Abstract

We report on a practical approach to vector biomagnetism measurement with an optically pumped magnetometer for measuring total magnetic field intensity. Its application to vector magnetocardiography is experimentally demonstrated with a compact elliptically polarized laser-pumped Mx atomic magnetometer (EPMx OPM). The approach is proved to be effective and able to provide more complete cardiac magnetic information. The cardiac magnetic vectors are displayed in three-dimensional space in the form of magnetic vector loops. The sensor configuration and the image processing method here are expected to form further values, especially for multi-channel vector biomagnetism measurement, clinical diagnosis, and field source reconstruction.

© 2020 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Optical magnetometer array for fetal magnetocardiography

Robert Wyllie, Matthew Kauer, Ronald T. Wakai, and Thad G. Walker
Opt. Lett. 37(12) 2247-2249 (2012)

Optical multichannel room temperature magnetic field imaging system for clinical application

G. Lembke, S. N. Erné, H. Nowak, B. Menhorn, A. Pasquarelli, and G. Bison
Biomed. Opt. Express 5(3) 876-881 (2014)

References

  • View by:
  • |
  • |
  • |

  1. W. Andrä and H. Nowak, Magnetism in Medicine: A Handbook (John Wiley & Sons, 2007).
  2. S. Watanabe and S. Yamada, “Magnetocardiography in early detection of electromagnetic abnormality in ischemic heart disease,” J. Arrhythmia 24(1), 4–17 (2008).
    [Crossref]
  3. S. Yamada and I. Yamaguchi, “Magnetocardiograms in clinical medicine: unique information on cardiac ischemia, arrhythmias, and fetal diagnosis,” Intern. Med. 44(1), 1–19 (2005).
    [Crossref]
  4. P. J. Karp, T. E. Katila, M. Saarinen, P. Siltanen, and T. T. Varpula, “The normal human magnetocardiogram. II. A multipole analysis,” Circ. Res. 47(1), 117–130 (1980).
    [Crossref]
  5. R. R. Fenici, M. Masselli, L. Lopez, and G. Melillo, “Clinical value of magnetocardiography,” in Electrocardiography and Cardiac Drug Therapy (Springer, 1989), pp. 239–258.
  6. H. Horigome, K. Ogata, A. Kandori, T. Miyashita, M. Takahashi-Igari, Y.-J. Chen, H. Hamada, and K. Tsukada, “Standardization of the PQRST waveform and analysis of arrhythmias in the fetus using vector magnetocardiography,” Pediatr. Res. 59(1), 121–125 (2006).
    [Crossref]
  7. E. Boto, N. Holmes, J. Leggett, G. Roberts, V. Shah, S. S. Meyer, L. D. Muñoz, K. J. Mullinger, T. M. Tierney, S. Bestmann, G. R. Barnes, R. Bowtell, and M. J. Brookes,, “Moving magnetoencephalography towards real-world applications with a wearable system,” Nature 555(7698), 657–661 (2018).
    [Crossref]
  8. J. Tomek, A. Platil, P. Ripka, and P. Kaspar, “Application of fluxgate gradiometer in magnetopneumography,” Sens. Actuators, A 132(1), 214–217 (2006).
    [Crossref]
  9. A. Antervo, R. Hari, T. Katila, T. Ryhänen, and M. Seppänen, “Magnetic fields produced by eye blinking,” Electroencephalogr. Clin. Neurophysiol. 61(4), 247–253 (1985).
    [Crossref]
  10. R. Fenici, D. Brisinda, and A. M. Meloni, “Clinical application of magnetocardiography,” Expert Rev. Mol. Diagn. 5(3), 291–313 (2005).
    [Crossref]
  11. V. Mäntynen, T. Konttila, and M. Stenroos, “Investigations of sensitivity and resolution of ECG and MCG in a realistically shaped thorax model,” Phys. Med. Biol. 59(23), 7141–7158 (2014).
    [Crossref]
  12. J.-W. Park, E.-S. Shin, S. H. Ann, M. Gödde, L. S.-I. Park, J. Brachmann, S. Vidal-Lopez, J. Wierzbinski, Y.-Y. Lam, and F. Jung, “Validation of magnetocardiography versus fractional flow reserve for detection of coronary artery disease,” Clin. Hemorheol. Microcirc. 59(3), 267–281 (2015).
    [Crossref]
  13. G. M. Baule, “Detection of the magnetic field of the heart,” Am. Heart J. 66(1), 95–96 (1963).
    [Crossref]
  14. U. Steinhoff, A. Schnabel, M. Burghoff, T. Freibier, F. Thiel, H. Koch, and L. Trahms, “Spatial distribution of cardiac magnetic vector fields acquired from 3120 SQUID positions,” Neurol. Clin. Neurophysiol. 59, 1–6 (2004).
  15. W. H. Barry, W. M. Fairbank, D. C. Harrison, K. L. Lehrman, J. A. Malmivuo, and J. P. Wikswo, “Measurement of the human magnetic heart vector,” Science 198(4322), 1159–1162 (1977).
    [Crossref]
  16. L. A. Bradshaw, J. K. Ladipo, D. J. Staton, J. P. Wikswo, and W. O. Richards, “The human vector magnetogastrogram and magnetoenterogram,” IEEE Trans. Biomed. Eng. 46(8), 959–970 (1999).
    [Crossref]
  17. D. Budker and M. Romalis, “Optical magnetometry,” Nat. Phys. 3(4), 227–234 (2007).
    [Crossref]
  18. G. Lembke, S. N. Erné, H. Nowak, B. Menhorn, A. Pasquarelli, and G. Bison, “Optical multichannel room temperature magnetic field imaging system for clinical application,” Biomed. Opt. Express 5(3), 876–881 (2014).
    [Crossref]
  19. A. Weis, “Optically pumped alkali magnetometers for biomedical applications,” Europhys. News 43(3), 20–23 (2012).
    [Crossref]
  20. G. Bison, N. Castagna, A. Hofer, P. Knowles, J. L. Schenker, M. Kasprzak, H. Saudan, and A. Weis, “A room temperature 19-channel magnetic field mapping device for cardiac signals,” Appl. Phys. Lett. 95(17), 173701 (2009).
    [Crossref]
  21. G. Bison, R. Wynands, and A. Weis, “A laser-pumped magnetometer for the mapping of human cardiomagnetic fields,” Appl. Phys. 76(3), 325–328 (2003).
    [Crossref]
  22. R. Wyllie, M. Kauer, G. Smetana, R. Wakai, and T. Walker, “Magnetocardiography with a modular spin-exchange relaxation-free atomic magnetometer array,” Phys. Med. Biol. 57(9), 2619–2632 (2012).
    [Crossref]
  23. H. B. Dang, A. C. Maloof, and M. V. Romalis, “Ultra-high sensitivity magnetic field and magnetization measurements with an atomic magnetometer,” Appl. Phys. Lett. 97(15), 151110 (2010).
    [Crossref]
  24. D. Sheng, S. Li, N. Dural, and M. V. Romalis, “Subfemtotesla scalar atomic magnetometry using multipass cells,” Phys. Rev. Lett. 110(16), 160802 (2013).
    [Crossref]
  25. N. Gusev, P. Vetoshko, A. Kuzmichev, D. Chepurnova, E. Samoilova, A. Zvezdin, A. Korotaeva, and V. Belotelov, “Ultra-Sensitive Vector Magnetometer for Magnetocardiographic Mapping,” Biomed. Eng. 51(3), 157–161 (2017).
    [Crossref]
  26. T. Takiya and T. Uchiyama, “Development of active shielding-type MI gradiometer and application for magnetocardiography,” IEEE Trans. Magn. 53(11), 1–4 (2017).
    [Crossref]
  27. S. Afach, G. Ban, G. Bison, K. Bodek, Z. Chowdhuri, Z. D. Grujić, L. Hayen, V. Hélaine, M. Kasprzak, and K. Kirchet al., “Highly stable atomic vector magnetometer based on free spin precession,” Opt. Express 23(17), 22108–22115 (2015).
    [Crossref]
  28. B. Patton, E. Zhivun, D. C. Hovde, and D. Budker, “All-optical vector atomic magnetometer,” Phys. Rev. Lett. 113(1), 013001 (2014).
    [Crossref]
  29. L. Lenci, A. Auyuanet, S. Barreiro, P. Valente, A. Lezama, and H. Failache, “Vectorial atomic magnetometer based on coherent transients of laser absorption in Rb vapor,” Phys. Rev. A 89(4), 043836 (2014).
    [Crossref]
  30. A. Vershovskiĭ, “A new method of absolute measurement of the three components of the magnetic field,” Opt. Spectrosc. 101(2), 309–316 (2006).
    [Crossref]
  31. A. Papoyan, S. Shmavonyan, A. Khanbekyan, K. Khanbekyan, C. Marinelli, and E. Mariotti, “Magnetic-field-compensation optical vector magnetometer,” Appl. Opt. 55(4), 892–895 (2016).
    [Crossref]
  32. K. Cox, V. I. Yudin, A. V. Taichenachev, I. Novikova, and E. E. Mikhailov, “Measurements of the magnetic field vector using multiple electromagnetically induced transparency resonances in Rb vapor,” Phys. Rev. A 83(1), 015801 (2011).
    [Crossref]
  33. S. Su, G. Zhang, X. Bi, X. He, W. Zheng, and Q. Lin, “Elliptically polarized laser-pumped Mx magnetometer towards applications at room temperature,” Opt. Express 27(23), 33027–33039 (2019).
    [Crossref]
  34. G. Bison, R. Wynands, and A. Weis, “Optimization and performance of an optical cardiomagnetometer,” J. Opt. Soc. Am. B 22(1), 77–87 (2005).
    [Crossref]
  35. K. Kim, S. Begus, H. Xia, S. Lee, V. Jazbinsek, Z. Trontelj, and M. V. Romalis, “Multi-channel atomic magnetometer for magnetoencephalography: A configuration study,” NeuroImage 89, 143–151 (2014).
    [Crossref]

2019 (1)

2018 (1)

E. Boto, N. Holmes, J. Leggett, G. Roberts, V. Shah, S. S. Meyer, L. D. Muñoz, K. J. Mullinger, T. M. Tierney, S. Bestmann, G. R. Barnes, R. Bowtell, and M. J. Brookes,, “Moving magnetoencephalography towards real-world applications with a wearable system,” Nature 555(7698), 657–661 (2018).
[Crossref]

2017 (2)

N. Gusev, P. Vetoshko, A. Kuzmichev, D. Chepurnova, E. Samoilova, A. Zvezdin, A. Korotaeva, and V. Belotelov, “Ultra-Sensitive Vector Magnetometer for Magnetocardiographic Mapping,” Biomed. Eng. 51(3), 157–161 (2017).
[Crossref]

T. Takiya and T. Uchiyama, “Development of active shielding-type MI gradiometer and application for magnetocardiography,” IEEE Trans. Magn. 53(11), 1–4 (2017).
[Crossref]

2016 (1)

2015 (2)

S. Afach, G. Ban, G. Bison, K. Bodek, Z. Chowdhuri, Z. D. Grujić, L. Hayen, V. Hélaine, M. Kasprzak, and K. Kirchet al., “Highly stable atomic vector magnetometer based on free spin precession,” Opt. Express 23(17), 22108–22115 (2015).
[Crossref]

J.-W. Park, E.-S. Shin, S. H. Ann, M. Gödde, L. S.-I. Park, J. Brachmann, S. Vidal-Lopez, J. Wierzbinski, Y.-Y. Lam, and F. Jung, “Validation of magnetocardiography versus fractional flow reserve for detection of coronary artery disease,” Clin. Hemorheol. Microcirc. 59(3), 267–281 (2015).
[Crossref]

2014 (5)

V. Mäntynen, T. Konttila, and M. Stenroos, “Investigations of sensitivity and resolution of ECG and MCG in a realistically shaped thorax model,” Phys. Med. Biol. 59(23), 7141–7158 (2014).
[Crossref]

G. Lembke, S. N. Erné, H. Nowak, B. Menhorn, A. Pasquarelli, and G. Bison, “Optical multichannel room temperature magnetic field imaging system for clinical application,” Biomed. Opt. Express 5(3), 876–881 (2014).
[Crossref]

B. Patton, E. Zhivun, D. C. Hovde, and D. Budker, “All-optical vector atomic magnetometer,” Phys. Rev. Lett. 113(1), 013001 (2014).
[Crossref]

L. Lenci, A. Auyuanet, S. Barreiro, P. Valente, A. Lezama, and H. Failache, “Vectorial atomic magnetometer based on coherent transients of laser absorption in Rb vapor,” Phys. Rev. A 89(4), 043836 (2014).
[Crossref]

K. Kim, S. Begus, H. Xia, S. Lee, V. Jazbinsek, Z. Trontelj, and M. V. Romalis, “Multi-channel atomic magnetometer for magnetoencephalography: A configuration study,” NeuroImage 89, 143–151 (2014).
[Crossref]

2013 (1)

D. Sheng, S. Li, N. Dural, and M. V. Romalis, “Subfemtotesla scalar atomic magnetometry using multipass cells,” Phys. Rev. Lett. 110(16), 160802 (2013).
[Crossref]

2012 (2)

R. Wyllie, M. Kauer, G. Smetana, R. Wakai, and T. Walker, “Magnetocardiography with a modular spin-exchange relaxation-free atomic magnetometer array,” Phys. Med. Biol. 57(9), 2619–2632 (2012).
[Crossref]

A. Weis, “Optically pumped alkali magnetometers for biomedical applications,” Europhys. News 43(3), 20–23 (2012).
[Crossref]

2011 (1)

K. Cox, V. I. Yudin, A. V. Taichenachev, I. Novikova, and E. E. Mikhailov, “Measurements of the magnetic field vector using multiple electromagnetically induced transparency resonances in Rb vapor,” Phys. Rev. A 83(1), 015801 (2011).
[Crossref]

2010 (1)

H. B. Dang, A. C. Maloof, and M. V. Romalis, “Ultra-high sensitivity magnetic field and magnetization measurements with an atomic magnetometer,” Appl. Phys. Lett. 97(15), 151110 (2010).
[Crossref]

2009 (1)

G. Bison, N. Castagna, A. Hofer, P. Knowles, J. L. Schenker, M. Kasprzak, H. Saudan, and A. Weis, “A room temperature 19-channel magnetic field mapping device for cardiac signals,” Appl. Phys. Lett. 95(17), 173701 (2009).
[Crossref]

2008 (1)

S. Watanabe and S. Yamada, “Magnetocardiography in early detection of electromagnetic abnormality in ischemic heart disease,” J. Arrhythmia 24(1), 4–17 (2008).
[Crossref]

2007 (1)

D. Budker and M. Romalis, “Optical magnetometry,” Nat. Phys. 3(4), 227–234 (2007).
[Crossref]

2006 (3)

A. Vershovskiĭ, “A new method of absolute measurement of the three components of the magnetic field,” Opt. Spectrosc. 101(2), 309–316 (2006).
[Crossref]

J. Tomek, A. Platil, P. Ripka, and P. Kaspar, “Application of fluxgate gradiometer in magnetopneumography,” Sens. Actuators, A 132(1), 214–217 (2006).
[Crossref]

H. Horigome, K. Ogata, A. Kandori, T. Miyashita, M. Takahashi-Igari, Y.-J. Chen, H. Hamada, and K. Tsukada, “Standardization of the PQRST waveform and analysis of arrhythmias in the fetus using vector magnetocardiography,” Pediatr. Res. 59(1), 121–125 (2006).
[Crossref]

2005 (3)

R. Fenici, D. Brisinda, and A. M. Meloni, “Clinical application of magnetocardiography,” Expert Rev. Mol. Diagn. 5(3), 291–313 (2005).
[Crossref]

S. Yamada and I. Yamaguchi, “Magnetocardiograms in clinical medicine: unique information on cardiac ischemia, arrhythmias, and fetal diagnosis,” Intern. Med. 44(1), 1–19 (2005).
[Crossref]

G. Bison, R. Wynands, and A. Weis, “Optimization and performance of an optical cardiomagnetometer,” J. Opt. Soc. Am. B 22(1), 77–87 (2005).
[Crossref]

2004 (1)

U. Steinhoff, A. Schnabel, M. Burghoff, T. Freibier, F. Thiel, H. Koch, and L. Trahms, “Spatial distribution of cardiac magnetic vector fields acquired from 3120 SQUID positions,” Neurol. Clin. Neurophysiol. 59, 1–6 (2004).

2003 (1)

G. Bison, R. Wynands, and A. Weis, “A laser-pumped magnetometer for the mapping of human cardiomagnetic fields,” Appl. Phys. 76(3), 325–328 (2003).
[Crossref]

1999 (1)

L. A. Bradshaw, J. K. Ladipo, D. J. Staton, J. P. Wikswo, and W. O. Richards, “The human vector magnetogastrogram and magnetoenterogram,” IEEE Trans. Biomed. Eng. 46(8), 959–970 (1999).
[Crossref]

1985 (1)

A. Antervo, R. Hari, T. Katila, T. Ryhänen, and M. Seppänen, “Magnetic fields produced by eye blinking,” Electroencephalogr. Clin. Neurophysiol. 61(4), 247–253 (1985).
[Crossref]

1980 (1)

P. J. Karp, T. E. Katila, M. Saarinen, P. Siltanen, and T. T. Varpula, “The normal human magnetocardiogram. II. A multipole analysis,” Circ. Res. 47(1), 117–130 (1980).
[Crossref]

1977 (1)

W. H. Barry, W. M. Fairbank, D. C. Harrison, K. L. Lehrman, J. A. Malmivuo, and J. P. Wikswo, “Measurement of the human magnetic heart vector,” Science 198(4322), 1159–1162 (1977).
[Crossref]

1963 (1)

G. M. Baule, “Detection of the magnetic field of the heart,” Am. Heart J. 66(1), 95–96 (1963).
[Crossref]

Afach, S.

Andrä, W.

W. Andrä and H. Nowak, Magnetism in Medicine: A Handbook (John Wiley & Sons, 2007).

Ann, S. H.

J.-W. Park, E.-S. Shin, S. H. Ann, M. Gödde, L. S.-I. Park, J. Brachmann, S. Vidal-Lopez, J. Wierzbinski, Y.-Y. Lam, and F. Jung, “Validation of magnetocardiography versus fractional flow reserve for detection of coronary artery disease,” Clin. Hemorheol. Microcirc. 59(3), 267–281 (2015).
[Crossref]

Antervo, A.

A. Antervo, R. Hari, T. Katila, T. Ryhänen, and M. Seppänen, “Magnetic fields produced by eye blinking,” Electroencephalogr. Clin. Neurophysiol. 61(4), 247–253 (1985).
[Crossref]

Auyuanet, A.

L. Lenci, A. Auyuanet, S. Barreiro, P. Valente, A. Lezama, and H. Failache, “Vectorial atomic magnetometer based on coherent transients of laser absorption in Rb vapor,” Phys. Rev. A 89(4), 043836 (2014).
[Crossref]

Ban, G.

Barnes, G. R.

E. Boto, N. Holmes, J. Leggett, G. Roberts, V. Shah, S. S. Meyer, L. D. Muñoz, K. J. Mullinger, T. M. Tierney, S. Bestmann, G. R. Barnes, R. Bowtell, and M. J. Brookes,, “Moving magnetoencephalography towards real-world applications with a wearable system,” Nature 555(7698), 657–661 (2018).
[Crossref]

Barreiro, S.

L. Lenci, A. Auyuanet, S. Barreiro, P. Valente, A. Lezama, and H. Failache, “Vectorial atomic magnetometer based on coherent transients of laser absorption in Rb vapor,” Phys. Rev. A 89(4), 043836 (2014).
[Crossref]

Barry, W. H.

W. H. Barry, W. M. Fairbank, D. C. Harrison, K. L. Lehrman, J. A. Malmivuo, and J. P. Wikswo, “Measurement of the human magnetic heart vector,” Science 198(4322), 1159–1162 (1977).
[Crossref]

Baule, G. M.

G. M. Baule, “Detection of the magnetic field of the heart,” Am. Heart J. 66(1), 95–96 (1963).
[Crossref]

Begus, S.

K. Kim, S. Begus, H. Xia, S. Lee, V. Jazbinsek, Z. Trontelj, and M. V. Romalis, “Multi-channel atomic magnetometer for magnetoencephalography: A configuration study,” NeuroImage 89, 143–151 (2014).
[Crossref]

Belotelov, V.

N. Gusev, P. Vetoshko, A. Kuzmichev, D. Chepurnova, E. Samoilova, A. Zvezdin, A. Korotaeva, and V. Belotelov, “Ultra-Sensitive Vector Magnetometer for Magnetocardiographic Mapping,” Biomed. Eng. 51(3), 157–161 (2017).
[Crossref]

Bestmann, S.

E. Boto, N. Holmes, J. Leggett, G. Roberts, V. Shah, S. S. Meyer, L. D. Muñoz, K. J. Mullinger, T. M. Tierney, S. Bestmann, G. R. Barnes, R. Bowtell, and M. J. Brookes,, “Moving magnetoencephalography towards real-world applications with a wearable system,” Nature 555(7698), 657–661 (2018).
[Crossref]

Bi, X.

Bison, G.

Bodek, K.

Boto, E.

E. Boto, N. Holmes, J. Leggett, G. Roberts, V. Shah, S. S. Meyer, L. D. Muñoz, K. J. Mullinger, T. M. Tierney, S. Bestmann, G. R. Barnes, R. Bowtell, and M. J. Brookes,, “Moving magnetoencephalography towards real-world applications with a wearable system,” Nature 555(7698), 657–661 (2018).
[Crossref]

Bowtell, R.

E. Boto, N. Holmes, J. Leggett, G. Roberts, V. Shah, S. S. Meyer, L. D. Muñoz, K. J. Mullinger, T. M. Tierney, S. Bestmann, G. R. Barnes, R. Bowtell, and M. J. Brookes,, “Moving magnetoencephalography towards real-world applications with a wearable system,” Nature 555(7698), 657–661 (2018).
[Crossref]

Brachmann, J.

J.-W. Park, E.-S. Shin, S. H. Ann, M. Gödde, L. S.-I. Park, J. Brachmann, S. Vidal-Lopez, J. Wierzbinski, Y.-Y. Lam, and F. Jung, “Validation of magnetocardiography versus fractional flow reserve for detection of coronary artery disease,” Clin. Hemorheol. Microcirc. 59(3), 267–281 (2015).
[Crossref]

Bradshaw, L. A.

L. A. Bradshaw, J. K. Ladipo, D. J. Staton, J. P. Wikswo, and W. O. Richards, “The human vector magnetogastrogram and magnetoenterogram,” IEEE Trans. Biomed. Eng. 46(8), 959–970 (1999).
[Crossref]

Brisinda, D.

R. Fenici, D. Brisinda, and A. M. Meloni, “Clinical application of magnetocardiography,” Expert Rev. Mol. Diagn. 5(3), 291–313 (2005).
[Crossref]

Brookes, M. J.

E. Boto, N. Holmes, J. Leggett, G. Roberts, V. Shah, S. S. Meyer, L. D. Muñoz, K. J. Mullinger, T. M. Tierney, S. Bestmann, G. R. Barnes, R. Bowtell, and M. J. Brookes,, “Moving magnetoencephalography towards real-world applications with a wearable system,” Nature 555(7698), 657–661 (2018).
[Crossref]

Budker, D.

B. Patton, E. Zhivun, D. C. Hovde, and D. Budker, “All-optical vector atomic magnetometer,” Phys. Rev. Lett. 113(1), 013001 (2014).
[Crossref]

D. Budker and M. Romalis, “Optical magnetometry,” Nat. Phys. 3(4), 227–234 (2007).
[Crossref]

Burghoff, M.

U. Steinhoff, A. Schnabel, M. Burghoff, T. Freibier, F. Thiel, H. Koch, and L. Trahms, “Spatial distribution of cardiac magnetic vector fields acquired from 3120 SQUID positions,” Neurol. Clin. Neurophysiol. 59, 1–6 (2004).

Castagna, N.

G. Bison, N. Castagna, A. Hofer, P. Knowles, J. L. Schenker, M. Kasprzak, H. Saudan, and A. Weis, “A room temperature 19-channel magnetic field mapping device for cardiac signals,” Appl. Phys. Lett. 95(17), 173701 (2009).
[Crossref]

Chen, Y.-J.

H. Horigome, K. Ogata, A. Kandori, T. Miyashita, M. Takahashi-Igari, Y.-J. Chen, H. Hamada, and K. Tsukada, “Standardization of the PQRST waveform and analysis of arrhythmias in the fetus using vector magnetocardiography,” Pediatr. Res. 59(1), 121–125 (2006).
[Crossref]

Chepurnova, D.

N. Gusev, P. Vetoshko, A. Kuzmichev, D. Chepurnova, E. Samoilova, A. Zvezdin, A. Korotaeva, and V. Belotelov, “Ultra-Sensitive Vector Magnetometer for Magnetocardiographic Mapping,” Biomed. Eng. 51(3), 157–161 (2017).
[Crossref]

Chowdhuri, Z.

Cox, K.

K. Cox, V. I. Yudin, A. V. Taichenachev, I. Novikova, and E. E. Mikhailov, “Measurements of the magnetic field vector using multiple electromagnetically induced transparency resonances in Rb vapor,” Phys. Rev. A 83(1), 015801 (2011).
[Crossref]

Dang, H. B.

H. B. Dang, A. C. Maloof, and M. V. Romalis, “Ultra-high sensitivity magnetic field and magnetization measurements with an atomic magnetometer,” Appl. Phys. Lett. 97(15), 151110 (2010).
[Crossref]

Dural, N.

D. Sheng, S. Li, N. Dural, and M. V. Romalis, “Subfemtotesla scalar atomic magnetometry using multipass cells,” Phys. Rev. Lett. 110(16), 160802 (2013).
[Crossref]

Erné, S. N.

Failache, H.

L. Lenci, A. Auyuanet, S. Barreiro, P. Valente, A. Lezama, and H. Failache, “Vectorial atomic magnetometer based on coherent transients of laser absorption in Rb vapor,” Phys. Rev. A 89(4), 043836 (2014).
[Crossref]

Fairbank, W. M.

W. H. Barry, W. M. Fairbank, D. C. Harrison, K. L. Lehrman, J. A. Malmivuo, and J. P. Wikswo, “Measurement of the human magnetic heart vector,” Science 198(4322), 1159–1162 (1977).
[Crossref]

Fenici, R.

R. Fenici, D. Brisinda, and A. M. Meloni, “Clinical application of magnetocardiography,” Expert Rev. Mol. Diagn. 5(3), 291–313 (2005).
[Crossref]

Fenici, R. R.

R. R. Fenici, M. Masselli, L. Lopez, and G. Melillo, “Clinical value of magnetocardiography,” in Electrocardiography and Cardiac Drug Therapy (Springer, 1989), pp. 239–258.

Freibier, T.

U. Steinhoff, A. Schnabel, M. Burghoff, T. Freibier, F. Thiel, H. Koch, and L. Trahms, “Spatial distribution of cardiac magnetic vector fields acquired from 3120 SQUID positions,” Neurol. Clin. Neurophysiol. 59, 1–6 (2004).

Gödde, M.

J.-W. Park, E.-S. Shin, S. H. Ann, M. Gödde, L. S.-I. Park, J. Brachmann, S. Vidal-Lopez, J. Wierzbinski, Y.-Y. Lam, and F. Jung, “Validation of magnetocardiography versus fractional flow reserve for detection of coronary artery disease,” Clin. Hemorheol. Microcirc. 59(3), 267–281 (2015).
[Crossref]

Grujic, Z. D.

Gusev, N.

N. Gusev, P. Vetoshko, A. Kuzmichev, D. Chepurnova, E. Samoilova, A. Zvezdin, A. Korotaeva, and V. Belotelov, “Ultra-Sensitive Vector Magnetometer for Magnetocardiographic Mapping,” Biomed. Eng. 51(3), 157–161 (2017).
[Crossref]

Hamada, H.

H. Horigome, K. Ogata, A. Kandori, T. Miyashita, M. Takahashi-Igari, Y.-J. Chen, H. Hamada, and K. Tsukada, “Standardization of the PQRST waveform and analysis of arrhythmias in the fetus using vector magnetocardiography,” Pediatr. Res. 59(1), 121–125 (2006).
[Crossref]

Hari, R.

A. Antervo, R. Hari, T. Katila, T. Ryhänen, and M. Seppänen, “Magnetic fields produced by eye blinking,” Electroencephalogr. Clin. Neurophysiol. 61(4), 247–253 (1985).
[Crossref]

Harrison, D. C.

W. H. Barry, W. M. Fairbank, D. C. Harrison, K. L. Lehrman, J. A. Malmivuo, and J. P. Wikswo, “Measurement of the human magnetic heart vector,” Science 198(4322), 1159–1162 (1977).
[Crossref]

Hayen, L.

He, X.

Hélaine, V.

Hofer, A.

G. Bison, N. Castagna, A. Hofer, P. Knowles, J. L. Schenker, M. Kasprzak, H. Saudan, and A. Weis, “A room temperature 19-channel magnetic field mapping device for cardiac signals,” Appl. Phys. Lett. 95(17), 173701 (2009).
[Crossref]

Holmes, N.

E. Boto, N. Holmes, J. Leggett, G. Roberts, V. Shah, S. S. Meyer, L. D. Muñoz, K. J. Mullinger, T. M. Tierney, S. Bestmann, G. R. Barnes, R. Bowtell, and M. J. Brookes,, “Moving magnetoencephalography towards real-world applications with a wearable system,” Nature 555(7698), 657–661 (2018).
[Crossref]

Horigome, H.

H. Horigome, K. Ogata, A. Kandori, T. Miyashita, M. Takahashi-Igari, Y.-J. Chen, H. Hamada, and K. Tsukada, “Standardization of the PQRST waveform and analysis of arrhythmias in the fetus using vector magnetocardiography,” Pediatr. Res. 59(1), 121–125 (2006).
[Crossref]

Hovde, D. C.

B. Patton, E. Zhivun, D. C. Hovde, and D. Budker, “All-optical vector atomic magnetometer,” Phys. Rev. Lett. 113(1), 013001 (2014).
[Crossref]

Jazbinsek, V.

K. Kim, S. Begus, H. Xia, S. Lee, V. Jazbinsek, Z. Trontelj, and M. V. Romalis, “Multi-channel atomic magnetometer for magnetoencephalography: A configuration study,” NeuroImage 89, 143–151 (2014).
[Crossref]

Jung, F.

J.-W. Park, E.-S. Shin, S. H. Ann, M. Gödde, L. S.-I. Park, J. Brachmann, S. Vidal-Lopez, J. Wierzbinski, Y.-Y. Lam, and F. Jung, “Validation of magnetocardiography versus fractional flow reserve for detection of coronary artery disease,” Clin. Hemorheol. Microcirc. 59(3), 267–281 (2015).
[Crossref]

Kandori, A.

H. Horigome, K. Ogata, A. Kandori, T. Miyashita, M. Takahashi-Igari, Y.-J. Chen, H. Hamada, and K. Tsukada, “Standardization of the PQRST waveform and analysis of arrhythmias in the fetus using vector magnetocardiography,” Pediatr. Res. 59(1), 121–125 (2006).
[Crossref]

Karp, P. J.

P. J. Karp, T. E. Katila, M. Saarinen, P. Siltanen, and T. T. Varpula, “The normal human magnetocardiogram. II. A multipole analysis,” Circ. Res. 47(1), 117–130 (1980).
[Crossref]

Kaspar, P.

J. Tomek, A. Platil, P. Ripka, and P. Kaspar, “Application of fluxgate gradiometer in magnetopneumography,” Sens. Actuators, A 132(1), 214–217 (2006).
[Crossref]

Kasprzak, M.

S. Afach, G. Ban, G. Bison, K. Bodek, Z. Chowdhuri, Z. D. Grujić, L. Hayen, V. Hélaine, M. Kasprzak, and K. Kirchet al., “Highly stable atomic vector magnetometer based on free spin precession,” Opt. Express 23(17), 22108–22115 (2015).
[Crossref]

G. Bison, N. Castagna, A. Hofer, P. Knowles, J. L. Schenker, M. Kasprzak, H. Saudan, and A. Weis, “A room temperature 19-channel magnetic field mapping device for cardiac signals,” Appl. Phys. Lett. 95(17), 173701 (2009).
[Crossref]

Katila, T.

A. Antervo, R. Hari, T. Katila, T. Ryhänen, and M. Seppänen, “Magnetic fields produced by eye blinking,” Electroencephalogr. Clin. Neurophysiol. 61(4), 247–253 (1985).
[Crossref]

Katila, T. E.

P. J. Karp, T. E. Katila, M. Saarinen, P. Siltanen, and T. T. Varpula, “The normal human magnetocardiogram. II. A multipole analysis,” Circ. Res. 47(1), 117–130 (1980).
[Crossref]

Kauer, M.

R. Wyllie, M. Kauer, G. Smetana, R. Wakai, and T. Walker, “Magnetocardiography with a modular spin-exchange relaxation-free atomic magnetometer array,” Phys. Med. Biol. 57(9), 2619–2632 (2012).
[Crossref]

Khanbekyan, A.

Khanbekyan, K.

Kim, K.

K. Kim, S. Begus, H. Xia, S. Lee, V. Jazbinsek, Z. Trontelj, and M. V. Romalis, “Multi-channel atomic magnetometer for magnetoencephalography: A configuration study,” NeuroImage 89, 143–151 (2014).
[Crossref]

Kirchet al., K.

Knowles, P.

G. Bison, N. Castagna, A. Hofer, P. Knowles, J. L. Schenker, M. Kasprzak, H. Saudan, and A. Weis, “A room temperature 19-channel magnetic field mapping device for cardiac signals,” Appl. Phys. Lett. 95(17), 173701 (2009).
[Crossref]

Koch, H.

U. Steinhoff, A. Schnabel, M. Burghoff, T. Freibier, F. Thiel, H. Koch, and L. Trahms, “Spatial distribution of cardiac magnetic vector fields acquired from 3120 SQUID positions,” Neurol. Clin. Neurophysiol. 59, 1–6 (2004).

Konttila, T.

V. Mäntynen, T. Konttila, and M. Stenroos, “Investigations of sensitivity and resolution of ECG and MCG in a realistically shaped thorax model,” Phys. Med. Biol. 59(23), 7141–7158 (2014).
[Crossref]

Korotaeva, A.

N. Gusev, P. Vetoshko, A. Kuzmichev, D. Chepurnova, E. Samoilova, A. Zvezdin, A. Korotaeva, and V. Belotelov, “Ultra-Sensitive Vector Magnetometer for Magnetocardiographic Mapping,” Biomed. Eng. 51(3), 157–161 (2017).
[Crossref]

Kuzmichev, A.

N. Gusev, P. Vetoshko, A. Kuzmichev, D. Chepurnova, E. Samoilova, A. Zvezdin, A. Korotaeva, and V. Belotelov, “Ultra-Sensitive Vector Magnetometer for Magnetocardiographic Mapping,” Biomed. Eng. 51(3), 157–161 (2017).
[Crossref]

Ladipo, J. K.

L. A. Bradshaw, J. K. Ladipo, D. J. Staton, J. P. Wikswo, and W. O. Richards, “The human vector magnetogastrogram and magnetoenterogram,” IEEE Trans. Biomed. Eng. 46(8), 959–970 (1999).
[Crossref]

Lam, Y.-Y.

J.-W. Park, E.-S. Shin, S. H. Ann, M. Gödde, L. S.-I. Park, J. Brachmann, S. Vidal-Lopez, J. Wierzbinski, Y.-Y. Lam, and F. Jung, “Validation of magnetocardiography versus fractional flow reserve for detection of coronary artery disease,” Clin. Hemorheol. Microcirc. 59(3), 267–281 (2015).
[Crossref]

Lee, S.

K. Kim, S. Begus, H. Xia, S. Lee, V. Jazbinsek, Z. Trontelj, and M. V. Romalis, “Multi-channel atomic magnetometer for magnetoencephalography: A configuration study,” NeuroImage 89, 143–151 (2014).
[Crossref]

Leggett, J.

E. Boto, N. Holmes, J. Leggett, G. Roberts, V. Shah, S. S. Meyer, L. D. Muñoz, K. J. Mullinger, T. M. Tierney, S. Bestmann, G. R. Barnes, R. Bowtell, and M. J. Brookes,, “Moving magnetoencephalography towards real-world applications with a wearable system,” Nature 555(7698), 657–661 (2018).
[Crossref]

Lehrman, K. L.

W. H. Barry, W. M. Fairbank, D. C. Harrison, K. L. Lehrman, J. A. Malmivuo, and J. P. Wikswo, “Measurement of the human magnetic heart vector,” Science 198(4322), 1159–1162 (1977).
[Crossref]

Lembke, G.

Lenci, L.

L. Lenci, A. Auyuanet, S. Barreiro, P. Valente, A. Lezama, and H. Failache, “Vectorial atomic magnetometer based on coherent transients of laser absorption in Rb vapor,” Phys. Rev. A 89(4), 043836 (2014).
[Crossref]

Lezama, A.

L. Lenci, A. Auyuanet, S. Barreiro, P. Valente, A. Lezama, and H. Failache, “Vectorial atomic magnetometer based on coherent transients of laser absorption in Rb vapor,” Phys. Rev. A 89(4), 043836 (2014).
[Crossref]

Li, S.

D. Sheng, S. Li, N. Dural, and M. V. Romalis, “Subfemtotesla scalar atomic magnetometry using multipass cells,” Phys. Rev. Lett. 110(16), 160802 (2013).
[Crossref]

Lin, Q.

Lopez, L.

R. R. Fenici, M. Masselli, L. Lopez, and G. Melillo, “Clinical value of magnetocardiography,” in Electrocardiography and Cardiac Drug Therapy (Springer, 1989), pp. 239–258.

Malmivuo, J. A.

W. H. Barry, W. M. Fairbank, D. C. Harrison, K. L. Lehrman, J. A. Malmivuo, and J. P. Wikswo, “Measurement of the human magnetic heart vector,” Science 198(4322), 1159–1162 (1977).
[Crossref]

Maloof, A. C.

H. B. Dang, A. C. Maloof, and M. V. Romalis, “Ultra-high sensitivity magnetic field and magnetization measurements with an atomic magnetometer,” Appl. Phys. Lett. 97(15), 151110 (2010).
[Crossref]

Mäntynen, V.

V. Mäntynen, T. Konttila, and M. Stenroos, “Investigations of sensitivity and resolution of ECG and MCG in a realistically shaped thorax model,” Phys. Med. Biol. 59(23), 7141–7158 (2014).
[Crossref]

Marinelli, C.

Mariotti, E.

Masselli, M.

R. R. Fenici, M. Masselli, L. Lopez, and G. Melillo, “Clinical value of magnetocardiography,” in Electrocardiography and Cardiac Drug Therapy (Springer, 1989), pp. 239–258.

Melillo, G.

R. R. Fenici, M. Masselli, L. Lopez, and G. Melillo, “Clinical value of magnetocardiography,” in Electrocardiography and Cardiac Drug Therapy (Springer, 1989), pp. 239–258.

Meloni, A. M.

R. Fenici, D. Brisinda, and A. M. Meloni, “Clinical application of magnetocardiography,” Expert Rev. Mol. Diagn. 5(3), 291–313 (2005).
[Crossref]

Menhorn, B.

Meyer, S. S.

E. Boto, N. Holmes, J. Leggett, G. Roberts, V. Shah, S. S. Meyer, L. D. Muñoz, K. J. Mullinger, T. M. Tierney, S. Bestmann, G. R. Barnes, R. Bowtell, and M. J. Brookes,, “Moving magnetoencephalography towards real-world applications with a wearable system,” Nature 555(7698), 657–661 (2018).
[Crossref]

Mikhailov, E. E.

K. Cox, V. I. Yudin, A. V. Taichenachev, I. Novikova, and E. E. Mikhailov, “Measurements of the magnetic field vector using multiple electromagnetically induced transparency resonances in Rb vapor,” Phys. Rev. A 83(1), 015801 (2011).
[Crossref]

Miyashita, T.

H. Horigome, K. Ogata, A. Kandori, T. Miyashita, M. Takahashi-Igari, Y.-J. Chen, H. Hamada, and K. Tsukada, “Standardization of the PQRST waveform and analysis of arrhythmias in the fetus using vector magnetocardiography,” Pediatr. Res. 59(1), 121–125 (2006).
[Crossref]

Mullinger, K. J.

E. Boto, N. Holmes, J. Leggett, G. Roberts, V. Shah, S. S. Meyer, L. D. Muñoz, K. J. Mullinger, T. M. Tierney, S. Bestmann, G. R. Barnes, R. Bowtell, and M. J. Brookes,, “Moving magnetoencephalography towards real-world applications with a wearable system,” Nature 555(7698), 657–661 (2018).
[Crossref]

Muñoz, L. D.

E. Boto, N. Holmes, J. Leggett, G. Roberts, V. Shah, S. S. Meyer, L. D. Muñoz, K. J. Mullinger, T. M. Tierney, S. Bestmann, G. R. Barnes, R. Bowtell, and M. J. Brookes,, “Moving magnetoencephalography towards real-world applications with a wearable system,” Nature 555(7698), 657–661 (2018).
[Crossref]

Novikova, I.

K. Cox, V. I. Yudin, A. V. Taichenachev, I. Novikova, and E. E. Mikhailov, “Measurements of the magnetic field vector using multiple electromagnetically induced transparency resonances in Rb vapor,” Phys. Rev. A 83(1), 015801 (2011).
[Crossref]

Nowak, H.

Ogata, K.

H. Horigome, K. Ogata, A. Kandori, T. Miyashita, M. Takahashi-Igari, Y.-J. Chen, H. Hamada, and K. Tsukada, “Standardization of the PQRST waveform and analysis of arrhythmias in the fetus using vector magnetocardiography,” Pediatr. Res. 59(1), 121–125 (2006).
[Crossref]

Papoyan, A.

Park, J.-W.

J.-W. Park, E.-S. Shin, S. H. Ann, M. Gödde, L. S.-I. Park, J. Brachmann, S. Vidal-Lopez, J. Wierzbinski, Y.-Y. Lam, and F. Jung, “Validation of magnetocardiography versus fractional flow reserve for detection of coronary artery disease,” Clin. Hemorheol. Microcirc. 59(3), 267–281 (2015).
[Crossref]

Park, L. S.-I.

J.-W. Park, E.-S. Shin, S. H. Ann, M. Gödde, L. S.-I. Park, J. Brachmann, S. Vidal-Lopez, J. Wierzbinski, Y.-Y. Lam, and F. Jung, “Validation of magnetocardiography versus fractional flow reserve for detection of coronary artery disease,” Clin. Hemorheol. Microcirc. 59(3), 267–281 (2015).
[Crossref]

Pasquarelli, A.

Patton, B.

B. Patton, E. Zhivun, D. C. Hovde, and D. Budker, “All-optical vector atomic magnetometer,” Phys. Rev. Lett. 113(1), 013001 (2014).
[Crossref]

Platil, A.

J. Tomek, A. Platil, P. Ripka, and P. Kaspar, “Application of fluxgate gradiometer in magnetopneumography,” Sens. Actuators, A 132(1), 214–217 (2006).
[Crossref]

Richards, W. O.

L. A. Bradshaw, J. K. Ladipo, D. J. Staton, J. P. Wikswo, and W. O. Richards, “The human vector magnetogastrogram and magnetoenterogram,” IEEE Trans. Biomed. Eng. 46(8), 959–970 (1999).
[Crossref]

Ripka, P.

J. Tomek, A. Platil, P. Ripka, and P. Kaspar, “Application of fluxgate gradiometer in magnetopneumography,” Sens. Actuators, A 132(1), 214–217 (2006).
[Crossref]

Roberts, G.

E. Boto, N. Holmes, J. Leggett, G. Roberts, V. Shah, S. S. Meyer, L. D. Muñoz, K. J. Mullinger, T. M. Tierney, S. Bestmann, G. R. Barnes, R. Bowtell, and M. J. Brookes,, “Moving magnetoencephalography towards real-world applications with a wearable system,” Nature 555(7698), 657–661 (2018).
[Crossref]

Romalis, M.

D. Budker and M. Romalis, “Optical magnetometry,” Nat. Phys. 3(4), 227–234 (2007).
[Crossref]

Romalis, M. V.

K. Kim, S. Begus, H. Xia, S. Lee, V. Jazbinsek, Z. Trontelj, and M. V. Romalis, “Multi-channel atomic magnetometer for magnetoencephalography: A configuration study,” NeuroImage 89, 143–151 (2014).
[Crossref]

D. Sheng, S. Li, N. Dural, and M. V. Romalis, “Subfemtotesla scalar atomic magnetometry using multipass cells,” Phys. Rev. Lett. 110(16), 160802 (2013).
[Crossref]

H. B. Dang, A. C. Maloof, and M. V. Romalis, “Ultra-high sensitivity magnetic field and magnetization measurements with an atomic magnetometer,” Appl. Phys. Lett. 97(15), 151110 (2010).
[Crossref]

Ryhänen, T.

A. Antervo, R. Hari, T. Katila, T. Ryhänen, and M. Seppänen, “Magnetic fields produced by eye blinking,” Electroencephalogr. Clin. Neurophysiol. 61(4), 247–253 (1985).
[Crossref]

Saarinen, M.

P. J. Karp, T. E. Katila, M. Saarinen, P. Siltanen, and T. T. Varpula, “The normal human magnetocardiogram. II. A multipole analysis,” Circ. Res. 47(1), 117–130 (1980).
[Crossref]

Samoilova, E.

N. Gusev, P. Vetoshko, A. Kuzmichev, D. Chepurnova, E. Samoilova, A. Zvezdin, A. Korotaeva, and V. Belotelov, “Ultra-Sensitive Vector Magnetometer for Magnetocardiographic Mapping,” Biomed. Eng. 51(3), 157–161 (2017).
[Crossref]

Saudan, H.

G. Bison, N. Castagna, A. Hofer, P. Knowles, J. L. Schenker, M. Kasprzak, H. Saudan, and A. Weis, “A room temperature 19-channel magnetic field mapping device for cardiac signals,” Appl. Phys. Lett. 95(17), 173701 (2009).
[Crossref]

Schenker, J. L.

G. Bison, N. Castagna, A. Hofer, P. Knowles, J. L. Schenker, M. Kasprzak, H. Saudan, and A. Weis, “A room temperature 19-channel magnetic field mapping device for cardiac signals,” Appl. Phys. Lett. 95(17), 173701 (2009).
[Crossref]

Schnabel, A.

U. Steinhoff, A. Schnabel, M. Burghoff, T. Freibier, F. Thiel, H. Koch, and L. Trahms, “Spatial distribution of cardiac magnetic vector fields acquired from 3120 SQUID positions,” Neurol. Clin. Neurophysiol. 59, 1–6 (2004).

Seppänen, M.

A. Antervo, R. Hari, T. Katila, T. Ryhänen, and M. Seppänen, “Magnetic fields produced by eye blinking,” Electroencephalogr. Clin. Neurophysiol. 61(4), 247–253 (1985).
[Crossref]

Shah, V.

E. Boto, N. Holmes, J. Leggett, G. Roberts, V. Shah, S. S. Meyer, L. D. Muñoz, K. J. Mullinger, T. M. Tierney, S. Bestmann, G. R. Barnes, R. Bowtell, and M. J. Brookes,, “Moving magnetoencephalography towards real-world applications with a wearable system,” Nature 555(7698), 657–661 (2018).
[Crossref]

Sheng, D.

D. Sheng, S. Li, N. Dural, and M. V. Romalis, “Subfemtotesla scalar atomic magnetometry using multipass cells,” Phys. Rev. Lett. 110(16), 160802 (2013).
[Crossref]

Shin, E.-S.

J.-W. Park, E.-S. Shin, S. H. Ann, M. Gödde, L. S.-I. Park, J. Brachmann, S. Vidal-Lopez, J. Wierzbinski, Y.-Y. Lam, and F. Jung, “Validation of magnetocardiography versus fractional flow reserve for detection of coronary artery disease,” Clin. Hemorheol. Microcirc. 59(3), 267–281 (2015).
[Crossref]

Shmavonyan, S.

Siltanen, P.

P. J. Karp, T. E. Katila, M. Saarinen, P. Siltanen, and T. T. Varpula, “The normal human magnetocardiogram. II. A multipole analysis,” Circ. Res. 47(1), 117–130 (1980).
[Crossref]

Smetana, G.

R. Wyllie, M. Kauer, G. Smetana, R. Wakai, and T. Walker, “Magnetocardiography with a modular spin-exchange relaxation-free atomic magnetometer array,” Phys. Med. Biol. 57(9), 2619–2632 (2012).
[Crossref]

Staton, D. J.

L. A. Bradshaw, J. K. Ladipo, D. J. Staton, J. P. Wikswo, and W. O. Richards, “The human vector magnetogastrogram and magnetoenterogram,” IEEE Trans. Biomed. Eng. 46(8), 959–970 (1999).
[Crossref]

Steinhoff, U.

U. Steinhoff, A. Schnabel, M. Burghoff, T. Freibier, F. Thiel, H. Koch, and L. Trahms, “Spatial distribution of cardiac magnetic vector fields acquired from 3120 SQUID positions,” Neurol. Clin. Neurophysiol. 59, 1–6 (2004).

Stenroos, M.

V. Mäntynen, T. Konttila, and M. Stenroos, “Investigations of sensitivity and resolution of ECG and MCG in a realistically shaped thorax model,” Phys. Med. Biol. 59(23), 7141–7158 (2014).
[Crossref]

Su, S.

Taichenachev, A. V.

K. Cox, V. I. Yudin, A. V. Taichenachev, I. Novikova, and E. E. Mikhailov, “Measurements of the magnetic field vector using multiple electromagnetically induced transparency resonances in Rb vapor,” Phys. Rev. A 83(1), 015801 (2011).
[Crossref]

Takahashi-Igari, M.

H. Horigome, K. Ogata, A. Kandori, T. Miyashita, M. Takahashi-Igari, Y.-J. Chen, H. Hamada, and K. Tsukada, “Standardization of the PQRST waveform and analysis of arrhythmias in the fetus using vector magnetocardiography,” Pediatr. Res. 59(1), 121–125 (2006).
[Crossref]

Takiya, T.

T. Takiya and T. Uchiyama, “Development of active shielding-type MI gradiometer and application for magnetocardiography,” IEEE Trans. Magn. 53(11), 1–4 (2017).
[Crossref]

Thiel, F.

U. Steinhoff, A. Schnabel, M. Burghoff, T. Freibier, F. Thiel, H. Koch, and L. Trahms, “Spatial distribution of cardiac magnetic vector fields acquired from 3120 SQUID positions,” Neurol. Clin. Neurophysiol. 59, 1–6 (2004).

Tierney, T. M.

E. Boto, N. Holmes, J. Leggett, G. Roberts, V. Shah, S. S. Meyer, L. D. Muñoz, K. J. Mullinger, T. M. Tierney, S. Bestmann, G. R. Barnes, R. Bowtell, and M. J. Brookes,, “Moving magnetoencephalography towards real-world applications with a wearable system,” Nature 555(7698), 657–661 (2018).
[Crossref]

Tomek, J.

J. Tomek, A. Platil, P. Ripka, and P. Kaspar, “Application of fluxgate gradiometer in magnetopneumography,” Sens. Actuators, A 132(1), 214–217 (2006).
[Crossref]

Trahms, L.

U. Steinhoff, A. Schnabel, M. Burghoff, T. Freibier, F. Thiel, H. Koch, and L. Trahms, “Spatial distribution of cardiac magnetic vector fields acquired from 3120 SQUID positions,” Neurol. Clin. Neurophysiol. 59, 1–6 (2004).

Trontelj, Z.

K. Kim, S. Begus, H. Xia, S. Lee, V. Jazbinsek, Z. Trontelj, and M. V. Romalis, “Multi-channel atomic magnetometer for magnetoencephalography: A configuration study,” NeuroImage 89, 143–151 (2014).
[Crossref]

Tsukada, K.

H. Horigome, K. Ogata, A. Kandori, T. Miyashita, M. Takahashi-Igari, Y.-J. Chen, H. Hamada, and K. Tsukada, “Standardization of the PQRST waveform and analysis of arrhythmias in the fetus using vector magnetocardiography,” Pediatr. Res. 59(1), 121–125 (2006).
[Crossref]

Uchiyama, T.

T. Takiya and T. Uchiyama, “Development of active shielding-type MI gradiometer and application for magnetocardiography,” IEEE Trans. Magn. 53(11), 1–4 (2017).
[Crossref]

Valente, P.

L. Lenci, A. Auyuanet, S. Barreiro, P. Valente, A. Lezama, and H. Failache, “Vectorial atomic magnetometer based on coherent transients of laser absorption in Rb vapor,” Phys. Rev. A 89(4), 043836 (2014).
[Crossref]

Varpula, T. T.

P. J. Karp, T. E. Katila, M. Saarinen, P. Siltanen, and T. T. Varpula, “The normal human magnetocardiogram. II. A multipole analysis,” Circ. Res. 47(1), 117–130 (1980).
[Crossref]

Vershovskii, A.

A. Vershovskiĭ, “A new method of absolute measurement of the three components of the magnetic field,” Opt. Spectrosc. 101(2), 309–316 (2006).
[Crossref]

Vetoshko, P.

N. Gusev, P. Vetoshko, A. Kuzmichev, D. Chepurnova, E. Samoilova, A. Zvezdin, A. Korotaeva, and V. Belotelov, “Ultra-Sensitive Vector Magnetometer for Magnetocardiographic Mapping,” Biomed. Eng. 51(3), 157–161 (2017).
[Crossref]

Vidal-Lopez, S.

J.-W. Park, E.-S. Shin, S. H. Ann, M. Gödde, L. S.-I. Park, J. Brachmann, S. Vidal-Lopez, J. Wierzbinski, Y.-Y. Lam, and F. Jung, “Validation of magnetocardiography versus fractional flow reserve for detection of coronary artery disease,” Clin. Hemorheol. Microcirc. 59(3), 267–281 (2015).
[Crossref]

Wakai, R.

R. Wyllie, M. Kauer, G. Smetana, R. Wakai, and T. Walker, “Magnetocardiography with a modular spin-exchange relaxation-free atomic magnetometer array,” Phys. Med. Biol. 57(9), 2619–2632 (2012).
[Crossref]

Walker, T.

R. Wyllie, M. Kauer, G. Smetana, R. Wakai, and T. Walker, “Magnetocardiography with a modular spin-exchange relaxation-free atomic magnetometer array,” Phys. Med. Biol. 57(9), 2619–2632 (2012).
[Crossref]

Watanabe, S.

S. Watanabe and S. Yamada, “Magnetocardiography in early detection of electromagnetic abnormality in ischemic heart disease,” J. Arrhythmia 24(1), 4–17 (2008).
[Crossref]

Weis, A.

A. Weis, “Optically pumped alkali magnetometers for biomedical applications,” Europhys. News 43(3), 20–23 (2012).
[Crossref]

G. Bison, N. Castagna, A. Hofer, P. Knowles, J. L. Schenker, M. Kasprzak, H. Saudan, and A. Weis, “A room temperature 19-channel magnetic field mapping device for cardiac signals,” Appl. Phys. Lett. 95(17), 173701 (2009).
[Crossref]

G. Bison, R. Wynands, and A. Weis, “Optimization and performance of an optical cardiomagnetometer,” J. Opt. Soc. Am. B 22(1), 77–87 (2005).
[Crossref]

G. Bison, R. Wynands, and A. Weis, “A laser-pumped magnetometer for the mapping of human cardiomagnetic fields,” Appl. Phys. 76(3), 325–328 (2003).
[Crossref]

Wierzbinski, J.

J.-W. Park, E.-S. Shin, S. H. Ann, M. Gödde, L. S.-I. Park, J. Brachmann, S. Vidal-Lopez, J. Wierzbinski, Y.-Y. Lam, and F. Jung, “Validation of magnetocardiography versus fractional flow reserve for detection of coronary artery disease,” Clin. Hemorheol. Microcirc. 59(3), 267–281 (2015).
[Crossref]

Wikswo, J. P.

L. A. Bradshaw, J. K. Ladipo, D. J. Staton, J. P. Wikswo, and W. O. Richards, “The human vector magnetogastrogram and magnetoenterogram,” IEEE Trans. Biomed. Eng. 46(8), 959–970 (1999).
[Crossref]

W. H. Barry, W. M. Fairbank, D. C. Harrison, K. L. Lehrman, J. A. Malmivuo, and J. P. Wikswo, “Measurement of the human magnetic heart vector,” Science 198(4322), 1159–1162 (1977).
[Crossref]

Wyllie, R.

R. Wyllie, M. Kauer, G. Smetana, R. Wakai, and T. Walker, “Magnetocardiography with a modular spin-exchange relaxation-free atomic magnetometer array,” Phys. Med. Biol. 57(9), 2619–2632 (2012).
[Crossref]

Wynands, R.

G. Bison, R. Wynands, and A. Weis, “Optimization and performance of an optical cardiomagnetometer,” J. Opt. Soc. Am. B 22(1), 77–87 (2005).
[Crossref]

G. Bison, R. Wynands, and A. Weis, “A laser-pumped magnetometer for the mapping of human cardiomagnetic fields,” Appl. Phys. 76(3), 325–328 (2003).
[Crossref]

Xia, H.

K. Kim, S. Begus, H. Xia, S. Lee, V. Jazbinsek, Z. Trontelj, and M. V. Romalis, “Multi-channel atomic magnetometer for magnetoencephalography: A configuration study,” NeuroImage 89, 143–151 (2014).
[Crossref]

Yamada, S.

S. Watanabe and S. Yamada, “Magnetocardiography in early detection of electromagnetic abnormality in ischemic heart disease,” J. Arrhythmia 24(1), 4–17 (2008).
[Crossref]

S. Yamada and I. Yamaguchi, “Magnetocardiograms in clinical medicine: unique information on cardiac ischemia, arrhythmias, and fetal diagnosis,” Intern. Med. 44(1), 1–19 (2005).
[Crossref]

Yamaguchi, I.

S. Yamada and I. Yamaguchi, “Magnetocardiograms in clinical medicine: unique information on cardiac ischemia, arrhythmias, and fetal diagnosis,” Intern. Med. 44(1), 1–19 (2005).
[Crossref]

Yudin, V. I.

K. Cox, V. I. Yudin, A. V. Taichenachev, I. Novikova, and E. E. Mikhailov, “Measurements of the magnetic field vector using multiple electromagnetically induced transparency resonances in Rb vapor,” Phys. Rev. A 83(1), 015801 (2011).
[Crossref]

Zhang, G.

Zheng, W.

Zhivun, E.

B. Patton, E. Zhivun, D. C. Hovde, and D. Budker, “All-optical vector atomic magnetometer,” Phys. Rev. Lett. 113(1), 013001 (2014).
[Crossref]

Zvezdin, A.

N. Gusev, P. Vetoshko, A. Kuzmichev, D. Chepurnova, E. Samoilova, A. Zvezdin, A. Korotaeva, and V. Belotelov, “Ultra-Sensitive Vector Magnetometer for Magnetocardiographic Mapping,” Biomed. Eng. 51(3), 157–161 (2017).
[Crossref]

Am. Heart J. (1)

G. M. Baule, “Detection of the magnetic field of the heart,” Am. Heart J. 66(1), 95–96 (1963).
[Crossref]

Appl. Opt. (1)

Appl. Phys. (1)

G. Bison, R. Wynands, and A. Weis, “A laser-pumped magnetometer for the mapping of human cardiomagnetic fields,” Appl. Phys. 76(3), 325–328 (2003).
[Crossref]

Appl. Phys. Lett. (2)

H. B. Dang, A. C. Maloof, and M. V. Romalis, “Ultra-high sensitivity magnetic field and magnetization measurements with an atomic magnetometer,” Appl. Phys. Lett. 97(15), 151110 (2010).
[Crossref]

G. Bison, N. Castagna, A. Hofer, P. Knowles, J. L. Schenker, M. Kasprzak, H. Saudan, and A. Weis, “A room temperature 19-channel magnetic field mapping device for cardiac signals,” Appl. Phys. Lett. 95(17), 173701 (2009).
[Crossref]

Biomed. Eng. (1)

N. Gusev, P. Vetoshko, A. Kuzmichev, D. Chepurnova, E. Samoilova, A. Zvezdin, A. Korotaeva, and V. Belotelov, “Ultra-Sensitive Vector Magnetometer for Magnetocardiographic Mapping,” Biomed. Eng. 51(3), 157–161 (2017).
[Crossref]

Biomed. Opt. Express (1)

Circ. Res. (1)

P. J. Karp, T. E. Katila, M. Saarinen, P. Siltanen, and T. T. Varpula, “The normal human magnetocardiogram. II. A multipole analysis,” Circ. Res. 47(1), 117–130 (1980).
[Crossref]

Clin. Hemorheol. Microcirc. (1)

J.-W. Park, E.-S. Shin, S. H. Ann, M. Gödde, L. S.-I. Park, J. Brachmann, S. Vidal-Lopez, J. Wierzbinski, Y.-Y. Lam, and F. Jung, “Validation of magnetocardiography versus fractional flow reserve for detection of coronary artery disease,” Clin. Hemorheol. Microcirc. 59(3), 267–281 (2015).
[Crossref]

Electroencephalogr. Clin. Neurophysiol. (1)

A. Antervo, R. Hari, T. Katila, T. Ryhänen, and M. Seppänen, “Magnetic fields produced by eye blinking,” Electroencephalogr. Clin. Neurophysiol. 61(4), 247–253 (1985).
[Crossref]

Europhys. News (1)

A. Weis, “Optically pumped alkali magnetometers for biomedical applications,” Europhys. News 43(3), 20–23 (2012).
[Crossref]

Expert Rev. Mol. Diagn. (1)

R. Fenici, D. Brisinda, and A. M. Meloni, “Clinical application of magnetocardiography,” Expert Rev. Mol. Diagn. 5(3), 291–313 (2005).
[Crossref]

IEEE Trans. Biomed. Eng. (1)

L. A. Bradshaw, J. K. Ladipo, D. J. Staton, J. P. Wikswo, and W. O. Richards, “The human vector magnetogastrogram and magnetoenterogram,” IEEE Trans. Biomed. Eng. 46(8), 959–970 (1999).
[Crossref]

IEEE Trans. Magn. (1)

T. Takiya and T. Uchiyama, “Development of active shielding-type MI gradiometer and application for magnetocardiography,” IEEE Trans. Magn. 53(11), 1–4 (2017).
[Crossref]

Intern. Med. (1)

S. Yamada and I. Yamaguchi, “Magnetocardiograms in clinical medicine: unique information on cardiac ischemia, arrhythmias, and fetal diagnosis,” Intern. Med. 44(1), 1–19 (2005).
[Crossref]

J. Arrhythmia (1)

S. Watanabe and S. Yamada, “Magnetocardiography in early detection of electromagnetic abnormality in ischemic heart disease,” J. Arrhythmia 24(1), 4–17 (2008).
[Crossref]

J. Opt. Soc. Am. B (1)

Nat. Phys. (1)

D. Budker and M. Romalis, “Optical magnetometry,” Nat. Phys. 3(4), 227–234 (2007).
[Crossref]

Nature (1)

E. Boto, N. Holmes, J. Leggett, G. Roberts, V. Shah, S. S. Meyer, L. D. Muñoz, K. J. Mullinger, T. M. Tierney, S. Bestmann, G. R. Barnes, R. Bowtell, and M. J. Brookes,, “Moving magnetoencephalography towards real-world applications with a wearable system,” Nature 555(7698), 657–661 (2018).
[Crossref]

NeuroImage (1)

K. Kim, S. Begus, H. Xia, S. Lee, V. Jazbinsek, Z. Trontelj, and M. V. Romalis, “Multi-channel atomic magnetometer for magnetoencephalography: A configuration study,” NeuroImage 89, 143–151 (2014).
[Crossref]

Neurol. Clin. Neurophysiol. (1)

U. Steinhoff, A. Schnabel, M. Burghoff, T. Freibier, F. Thiel, H. Koch, and L. Trahms, “Spatial distribution of cardiac magnetic vector fields acquired from 3120 SQUID positions,” Neurol. Clin. Neurophysiol. 59, 1–6 (2004).

Opt. Express (2)

Opt. Spectrosc. (1)

A. Vershovskiĭ, “A new method of absolute measurement of the three components of the magnetic field,” Opt. Spectrosc. 101(2), 309–316 (2006).
[Crossref]

Pediatr. Res. (1)

H. Horigome, K. Ogata, A. Kandori, T. Miyashita, M. Takahashi-Igari, Y.-J. Chen, H. Hamada, and K. Tsukada, “Standardization of the PQRST waveform and analysis of arrhythmias in the fetus using vector magnetocardiography,” Pediatr. Res. 59(1), 121–125 (2006).
[Crossref]

Phys. Med. Biol. (2)

V. Mäntynen, T. Konttila, and M. Stenroos, “Investigations of sensitivity and resolution of ECG and MCG in a realistically shaped thorax model,” Phys. Med. Biol. 59(23), 7141–7158 (2014).
[Crossref]

R. Wyllie, M. Kauer, G. Smetana, R. Wakai, and T. Walker, “Magnetocardiography with a modular spin-exchange relaxation-free atomic magnetometer array,” Phys. Med. Biol. 57(9), 2619–2632 (2012).
[Crossref]

Phys. Rev. A (2)

L. Lenci, A. Auyuanet, S. Barreiro, P. Valente, A. Lezama, and H. Failache, “Vectorial atomic magnetometer based on coherent transients of laser absorption in Rb vapor,” Phys. Rev. A 89(4), 043836 (2014).
[Crossref]

K. Cox, V. I. Yudin, A. V. Taichenachev, I. Novikova, and E. E. Mikhailov, “Measurements of the magnetic field vector using multiple electromagnetically induced transparency resonances in Rb vapor,” Phys. Rev. A 83(1), 015801 (2011).
[Crossref]

Phys. Rev. Lett. (2)

B. Patton, E. Zhivun, D. C. Hovde, and D. Budker, “All-optical vector atomic magnetometer,” Phys. Rev. Lett. 113(1), 013001 (2014).
[Crossref]

D. Sheng, S. Li, N. Dural, and M. V. Romalis, “Subfemtotesla scalar atomic magnetometry using multipass cells,” Phys. Rev. Lett. 110(16), 160802 (2013).
[Crossref]

Science (1)

W. H. Barry, W. M. Fairbank, D. C. Harrison, K. L. Lehrman, J. A. Malmivuo, and J. P. Wikswo, “Measurement of the human magnetic heart vector,” Science 198(4322), 1159–1162 (1977).
[Crossref]

Sens. Actuators, A (1)

J. Tomek, A. Platil, P. Ripka, and P. Kaspar, “Application of fluxgate gradiometer in magnetopneumography,” Sens. Actuators, A 132(1), 214–217 (2006).
[Crossref]

Other (2)

W. Andrä and H. Nowak, Magnetism in Medicine: A Handbook (John Wiley & Sons, 2007).

R. R. Fenici, M. Masselli, L. Lopez, and G. Melillo, “Clinical value of magnetocardiography,” in Electrocardiography and Cardiac Drug Therapy (Springer, 1989), pp. 239–258.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1.
Fig. 1. Schematic diagram and photograph of the magnetometer sensor. BS: beam splitter, RP: right angle reflective prism, PBS: polarized beam splitter, PD: photodiode, LP: linear polarizer, $\lambda$/4: quarter-wave plate, SG: signal generator. $B_{0}$ is the constant bias magnetic field. $B_{rf}$ coil is used to generate an oscillating magnetic field $B_{rf}$ whic is perpendicular to $B_0$.
Fig. 2.
Fig. 2. Schematic diagram of measuring a weak magnetic field $\vec B'$ in a much larger bias magnetic field $\vec B_{0}$.
Fig. 3.
Fig. 3. Schematic diagram of VMCG measurement. The tested male was pushed into a 5-layer permalloy cylindrical magnetic shield by a slideable bed. One end of the cylindrical shield was open. The sensor head was attached to a three-dimensionally movable holder. The optical axis direction is displayed at the upper right. A total of 9 sites above the chest were selected for VMCG measurements.
Fig. 4.
Fig. 4. Measured sensitivity of the magnetometer in three directions. The dotted line indicates a sensitivity of 300 ${\textrm {fT}}/\sqrt {\textrm{Hz}}$.
Fig. 5.
Fig. 5. Real-time cardiac signals of the tested male detected simultaneously with ECG electrodes (blue) and the EPMx OPM (red).
Fig. 6.
Fig. 6. Averaged MCG signals (20 beats) of all sites at different directions.
Fig. 7.
Fig. 7. MVL map synthesis for site A. The left side is the ECG signal and the MCG signals in different directions. For the sake of distinction, P, QRS, and T waves are marked with different colors. The right side is the corresponding MVL map.
Fig. 8.
Fig. 8. Characterization of VMCG signals. (a) Synthetic VML maps at different measurement positions. The viewing angle is 45 degrees based on the y axis and z axis. (b) Fitted characteristic planes for QRS and T loops. n-QRS (T) denotes the normal vector of the QRS (T) plane. v-QRS (T) denotes the principal axis of the QRS (T) loop, defined as the largest vector from the origin to the trace of the QRS (T) loop.

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

d S d t = γ S × B + Γ P ( S 0 S ) Γ rel S
P qu ( δ ) = P 0 sin ( 2 ϑ ) Ω Γ 2 Ω 2 Γ 2 / Γ 1 + Γ 2 2 + δ 2 ,
P ip ( δ ) = P 0 sin ( 2 ϑ ) δ Ω Ω 2 Γ 2 / Γ 1 + Γ 2 2 + δ 2 .
B 0 = ω r f γ .
B B 0 = ( B 0 + B ) 2 + B 2 B 0 = ( ( B 0 + B ) 2 + B 2 B 0 ) ( ( B 0 + B ) 2 + B 2 + B 0 ) ( B 0 + B ) 2 + B 2 + B 0 = B 2 + B 2 + 2 B B 0 ( B 0 + B ) 2 + B 2 + B 0
B 2 + B 2 + 2 B B 0 ( B 0 + B ) 2 + B 2 + B 0 B .
B B 0 + B .

Metrics