Abstract

The occurrence of artifacts is a major challenge in photoacoustic imaging. The artifacts negatively affect the quality and reliability of the images. An approach using multi-wavelength excitation has previously been reported for in-plane artifact identification. Yet, out-of-plane artifacts cannot be tackled with this method. Here we propose a new method using ultrasound transducer array displacement. By displacing the ultrasound transducer array axially, we can de-correlate out-of-plane artifacts with in-plane image features and thus remove them. Combining this new method with the previous one allows us to remove potentially completely both in-plane and out-of-plane artifacts in photoacoustic imaging. We experimentally demonstrate this with experiments in phantoms as well as in vivo.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Reflection artifact identification in photoacoustic imaging using multi-wavelength excitation

Ho Nhu Y. Nguyen, Altaf Hussain, and Wiendelt Steenbergen
Biomed. Opt. Express 9(10) 4613-4630 (2018)

In vivo demonstration of reflection artifact reduction in photoacoustic imaging using synthetic aperture photoacoustic-guided focused ultrasound (PAFUSion)

Mithun Kuniyil Ajith Singh, Michael Jaeger, Martin Frenz, and Wiendelt Steenbergen
Biomed. Opt. Express 7(8) 2955-2972 (2016)

Handheld probe integrating laser diode and ultrasound transducer array for ultrasound/photoacoustic dual modality imaging

K. Daoudi, P.J. van den Berg, O. Rabot, A. Kohl, S. Tisserand, P. Brands, and W. Steenbergen
Opt. Express 22(21) 26365-26374 (2014)

References

  • View by:
  • |
  • |
  • |

  1. K. S. Valluru, K. E. Wilson, and J. K. Willmann, “Photoacoustic Imaging in oncology: translational preclinical and early clinical experience,” Radiology 280(2), 332–349 (2016).
    [Crossref] [PubMed]
  2. M. Heijblom, D. Piras, F. M. van den Engh, M. van der Schaaf, J. M. Klaase, W. Steenbergen, and S. Manohar, “The state of the art in breast imaging using the Twente Photoacoustic Mammoscope: results from 31 measurements on malignancies,” Eur. Radiol. 26(11), 3874–3887 (2016).
    [Crossref] [PubMed]
  3. M. Heijblom, W. Steenbergen, and S. Manohar, “Clinical photoacoustic breast imaging: the Twente experience,” IEEE Pulse 6(3), 42–46 (2015).
    [Crossref] [PubMed]
  4. P. J. van den Berg, K. Daoudi, H. J. Bernelot Moens, and W. Steenbergen, “Feasibility of photoacoustic/ultrasound imaging of synovitis in finger joints using a point-of-care system,” Photoacoustics 8, 8–14 (2017).
    [Crossref] [PubMed]
  5. M. Toi, Y. Asao, Y. Matsumoto, H. Sekiguchi, A. Yoshikawa, M. Takada, M. Kataoka, T. Endo, N. Kawaguchi-Sakita, M. Kawashima, E. Fakhrejahani, S. Kanao, I. Yamaga, Y. Nakayama, M. Tokiwa, M. Torii, T. Yagi, T. Sakurai, K. Togashi, and T. Shiina, “Visualization of tumor-related blood vessels in human breast by photoacoustic imaging system with a hemispherical detector array,” Sci. Rep. 7(1), 41970 (2017).
    [Crossref] [PubMed]
  6. J. Jo, G. Xu, M. Cao, A. Marquardt, S. Francis, G. Gandikota, and X. Wang, “A Functional Study of Human Inflammatory Arthritis Using Photoacoustic Imaging,” Sci. Rep. 7(1), 15026 (2017).
    [Crossref] [PubMed]
  7. B. W. Drinkwater and P. D. Wilcox, “Ultrasonic arrays for non-destructive evaluation: A review,” NDT Int. 39(7), 525–541 (2006).
    [Crossref]
  8. C. D. Herickhoff, M. R. Morgan, J. S. Broder, and J. J. Dahl, “Low-cost volumetric ultrasound by augmentation of 2D systems: Design and prototype,” Ultrason. Imaging 40(1), 35–48 (2018).
    [Crossref] [PubMed]
  9. M. K. A. Singh, W. Steenbergen, and S. Manohar, “Handheld probe-based dual mode ultrasound/photoacoustics for biomedical imaging,” in Frontiers in Biophotonics for Translational Medicine(Springer, 2016), pp. 209–247.
  10. K. Daoudi, P. J. van den Berg, O. Rabot, A. Kohl, S. Tisserand, P. Brands, and W. Steenbergen, “Handheld probe integrating laser diode and ultrasound transducer array for ultrasound/photoacoustic dual modality imaging,” Opt. Express 22(21), 26365–26374 (2014).
    [Crossref] [PubMed]
  11. C. Kim, T. N. Erpelding, L. Jankovic, M. D. Pashley, and L. V. Wang, “Deeply penetrating in vivo photoacoustic imaging using a clinical ultrasound array system,” Biomed. Opt. Express 1(1), 278–284 (2010).
    [Crossref] [PubMed]
  12. C. Haisch, K. Eilert-Zell, M. M. Vogel, P. Menzenbach, and R. Niessner, “Combined optoacoustic/ultrasound system for tomographic absorption measurements: possibilities and limitations,” Anal. Bioanal. Chem. 397(4), 1503–1510 (2010).
    [Crossref] [PubMed]
  13. M. K. A. Singh and W. Steenbergen, “Photoacoustic-guided focused ultrasound (PAFUSion) for identifying reflection artifacts in photoacoustic imaging,” Photoacoustics 3(4), 123–131 (2015).
    [Crossref]
  14. H. N. Y. Nguyen, A. Hussain, and W. Steenbergen, “Reflection artifact identification in photoacoustic imaging using multi-wavelength excitation,” Biomed. Opt. Express 9(10), 4613–4630 (2018).
    [Crossref] [PubMed]
  15. M. K. A. Singh, M. Jaeger, M. Frenz, and W. Steenbergen, “In vivo demonstration of reflection artifact reduction in photoacoustic imaging using synthetic aperture photoacoustic-guided focused ultrasound (PAFUSion),” Biomed. Opt. Express 7(8), 2955–2972 (2016).
    [Crossref] [PubMed]
  16. M. Jaeger, L. Siegenthaler, M. Kitz, and M. Frenz, “Reduction of background in optoacoustic image sequences obtained under tissue deformation,” J. Biomed. Opt. 14(5), 054011 (2009).
    [Crossref] [PubMed]
  17. T. Petrosyan, M. Theodorou, J. Bamber, M. Frenz, and M. Jaeger, “Fast scanning wide-field clutter elimination in epi-optoacoustic imaging using comb-LOVIT,” in Ultrasonics Symposium (IUS),2017IEEE International (IEEE, 2017), p. 1.
    [Crossref]
  18. M. Jaeger, J. C. Bamber, and M. Frenz, “Clutter elimination for deep clinical optoacoustic imaging using localised vibration tagging (LOVIT),” Photoacoustics 1(2), 19–29 (2013).
    [Crossref] [PubMed]
  19. M. F. Beckmann, H.-M. Schwab, and G. Schmitz, “Optimizing a single-sided reflection mode photoacoustic setup for clinical imaging,” in Ultrasonics Symposium (IUS),2015IEEE International (IEEE, 2015), pp. 1–4.
    [Crossref]
  20. I. Sobel, and G. Feldman, “A 3x3 isotropic gradient operator for image processing,” a talk at the Stanford Artificial Project in, 271–272 (1968).
  21. J. Benesty, J. Chen, Y. Huang, and I. Cohen, “Pearson correlation coefficient,” in Noise Reduction in Speech Processing(Springer, 2009), pp. 1–4.
  22. M. Jaeger, S. Schüpbach, A. Gertsch, M. Kitz, and M. Frenz, “Fourier reconstruction in optoacoustic imaging using truncated regularized inverse k-space interpolation,” Inverse Probl. 23(6), S51–S63 (2007).
    [Crossref]
  23. R. Michels, F. Foschum, and A. Kienle, “Optical properties of fat emulsions,” Opt. Express 16(8), 5907–5925 (2008).
    [Crossref] [PubMed]
  24. S. L. Jacques, “Optical properties of biological tissues: a review,” Phys. Med. Biol. 58(11), R37–R61 (2013).
    [Crossref] [PubMed]
  25. S. Preisser, G. Held, H. G. Akarçay, M. Jaeger, and M. Frenz, “Study of clutter origin in in-vivo epi-optoacoustic imaging of human forearms,” J. Opt. 18(9), 094003 (2016).
    [Crossref]

2018 (2)

C. D. Herickhoff, M. R. Morgan, J. S. Broder, and J. J. Dahl, “Low-cost volumetric ultrasound by augmentation of 2D systems: Design and prototype,” Ultrason. Imaging 40(1), 35–48 (2018).
[Crossref] [PubMed]

H. N. Y. Nguyen, A. Hussain, and W. Steenbergen, “Reflection artifact identification in photoacoustic imaging using multi-wavelength excitation,” Biomed. Opt. Express 9(10), 4613–4630 (2018).
[Crossref] [PubMed]

2017 (3)

P. J. van den Berg, K. Daoudi, H. J. Bernelot Moens, and W. Steenbergen, “Feasibility of photoacoustic/ultrasound imaging of synovitis in finger joints using a point-of-care system,” Photoacoustics 8, 8–14 (2017).
[Crossref] [PubMed]

M. Toi, Y. Asao, Y. Matsumoto, H. Sekiguchi, A. Yoshikawa, M. Takada, M. Kataoka, T. Endo, N. Kawaguchi-Sakita, M. Kawashima, E. Fakhrejahani, S. Kanao, I. Yamaga, Y. Nakayama, M. Tokiwa, M. Torii, T. Yagi, T. Sakurai, K. Togashi, and T. Shiina, “Visualization of tumor-related blood vessels in human breast by photoacoustic imaging system with a hemispherical detector array,” Sci. Rep. 7(1), 41970 (2017).
[Crossref] [PubMed]

J. Jo, G. Xu, M. Cao, A. Marquardt, S. Francis, G. Gandikota, and X. Wang, “A Functional Study of Human Inflammatory Arthritis Using Photoacoustic Imaging,” Sci. Rep. 7(1), 15026 (2017).
[Crossref] [PubMed]

2016 (4)

K. S. Valluru, K. E. Wilson, and J. K. Willmann, “Photoacoustic Imaging in oncology: translational preclinical and early clinical experience,” Radiology 280(2), 332–349 (2016).
[Crossref] [PubMed]

M. Heijblom, D. Piras, F. M. van den Engh, M. van der Schaaf, J. M. Klaase, W. Steenbergen, and S. Manohar, “The state of the art in breast imaging using the Twente Photoacoustic Mammoscope: results from 31 measurements on malignancies,” Eur. Radiol. 26(11), 3874–3887 (2016).
[Crossref] [PubMed]

S. Preisser, G. Held, H. G. Akarçay, M. Jaeger, and M. Frenz, “Study of clutter origin in in-vivo epi-optoacoustic imaging of human forearms,” J. Opt. 18(9), 094003 (2016).
[Crossref]

M. K. A. Singh, M. Jaeger, M. Frenz, and W. Steenbergen, “In vivo demonstration of reflection artifact reduction in photoacoustic imaging using synthetic aperture photoacoustic-guided focused ultrasound (PAFUSion),” Biomed. Opt. Express 7(8), 2955–2972 (2016).
[Crossref] [PubMed]

2015 (2)

M. K. A. Singh and W. Steenbergen, “Photoacoustic-guided focused ultrasound (PAFUSion) for identifying reflection artifacts in photoacoustic imaging,” Photoacoustics 3(4), 123–131 (2015).
[Crossref]

M. Heijblom, W. Steenbergen, and S. Manohar, “Clinical photoacoustic breast imaging: the Twente experience,” IEEE Pulse 6(3), 42–46 (2015).
[Crossref] [PubMed]

2014 (1)

2013 (2)

M. Jaeger, J. C. Bamber, and M. Frenz, “Clutter elimination for deep clinical optoacoustic imaging using localised vibration tagging (LOVIT),” Photoacoustics 1(2), 19–29 (2013).
[Crossref] [PubMed]

S. L. Jacques, “Optical properties of biological tissues: a review,” Phys. Med. Biol. 58(11), R37–R61 (2013).
[Crossref] [PubMed]

2010 (2)

C. Kim, T. N. Erpelding, L. Jankovic, M. D. Pashley, and L. V. Wang, “Deeply penetrating in vivo photoacoustic imaging using a clinical ultrasound array system,” Biomed. Opt. Express 1(1), 278–284 (2010).
[Crossref] [PubMed]

C. Haisch, K. Eilert-Zell, M. M. Vogel, P. Menzenbach, and R. Niessner, “Combined optoacoustic/ultrasound system for tomographic absorption measurements: possibilities and limitations,” Anal. Bioanal. Chem. 397(4), 1503–1510 (2010).
[Crossref] [PubMed]

2009 (1)

M. Jaeger, L. Siegenthaler, M. Kitz, and M. Frenz, “Reduction of background in optoacoustic image sequences obtained under tissue deformation,” J. Biomed. Opt. 14(5), 054011 (2009).
[Crossref] [PubMed]

2008 (1)

2007 (1)

M. Jaeger, S. Schüpbach, A. Gertsch, M. Kitz, and M. Frenz, “Fourier reconstruction in optoacoustic imaging using truncated regularized inverse k-space interpolation,” Inverse Probl. 23(6), S51–S63 (2007).
[Crossref]

2006 (1)

B. W. Drinkwater and P. D. Wilcox, “Ultrasonic arrays for non-destructive evaluation: A review,” NDT Int. 39(7), 525–541 (2006).
[Crossref]

Akarçay, H. G.

S. Preisser, G. Held, H. G. Akarçay, M. Jaeger, and M. Frenz, “Study of clutter origin in in-vivo epi-optoacoustic imaging of human forearms,” J. Opt. 18(9), 094003 (2016).
[Crossref]

Asao, Y.

M. Toi, Y. Asao, Y. Matsumoto, H. Sekiguchi, A. Yoshikawa, M. Takada, M. Kataoka, T. Endo, N. Kawaguchi-Sakita, M. Kawashima, E. Fakhrejahani, S. Kanao, I. Yamaga, Y. Nakayama, M. Tokiwa, M. Torii, T. Yagi, T. Sakurai, K. Togashi, and T. Shiina, “Visualization of tumor-related blood vessels in human breast by photoacoustic imaging system with a hemispherical detector array,” Sci. Rep. 7(1), 41970 (2017).
[Crossref] [PubMed]

Bamber, J. C.

M. Jaeger, J. C. Bamber, and M. Frenz, “Clutter elimination for deep clinical optoacoustic imaging using localised vibration tagging (LOVIT),” Photoacoustics 1(2), 19–29 (2013).
[Crossref] [PubMed]

Bernelot Moens, H. J.

P. J. van den Berg, K. Daoudi, H. J. Bernelot Moens, and W. Steenbergen, “Feasibility of photoacoustic/ultrasound imaging of synovitis in finger joints using a point-of-care system,” Photoacoustics 8, 8–14 (2017).
[Crossref] [PubMed]

Brands, P.

Broder, J. S.

C. D. Herickhoff, M. R. Morgan, J. S. Broder, and J. J. Dahl, “Low-cost volumetric ultrasound by augmentation of 2D systems: Design and prototype,” Ultrason. Imaging 40(1), 35–48 (2018).
[Crossref] [PubMed]

Cao, M.

J. Jo, G. Xu, M. Cao, A. Marquardt, S. Francis, G. Gandikota, and X. Wang, “A Functional Study of Human Inflammatory Arthritis Using Photoacoustic Imaging,” Sci. Rep. 7(1), 15026 (2017).
[Crossref] [PubMed]

Dahl, J. J.

C. D. Herickhoff, M. R. Morgan, J. S. Broder, and J. J. Dahl, “Low-cost volumetric ultrasound by augmentation of 2D systems: Design and prototype,” Ultrason. Imaging 40(1), 35–48 (2018).
[Crossref] [PubMed]

Daoudi, K.

P. J. van den Berg, K. Daoudi, H. J. Bernelot Moens, and W. Steenbergen, “Feasibility of photoacoustic/ultrasound imaging of synovitis in finger joints using a point-of-care system,” Photoacoustics 8, 8–14 (2017).
[Crossref] [PubMed]

K. Daoudi, P. J. van den Berg, O. Rabot, A. Kohl, S. Tisserand, P. Brands, and W. Steenbergen, “Handheld probe integrating laser diode and ultrasound transducer array for ultrasound/photoacoustic dual modality imaging,” Opt. Express 22(21), 26365–26374 (2014).
[Crossref] [PubMed]

Drinkwater, B. W.

B. W. Drinkwater and P. D. Wilcox, “Ultrasonic arrays for non-destructive evaluation: A review,” NDT Int. 39(7), 525–541 (2006).
[Crossref]

Eilert-Zell, K.

C. Haisch, K. Eilert-Zell, M. M. Vogel, P. Menzenbach, and R. Niessner, “Combined optoacoustic/ultrasound system for tomographic absorption measurements: possibilities and limitations,” Anal. Bioanal. Chem. 397(4), 1503–1510 (2010).
[Crossref] [PubMed]

Endo, T.

M. Toi, Y. Asao, Y. Matsumoto, H. Sekiguchi, A. Yoshikawa, M. Takada, M. Kataoka, T. Endo, N. Kawaguchi-Sakita, M. Kawashima, E. Fakhrejahani, S. Kanao, I. Yamaga, Y. Nakayama, M. Tokiwa, M. Torii, T. Yagi, T. Sakurai, K. Togashi, and T. Shiina, “Visualization of tumor-related blood vessels in human breast by photoacoustic imaging system with a hemispherical detector array,” Sci. Rep. 7(1), 41970 (2017).
[Crossref] [PubMed]

Erpelding, T. N.

Fakhrejahani, E.

M. Toi, Y. Asao, Y. Matsumoto, H. Sekiguchi, A. Yoshikawa, M. Takada, M. Kataoka, T. Endo, N. Kawaguchi-Sakita, M. Kawashima, E. Fakhrejahani, S. Kanao, I. Yamaga, Y. Nakayama, M. Tokiwa, M. Torii, T. Yagi, T. Sakurai, K. Togashi, and T. Shiina, “Visualization of tumor-related blood vessels in human breast by photoacoustic imaging system with a hemispherical detector array,” Sci. Rep. 7(1), 41970 (2017).
[Crossref] [PubMed]

Foschum, F.

Francis, S.

J. Jo, G. Xu, M. Cao, A. Marquardt, S. Francis, G. Gandikota, and X. Wang, “A Functional Study of Human Inflammatory Arthritis Using Photoacoustic Imaging,” Sci. Rep. 7(1), 15026 (2017).
[Crossref] [PubMed]

Frenz, M.

S. Preisser, G. Held, H. G. Akarçay, M. Jaeger, and M. Frenz, “Study of clutter origin in in-vivo epi-optoacoustic imaging of human forearms,” J. Opt. 18(9), 094003 (2016).
[Crossref]

M. K. A. Singh, M. Jaeger, M. Frenz, and W. Steenbergen, “In vivo demonstration of reflection artifact reduction in photoacoustic imaging using synthetic aperture photoacoustic-guided focused ultrasound (PAFUSion),” Biomed. Opt. Express 7(8), 2955–2972 (2016).
[Crossref] [PubMed]

M. Jaeger, J. C. Bamber, and M. Frenz, “Clutter elimination for deep clinical optoacoustic imaging using localised vibration tagging (LOVIT),” Photoacoustics 1(2), 19–29 (2013).
[Crossref] [PubMed]

M. Jaeger, L. Siegenthaler, M. Kitz, and M. Frenz, “Reduction of background in optoacoustic image sequences obtained under tissue deformation,” J. Biomed. Opt. 14(5), 054011 (2009).
[Crossref] [PubMed]

M. Jaeger, S. Schüpbach, A. Gertsch, M. Kitz, and M. Frenz, “Fourier reconstruction in optoacoustic imaging using truncated regularized inverse k-space interpolation,” Inverse Probl. 23(6), S51–S63 (2007).
[Crossref]

Gandikota, G.

J. Jo, G. Xu, M. Cao, A. Marquardt, S. Francis, G. Gandikota, and X. Wang, “A Functional Study of Human Inflammatory Arthritis Using Photoacoustic Imaging,” Sci. Rep. 7(1), 15026 (2017).
[Crossref] [PubMed]

Gertsch, A.

M. Jaeger, S. Schüpbach, A. Gertsch, M. Kitz, and M. Frenz, “Fourier reconstruction in optoacoustic imaging using truncated regularized inverse k-space interpolation,” Inverse Probl. 23(6), S51–S63 (2007).
[Crossref]

Haisch, C.

C. Haisch, K. Eilert-Zell, M. M. Vogel, P. Menzenbach, and R. Niessner, “Combined optoacoustic/ultrasound system for tomographic absorption measurements: possibilities and limitations,” Anal. Bioanal. Chem. 397(4), 1503–1510 (2010).
[Crossref] [PubMed]

Heijblom, M.

M. Heijblom, D. Piras, F. M. van den Engh, M. van der Schaaf, J. M. Klaase, W. Steenbergen, and S. Manohar, “The state of the art in breast imaging using the Twente Photoacoustic Mammoscope: results from 31 measurements on malignancies,” Eur. Radiol. 26(11), 3874–3887 (2016).
[Crossref] [PubMed]

M. Heijblom, W. Steenbergen, and S. Manohar, “Clinical photoacoustic breast imaging: the Twente experience,” IEEE Pulse 6(3), 42–46 (2015).
[Crossref] [PubMed]

Held, G.

S. Preisser, G. Held, H. G. Akarçay, M. Jaeger, and M. Frenz, “Study of clutter origin in in-vivo epi-optoacoustic imaging of human forearms,” J. Opt. 18(9), 094003 (2016).
[Crossref]

Herickhoff, C. D.

C. D. Herickhoff, M. R. Morgan, J. S. Broder, and J. J. Dahl, “Low-cost volumetric ultrasound by augmentation of 2D systems: Design and prototype,” Ultrason. Imaging 40(1), 35–48 (2018).
[Crossref] [PubMed]

Hussain, A.

Jacques, S. L.

S. L. Jacques, “Optical properties of biological tissues: a review,” Phys. Med. Biol. 58(11), R37–R61 (2013).
[Crossref] [PubMed]

Jaeger, M.

M. K. A. Singh, M. Jaeger, M. Frenz, and W. Steenbergen, “In vivo demonstration of reflection artifact reduction in photoacoustic imaging using synthetic aperture photoacoustic-guided focused ultrasound (PAFUSion),” Biomed. Opt. Express 7(8), 2955–2972 (2016).
[Crossref] [PubMed]

S. Preisser, G. Held, H. G. Akarçay, M. Jaeger, and M. Frenz, “Study of clutter origin in in-vivo epi-optoacoustic imaging of human forearms,” J. Opt. 18(9), 094003 (2016).
[Crossref]

M. Jaeger, J. C. Bamber, and M. Frenz, “Clutter elimination for deep clinical optoacoustic imaging using localised vibration tagging (LOVIT),” Photoacoustics 1(2), 19–29 (2013).
[Crossref] [PubMed]

M. Jaeger, L. Siegenthaler, M. Kitz, and M. Frenz, “Reduction of background in optoacoustic image sequences obtained under tissue deformation,” J. Biomed. Opt. 14(5), 054011 (2009).
[Crossref] [PubMed]

M. Jaeger, S. Schüpbach, A. Gertsch, M. Kitz, and M. Frenz, “Fourier reconstruction in optoacoustic imaging using truncated regularized inverse k-space interpolation,” Inverse Probl. 23(6), S51–S63 (2007).
[Crossref]

Jankovic, L.

Jo, J.

J. Jo, G. Xu, M. Cao, A. Marquardt, S. Francis, G. Gandikota, and X. Wang, “A Functional Study of Human Inflammatory Arthritis Using Photoacoustic Imaging,” Sci. Rep. 7(1), 15026 (2017).
[Crossref] [PubMed]

Kanao, S.

M. Toi, Y. Asao, Y. Matsumoto, H. Sekiguchi, A. Yoshikawa, M. Takada, M. Kataoka, T. Endo, N. Kawaguchi-Sakita, M. Kawashima, E. Fakhrejahani, S. Kanao, I. Yamaga, Y. Nakayama, M. Tokiwa, M. Torii, T. Yagi, T. Sakurai, K. Togashi, and T. Shiina, “Visualization of tumor-related blood vessels in human breast by photoacoustic imaging system with a hemispherical detector array,” Sci. Rep. 7(1), 41970 (2017).
[Crossref] [PubMed]

Kataoka, M.

M. Toi, Y. Asao, Y. Matsumoto, H. Sekiguchi, A. Yoshikawa, M. Takada, M. Kataoka, T. Endo, N. Kawaguchi-Sakita, M. Kawashima, E. Fakhrejahani, S. Kanao, I. Yamaga, Y. Nakayama, M. Tokiwa, M. Torii, T. Yagi, T. Sakurai, K. Togashi, and T. Shiina, “Visualization of tumor-related blood vessels in human breast by photoacoustic imaging system with a hemispherical detector array,” Sci. Rep. 7(1), 41970 (2017).
[Crossref] [PubMed]

Kawaguchi-Sakita, N.

M. Toi, Y. Asao, Y. Matsumoto, H. Sekiguchi, A. Yoshikawa, M. Takada, M. Kataoka, T. Endo, N. Kawaguchi-Sakita, M. Kawashima, E. Fakhrejahani, S. Kanao, I. Yamaga, Y. Nakayama, M. Tokiwa, M. Torii, T. Yagi, T. Sakurai, K. Togashi, and T. Shiina, “Visualization of tumor-related blood vessels in human breast by photoacoustic imaging system with a hemispherical detector array,” Sci. Rep. 7(1), 41970 (2017).
[Crossref] [PubMed]

Kawashima, M.

M. Toi, Y. Asao, Y. Matsumoto, H. Sekiguchi, A. Yoshikawa, M. Takada, M. Kataoka, T. Endo, N. Kawaguchi-Sakita, M. Kawashima, E. Fakhrejahani, S. Kanao, I. Yamaga, Y. Nakayama, M. Tokiwa, M. Torii, T. Yagi, T. Sakurai, K. Togashi, and T. Shiina, “Visualization of tumor-related blood vessels in human breast by photoacoustic imaging system with a hemispherical detector array,” Sci. Rep. 7(1), 41970 (2017).
[Crossref] [PubMed]

Kienle, A.

Kim, C.

Kitz, M.

M. Jaeger, L. Siegenthaler, M. Kitz, and M. Frenz, “Reduction of background in optoacoustic image sequences obtained under tissue deformation,” J. Biomed. Opt. 14(5), 054011 (2009).
[Crossref] [PubMed]

M. Jaeger, S. Schüpbach, A. Gertsch, M. Kitz, and M. Frenz, “Fourier reconstruction in optoacoustic imaging using truncated regularized inverse k-space interpolation,” Inverse Probl. 23(6), S51–S63 (2007).
[Crossref]

Klaase, J. M.

M. Heijblom, D. Piras, F. M. van den Engh, M. van der Schaaf, J. M. Klaase, W. Steenbergen, and S. Manohar, “The state of the art in breast imaging using the Twente Photoacoustic Mammoscope: results from 31 measurements on malignancies,” Eur. Radiol. 26(11), 3874–3887 (2016).
[Crossref] [PubMed]

Kohl, A.

Manohar, S.

M. Heijblom, D. Piras, F. M. van den Engh, M. van der Schaaf, J. M. Klaase, W. Steenbergen, and S. Manohar, “The state of the art in breast imaging using the Twente Photoacoustic Mammoscope: results from 31 measurements on malignancies,” Eur. Radiol. 26(11), 3874–3887 (2016).
[Crossref] [PubMed]

M. Heijblom, W. Steenbergen, and S. Manohar, “Clinical photoacoustic breast imaging: the Twente experience,” IEEE Pulse 6(3), 42–46 (2015).
[Crossref] [PubMed]

Marquardt, A.

J. Jo, G. Xu, M. Cao, A. Marquardt, S. Francis, G. Gandikota, and X. Wang, “A Functional Study of Human Inflammatory Arthritis Using Photoacoustic Imaging,” Sci. Rep. 7(1), 15026 (2017).
[Crossref] [PubMed]

Matsumoto, Y.

M. Toi, Y. Asao, Y. Matsumoto, H. Sekiguchi, A. Yoshikawa, M. Takada, M. Kataoka, T. Endo, N. Kawaguchi-Sakita, M. Kawashima, E. Fakhrejahani, S. Kanao, I. Yamaga, Y. Nakayama, M. Tokiwa, M. Torii, T. Yagi, T. Sakurai, K. Togashi, and T. Shiina, “Visualization of tumor-related blood vessels in human breast by photoacoustic imaging system with a hemispherical detector array,” Sci. Rep. 7(1), 41970 (2017).
[Crossref] [PubMed]

Menzenbach, P.

C. Haisch, K. Eilert-Zell, M. M. Vogel, P. Menzenbach, and R. Niessner, “Combined optoacoustic/ultrasound system for tomographic absorption measurements: possibilities and limitations,” Anal. Bioanal. Chem. 397(4), 1503–1510 (2010).
[Crossref] [PubMed]

Michels, R.

Morgan, M. R.

C. D. Herickhoff, M. R. Morgan, J. S. Broder, and J. J. Dahl, “Low-cost volumetric ultrasound by augmentation of 2D systems: Design and prototype,” Ultrason. Imaging 40(1), 35–48 (2018).
[Crossref] [PubMed]

Nakayama, Y.

M. Toi, Y. Asao, Y. Matsumoto, H. Sekiguchi, A. Yoshikawa, M. Takada, M. Kataoka, T. Endo, N. Kawaguchi-Sakita, M. Kawashima, E. Fakhrejahani, S. Kanao, I. Yamaga, Y. Nakayama, M. Tokiwa, M. Torii, T. Yagi, T. Sakurai, K. Togashi, and T. Shiina, “Visualization of tumor-related blood vessels in human breast by photoacoustic imaging system with a hemispherical detector array,” Sci. Rep. 7(1), 41970 (2017).
[Crossref] [PubMed]

Nguyen, H. N. Y.

Niessner, R.

C. Haisch, K. Eilert-Zell, M. M. Vogel, P. Menzenbach, and R. Niessner, “Combined optoacoustic/ultrasound system for tomographic absorption measurements: possibilities and limitations,” Anal. Bioanal. Chem. 397(4), 1503–1510 (2010).
[Crossref] [PubMed]

Pashley, M. D.

Piras, D.

M. Heijblom, D. Piras, F. M. van den Engh, M. van der Schaaf, J. M. Klaase, W. Steenbergen, and S. Manohar, “The state of the art in breast imaging using the Twente Photoacoustic Mammoscope: results from 31 measurements on malignancies,” Eur. Radiol. 26(11), 3874–3887 (2016).
[Crossref] [PubMed]

Preisser, S.

S. Preisser, G. Held, H. G. Akarçay, M. Jaeger, and M. Frenz, “Study of clutter origin in in-vivo epi-optoacoustic imaging of human forearms,” J. Opt. 18(9), 094003 (2016).
[Crossref]

Rabot, O.

Sakurai, T.

M. Toi, Y. Asao, Y. Matsumoto, H. Sekiguchi, A. Yoshikawa, M. Takada, M. Kataoka, T. Endo, N. Kawaguchi-Sakita, M. Kawashima, E. Fakhrejahani, S. Kanao, I. Yamaga, Y. Nakayama, M. Tokiwa, M. Torii, T. Yagi, T. Sakurai, K. Togashi, and T. Shiina, “Visualization of tumor-related blood vessels in human breast by photoacoustic imaging system with a hemispherical detector array,” Sci. Rep. 7(1), 41970 (2017).
[Crossref] [PubMed]

Schüpbach, S.

M. Jaeger, S. Schüpbach, A. Gertsch, M. Kitz, and M. Frenz, “Fourier reconstruction in optoacoustic imaging using truncated regularized inverse k-space interpolation,” Inverse Probl. 23(6), S51–S63 (2007).
[Crossref]

Sekiguchi, H.

M. Toi, Y. Asao, Y. Matsumoto, H. Sekiguchi, A. Yoshikawa, M. Takada, M. Kataoka, T. Endo, N. Kawaguchi-Sakita, M. Kawashima, E. Fakhrejahani, S. Kanao, I. Yamaga, Y. Nakayama, M. Tokiwa, M. Torii, T. Yagi, T. Sakurai, K. Togashi, and T. Shiina, “Visualization of tumor-related blood vessels in human breast by photoacoustic imaging system with a hemispherical detector array,” Sci. Rep. 7(1), 41970 (2017).
[Crossref] [PubMed]

Shiina, T.

M. Toi, Y. Asao, Y. Matsumoto, H. Sekiguchi, A. Yoshikawa, M. Takada, M. Kataoka, T. Endo, N. Kawaguchi-Sakita, M. Kawashima, E. Fakhrejahani, S. Kanao, I. Yamaga, Y. Nakayama, M. Tokiwa, M. Torii, T. Yagi, T. Sakurai, K. Togashi, and T. Shiina, “Visualization of tumor-related blood vessels in human breast by photoacoustic imaging system with a hemispherical detector array,” Sci. Rep. 7(1), 41970 (2017).
[Crossref] [PubMed]

Siegenthaler, L.

M. Jaeger, L. Siegenthaler, M. Kitz, and M. Frenz, “Reduction of background in optoacoustic image sequences obtained under tissue deformation,” J. Biomed. Opt. 14(5), 054011 (2009).
[Crossref] [PubMed]

Singh, M. K. A.

Steenbergen, W.

H. N. Y. Nguyen, A. Hussain, and W. Steenbergen, “Reflection artifact identification in photoacoustic imaging using multi-wavelength excitation,” Biomed. Opt. Express 9(10), 4613–4630 (2018).
[Crossref] [PubMed]

P. J. van den Berg, K. Daoudi, H. J. Bernelot Moens, and W. Steenbergen, “Feasibility of photoacoustic/ultrasound imaging of synovitis in finger joints using a point-of-care system,” Photoacoustics 8, 8–14 (2017).
[Crossref] [PubMed]

M. Heijblom, D. Piras, F. M. van den Engh, M. van der Schaaf, J. M. Klaase, W. Steenbergen, and S. Manohar, “The state of the art in breast imaging using the Twente Photoacoustic Mammoscope: results from 31 measurements on malignancies,” Eur. Radiol. 26(11), 3874–3887 (2016).
[Crossref] [PubMed]

M. K. A. Singh, M. Jaeger, M. Frenz, and W. Steenbergen, “In vivo demonstration of reflection artifact reduction in photoacoustic imaging using synthetic aperture photoacoustic-guided focused ultrasound (PAFUSion),” Biomed. Opt. Express 7(8), 2955–2972 (2016).
[Crossref] [PubMed]

M. Heijblom, W. Steenbergen, and S. Manohar, “Clinical photoacoustic breast imaging: the Twente experience,” IEEE Pulse 6(3), 42–46 (2015).
[Crossref] [PubMed]

M. K. A. Singh and W. Steenbergen, “Photoacoustic-guided focused ultrasound (PAFUSion) for identifying reflection artifacts in photoacoustic imaging,” Photoacoustics 3(4), 123–131 (2015).
[Crossref]

K. Daoudi, P. J. van den Berg, O. Rabot, A. Kohl, S. Tisserand, P. Brands, and W. Steenbergen, “Handheld probe integrating laser diode and ultrasound transducer array for ultrasound/photoacoustic dual modality imaging,” Opt. Express 22(21), 26365–26374 (2014).
[Crossref] [PubMed]

Takada, M.

M. Toi, Y. Asao, Y. Matsumoto, H. Sekiguchi, A. Yoshikawa, M. Takada, M. Kataoka, T. Endo, N. Kawaguchi-Sakita, M. Kawashima, E. Fakhrejahani, S. Kanao, I. Yamaga, Y. Nakayama, M. Tokiwa, M. Torii, T. Yagi, T. Sakurai, K. Togashi, and T. Shiina, “Visualization of tumor-related blood vessels in human breast by photoacoustic imaging system with a hemispherical detector array,” Sci. Rep. 7(1), 41970 (2017).
[Crossref] [PubMed]

Tisserand, S.

Togashi, K.

M. Toi, Y. Asao, Y. Matsumoto, H. Sekiguchi, A. Yoshikawa, M. Takada, M. Kataoka, T. Endo, N. Kawaguchi-Sakita, M. Kawashima, E. Fakhrejahani, S. Kanao, I. Yamaga, Y. Nakayama, M. Tokiwa, M. Torii, T. Yagi, T. Sakurai, K. Togashi, and T. Shiina, “Visualization of tumor-related blood vessels in human breast by photoacoustic imaging system with a hemispherical detector array,” Sci. Rep. 7(1), 41970 (2017).
[Crossref] [PubMed]

Toi, M.

M. Toi, Y. Asao, Y. Matsumoto, H. Sekiguchi, A. Yoshikawa, M. Takada, M. Kataoka, T. Endo, N. Kawaguchi-Sakita, M. Kawashima, E. Fakhrejahani, S. Kanao, I. Yamaga, Y. Nakayama, M. Tokiwa, M. Torii, T. Yagi, T. Sakurai, K. Togashi, and T. Shiina, “Visualization of tumor-related blood vessels in human breast by photoacoustic imaging system with a hemispherical detector array,” Sci. Rep. 7(1), 41970 (2017).
[Crossref] [PubMed]

Tokiwa, M.

M. Toi, Y. Asao, Y. Matsumoto, H. Sekiguchi, A. Yoshikawa, M. Takada, M. Kataoka, T. Endo, N. Kawaguchi-Sakita, M. Kawashima, E. Fakhrejahani, S. Kanao, I. Yamaga, Y. Nakayama, M. Tokiwa, M. Torii, T. Yagi, T. Sakurai, K. Togashi, and T. Shiina, “Visualization of tumor-related blood vessels in human breast by photoacoustic imaging system with a hemispherical detector array,” Sci. Rep. 7(1), 41970 (2017).
[Crossref] [PubMed]

Torii, M.

M. Toi, Y. Asao, Y. Matsumoto, H. Sekiguchi, A. Yoshikawa, M. Takada, M. Kataoka, T. Endo, N. Kawaguchi-Sakita, M. Kawashima, E. Fakhrejahani, S. Kanao, I. Yamaga, Y. Nakayama, M. Tokiwa, M. Torii, T. Yagi, T. Sakurai, K. Togashi, and T. Shiina, “Visualization of tumor-related blood vessels in human breast by photoacoustic imaging system with a hemispherical detector array,” Sci. Rep. 7(1), 41970 (2017).
[Crossref] [PubMed]

Valluru, K. S.

K. S. Valluru, K. E. Wilson, and J. K. Willmann, “Photoacoustic Imaging in oncology: translational preclinical and early clinical experience,” Radiology 280(2), 332–349 (2016).
[Crossref] [PubMed]

van den Berg, P. J.

P. J. van den Berg, K. Daoudi, H. J. Bernelot Moens, and W. Steenbergen, “Feasibility of photoacoustic/ultrasound imaging of synovitis in finger joints using a point-of-care system,” Photoacoustics 8, 8–14 (2017).
[Crossref] [PubMed]

K. Daoudi, P. J. van den Berg, O. Rabot, A. Kohl, S. Tisserand, P. Brands, and W. Steenbergen, “Handheld probe integrating laser diode and ultrasound transducer array for ultrasound/photoacoustic dual modality imaging,” Opt. Express 22(21), 26365–26374 (2014).
[Crossref] [PubMed]

van den Engh, F. M.

M. Heijblom, D. Piras, F. M. van den Engh, M. van der Schaaf, J. M. Klaase, W. Steenbergen, and S. Manohar, “The state of the art in breast imaging using the Twente Photoacoustic Mammoscope: results from 31 measurements on malignancies,” Eur. Radiol. 26(11), 3874–3887 (2016).
[Crossref] [PubMed]

van der Schaaf, M.

M. Heijblom, D. Piras, F. M. van den Engh, M. van der Schaaf, J. M. Klaase, W. Steenbergen, and S. Manohar, “The state of the art in breast imaging using the Twente Photoacoustic Mammoscope: results from 31 measurements on malignancies,” Eur. Radiol. 26(11), 3874–3887 (2016).
[Crossref] [PubMed]

Vogel, M. M.

C. Haisch, K. Eilert-Zell, M. M. Vogel, P. Menzenbach, and R. Niessner, “Combined optoacoustic/ultrasound system for tomographic absorption measurements: possibilities and limitations,” Anal. Bioanal. Chem. 397(4), 1503–1510 (2010).
[Crossref] [PubMed]

Wang, L. V.

Wang, X.

J. Jo, G. Xu, M. Cao, A. Marquardt, S. Francis, G. Gandikota, and X. Wang, “A Functional Study of Human Inflammatory Arthritis Using Photoacoustic Imaging,” Sci. Rep. 7(1), 15026 (2017).
[Crossref] [PubMed]

Wilcox, P. D.

B. W. Drinkwater and P. D. Wilcox, “Ultrasonic arrays for non-destructive evaluation: A review,” NDT Int. 39(7), 525–541 (2006).
[Crossref]

Willmann, J. K.

K. S. Valluru, K. E. Wilson, and J. K. Willmann, “Photoacoustic Imaging in oncology: translational preclinical and early clinical experience,” Radiology 280(2), 332–349 (2016).
[Crossref] [PubMed]

Wilson, K. E.

K. S. Valluru, K. E. Wilson, and J. K. Willmann, “Photoacoustic Imaging in oncology: translational preclinical and early clinical experience,” Radiology 280(2), 332–349 (2016).
[Crossref] [PubMed]

Xu, G.

J. Jo, G. Xu, M. Cao, A. Marquardt, S. Francis, G. Gandikota, and X. Wang, “A Functional Study of Human Inflammatory Arthritis Using Photoacoustic Imaging,” Sci. Rep. 7(1), 15026 (2017).
[Crossref] [PubMed]

Yagi, T.

M. Toi, Y. Asao, Y. Matsumoto, H. Sekiguchi, A. Yoshikawa, M. Takada, M. Kataoka, T. Endo, N. Kawaguchi-Sakita, M. Kawashima, E. Fakhrejahani, S. Kanao, I. Yamaga, Y. Nakayama, M. Tokiwa, M. Torii, T. Yagi, T. Sakurai, K. Togashi, and T. Shiina, “Visualization of tumor-related blood vessels in human breast by photoacoustic imaging system with a hemispherical detector array,” Sci. Rep. 7(1), 41970 (2017).
[Crossref] [PubMed]

Yamaga, I.

M. Toi, Y. Asao, Y. Matsumoto, H. Sekiguchi, A. Yoshikawa, M. Takada, M. Kataoka, T. Endo, N. Kawaguchi-Sakita, M. Kawashima, E. Fakhrejahani, S. Kanao, I. Yamaga, Y. Nakayama, M. Tokiwa, M. Torii, T. Yagi, T. Sakurai, K. Togashi, and T. Shiina, “Visualization of tumor-related blood vessels in human breast by photoacoustic imaging system with a hemispherical detector array,” Sci. Rep. 7(1), 41970 (2017).
[Crossref] [PubMed]

Yoshikawa, A.

M. Toi, Y. Asao, Y. Matsumoto, H. Sekiguchi, A. Yoshikawa, M. Takada, M. Kataoka, T. Endo, N. Kawaguchi-Sakita, M. Kawashima, E. Fakhrejahani, S. Kanao, I. Yamaga, Y. Nakayama, M. Tokiwa, M. Torii, T. Yagi, T. Sakurai, K. Togashi, and T. Shiina, “Visualization of tumor-related blood vessels in human breast by photoacoustic imaging system with a hemispherical detector array,” Sci. Rep. 7(1), 41970 (2017).
[Crossref] [PubMed]

Anal. Bioanal. Chem. (1)

C. Haisch, K. Eilert-Zell, M. M. Vogel, P. Menzenbach, and R. Niessner, “Combined optoacoustic/ultrasound system for tomographic absorption measurements: possibilities and limitations,” Anal. Bioanal. Chem. 397(4), 1503–1510 (2010).
[Crossref] [PubMed]

Biomed. Opt. Express (3)

Eur. Radiol. (1)

M. Heijblom, D. Piras, F. M. van den Engh, M. van der Schaaf, J. M. Klaase, W. Steenbergen, and S. Manohar, “The state of the art in breast imaging using the Twente Photoacoustic Mammoscope: results from 31 measurements on malignancies,” Eur. Radiol. 26(11), 3874–3887 (2016).
[Crossref] [PubMed]

IEEE Pulse (1)

M. Heijblom, W. Steenbergen, and S. Manohar, “Clinical photoacoustic breast imaging: the Twente experience,” IEEE Pulse 6(3), 42–46 (2015).
[Crossref] [PubMed]

Inverse Probl. (1)

M. Jaeger, S. Schüpbach, A. Gertsch, M. Kitz, and M. Frenz, “Fourier reconstruction in optoacoustic imaging using truncated regularized inverse k-space interpolation,” Inverse Probl. 23(6), S51–S63 (2007).
[Crossref]

J. Biomed. Opt. (1)

M. Jaeger, L. Siegenthaler, M. Kitz, and M. Frenz, “Reduction of background in optoacoustic image sequences obtained under tissue deformation,” J. Biomed. Opt. 14(5), 054011 (2009).
[Crossref] [PubMed]

J. Opt. (1)

S. Preisser, G. Held, H. G. Akarçay, M. Jaeger, and M. Frenz, “Study of clutter origin in in-vivo epi-optoacoustic imaging of human forearms,” J. Opt. 18(9), 094003 (2016).
[Crossref]

NDT Int. (1)

B. W. Drinkwater and P. D. Wilcox, “Ultrasonic arrays for non-destructive evaluation: A review,” NDT Int. 39(7), 525–541 (2006).
[Crossref]

Opt. Express (2)

Photoacoustics (3)

M. K. A. Singh and W. Steenbergen, “Photoacoustic-guided focused ultrasound (PAFUSion) for identifying reflection artifacts in photoacoustic imaging,” Photoacoustics 3(4), 123–131 (2015).
[Crossref]

P. J. van den Berg, K. Daoudi, H. J. Bernelot Moens, and W. Steenbergen, “Feasibility of photoacoustic/ultrasound imaging of synovitis in finger joints using a point-of-care system,” Photoacoustics 8, 8–14 (2017).
[Crossref] [PubMed]

M. Jaeger, J. C. Bamber, and M. Frenz, “Clutter elimination for deep clinical optoacoustic imaging using localised vibration tagging (LOVIT),” Photoacoustics 1(2), 19–29 (2013).
[Crossref] [PubMed]

Phys. Med. Biol. (1)

S. L. Jacques, “Optical properties of biological tissues: a review,” Phys. Med. Biol. 58(11), R37–R61 (2013).
[Crossref] [PubMed]

Radiology (1)

K. S. Valluru, K. E. Wilson, and J. K. Willmann, “Photoacoustic Imaging in oncology: translational preclinical and early clinical experience,” Radiology 280(2), 332–349 (2016).
[Crossref] [PubMed]

Sci. Rep. (2)

M. Toi, Y. Asao, Y. Matsumoto, H. Sekiguchi, A. Yoshikawa, M. Takada, M. Kataoka, T. Endo, N. Kawaguchi-Sakita, M. Kawashima, E. Fakhrejahani, S. Kanao, I. Yamaga, Y. Nakayama, M. Tokiwa, M. Torii, T. Yagi, T. Sakurai, K. Togashi, and T. Shiina, “Visualization of tumor-related blood vessels in human breast by photoacoustic imaging system with a hemispherical detector array,” Sci. Rep. 7(1), 41970 (2017).
[Crossref] [PubMed]

J. Jo, G. Xu, M. Cao, A. Marquardt, S. Francis, G. Gandikota, and X. Wang, “A Functional Study of Human Inflammatory Arthritis Using Photoacoustic Imaging,” Sci. Rep. 7(1), 15026 (2017).
[Crossref] [PubMed]

Ultrason. Imaging (1)

C. D. Herickhoff, M. R. Morgan, J. S. Broder, and J. J. Dahl, “Low-cost volumetric ultrasound by augmentation of 2D systems: Design and prototype,” Ultrason. Imaging 40(1), 35–48 (2018).
[Crossref] [PubMed]

Other (5)

M. K. A. Singh, W. Steenbergen, and S. Manohar, “Handheld probe-based dual mode ultrasound/photoacoustics for biomedical imaging,” in Frontiers in Biophotonics for Translational Medicine(Springer, 2016), pp. 209–247.

M. F. Beckmann, H.-M. Schwab, and G. Schmitz, “Optimizing a single-sided reflection mode photoacoustic setup for clinical imaging,” in Ultrasonics Symposium (IUS),2015IEEE International (IEEE, 2015), pp. 1–4.
[Crossref]

I. Sobel, and G. Feldman, “A 3x3 isotropic gradient operator for image processing,” a talk at the Stanford Artificial Project in, 271–272 (1968).

J. Benesty, J. Chen, Y. Huang, and I. Cohen, “Pearson correlation coefficient,” in Noise Reduction in Speech Processing(Springer, 2009), pp. 1–4.

T. Petrosyan, M. Theodorou, J. Bamber, M. Frenz, and M. Jaeger, “Fast scanning wide-field clutter elimination in epi-optoacoustic imaging using comb-LOVIT,” in Ultrasonics Symposium (IUS),2017IEEE International (IEEE, 2017), p. 1.
[Crossref]

Supplementary Material (4)

NameDescription
» Visualization 1       acquired PA images along the transducer array displacement
» Visualization 2       acquired images vs out-of-plane artifact corrected images
» Visualization 3       an out-of-plane artifact appear at the same position with an in-plane image feature
» Visualization 4       out-of-plane artifacts in in-vivo PA images

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (16)

Fig. 1
Fig. 1 Artifacts in PAI. (a) Configuration resulting in artifacts. (b) Acquired PA image.
Fig. 2
Fig. 2 Displacing the transducer array. (a) Initial, and (b) displaced configuration. (c) Acquired PA image of configuration (a). (d) Acquired PA image of configuration (b).
Fig. 3
Fig. 3 In-plane and out-of-plane features behavior, (b) and (c) on the dotted and dashed lines respectively in (a), as an effect of the transducer array displacement. (d) OPA correcting along the displacement.
Fig. 4
Fig. 4 Dependence of Δ z T on the 3 parameters z o , a, and x o .
Fig. 5
Fig. 5 Flow chart of the transducer array displacement method.
Fig. 6
Fig. 6 Schematic drawing of the setup with the probe movable in the vertical position and the optical fiber in a fixed position.
Fig. 7
Fig. 7 phantom 1. (a) Two absorbers embedded in agarose in a petri dish lid. (b) Schematic elevation view of the experiment configuration. (c) Combined PA and US image.
Fig. 8
Fig. 8 Correcting IPAs. (a) Acquired PA image. (b) IPA corrected image.
Fig. 9
Fig. 9 In-plane and out-of-plane features behavior, (b) and (c) on the dotted and dashed lines respectively in (a), as an effect of the transducer array displacement.
Fig. 10
Fig. 10 Correcting OPAs. (a) Acquired PA image. (b) OPA corrected image.
Fig. 11
Fig. 11 Final corrected image.
Fig. 12
Fig. 12 Phantom 2. (a) Two black absorbers embedded in agarose in a petri dish. (b) Schematic elevation view of the experiment configuration. (c) Acquired images along the displacement.
Fig. 13
Fig. 13 OPA corrected image. (a) Acquired and OPA corrected images. (b) and (c) Behavior of features in dashed and dotted lines in (a) respectively.
Fig. 14
Fig. 14 In vivo experiment. (a) Experiment configuration. (b) Ink mark mimicking a human spot. (c) Acquired PA image. (d) Acquired US image.
Fig. 15
Fig. 15 IPA and OPA corrected images.
Fig. 16
Fig. 16 Final corrected image.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

s(Δz)=Δz+ x o 2 + z o 2 x o 2 + ( z o +Δz) 2 .
Δ z T + x o 2 + z o 2 x o 2 + ( z o +Δ z T ) 2 =a.
Δ z T = 2a x o 2 + z o 2 a 2 2( x o 2 + z o 2 z o a ) .

Metrics