008).

[Crossref]

J. Tang, B. Han, W. Han, B. Bi, and L. Li, “Mixed total variation and regularization method for optical tomography based on radiative transfer equation,” Comput. Math. Methods Med. 2017, 2953560 (2017).

[Crossref]

W. Lu, D. Lighter, and I. B. Styles, “L1-norm based nonlinear reconstruction improves quantitative accuracy of spectral diffuse optical tomography,” Biomed. Opt. Express 9(4), 1423–1444 (2018).

[Crossref]
[PubMed]

D. Lighter, A. Filer, and H. Dehghani, “Multispectral diffuse optical tomography of finger joints,” In European Conference on Biomedical Optics, 104120N (Optical Society of America, 2017).

Q. Lyu, Z. Lin, Y. She, and C. Zhang, “A comparison of typical Lp minimization algorithms,” Neurocomputing 119, 413–424 (2013).

[Crossref]

V. C. Kavuri, Z. J. Lin, F. Tian, and H. Liu, “Sparsity enhanced spatial resolution and depth localization in diffuse optical tomography,” Biomed. Opt. Express 3(5), 943–957 (2012).

[Crossref]
[PubMed]

H. Niu, S. Khadka, F. Tian, Z. J. Lin, C. Lu, C. Zhu, and H. Liu, “Resting-state functional connectivity assessed with two diffuse optical tomographic systems,” J. Biomed. Opt. 16(4), 046006 (2011).

[Crossref]
[PubMed]

V. C. Kavuri, Z. J. Lin, F. Tian, and H. Liu, “Sparsity enhanced spatial resolution and depth localization in diffuse optical tomography,” Biomed. Opt. Express 3(5), 943–957 (2012).

[Crossref]
[PubMed]

H. Niu, S. Khadka, F. Tian, Z. J. Lin, C. Lu, C. Zhu, and H. Liu, “Resting-state functional connectivity assessed with two diffuse optical tomographic systems,” J. Biomed. Opt. 16(4), 046006 (2011).

[Crossref]
[PubMed]

W. Lu, J. Duan, Z. Qiu, Z. Pan, R. W. Liu, and L. Bai, “Implementation of high-order variational models made easy for image processing,” Math. Methods Appl. Sci. 39, 4208–4233 (2016).

[Crossref]

J. Duan, Z. Pan, B. Zhang, W. Liu, and X. C. Tai, “Fast algorithm for color texture image inpainting using the non-local CTV model,” J. Glob. Optim. 62(4), 853–876 (2015).

[Crossref]

J. Duan, Z. Pan, W. Liu, and X. C. Tai, “Color texture image inpainting using the non local CTV model,” JSIP 4(03), 43 (2013).

[Crossref]

H. Niu, S. Khadka, F. Tian, Z. J. Lin, C. Lu, C. Zhu, and H. Liu, “Resting-state functional connectivity assessed with two diffuse optical tomographic systems,” J. Biomed. Opt. 16(4), 046006 (2011).

[Crossref]
[PubMed]

W. Lu, D. Lighter, and I. B. Styles, “L1-norm based nonlinear reconstruction improves quantitative accuracy of spectral diffuse optical tomography,” Biomed. Opt. Express 9(4), 1423–1444 (2018).

[Crossref]
[PubMed]

J. Duan, W. Lu, C. Tench, I. Gottlob, F. Proudlock, and et al., “Denoising optical coherence tomography using second order total generalized variation decomposition,” Biomed. Signal Process. Control 24, 120–127 (2016).

[Crossref]

W. Lu, J. Duan, Z. Qiu, Z. Pan, R. W. Liu, and L. Bai, “Implementation of high-order variational models made easy for image processing,” Math. Methods Appl. Sci. 39, 4208–4233 (2016).

[Crossref]

J. Duan, Z. Qiu, W. Lu, G. Wang, Z. Pan, and L. Bai, “An edge-weighted second order variational model for image decomposition,” Digit. Signal Process. 49, 162–181 (2016).

[Crossref]

M. Clancy, A. Belli, D. Davies, S. JE. Lucas, Z. Su, and H. Dehghani, “Comparison of neurological NIRS signals during standing valsalva maneuvers, pre and post vasopressor injection,” In European Conference on Biomedical Optics, 953817 (Optical Society of America, 2015).

Q. Lyu, Z. Lin, Y. She, and C. Zhang, “A comparison of typical Lp minimization algorithms,” Neurocomputing 119, 413–424 (2013).

[Crossref]

C. Fowlkes, S. Belongie, F. Chung, and J. Malik, “Spectral grouping using the Nystrom method,” IEEE Trans. Pattern Anal. Mach. Intell. 26(2), 214–225 (2004).

[Crossref]
[PubMed]

J. Prakash, C. B. Shaw, R. Manjappa, R. Kanhirodan, and P. K. Yalavarthy, “Sparse recovery methods hold promise for diffuse optical tomographic image reconstruction,” IEEE J. Sel. Top. Quantum. Electron. 20(2), 74–82 (2014).

[Crossref]

E. Merkurjev, T. Kostic, and A. L. Bertozzi, “An mbo scheme on graphs for classification and image processing,” SIAM J. Imaging Sci. 6(4), 1903–1930 (2013).

[Crossref]

A. Custo, D. A. Boas, D. Tsuzuki, I. Dan, R. Mesquita, B. Fischl, W. Eric, L. Grimson, and W. Wells, “Anatomical atlas-guided diffuse optical tomography of brain activation,” Neuroimage 49(1), 561–567 (2010).

[Crossref]

H. Niu, S. Khadka, F. Tian, Z. J. Lin, C. Lu, C. Zhu, and H. Liu, “Resting-state functional connectivity assessed with two diffuse optical tomographic systems,” J. Biomed. Opt. 16(4), 046006 (2011).

[Crossref]
[PubMed]

C. Ichai, H. Quintard, and J. C. Orban, Metabolic disorders and critically ill patients: from pathophysiology to treatment (Springer, 2017).

T. Goldstein and S. Osher, “The split bregman method for L1-regularized problems,” SIAM J. Imaging Sci. 2(2), 323–343 (2009).

[Crossref]

G. Gilboa and S. Osher, “Nonlocal operators with applications to image processing,” Multiscale Model. Sim. 7(3), 1005–1028 (2008).

[Crossref]

S. Osher, M. Burger, D. Goldfarb, J. Xu, and W. Yin, “An iterative regularization method for total variation-based image restoration,” Multiscale Model. Simul. 4(2), 460–489 (2005).

[Crossref]

J. Duan, W. OC. Ward, L. Sibbett, Z. Pan, and L. Bai, “Introducing diffusion tensor to high order variational model for image reconstruction,” Digit. Signal Process. 69, 323–336 (2017).

[Crossref]

J. Duan, Z. Qiu, W. Lu, G. Wang, Z. Pan, and L. Bai, “An edge-weighted second order variational model for image decomposition,” Digit. Signal Process. 49, 162–181 (2016).

[Crossref]

W. Lu, J. Duan, Z. Qiu, Z. Pan, R. W. Liu, and L. Bai, “Implementation of high-order variational models made easy for image processing,” Math. Methods Appl. Sci. 39, 4208–4233 (2016).

[Crossref]

J. Duan, Z. Pan, B. Zhang, W. Liu, and X. C. Tai, “Fast algorithm for color texture image inpainting using the non-local CTV model,” J. Glob. Optim. 62(4), 853–876 (2015).

[Crossref]

J. Duan, Z. Pan, W. Liu, and X. C. Tai, “Color texture image inpainting using the non local CTV model,” JSIP 4(03), 43 (2013).

[Crossref]

K. Papafitsoros and C. B. Schönlieb, “A combined first and second order variational approach for image reconstruction,” J. Math. Imaging Vis. 48(2), 308–338 (2014).

[Crossref]

P. K. Yalavarthy, B. W. Pogue, H. Dehghani, C. M. Carpenter, S. Jiang, and K. D. Paulsen, “Structural information within regularization matrices improves near infrared diffuse optical tomography,” Opt. Express 15(13), 8043–8058 (2007).

[Crossref]
[PubMed]

H. Dehghani, B. W. Pogue, S. P. Poplack, and K. D. Paulsen, “Multiwavelength three-dimensional near-infrared tomography of the breast: initial simulation, phantom, and clinical results,” Appl. Opt. 42(1), 135–145 (2003).

[Crossref]
[PubMed]

S. Srinivasan, B. W. Pogue, S. Jiang, H. Dehghani, C. Kogel, S. Soho, J. J. Gibson, T. D. Tosteson, S. P. Poplack, and K. D. Paulsen, “Interpreting hemoglobin and water concentration, oxygen saturation, and scattering measured in vivo by near-infrared breast tomography,” Proc. Natl. Acad. Sci. 100(21), 12349–12354 (2003).

[Crossref]
[PubMed]

K. D. Paulsen and H. Jiang, “Enhanced frequency-domain optical image reconstruction in tissues through total-variation minimization,” Appl. Opt. 35(19), 3447–3458 (1996).

[Crossref]
[PubMed]

T. Pock, D. Cremers, H. Bischof, and A. Chambolle, “An algorithm for minimizing the Mumford-Shah functional,” In Computer Vision, 2009 IEEE 12th International Conference on, 1133–1140. IEEE (2009).

[Crossref]

P. K. Yalavarthy, B. W. Pogue, H. Dehghani, C. M. Carpenter, S. Jiang, and K. D. Paulsen, “Structural information within regularization matrices improves near infrared diffuse optical tomography,” Opt. Express 15(13), 8043–8058 (2007).

[Crossref]
[PubMed]

H. Dehghani, B. W. Pogue, S. P. Poplack, and K. D. Paulsen, “Multiwavelength three-dimensional near-infrared tomography of the breast: initial simulation, phantom, and clinical results,” Appl. Opt. 42(1), 135–145 (2003).

[Crossref]
[PubMed]

S. Srinivasan, B. W. Pogue, S. Jiang, H. Dehghani, C. Kogel, S. Soho, J. J. Gibson, T. D. Tosteson, S. P. Poplack, and K. D. Paulsen, “Interpreting hemoglobin and water concentration, oxygen saturation, and scattering measured in vivo by near-infrared breast tomography,” Proc. Natl. Acad. Sci. 100(21), 12349–12354 (2003).

[Crossref]
[PubMed]

H. Dehghani, B. W. Pogue, S. P. Poplack, and K. D. Paulsen, “Multiwavelength three-dimensional near-infrared tomography of the breast: initial simulation, phantom, and clinical results,” Appl. Opt. 42(1), 135–145 (2003).

[Crossref]
[PubMed]

S. Srinivasan, B. W. Pogue, S. Jiang, H. Dehghani, C. Kogel, S. Soho, J. J. Gibson, T. D. Tosteson, S. P. Poplack, and K. D. Paulsen, “Interpreting hemoglobin and water concentration, oxygen saturation, and scattering measured in vivo by near-infrared breast tomography,” Proc. Natl. Acad. Sci. 100(21), 12349–12354 (2003).

[Crossref]
[PubMed]

J. Prakash, C. B. Shaw, R. Manjappa, R. Kanhirodan, and P. K. Yalavarthy, “Sparse recovery methods hold promise for diffuse optical tomographic image reconstruction,” IEEE J. Sel. Top. Quantum. Electron. 20(2), 74–82 (2014).

[Crossref]

J. Duan, W. Lu, C. Tench, I. Gottlob, F. Proudlock, and et al., “Denoising optical coherence tomography using second order total generalized variation decomposition,” Biomed. Signal Process. Control 24, 120–127 (2016).

[Crossref]

W. Lu, J. Duan, Z. Qiu, Z. Pan, R. W. Liu, and L. Bai, “Implementation of high-order variational models made easy for image processing,” Math. Methods Appl. Sci. 39, 4208–4233 (2016).

[Crossref]

J. Duan, Z. Qiu, W. Lu, G. Wang, Z. Pan, and L. Bai, “An edge-weighted second order variational model for image decomposition,” Digit. Signal Process. 49, 162–181 (2016).

[Crossref]

C. Ichai, H. Quintard, and J. C. Orban, Metabolic disorders and critically ill patients: from pathophysiology to treatment (Springer, 2017).

W. H. Reed and T. R. Hill, “Triangular mesh methods for the neutron transport equation,” Technical report, Los Alamos Scientific Lab., N. Mex.(USA) (1973).

J. C. Baritaux, K. Hassler, M. Bucher, S. Sanyal, and M. Unser, “Sparsity-driven reconstruction for FDOT with anatomical priors,” IEEE Trans. Med. Imaging 30(5), 1143–1153 (2011).

[Crossref]
[PubMed]

K. Papafitsoros and C. B. Schönlieb, “A combined first and second order variational approach for image reconstruction,” J. Math. Imaging Vis. 48(2), 308–338 (2014).

[Crossref]

G. González, V. Kolehmainen, and A. Seppänen, “Isotropic and anisotropic total variation regularization in electrical impedance tomography,” Comput. Math. Appl. 74(3), 564–576 (2017).

[Crossref]

J. Prakash, C. B. Shaw, R. Manjappa, R. Kanhirodan, and P. K. Yalavarthy, “Sparse recovery methods hold promise for diffuse optical tomographic image reconstruction,” IEEE J. Sel. Top. Quantum. Electron. 20(2), 74–82 (2014).

[Crossref]

C. B. Shaw and P. K. Yalavarthy, “Effective contrast recovery in rapid dynamic near-infrared diffuse optical tomography using l1-norm-based linear image reconstruction method,” J. Biomed. Opt. 17(8), 0860091 (2012).

[Crossref]

Q. Lyu, Z. Lin, Y. She, and C. Zhang, “A comparison of typical Lp minimization algorithms,” Neurocomputing 119, 413–424 (2013).

[Crossref]

J. Duan, W. OC. Ward, L. Sibbett, Z. Pan, and L. Bai, “Introducing diffusion tensor to high order variational model for image reconstruction,” Digit. Signal Process. 69, 323–336 (2017).

[Crossref]

A. T. Eggebrecht, S. L. Ferradal, A. R. Viehoever, M. S. Hassanpour, H. Dehghani, A. Z. Snyder, T. Hershey, and J. P. Culver, “Mapping distributed brain function and networks with diffuse optical tomography,” Nat. Photon. 8(6), 448–454 (2014).

[Crossref]

S. Srinivasan, B. W. Pogue, S. Jiang, H. Dehghani, C. Kogel, S. Soho, J. J. Gibson, T. D. Tosteson, S. P. Poplack, and K. D. Paulsen, “Interpreting hemoglobin and water concentration, oxygen saturation, and scattering measured in vivo by near-infrared breast tomography,” Proc. Natl. Acad. Sci. 100(21), 12349–12354 (2003).

[Crossref]
[PubMed]

H. Dehghani, M. E. Eames, P. K. Yalavarthy, S. C. Davis, S. Srinivasan, and et al., “Near infrared optical tomography using NIRFAST: Algorithms for numerical model and image reconstruction,” Int. J. Numer. Method. Biomed. Eng. 25(6), 711–732 (2009).

S. Srinivasan, B. W. Pogue, S. Jiang, H. Dehghani, C. Kogel, S. Soho, J. J. Gibson, T. D. Tosteson, S. P. Poplack, and K. D. Paulsen, “Interpreting hemoglobin and water concentration, oxygen saturation, and scattering measured in vivo by near-infrared breast tomography,” Proc. Natl. Acad. Sci. 100(21), 12349–12354 (2003).

[Crossref]
[PubMed]

T. Goldstein, C. Studer, and R. Baraniuk, “A field guide to forward-backward splitting with a FASTA implementation,” arXiv preprint arXiv:1411.3406 (2014).

M. Clancy, A. Belli, D. Davies, S. JE. Lucas, Z. Su, and H. Dehghani, “Comparison of neurological NIRS signals during standing valsalva maneuvers, pre and post vasopressor injection,” In European Conference on Biomedical Optics, 953817 (Optical Society of America, 2015).

X. Bresson, X. C. Tai, T. F. Chan, and A. Szlam, “Multi-class transductive learning based on ?1 relaxations of cheeger cut and Mumford-Shah-Potts model,” J. Math. Imaging Vis. 49(1), 191–201 (2014).

[Crossref]

J. Duan, Z. Pan, B. Zhang, W. Liu, and X. C. Tai, “Fast algorithm for color texture image inpainting using the non-local CTV model,” J. Glob. Optim. 62(4), 853–876 (2015).

[Crossref]

X. Bresson, X. C. Tai, T. F. Chan, and A. Szlam, “Multi-class transductive learning based on ?1 relaxations of cheeger cut and Mumford-Shah-Potts model,” J. Math. Imaging Vis. 49(1), 191–201 (2014).

[Crossref]

J. Duan, Z. Pan, W. Liu, and X. C. Tai, “Color texture image inpainting using the non local CTV model,” JSIP 4(03), 43 (2013).

[Crossref]

J. Tang, B. Han, W. Han, B. Bi, and L. Li, “Mixed total variation and regularization method for optical tomography based on radiative transfer equation,” Comput. Math. Methods Med. 2017, 2953560 (2017).

[Crossref]

A. Beck and M. Teboulle, “A fast iterative shrinkage-thresholding algorithm for linear inverse problems,” SIAM J. Imaging Sci. 2(1), 183–202 (2009).

[Crossref]

J. Duan, W. Lu, C. Tench, I. Gottlob, F. Proudlock, and et al., “Denoising optical coherence tomography using second order total generalized variation decomposition,” Biomed. Signal Process. Control 24, 120–127 (2016).

[Crossref]

V. C. Kavuri, Z. J. Lin, F. Tian, and H. Liu, “Sparsity enhanced spatial resolution and depth localization in diffuse optical tomography,” Biomed. Opt. Express 3(5), 943–957 (2012).

[Crossref]
[PubMed]

H. Niu, S. Khadka, F. Tian, Z. J. Lin, C. Lu, C. Zhu, and H. Liu, “Resting-state functional connectivity assessed with two diffuse optical tomographic systems,” J. Biomed. Opt. 16(4), 046006 (2011).

[Crossref]
[PubMed]

S. Srinivasan, B. W. Pogue, S. Jiang, H. Dehghani, C. Kogel, S. Soho, J. J. Gibson, T. D. Tosteson, S. P. Poplack, and K. D. Paulsen, “Interpreting hemoglobin and water concentration, oxygen saturation, and scattering measured in vivo by near-infrared breast tomography,” Proc. Natl. Acad. Sci. 100(21), 12349–12354 (2003).

[Crossref]
[PubMed]

A. Custo, D. A. Boas, D. Tsuzuki, I. Dan, R. Mesquita, B. Fischl, W. Eric, L. Grimson, and W. Wells, “Anatomical atlas-guided diffuse optical tomography of brain activation,” Neuroimage 49(1), 561–567 (2010).

[Crossref]

J. C. Baritaux, K. Hassler, M. Bucher, S. Sanyal, and M. Unser, “Sparsity-driven reconstruction for FDOT with anatomical priors,” IEEE Trans. Med. Imaging 30(5), 1143–1153 (2011).

[Crossref]
[PubMed]

A. T. Eggebrecht, S. L. Ferradal, A. R. Viehoever, M. S. Hassanpour, H. Dehghani, A. Z. Snyder, T. Hershey, and J. P. Culver, “Mapping distributed brain function and networks with diffuse optical tomography,” Nat. Photon. 8(6), 448–454 (2014).

[Crossref]

A. B. Konovalov and V. V. Vlasov, “Total variation based reconstruction of scattering inhomogeneities in tissue from time-resolved optical projections,” In PALS 9917: 99170S, International Society for Optics and Photonics (2016).

J. Duan, Z. Qiu, W. Lu, G. Wang, Z. Pan, and L. Bai, “An edge-weighted second order variational model for image decomposition,” Digit. Signal Process. 49, 162–181 (2016).

[Crossref]

J. Duan, W. OC. Ward, L. Sibbett, Z. Pan, and L. Bai, “Introducing diffusion tensor to high order variational model for image reconstruction,” Digit. Signal Process. 69, 323–336 (2017).

[Crossref]

A. Custo, D. A. Boas, D. Tsuzuki, I. Dan, R. Mesquita, B. Fischl, W. Eric, L. Grimson, and W. Wells, “Anatomical atlas-guided diffuse optical tomography of brain activation,” Neuroimage 49(1), 561–567 (2010).

[Crossref]

A. T. Eggebrecht, B. R. White, S. L. Ferradal, C. Chen, Y. Zhan, and et al., “A quantitative spatial comparison of high-density diffuse optical tomography and FMRI cortical mapping,” Neuroimage 61(4), 1120–1128 (2012).

[Crossref]
[PubMed]

H. Dehghani, B. R. White, B. W. Zeff, A. Tizzard, and J. P. Culver, “Depth sensitivity and image reconstruction analysis of dense imaging arrays for mapping brain function with diffuse optical tomography,” Appl. Opt. 48(10), D137–D143 (2009).

[Crossref]
[PubMed]

S. Osher, M. Burger, D. Goldfarb, J. Xu, and W. Yin, “An iterative regularization method for total variation-based image restoration,” Multiscale Model. Simul. 4(2), 460–489 (2005).

[Crossref]

J. Prakash, C. B. Shaw, R. Manjappa, R. Kanhirodan, and P. K. Yalavarthy, “Sparse recovery methods hold promise for diffuse optical tomographic image reconstruction,” IEEE J. Sel. Top. Quantum. Electron. 20(2), 74–82 (2014).

[Crossref]

C. B. Shaw and P. K. Yalavarthy, “Effective contrast recovery in rapid dynamic near-infrared diffuse optical tomography using l1-norm-based linear image reconstruction method,” J. Biomed. Opt. 17(8), 0860091 (2012).

[Crossref]

H. Dehghani, M. E. Eames, P. K. Yalavarthy, S. C. Davis, S. Srinivasan, and et al., “Near infrared optical tomography using NIRFAST: Algorithms for numerical model and image reconstruction,” Int. J. Numer. Method. Biomed. Eng. 25(6), 711–732 (2009).

P. K. Yalavarthy, B. W. Pogue, H. Dehghani, C. M. Carpenter, S. Jiang, and K. D. Paulsen, “Structural information within regularization matrices improves near infrared diffuse optical tomography,” Opt. Express 15(13), 8043–8058 (2007).

[Crossref]
[PubMed]

L. Yao and H. Jiang, “Enhancing finite element-based photoacoustic tomography using total variation minimization,” Appl. Op. 50(25), 5031–5041 (2011).

[Crossref]

S. Osher, M. Burger, D. Goldfarb, J. Xu, and W. Yin, “An iterative regularization method for total variation-based image restoration,” Multiscale Model. Simul. 4(2), 460–489 (2005).

[Crossref]

A. T. Eggebrecht, B. R. White, S. L. Ferradal, C. Chen, Y. Zhan, and et al., “A quantitative spatial comparison of high-density diffuse optical tomography and FMRI cortical mapping,” Neuroimage 61(4), 1120–1128 (2012).

[Crossref]
[PubMed]

J. Duan, Z. Pan, B. Zhang, W. Liu, and X. C. Tai, “Fast algorithm for color texture image inpainting using the non-local CTV model,” J. Glob. Optim. 62(4), 853–876 (2015).

[Crossref]

Q. Lyu, Z. Lin, Y. She, and C. Zhang, “A comparison of typical Lp minimization algorithms,” Neurocomputing 119, 413–424 (2013).

[Crossref]

H. Niu, S. Khadka, F. Tian, Z. J. Lin, C. Lu, C. Zhu, and H. Liu, “Resting-state functional connectivity assessed with two diffuse optical tomographic systems,” J. Biomed. Opt. 16(4), 046006 (2011).

[Crossref]
[PubMed]

L. Yao and H. Jiang, “Enhancing finite element-based photoacoustic tomography using total variation minimization,” Appl. Op. 50(25), 5031–5041 (2011).

[Crossref]

M. Freiberger, C. Clason, and H. Scharfetter, “Total variation regularization for nonlinear fluorescence tomography with an augmented Lagrangian splitting approach,” Appl. Opt. 49(19), 3741–3747 (2010).

[Crossref]
[PubMed]

K. D. Paulsen and H. Jiang, “Enhanced frequency-domain optical image reconstruction in tissues through total-variation minimization,” Appl. Opt. 35(19), 3447–3458 (1996).

[Crossref]
[PubMed]

H. Dehghani, B. W. Pogue, S. P. Poplack, and K. D. Paulsen, “Multiwavelength three-dimensional near-infrared tomography of the breast: initial simulation, phantom, and clinical results,” Appl. Opt. 42(1), 135–145 (2003).

[Crossref]
[PubMed]

S. R. Arridge and M Schweiger, “Photon-measurement density functions. part 2: Finite-element-method calculations,” Appl. Opt. 34(34), 8026–8037 (1995).

[Crossref]
[PubMed]

H. Dehghani, B. R. White, B. W. Zeff, A. Tizzard, and J. P. Culver, “Depth sensitivity and image reconstruction analysis of dense imaging arrays for mapping brain function with diffuse optical tomography,” Appl. Opt. 48(10), D137–D143 (2009).

[Crossref]
[PubMed]

X. Wu, A. T. Eggebrecht, S. L. Ferradal, J. P. Culver, and H. Dehghani, “Quantitative evaluation of atlas-based high-density diffuse optical tomography for imaging of the human visual cortex,” Biomed. Opt. Express 5(11), 3882–3900 (2014).

[Crossref]
[PubMed]

V. C. Kavuri, Z. J. Lin, F. Tian, and H. Liu, “Sparsity enhanced spatial resolution and depth localization in diffuse optical tomography,” Biomed. Opt. Express 3(5), 943–957 (2012).

[Crossref]
[PubMed]

W. Lu, D. Lighter, and I. B. Styles, “L1-norm based nonlinear reconstruction improves quantitative accuracy of spectral diffuse optical tomography,” Biomed. Opt. Express 9(4), 1423–1444 (2018).

[Crossref]
[PubMed]

S. Okawa, Y. Hoshi, and Y. Yamada, “Improvement of image quality of time-domain diffuse optical tomography with lp sparsity regularization,” Biomed. Opt. Express 2(12), 3334–3348 (2011).

[Crossref]
[PubMed]

J. Duan, W. Lu, C. Tench, I. Gottlob, F. Proudlock, and et al., “Denoising optical coherence tomography using second order total generalized variation decomposition,” Biomed. Signal Process. Control 24, 120–127 (2016).

[Crossref]

I. Daubechies, R. DeVore, M. Fornasier, and C. S. Güntürk, “Iteratively reweighted least squares minimization for sparse recovery,” Commun. Pure Appl. Math. 63(1), 1–38 (2010).

[Crossref]

G. González, V. Kolehmainen, and A. Seppänen, “Isotropic and anisotropic total variation regularization in electrical impedance tomography,” Comput. Math. Appl. 74(3), 564–576 (2017).

[Crossref]

J. Tang, B. Han, W. Han, B. Bi, and L. Li, “Mixed total variation and regularization method for optical tomography based on radiative transfer equation,” Comput. Math. Methods Med. 2017, 2953560 (2017).

[Crossref]

J. Duan, Z. Qiu, W. Lu, G. Wang, Z. Pan, and L. Bai, “An edge-weighted second order variational model for image decomposition,” Digit. Signal Process. 49, 162–181 (2016).

[Crossref]

J. Duan, W. OC. Ward, L. Sibbett, Z. Pan, and L. Bai, “Introducing diffusion tensor to high order variational model for image reconstruction,” Digit. Signal Process. 69, 323–336 (2017).

[Crossref]

J. Ashburner and K. J. Friston, “Image segmentation,” Human Brain Function 2003, 2 (2003).

J. Prakash, C. B. Shaw, R. Manjappa, R. Kanhirodan, and P. K. Yalavarthy, “Sparse recovery methods hold promise for diffuse optical tomographic image reconstruction,” IEEE J. Sel. Top. Quantum. Electron. 20(2), 74–82 (2014).

[Crossref]

A. Elmoataz, O. Lezoray, and S. Bougleux, “Nonlocal discrete regularization on weighted graphs: a framework for image and manifold processing,” IEEE T. Image Process. 17(7), 1047–1060 (2008).

[Crossref]

J. C. Baritaux, K. Hassler, M. Bucher, S. Sanyal, and M. Unser, “Sparsity-driven reconstruction for FDOT with anatomical priors,” IEEE Trans. Med. Imaging 30(5), 1143–1153 (2011).

[Crossref]
[PubMed]

C. Fowlkes, S. Belongie, F. Chung, and J. Malik, “Spectral grouping using the Nystrom method,” IEEE Trans. Pattern Anal. Mach. Intell. 26(2), 214–225 (2004).

[Crossref]
[PubMed]

H. Dehghani, M. E. Eames, P. K. Yalavarthy, S. C. Davis, S. Srinivasan, and et al., “Near infrared optical tomography using NIRFAST: Algorithms for numerical model and image reconstruction,” Int. J. Numer. Method. Biomed. Eng. 25(6), 711–732 (2009).

C. B. Shaw and P. K. Yalavarthy, “Effective contrast recovery in rapid dynamic near-infrared diffuse optical tomography using l1-norm-based linear image reconstruction method,” J. Biomed. Opt. 17(8), 0860091 (2012).

[Crossref]

H. Niu, S. Khadka, F. Tian, Z. J. Lin, C. Lu, C. Zhu, and H. Liu, “Resting-state functional connectivity assessed with two diffuse optical tomographic systems,” J. Biomed. Opt. 16(4), 046006 (2011).

[Crossref]
[PubMed]

J. Duan, Z. Pan, B. Zhang, W. Liu, and X. C. Tai, “Fast algorithm for color texture image inpainting using the non-local CTV model,” J. Glob. Optim. 62(4), 853–876 (2015).

[Crossref]

K. Papafitsoros and C. B. Schönlieb, “A combined first and second order variational approach for image reconstruction,” J. Math. Imaging Vis. 48(2), 308–338 (2014).

[Crossref]

X. Bresson, X. C. Tai, T. F. Chan, and A. Szlam, “Multi-class transductive learning based on ?1 relaxations of cheeger cut and Mumford-Shah-Potts model,” J. Math. Imaging Vis. 49(1), 191–201 (2014).

[Crossref]

J. Duan, Z. Pan, W. Liu, and X. C. Tai, “Color texture image inpainting using the non local CTV model,” JSIP 4(03), 43 (2013).

[Crossref]

W. Lu, J. Duan, Z. Qiu, Z. Pan, R. W. Liu, and L. Bai, “Implementation of high-order variational models made easy for image processing,” Math. Methods Appl. Sci. 39, 4208–4233 (2016).

[Crossref]

G. Gilboa and S. Osher, “Nonlocal operators with applications to image processing,” Multiscale Model. Sim. 7(3), 1005–1028 (2008).

[Crossref]

S. Osher, M. Burger, D. Goldfarb, J. Xu, and W. Yin, “An iterative regularization method for total variation-based image restoration,” Multiscale Model. Simul. 4(2), 460–489 (2005).

[Crossref]

A. L. Bertozzi and A. Flenner, “Diffuse interface models on graphs for classification of high dimensional data,” Multiscale Model. Simul. 10(3), 1090–1118 (2012).

[Crossref]

A. T. Eggebrecht, S. L. Ferradal, A. R. Viehoever, M. S. Hassanpour, H. Dehghani, A. Z. Snyder, T. Hershey, and J. P. Culver, “Mapping distributed brain function and networks with diffuse optical tomography,” Nat. Photon. 8(6), 448–454 (2014).

[Crossref]

Q. Lyu, Z. Lin, Y. She, and C. Zhang, “A comparison of typical Lp minimization algorithms,” Neurocomputing 119, 413–424 (2013).

[Crossref]

A. Custo, D. A. Boas, D. Tsuzuki, I. Dan, R. Mesquita, B. Fischl, W. Eric, L. Grimson, and W. Wells, “Anatomical atlas-guided diffuse optical tomography of brain activation,” Neuroimage 49(1), 561–567 (2010).

[Crossref]

A. T. Eggebrecht, B. R. White, S. L. Ferradal, C. Chen, Y. Zhan, and et al., “A quantitative spatial comparison of high-density diffuse optical tomography and FMRI cortical mapping,” Neuroimage 61(4), 1120–1128 (2012).

[Crossref]
[PubMed]

P. K. Yalavarthy, B. W. Pogue, H. Dehghani, C. M. Carpenter, S. Jiang, and K. D. Paulsen, “Structural information within regularization matrices improves near infrared diffuse optical tomography,” Opt. Express 15(13), 8043–8058 (2007).

[Crossref]
[PubMed]

H. Gao and H. Zhao, “Multilevel bioluminescence tomography based on radiative transfer equation part 1: L1 regularization,” Opt. Express 18(3), 1854–1871 (2010).

[Crossref]
[PubMed]

A. P. Gibson, J. C. Hebden, and S. R. Arridge, “Recent advances in diffuse optical tomography,” Phys. Med. Biol. 50(4), 31–9155 (2005).

[Crossref]

S. R. Arridge and J. C. Hebden, “Optical imaging in medicine: ii. modelling and reconstruction,” Phys. Med. Biol. 42(5), 841 (1997).

[Crossref]
[PubMed]

S. Srinivasan, B. W. Pogue, S. Jiang, H. Dehghani, C. Kogel, S. Soho, J. J. Gibson, T. D. Tosteson, S. P. Poplack, and K. D. Paulsen, “Interpreting hemoglobin and water concentration, oxygen saturation, and scattering measured in vivo by near-infrared breast tomography,” Proc. Natl. Acad. Sci. 100(21), 12349–12354 (2003).

[Crossref]
[PubMed]

T. Goldstein and S. Osher, “The split bregman method for L1-regularized problems,” SIAM J. Imaging Sci. 2(2), 323–343 (2009).

[Crossref]

A. Beck and M. Teboulle, “A fast iterative shrinkage-thresholding algorithm for linear inverse problems,” SIAM J. Imaging Sci. 2(1), 183–202 (2009).

[Crossref]

E. Merkurjev, T. Kostic, and A. L. Bertozzi, “An mbo scheme on graphs for classification and image processing,” SIAM J. Imaging Sci. 6(4), 1903–1930 (2013).

[Crossref]

M. Clancy, A. Belli, D. Davies, S. JE. Lucas, Z. Su, and H. Dehghani, “Comparison of neurological NIRS signals during standing valsalva maneuvers, pre and post vasopressor injection,” In European Conference on Biomedical Optics, 953817 (Optical Society of America, 2015).

C. Ichai, H. Quintard, and J. C. Orban, Metabolic disorders and critically ill patients: from pathophysiology to treatment (Springer, 2017).

D. Lighter, A. Filer, and H. Dehghani, “Multispectral diffuse optical tomography of finger joints,” In European Conference on Biomedical Optics, 104120N (Optical Society of America, 2017).

T. Goldstein, C. Studer, and R. Baraniuk, “A field guide to forward-backward splitting with a FASTA implementation,” arXiv preprint arXiv:1411.3406 (2014).

W. H. Reed and T. R. Hill, “Triangular mesh methods for the neutron transport equation,” Technical report, Los Alamos Scientific Lab., N. Mex.(USA) (1973).

A. B. Konovalov and V. V. Vlasov, “Total variation based reconstruction of scattering inhomogeneities in tissue from time-resolved optical projections,” In PALS 9917: 99170S, International Society for Optics and Photonics (2016).

T. Pock, D. Cremers, H. Bischof, and A. Chambolle, “An algorithm for minimizing the Mumford-Shah functional,” In Computer Vision, 2009 IEEE 12th International Conference on, 1133–1140. IEEE (2009).

[Crossref]