Abstract

Depth-resolved optical attenuation coefficient is a valuable tissue parameter that complements the intensity-based structural information in optical coherent tomography (OCT) imaging. Herein we systematically analyzed the under- and over-estimation bias of existing depth-resolved methods when applied to real biological tissues, and then proposed a new algorithm that remedies these issues and accommodates general OCT data that contain incomplete decay and noise floor, thereby affording consistent estimation accuracy for practical biological samples of different scattering properties. Compared with other algorithms, our method demonstrates remarkably improved estimation accuracy and numerical robustness, as validated via numerical simulations and on experimental OCT data obtained from both silicone-TiO2 phantoms and human ventral tongue leukoplakia samples.

© 2020 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Depth-resolved model-based reconstruction of attenuation coefficients in optical coherence tomography

K. A. Vermeer, J. Mo, J. J. A. Weda, H. G. Lemij, and J. F. de Boer
Biomed. Opt. Express 5(1) 322-337 (2014)

Depth-resolved analytical model and correction algorithm for photothermal optical coherence tomography

Maryse Lapierre-Landry, Jason M. Tucker-Schwartz, and Melissa C. Skala
Biomed. Opt. Express 7(7) 2607-2622 (2016)

Correlation of optical attenuation coefficient estimated using optical coherence tomography with changes in astrocytes and neurons in a chronic photothrombosis stroke model

Shanshan Yang, Kezhou Liu, Lin Yao, Kaiyuan Liu, Guoqing Weng, Kedi Xu, and Peng Li
Biomed. Opt. Express 10(12) 6258-6271 (2019)

References

  • View by:
  • |
  • |
  • |

  1. D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, and C. A. Puliafito, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
    [Crossref]
  2. J. F. de Boer, R. Leitge, and M. Wojtkowski, “Twenty-five years of optical coherence tomography: the paradigm shift in sensitivity and speed provided by Fourier domain OCT [Invited],” Biomed. Opt. Express 8(7), 3248–3280 (2017).
    [Crossref]
  3. S. L. Jacques, “Optical properties of biological tissues: a review,” Phys. Med. Biol. 58(11), R37–R61 (2013).
    [Crossref]
  4. D. J. Faber, F. J. van der Meer, M. C. G. Aalders, and T. G. van Leeuwen, “Quantitative measurement of attenuation coefficients of weakly scattering media using optical coherence tomography,” Opt. Express 12(19), 4353–4365 (2004).
    [Crossref]
  5. K. Y. Li, W. X. Liang, J. Mavadia-Shukla, H. C. Park, D. Li, W. Yuan, S. R. Wan, and X. D. Li, “Super-achromatic optical coherence tomography capsule for ultrahigh-resolution imaging of esophagus,” J. Biophotonics 12(3), e201800205 (2019).
    [Crossref]
  6. A. I. Kholodnykh, I. Y. Petrova, K. V. Larin, M. Motamedi, and R. O. Esenaliev, “Precision of measurement of tissue optical properties with optical coherence tomography,” Appl. Opt. 42(16), 3027–3037 (2003).
    [Crossref]
  7. G. van Soest, T. Goderie, E. Regar, S. Koljenovic, G. L. van Leenders, N. Gonzalo, S. van Noorden, T. Okamura, B. E. Bouma, G. J. Tearney, J. W. Oosterhuis, P. W. Serruys, and A. F. van der Steen, “Atherosclerotic tissue characterization in vivo by optical coherence tomography attenuation imaging,” J. Biomed. Opt. 15(1), 011105 (2010).
    [Crossref]
  8. C. Kut, K. L. Chaichana, J. F. Xi, S. M. Raza, X. B. Ye, E. R. McVeigh, F. J. Rodriguez, A. Quinones-Hinojosa, and X. D. Li, “Detection of human brain cancer infiltration ex vivo and in vivo using quantitative optical coherence tomography,” Sci. Transl. Med. 7(292), 292ra100 (2015).
    [Crossref]
  9. W. Yuan, C. Kut, W. Liang, and X. Li, “Robust and fast characterization of OCT-based optical attenuation using a novel frequency-domain algorithm for brain cancer detection,” Sci. Rep. 7(1), 44909 (2017).
    [Crossref]
  10. A. I. Kholodnykh, I. Y. Petrova, M. Motamedi, and R. O. Esenaliev, “Accurate measurement of total attenuation coefficient of thin tissue with optical coherence tomography,” IEEE J. Sel. Top. Quantum Electron. 9(2), 210–221 (2003).
    [Crossref]
  11. D. Levitz, L. Thrane, M. H. Frosz, P. E. Andersen, C. B. Andersen, J. Valanciunaite, J. Swartling, S. Andersson-Engels, and P. R. Hansen, “Determination of optical scattering properties of highly-scattering media in optical coherence tomography images,” Opt. Express 12(2), 249–259 (2004).
    [Crossref]
  12. P. Lee, W. Gao, and X. Zhang, “Performance of single-scattering model versus multiple-scattering model in the determination of optical properties of biological tissue with optical coherence tomography,” Appl. Opt. 49(18), 3538–3544 (2010).
    [Crossref]
  13. J. Xi, Y. Chen, and X. Li, “Characterizing optical properties of nano contrast agents by using cross-referencing OCT imaging,” Biomed. Opt. Express 4(6), 842–851 (2013).
    [Crossref]
  14. H. Wang, C. Magnain, S. Sakadžić, B. Fischl, and D. A. Boas, “Characterizing the optical properties of human brain tissue with high numerical aperture optical coherence tomography,” Biomed. Opt. Express 8(12), 5617 (2017).
    [Crossref]
  15. K. A. Vermeer, J. Mo, J. J. Weda, H. G. Lemij, and J. F. de Boer, “Depth-resolved model-based reconstruction of attenuation coefficients in optical coherence tomography,” Biomed. Opt. Express 5(1), 322–337 (2014).
    [Crossref]
  16. C. L. R. Rodriguez, J. I. Szu, M. M. Eberle, Y. Wang, M. S. Hsu, D. K. Binder, and B. H. Park, “Decreased light attenuation in cerebral cortex during cerebral edema detected using optical coherence tomography,” Neurophotonics 1(2), 025004 (2014).
    [Crossref]
  17. G. T. Smith, N. Dwork, D. O’Connor, U. Sikora, K. L. Lurie, J. M. Pauly, and A. K. Ellerbee, “Automated, Depth-Resolved Estimation of the Attenuation Coefficient From Optical Coherence Tomography Data,” IEEE Trans. Med. Imaging 34(12), 2592–2602 (2015).
    [Crossref]
  18. J. M. Schmitt, A. Knuttel, A. Gandjbakhche, and R. F. Bonner, “Optical Characterization of Dense Tissues Using Low-Coherence Interferometry,” Proc. SPIE 1889, 197–211 (1993).
    [Crossref]
  19. J. M. Schmitt and A. Knuttel, “Model of optical coherence tomography of heterogeneous tissue,” J. Opt. Soc. Am. A 14(6), 1231–1242 (1997).
    [Crossref]
  20. J. Liu, N. Ding, Y. Yu, X. C. Yuan, S. Z. Luo, J. M. Luan, Y. Q. Zhao, Y. Wang, and Z. H. Ma, “Optimized depth-resolved estimation to measure optical attenuation coefficients from optical coherence tomography and its application in cerebral damage determination,” J. Biomed. Opt. 24(3), 1–11 (2019).
    [Crossref]
  21. M. M. Amaral, D. M. Zezell, A. F. G. Monte, A. C. B. de Cara, J. C. R. Araujo, A. Antunes, and A. Z. Freitas, “General model for depth-resolved estimation of the optical attenuation coefficients in optical coherence tomography,” J. Biophotonics 12(10), e201800402 (2019).
    [Crossref]
  22. S. A. Glantz, B. K. Slinker, and T. B. Neilands, Primer of Applied Regression and Analysis of Variance (McGraw-Hill New York1990).
  23. N. R. Draper and H. Smith, Applied Regression Analysis (John Wiley & Sons1998).
  24. D. M. de Bruin, R. H. Bremmer, V. M. Kodach, R. de Kinkelder, J. van Marle, T. G. van Leeuwen, and D. J. Faber, “Optical phantoms of varying geometry based on thin building blocks with controlled optical properties,” J. Biomed. Opt. 15(2), 025001 (2010).
    [Crossref]
  25. S. H. Yun, G. J. Tearney, B. E. Bouma, B. H. Park, and J. F. de Boer, “High-speed spectral-domain optical coherence tomography at 1.3 mu m wavelength,” Opt. Express 11(26), 3598–3604 (2003).
    [Crossref]
  26. T. G. van Leeuwen, D. J. Faber, and M. C. Aalders, “Measurement of the axial point spread function in scattering media using single-mode fiber-based optical coherence tomography,” IEEE J. Sel. Top. Quantum Electron. 9(2), 227–233 (2003).
    [Crossref]
  27. M. Almasian, N. Bosschaart, T. G. van Leeuwen, and D. J. Faber, “Validation of quantitative attenuation and backscattering coefficient measurements by optical coherence tomography in the concentration-dependent and multiple scattering regime,” J. Biomed. Opt. 20(12), 121314 (2015).
    [Crossref]
  28. S. Stefan, K. S. Jeong, C. Polucha, N. Tapinos, S. A. Toms, and J. Lee, “Determination of confocal profile and curved focal plane for OCT mapping of the attenuation coefficient,” Biomed. Opt. Express 9(10), 5084–5099 (2018).
    [Crossref]
  29. N. Dwork, G. T. Smith, T. Leng, J. M. Pauly, and A. K. Bowden, “Automatically Determining the Confocal Parameters From OCT B-Scans for Quantification of the Attenuation Coefficients,” IEEE Trans. Med. Imaging 38(1), 261–268 (2019).
    [Crossref]
  30. G. J. Tearney, M. E. Brezinski, J. F. Southern, B. E. Bouma, M. R. Hee, and J. G. Fujimoto, “Determination of the Refractive-Index of Highly Scattering Human Tissue by Optical Coherence Tomography,” Opt. Lett. 20(21), 2258–2260 (1995).
    [Crossref]
  31. S. Kim, J. Na, M. J. Kim, and B. H. Lee, “Simultaneous measurement of refractive index and thickness by combining low-coherence interferometry and confocal optics,” Opt. Express 16(8), 5516–5526 (2008).
    [Crossref]
  32. G. Min, W. J. Choi, J. W. Kim, and B. H. Lee, “Refractive index measurements of multiple layers using numerical refocusing in FF-OCT,” Opt. Express 21(24), 29955–29967 (2013).
    [Crossref]
  33. J. L. Zhang, W. Yuan, W. X. Liang, S. Y. Yu, Y. M. Liang, Z. Y. Xu, Y. X. Wei, and X. D. Li, “Automatic and robust segmentation of endoscopic OCT images and optical staining,” Biomed. Opt. Express 8(5), 2697–2708 (2017).
    [Crossref]
  34. M. Gan, C. Wang, T. Yang, N. Yang, M. Zhang, W. Yuan, X. D. Li, and L. R. Wang, “Robust layer segmentation of esophageal OCT images based on graph search using edge-enhanced weights,” Biomed. Opt. Express 9(9), 4481–4495 (2018).
    [Crossref]
  35. A. Shah, L. X. Zhou, M. D. Abramoff, and X. D. Wu, “Multiple surface segmentation using convolution neural nets: application to retinal layer segmentation in OCT images,” Biomed. Opt. Express 9(9), 4509–4526 (2018).
    [Crossref]
  36. D. H. Xiang, H. H. Tian, X. L. Yang, F. Shi, W. F. Zhu, H. Y. Chen, and X. J. Chen, “Automatic Segmentation of Retinal Layer in OCT Images With Choroidal Neovascularization,” IEEE Trans. Image Process. 27(12), 5880–5891 (2018).
    [Crossref]
  37. C. Wang, M. Gan, N. Yang, T. Yang, M. Zhang, S. H. Nao, J. Zhu, H. Y. Ge, and L. R. Wang, “Fast esophageal layer segmentation in OCT images of guinea pigs based on sparse Bayesian classification and graph search,” Biomed. Opt. Express 10(2), 978–994 (2019).
    [Crossref]

2019 (5)

K. Y. Li, W. X. Liang, J. Mavadia-Shukla, H. C. Park, D. Li, W. Yuan, S. R. Wan, and X. D. Li, “Super-achromatic optical coherence tomography capsule for ultrahigh-resolution imaging of esophagus,” J. Biophotonics 12(3), e201800205 (2019).
[Crossref]

J. Liu, N. Ding, Y. Yu, X. C. Yuan, S. Z. Luo, J. M. Luan, Y. Q. Zhao, Y. Wang, and Z. H. Ma, “Optimized depth-resolved estimation to measure optical attenuation coefficients from optical coherence tomography and its application in cerebral damage determination,” J. Biomed. Opt. 24(3), 1–11 (2019).
[Crossref]

M. M. Amaral, D. M. Zezell, A. F. G. Monte, A. C. B. de Cara, J. C. R. Araujo, A. Antunes, and A. Z. Freitas, “General model for depth-resolved estimation of the optical attenuation coefficients in optical coherence tomography,” J. Biophotonics 12(10), e201800402 (2019).
[Crossref]

N. Dwork, G. T. Smith, T. Leng, J. M. Pauly, and A. K. Bowden, “Automatically Determining the Confocal Parameters From OCT B-Scans for Quantification of the Attenuation Coefficients,” IEEE Trans. Med. Imaging 38(1), 261–268 (2019).
[Crossref]

C. Wang, M. Gan, N. Yang, T. Yang, M. Zhang, S. H. Nao, J. Zhu, H. Y. Ge, and L. R. Wang, “Fast esophageal layer segmentation in OCT images of guinea pigs based on sparse Bayesian classification and graph search,” Biomed. Opt. Express 10(2), 978–994 (2019).
[Crossref]

2018 (4)

2017 (4)

2015 (3)

G. T. Smith, N. Dwork, D. O’Connor, U. Sikora, K. L. Lurie, J. M. Pauly, and A. K. Ellerbee, “Automated, Depth-Resolved Estimation of the Attenuation Coefficient From Optical Coherence Tomography Data,” IEEE Trans. Med. Imaging 34(12), 2592–2602 (2015).
[Crossref]

C. Kut, K. L. Chaichana, J. F. Xi, S. M. Raza, X. B. Ye, E. R. McVeigh, F. J. Rodriguez, A. Quinones-Hinojosa, and X. D. Li, “Detection of human brain cancer infiltration ex vivo and in vivo using quantitative optical coherence tomography,” Sci. Transl. Med. 7(292), 292ra100 (2015).
[Crossref]

M. Almasian, N. Bosschaart, T. G. van Leeuwen, and D. J. Faber, “Validation of quantitative attenuation and backscattering coefficient measurements by optical coherence tomography in the concentration-dependent and multiple scattering regime,” J. Biomed. Opt. 20(12), 121314 (2015).
[Crossref]

2014 (2)

K. A. Vermeer, J. Mo, J. J. Weda, H. G. Lemij, and J. F. de Boer, “Depth-resolved model-based reconstruction of attenuation coefficients in optical coherence tomography,” Biomed. Opt. Express 5(1), 322–337 (2014).
[Crossref]

C. L. R. Rodriguez, J. I. Szu, M. M. Eberle, Y. Wang, M. S. Hsu, D. K. Binder, and B. H. Park, “Decreased light attenuation in cerebral cortex during cerebral edema detected using optical coherence tomography,” Neurophotonics 1(2), 025004 (2014).
[Crossref]

2013 (3)

2010 (3)

D. M. de Bruin, R. H. Bremmer, V. M. Kodach, R. de Kinkelder, J. van Marle, T. G. van Leeuwen, and D. J. Faber, “Optical phantoms of varying geometry based on thin building blocks with controlled optical properties,” J. Biomed. Opt. 15(2), 025001 (2010).
[Crossref]

G. van Soest, T. Goderie, E. Regar, S. Koljenovic, G. L. van Leenders, N. Gonzalo, S. van Noorden, T. Okamura, B. E. Bouma, G. J. Tearney, J. W. Oosterhuis, P. W. Serruys, and A. F. van der Steen, “Atherosclerotic tissue characterization in vivo by optical coherence tomography attenuation imaging,” J. Biomed. Opt. 15(1), 011105 (2010).
[Crossref]

P. Lee, W. Gao, and X. Zhang, “Performance of single-scattering model versus multiple-scattering model in the determination of optical properties of biological tissue with optical coherence tomography,” Appl. Opt. 49(18), 3538–3544 (2010).
[Crossref]

2008 (1)

2004 (2)

2003 (4)

A. I. Kholodnykh, I. Y. Petrova, K. V. Larin, M. Motamedi, and R. O. Esenaliev, “Precision of measurement of tissue optical properties with optical coherence tomography,” Appl. Opt. 42(16), 3027–3037 (2003).
[Crossref]

A. I. Kholodnykh, I. Y. Petrova, M. Motamedi, and R. O. Esenaliev, “Accurate measurement of total attenuation coefficient of thin tissue with optical coherence tomography,” IEEE J. Sel. Top. Quantum Electron. 9(2), 210–221 (2003).
[Crossref]

S. H. Yun, G. J. Tearney, B. E. Bouma, B. H. Park, and J. F. de Boer, “High-speed spectral-domain optical coherence tomography at 1.3 mu m wavelength,” Opt. Express 11(26), 3598–3604 (2003).
[Crossref]

T. G. van Leeuwen, D. J. Faber, and M. C. Aalders, “Measurement of the axial point spread function in scattering media using single-mode fiber-based optical coherence tomography,” IEEE J. Sel. Top. Quantum Electron. 9(2), 227–233 (2003).
[Crossref]

1997 (1)

1995 (1)

1993 (1)

J. M. Schmitt, A. Knuttel, A. Gandjbakhche, and R. F. Bonner, “Optical Characterization of Dense Tissues Using Low-Coherence Interferometry,” Proc. SPIE 1889, 197–211 (1993).
[Crossref]

1991 (1)

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, and C. A. Puliafito, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref]

Aalders, M. C.

T. G. van Leeuwen, D. J. Faber, and M. C. Aalders, “Measurement of the axial point spread function in scattering media using single-mode fiber-based optical coherence tomography,” IEEE J. Sel. Top. Quantum Electron. 9(2), 227–233 (2003).
[Crossref]

Aalders, M. C. G.

Abramoff, M. D.

Almasian, M.

M. Almasian, N. Bosschaart, T. G. van Leeuwen, and D. J. Faber, “Validation of quantitative attenuation and backscattering coefficient measurements by optical coherence tomography in the concentration-dependent and multiple scattering regime,” J. Biomed. Opt. 20(12), 121314 (2015).
[Crossref]

Amaral, M. M.

M. M. Amaral, D. M. Zezell, A. F. G. Monte, A. C. B. de Cara, J. C. R. Araujo, A. Antunes, and A. Z. Freitas, “General model for depth-resolved estimation of the optical attenuation coefficients in optical coherence tomography,” J. Biophotonics 12(10), e201800402 (2019).
[Crossref]

Andersen, C. B.

Andersen, P. E.

Andersson-Engels, S.

Antunes, A.

M. M. Amaral, D. M. Zezell, A. F. G. Monte, A. C. B. de Cara, J. C. R. Araujo, A. Antunes, and A. Z. Freitas, “General model for depth-resolved estimation of the optical attenuation coefficients in optical coherence tomography,” J. Biophotonics 12(10), e201800402 (2019).
[Crossref]

Araujo, J. C. R.

M. M. Amaral, D. M. Zezell, A. F. G. Monte, A. C. B. de Cara, J. C. R. Araujo, A. Antunes, and A. Z. Freitas, “General model for depth-resolved estimation of the optical attenuation coefficients in optical coherence tomography,” J. Biophotonics 12(10), e201800402 (2019).
[Crossref]

Binder, D. K.

C. L. R. Rodriguez, J. I. Szu, M. M. Eberle, Y. Wang, M. S. Hsu, D. K. Binder, and B. H. Park, “Decreased light attenuation in cerebral cortex during cerebral edema detected using optical coherence tomography,” Neurophotonics 1(2), 025004 (2014).
[Crossref]

Boas, D. A.

Bonner, R. F.

J. M. Schmitt, A. Knuttel, A. Gandjbakhche, and R. F. Bonner, “Optical Characterization of Dense Tissues Using Low-Coherence Interferometry,” Proc. SPIE 1889, 197–211 (1993).
[Crossref]

Bosschaart, N.

M. Almasian, N. Bosschaart, T. G. van Leeuwen, and D. J. Faber, “Validation of quantitative attenuation and backscattering coefficient measurements by optical coherence tomography in the concentration-dependent and multiple scattering regime,” J. Biomed. Opt. 20(12), 121314 (2015).
[Crossref]

Bouma, B. E.

G. van Soest, T. Goderie, E. Regar, S. Koljenovic, G. L. van Leenders, N. Gonzalo, S. van Noorden, T. Okamura, B. E. Bouma, G. J. Tearney, J. W. Oosterhuis, P. W. Serruys, and A. F. van der Steen, “Atherosclerotic tissue characterization in vivo by optical coherence tomography attenuation imaging,” J. Biomed. Opt. 15(1), 011105 (2010).
[Crossref]

S. H. Yun, G. J. Tearney, B. E. Bouma, B. H. Park, and J. F. de Boer, “High-speed spectral-domain optical coherence tomography at 1.3 mu m wavelength,” Opt. Express 11(26), 3598–3604 (2003).
[Crossref]

G. J. Tearney, M. E. Brezinski, J. F. Southern, B. E. Bouma, M. R. Hee, and J. G. Fujimoto, “Determination of the Refractive-Index of Highly Scattering Human Tissue by Optical Coherence Tomography,” Opt. Lett. 20(21), 2258–2260 (1995).
[Crossref]

Bowden, A. K.

N. Dwork, G. T. Smith, T. Leng, J. M. Pauly, and A. K. Bowden, “Automatically Determining the Confocal Parameters From OCT B-Scans for Quantification of the Attenuation Coefficients,” IEEE Trans. Med. Imaging 38(1), 261–268 (2019).
[Crossref]

Bremmer, R. H.

D. M. de Bruin, R. H. Bremmer, V. M. Kodach, R. de Kinkelder, J. van Marle, T. G. van Leeuwen, and D. J. Faber, “Optical phantoms of varying geometry based on thin building blocks with controlled optical properties,” J. Biomed. Opt. 15(2), 025001 (2010).
[Crossref]

Brezinski, M. E.

Chaichana, K. L.

C. Kut, K. L. Chaichana, J. F. Xi, S. M. Raza, X. B. Ye, E. R. McVeigh, F. J. Rodriguez, A. Quinones-Hinojosa, and X. D. Li, “Detection of human brain cancer infiltration ex vivo and in vivo using quantitative optical coherence tomography,” Sci. Transl. Med. 7(292), 292ra100 (2015).
[Crossref]

Chang, W.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, and C. A. Puliafito, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref]

Chen, H. Y.

D. H. Xiang, H. H. Tian, X. L. Yang, F. Shi, W. F. Zhu, H. Y. Chen, and X. J. Chen, “Automatic Segmentation of Retinal Layer in OCT Images With Choroidal Neovascularization,” IEEE Trans. Image Process. 27(12), 5880–5891 (2018).
[Crossref]

Chen, X. J.

D. H. Xiang, H. H. Tian, X. L. Yang, F. Shi, W. F. Zhu, H. Y. Chen, and X. J. Chen, “Automatic Segmentation of Retinal Layer in OCT Images With Choroidal Neovascularization,” IEEE Trans. Image Process. 27(12), 5880–5891 (2018).
[Crossref]

Chen, Y.

Choi, W. J.

de Boer, J. F.

de Bruin, D. M.

D. M. de Bruin, R. H. Bremmer, V. M. Kodach, R. de Kinkelder, J. van Marle, T. G. van Leeuwen, and D. J. Faber, “Optical phantoms of varying geometry based on thin building blocks with controlled optical properties,” J. Biomed. Opt. 15(2), 025001 (2010).
[Crossref]

de Cara, A. C. B.

M. M. Amaral, D. M. Zezell, A. F. G. Monte, A. C. B. de Cara, J. C. R. Araujo, A. Antunes, and A. Z. Freitas, “General model for depth-resolved estimation of the optical attenuation coefficients in optical coherence tomography,” J. Biophotonics 12(10), e201800402 (2019).
[Crossref]

de Kinkelder, R.

D. M. de Bruin, R. H. Bremmer, V. M. Kodach, R. de Kinkelder, J. van Marle, T. G. van Leeuwen, and D. J. Faber, “Optical phantoms of varying geometry based on thin building blocks with controlled optical properties,” J. Biomed. Opt. 15(2), 025001 (2010).
[Crossref]

Ding, N.

J. Liu, N. Ding, Y. Yu, X. C. Yuan, S. Z. Luo, J. M. Luan, Y. Q. Zhao, Y. Wang, and Z. H. Ma, “Optimized depth-resolved estimation to measure optical attenuation coefficients from optical coherence tomography and its application in cerebral damage determination,” J. Biomed. Opt. 24(3), 1–11 (2019).
[Crossref]

Draper, N. R.

N. R. Draper and H. Smith, Applied Regression Analysis (John Wiley & Sons1998).

Dwork, N.

N. Dwork, G. T. Smith, T. Leng, J. M. Pauly, and A. K. Bowden, “Automatically Determining the Confocal Parameters From OCT B-Scans for Quantification of the Attenuation Coefficients,” IEEE Trans. Med. Imaging 38(1), 261–268 (2019).
[Crossref]

G. T. Smith, N. Dwork, D. O’Connor, U. Sikora, K. L. Lurie, J. M. Pauly, and A. K. Ellerbee, “Automated, Depth-Resolved Estimation of the Attenuation Coefficient From Optical Coherence Tomography Data,” IEEE Trans. Med. Imaging 34(12), 2592–2602 (2015).
[Crossref]

Eberle, M. M.

C. L. R. Rodriguez, J. I. Szu, M. M. Eberle, Y. Wang, M. S. Hsu, D. K. Binder, and B. H. Park, “Decreased light attenuation in cerebral cortex during cerebral edema detected using optical coherence tomography,” Neurophotonics 1(2), 025004 (2014).
[Crossref]

Ellerbee, A. K.

G. T. Smith, N. Dwork, D. O’Connor, U. Sikora, K. L. Lurie, J. M. Pauly, and A. K. Ellerbee, “Automated, Depth-Resolved Estimation of the Attenuation Coefficient From Optical Coherence Tomography Data,” IEEE Trans. Med. Imaging 34(12), 2592–2602 (2015).
[Crossref]

Esenaliev, R. O.

A. I. Kholodnykh, I. Y. Petrova, K. V. Larin, M. Motamedi, and R. O. Esenaliev, “Precision of measurement of tissue optical properties with optical coherence tomography,” Appl. Opt. 42(16), 3027–3037 (2003).
[Crossref]

A. I. Kholodnykh, I. Y. Petrova, M. Motamedi, and R. O. Esenaliev, “Accurate measurement of total attenuation coefficient of thin tissue with optical coherence tomography,” IEEE J. Sel. Top. Quantum Electron. 9(2), 210–221 (2003).
[Crossref]

Faber, D. J.

M. Almasian, N. Bosschaart, T. G. van Leeuwen, and D. J. Faber, “Validation of quantitative attenuation and backscattering coefficient measurements by optical coherence tomography in the concentration-dependent and multiple scattering regime,” J. Biomed. Opt. 20(12), 121314 (2015).
[Crossref]

D. M. de Bruin, R. H. Bremmer, V. M. Kodach, R. de Kinkelder, J. van Marle, T. G. van Leeuwen, and D. J. Faber, “Optical phantoms of varying geometry based on thin building blocks with controlled optical properties,” J. Biomed. Opt. 15(2), 025001 (2010).
[Crossref]

D. J. Faber, F. J. van der Meer, M. C. G. Aalders, and T. G. van Leeuwen, “Quantitative measurement of attenuation coefficients of weakly scattering media using optical coherence tomography,” Opt. Express 12(19), 4353–4365 (2004).
[Crossref]

T. G. van Leeuwen, D. J. Faber, and M. C. Aalders, “Measurement of the axial point spread function in scattering media using single-mode fiber-based optical coherence tomography,” IEEE J. Sel. Top. Quantum Electron. 9(2), 227–233 (2003).
[Crossref]

Fischl, B.

Flotte, T.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, and C. A. Puliafito, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref]

Freitas, A. Z.

M. M. Amaral, D. M. Zezell, A. F. G. Monte, A. C. B. de Cara, J. C. R. Araujo, A. Antunes, and A. Z. Freitas, “General model for depth-resolved estimation of the optical attenuation coefficients in optical coherence tomography,” J. Biophotonics 12(10), e201800402 (2019).
[Crossref]

Frosz, M. H.

Fujimoto, J. G.

Gan, M.

Gandjbakhche, A.

J. M. Schmitt, A. Knuttel, A. Gandjbakhche, and R. F. Bonner, “Optical Characterization of Dense Tissues Using Low-Coherence Interferometry,” Proc. SPIE 1889, 197–211 (1993).
[Crossref]

Gao, W.

Ge, H. Y.

Glantz, S. A.

S. A. Glantz, B. K. Slinker, and T. B. Neilands, Primer of Applied Regression and Analysis of Variance (McGraw-Hill New York1990).

Goderie, T.

G. van Soest, T. Goderie, E. Regar, S. Koljenovic, G. L. van Leenders, N. Gonzalo, S. van Noorden, T. Okamura, B. E. Bouma, G. J. Tearney, J. W. Oosterhuis, P. W. Serruys, and A. F. van der Steen, “Atherosclerotic tissue characterization in vivo by optical coherence tomography attenuation imaging,” J. Biomed. Opt. 15(1), 011105 (2010).
[Crossref]

Gonzalo, N.

G. van Soest, T. Goderie, E. Regar, S. Koljenovic, G. L. van Leenders, N. Gonzalo, S. van Noorden, T. Okamura, B. E. Bouma, G. J. Tearney, J. W. Oosterhuis, P. W. Serruys, and A. F. van der Steen, “Atherosclerotic tissue characterization in vivo by optical coherence tomography attenuation imaging,” J. Biomed. Opt. 15(1), 011105 (2010).
[Crossref]

Gregory, K.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, and C. A. Puliafito, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref]

Hansen, P. R.

Hee, M. R.

G. J. Tearney, M. E. Brezinski, J. F. Southern, B. E. Bouma, M. R. Hee, and J. G. Fujimoto, “Determination of the Refractive-Index of Highly Scattering Human Tissue by Optical Coherence Tomography,” Opt. Lett. 20(21), 2258–2260 (1995).
[Crossref]

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, and C. A. Puliafito, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref]

Hsu, M. S.

C. L. R. Rodriguez, J. I. Szu, M. M. Eberle, Y. Wang, M. S. Hsu, D. K. Binder, and B. H. Park, “Decreased light attenuation in cerebral cortex during cerebral edema detected using optical coherence tomography,” Neurophotonics 1(2), 025004 (2014).
[Crossref]

Huang, D.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, and C. A. Puliafito, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref]

Jacques, S. L.

S. L. Jacques, “Optical properties of biological tissues: a review,” Phys. Med. Biol. 58(11), R37–R61 (2013).
[Crossref]

Jeong, K. S.

Kholodnykh, A. I.

A. I. Kholodnykh, I. Y. Petrova, K. V. Larin, M. Motamedi, and R. O. Esenaliev, “Precision of measurement of tissue optical properties with optical coherence tomography,” Appl. Opt. 42(16), 3027–3037 (2003).
[Crossref]

A. I. Kholodnykh, I. Y. Petrova, M. Motamedi, and R. O. Esenaliev, “Accurate measurement of total attenuation coefficient of thin tissue with optical coherence tomography,” IEEE J. Sel. Top. Quantum Electron. 9(2), 210–221 (2003).
[Crossref]

Kim, J. W.

Kim, M. J.

Kim, S.

Knuttel, A.

J. M. Schmitt and A. Knuttel, “Model of optical coherence tomography of heterogeneous tissue,” J. Opt. Soc. Am. A 14(6), 1231–1242 (1997).
[Crossref]

J. M. Schmitt, A. Knuttel, A. Gandjbakhche, and R. F. Bonner, “Optical Characterization of Dense Tissues Using Low-Coherence Interferometry,” Proc. SPIE 1889, 197–211 (1993).
[Crossref]

Kodach, V. M.

D. M. de Bruin, R. H. Bremmer, V. M. Kodach, R. de Kinkelder, J. van Marle, T. G. van Leeuwen, and D. J. Faber, “Optical phantoms of varying geometry based on thin building blocks with controlled optical properties,” J. Biomed. Opt. 15(2), 025001 (2010).
[Crossref]

Koljenovic, S.

G. van Soest, T. Goderie, E. Regar, S. Koljenovic, G. L. van Leenders, N. Gonzalo, S. van Noorden, T. Okamura, B. E. Bouma, G. J. Tearney, J. W. Oosterhuis, P. W. Serruys, and A. F. van der Steen, “Atherosclerotic tissue characterization in vivo by optical coherence tomography attenuation imaging,” J. Biomed. Opt. 15(1), 011105 (2010).
[Crossref]

Kut, C.

W. Yuan, C. Kut, W. Liang, and X. Li, “Robust and fast characterization of OCT-based optical attenuation using a novel frequency-domain algorithm for brain cancer detection,” Sci. Rep. 7(1), 44909 (2017).
[Crossref]

C. Kut, K. L. Chaichana, J. F. Xi, S. M. Raza, X. B. Ye, E. R. McVeigh, F. J. Rodriguez, A. Quinones-Hinojosa, and X. D. Li, “Detection of human brain cancer infiltration ex vivo and in vivo using quantitative optical coherence tomography,” Sci. Transl. Med. 7(292), 292ra100 (2015).
[Crossref]

Larin, K. V.

Lee, B. H.

Lee, J.

Lee, P.

Leitge, R.

Lemij, H. G.

Leng, T.

N. Dwork, G. T. Smith, T. Leng, J. M. Pauly, and A. K. Bowden, “Automatically Determining the Confocal Parameters From OCT B-Scans for Quantification of the Attenuation Coefficients,” IEEE Trans. Med. Imaging 38(1), 261–268 (2019).
[Crossref]

Levitz, D.

Li, D.

K. Y. Li, W. X. Liang, J. Mavadia-Shukla, H. C. Park, D. Li, W. Yuan, S. R. Wan, and X. D. Li, “Super-achromatic optical coherence tomography capsule for ultrahigh-resolution imaging of esophagus,” J. Biophotonics 12(3), e201800205 (2019).
[Crossref]

Li, K. Y.

K. Y. Li, W. X. Liang, J. Mavadia-Shukla, H. C. Park, D. Li, W. Yuan, S. R. Wan, and X. D. Li, “Super-achromatic optical coherence tomography capsule for ultrahigh-resolution imaging of esophagus,” J. Biophotonics 12(3), e201800205 (2019).
[Crossref]

Li, X.

W. Yuan, C. Kut, W. Liang, and X. Li, “Robust and fast characterization of OCT-based optical attenuation using a novel frequency-domain algorithm for brain cancer detection,” Sci. Rep. 7(1), 44909 (2017).
[Crossref]

J. Xi, Y. Chen, and X. Li, “Characterizing optical properties of nano contrast agents by using cross-referencing OCT imaging,” Biomed. Opt. Express 4(6), 842–851 (2013).
[Crossref]

Li, X. D.

K. Y. Li, W. X. Liang, J. Mavadia-Shukla, H. C. Park, D. Li, W. Yuan, S. R. Wan, and X. D. Li, “Super-achromatic optical coherence tomography capsule for ultrahigh-resolution imaging of esophagus,” J. Biophotonics 12(3), e201800205 (2019).
[Crossref]

M. Gan, C. Wang, T. Yang, N. Yang, M. Zhang, W. Yuan, X. D. Li, and L. R. Wang, “Robust layer segmentation of esophageal OCT images based on graph search using edge-enhanced weights,” Biomed. Opt. Express 9(9), 4481–4495 (2018).
[Crossref]

J. L. Zhang, W. Yuan, W. X. Liang, S. Y. Yu, Y. M. Liang, Z. Y. Xu, Y. X. Wei, and X. D. Li, “Automatic and robust segmentation of endoscopic OCT images and optical staining,” Biomed. Opt. Express 8(5), 2697–2708 (2017).
[Crossref]

C. Kut, K. L. Chaichana, J. F. Xi, S. M. Raza, X. B. Ye, E. R. McVeigh, F. J. Rodriguez, A. Quinones-Hinojosa, and X. D. Li, “Detection of human brain cancer infiltration ex vivo and in vivo using quantitative optical coherence tomography,” Sci. Transl. Med. 7(292), 292ra100 (2015).
[Crossref]

Liang, W.

W. Yuan, C. Kut, W. Liang, and X. Li, “Robust and fast characterization of OCT-based optical attenuation using a novel frequency-domain algorithm for brain cancer detection,” Sci. Rep. 7(1), 44909 (2017).
[Crossref]

Liang, W. X.

K. Y. Li, W. X. Liang, J. Mavadia-Shukla, H. C. Park, D. Li, W. Yuan, S. R. Wan, and X. D. Li, “Super-achromatic optical coherence tomography capsule for ultrahigh-resolution imaging of esophagus,” J. Biophotonics 12(3), e201800205 (2019).
[Crossref]

J. L. Zhang, W. Yuan, W. X. Liang, S. Y. Yu, Y. M. Liang, Z. Y. Xu, Y. X. Wei, and X. D. Li, “Automatic and robust segmentation of endoscopic OCT images and optical staining,” Biomed. Opt. Express 8(5), 2697–2708 (2017).
[Crossref]

Liang, Y. M.

Lin, C. P.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, and C. A. Puliafito, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref]

Liu, J.

J. Liu, N. Ding, Y. Yu, X. C. Yuan, S. Z. Luo, J. M. Luan, Y. Q. Zhao, Y. Wang, and Z. H. Ma, “Optimized depth-resolved estimation to measure optical attenuation coefficients from optical coherence tomography and its application in cerebral damage determination,” J. Biomed. Opt. 24(3), 1–11 (2019).
[Crossref]

Luan, J. M.

J. Liu, N. Ding, Y. Yu, X. C. Yuan, S. Z. Luo, J. M. Luan, Y. Q. Zhao, Y. Wang, and Z. H. Ma, “Optimized depth-resolved estimation to measure optical attenuation coefficients from optical coherence tomography and its application in cerebral damage determination,” J. Biomed. Opt. 24(3), 1–11 (2019).
[Crossref]

Luo, S. Z.

J. Liu, N. Ding, Y. Yu, X. C. Yuan, S. Z. Luo, J. M. Luan, Y. Q. Zhao, Y. Wang, and Z. H. Ma, “Optimized depth-resolved estimation to measure optical attenuation coefficients from optical coherence tomography and its application in cerebral damage determination,” J. Biomed. Opt. 24(3), 1–11 (2019).
[Crossref]

Lurie, K. L.

G. T. Smith, N. Dwork, D. O’Connor, U. Sikora, K. L. Lurie, J. M. Pauly, and A. K. Ellerbee, “Automated, Depth-Resolved Estimation of the Attenuation Coefficient From Optical Coherence Tomography Data,” IEEE Trans. Med. Imaging 34(12), 2592–2602 (2015).
[Crossref]

Ma, Z. H.

J. Liu, N. Ding, Y. Yu, X. C. Yuan, S. Z. Luo, J. M. Luan, Y. Q. Zhao, Y. Wang, and Z. H. Ma, “Optimized depth-resolved estimation to measure optical attenuation coefficients from optical coherence tomography and its application in cerebral damage determination,” J. Biomed. Opt. 24(3), 1–11 (2019).
[Crossref]

Magnain, C.

Mavadia-Shukla, J.

K. Y. Li, W. X. Liang, J. Mavadia-Shukla, H. C. Park, D. Li, W. Yuan, S. R. Wan, and X. D. Li, “Super-achromatic optical coherence tomography capsule for ultrahigh-resolution imaging of esophagus,” J. Biophotonics 12(3), e201800205 (2019).
[Crossref]

McVeigh, E. R.

C. Kut, K. L. Chaichana, J. F. Xi, S. M. Raza, X. B. Ye, E. R. McVeigh, F. J. Rodriguez, A. Quinones-Hinojosa, and X. D. Li, “Detection of human brain cancer infiltration ex vivo and in vivo using quantitative optical coherence tomography,” Sci. Transl. Med. 7(292), 292ra100 (2015).
[Crossref]

Min, G.

Mo, J.

Monte, A. F. G.

M. M. Amaral, D. M. Zezell, A. F. G. Monte, A. C. B. de Cara, J. C. R. Araujo, A. Antunes, and A. Z. Freitas, “General model for depth-resolved estimation of the optical attenuation coefficients in optical coherence tomography,” J. Biophotonics 12(10), e201800402 (2019).
[Crossref]

Motamedi, M.

A. I. Kholodnykh, I. Y. Petrova, M. Motamedi, and R. O. Esenaliev, “Accurate measurement of total attenuation coefficient of thin tissue with optical coherence tomography,” IEEE J. Sel. Top. Quantum Electron. 9(2), 210–221 (2003).
[Crossref]

A. I. Kholodnykh, I. Y. Petrova, K. V. Larin, M. Motamedi, and R. O. Esenaliev, “Precision of measurement of tissue optical properties with optical coherence tomography,” Appl. Opt. 42(16), 3027–3037 (2003).
[Crossref]

Na, J.

Nao, S. H.

Neilands, T. B.

S. A. Glantz, B. K. Slinker, and T. B. Neilands, Primer of Applied Regression and Analysis of Variance (McGraw-Hill New York1990).

O’Connor, D.

G. T. Smith, N. Dwork, D. O’Connor, U. Sikora, K. L. Lurie, J. M. Pauly, and A. K. Ellerbee, “Automated, Depth-Resolved Estimation of the Attenuation Coefficient From Optical Coherence Tomography Data,” IEEE Trans. Med. Imaging 34(12), 2592–2602 (2015).
[Crossref]

Okamura, T.

G. van Soest, T. Goderie, E. Regar, S. Koljenovic, G. L. van Leenders, N. Gonzalo, S. van Noorden, T. Okamura, B. E. Bouma, G. J. Tearney, J. W. Oosterhuis, P. W. Serruys, and A. F. van der Steen, “Atherosclerotic tissue characterization in vivo by optical coherence tomography attenuation imaging,” J. Biomed. Opt. 15(1), 011105 (2010).
[Crossref]

Oosterhuis, J. W.

G. van Soest, T. Goderie, E. Regar, S. Koljenovic, G. L. van Leenders, N. Gonzalo, S. van Noorden, T. Okamura, B. E. Bouma, G. J. Tearney, J. W. Oosterhuis, P. W. Serruys, and A. F. van der Steen, “Atherosclerotic tissue characterization in vivo by optical coherence tomography attenuation imaging,” J. Biomed. Opt. 15(1), 011105 (2010).
[Crossref]

Park, B. H.

C. L. R. Rodriguez, J. I. Szu, M. M. Eberle, Y. Wang, M. S. Hsu, D. K. Binder, and B. H. Park, “Decreased light attenuation in cerebral cortex during cerebral edema detected using optical coherence tomography,” Neurophotonics 1(2), 025004 (2014).
[Crossref]

S. H. Yun, G. J. Tearney, B. E. Bouma, B. H. Park, and J. F. de Boer, “High-speed spectral-domain optical coherence tomography at 1.3 mu m wavelength,” Opt. Express 11(26), 3598–3604 (2003).
[Crossref]

Park, H. C.

K. Y. Li, W. X. Liang, J. Mavadia-Shukla, H. C. Park, D. Li, W. Yuan, S. R. Wan, and X. D. Li, “Super-achromatic optical coherence tomography capsule for ultrahigh-resolution imaging of esophagus,” J. Biophotonics 12(3), e201800205 (2019).
[Crossref]

Pauly, J. M.

N. Dwork, G. T. Smith, T. Leng, J. M. Pauly, and A. K. Bowden, “Automatically Determining the Confocal Parameters From OCT B-Scans for Quantification of the Attenuation Coefficients,” IEEE Trans. Med. Imaging 38(1), 261–268 (2019).
[Crossref]

G. T. Smith, N. Dwork, D. O’Connor, U. Sikora, K. L. Lurie, J. M. Pauly, and A. K. Ellerbee, “Automated, Depth-Resolved Estimation of the Attenuation Coefficient From Optical Coherence Tomography Data,” IEEE Trans. Med. Imaging 34(12), 2592–2602 (2015).
[Crossref]

Petrova, I. Y.

A. I. Kholodnykh, I. Y. Petrova, K. V. Larin, M. Motamedi, and R. O. Esenaliev, “Precision of measurement of tissue optical properties with optical coherence tomography,” Appl. Opt. 42(16), 3027–3037 (2003).
[Crossref]

A. I. Kholodnykh, I. Y. Petrova, M. Motamedi, and R. O. Esenaliev, “Accurate measurement of total attenuation coefficient of thin tissue with optical coherence tomography,” IEEE J. Sel. Top. Quantum Electron. 9(2), 210–221 (2003).
[Crossref]

Polucha, C.

Puliafito, C. A.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, and C. A. Puliafito, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref]

Quinones-Hinojosa, A.

C. Kut, K. L. Chaichana, J. F. Xi, S. M. Raza, X. B. Ye, E. R. McVeigh, F. J. Rodriguez, A. Quinones-Hinojosa, and X. D. Li, “Detection of human brain cancer infiltration ex vivo and in vivo using quantitative optical coherence tomography,” Sci. Transl. Med. 7(292), 292ra100 (2015).
[Crossref]

Raza, S. M.

C. Kut, K. L. Chaichana, J. F. Xi, S. M. Raza, X. B. Ye, E. R. McVeigh, F. J. Rodriguez, A. Quinones-Hinojosa, and X. D. Li, “Detection of human brain cancer infiltration ex vivo and in vivo using quantitative optical coherence tomography,” Sci. Transl. Med. 7(292), 292ra100 (2015).
[Crossref]

Regar, E.

G. van Soest, T. Goderie, E. Regar, S. Koljenovic, G. L. van Leenders, N. Gonzalo, S. van Noorden, T. Okamura, B. E. Bouma, G. J. Tearney, J. W. Oosterhuis, P. W. Serruys, and A. F. van der Steen, “Atherosclerotic tissue characterization in vivo by optical coherence tomography attenuation imaging,” J. Biomed. Opt. 15(1), 011105 (2010).
[Crossref]

Rodriguez, C. L. R.

C. L. R. Rodriguez, J. I. Szu, M. M. Eberle, Y. Wang, M. S. Hsu, D. K. Binder, and B. H. Park, “Decreased light attenuation in cerebral cortex during cerebral edema detected using optical coherence tomography,” Neurophotonics 1(2), 025004 (2014).
[Crossref]

Rodriguez, F. J.

C. Kut, K. L. Chaichana, J. F. Xi, S. M. Raza, X. B. Ye, E. R. McVeigh, F. J. Rodriguez, A. Quinones-Hinojosa, and X. D. Li, “Detection of human brain cancer infiltration ex vivo and in vivo using quantitative optical coherence tomography,” Sci. Transl. Med. 7(292), 292ra100 (2015).
[Crossref]

Sakadžic, S.

Schmitt, J. M.

J. M. Schmitt and A. Knuttel, “Model of optical coherence tomography of heterogeneous tissue,” J. Opt. Soc. Am. A 14(6), 1231–1242 (1997).
[Crossref]

J. M. Schmitt, A. Knuttel, A. Gandjbakhche, and R. F. Bonner, “Optical Characterization of Dense Tissues Using Low-Coherence Interferometry,” Proc. SPIE 1889, 197–211 (1993).
[Crossref]

Schuman, J. S.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, and C. A. Puliafito, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref]

Serruys, P. W.

G. van Soest, T. Goderie, E. Regar, S. Koljenovic, G. L. van Leenders, N. Gonzalo, S. van Noorden, T. Okamura, B. E. Bouma, G. J. Tearney, J. W. Oosterhuis, P. W. Serruys, and A. F. van der Steen, “Atherosclerotic tissue characterization in vivo by optical coherence tomography attenuation imaging,” J. Biomed. Opt. 15(1), 011105 (2010).
[Crossref]

Shah, A.

Shi, F.

D. H. Xiang, H. H. Tian, X. L. Yang, F. Shi, W. F. Zhu, H. Y. Chen, and X. J. Chen, “Automatic Segmentation of Retinal Layer in OCT Images With Choroidal Neovascularization,” IEEE Trans. Image Process. 27(12), 5880–5891 (2018).
[Crossref]

Sikora, U.

G. T. Smith, N. Dwork, D. O’Connor, U. Sikora, K. L. Lurie, J. M. Pauly, and A. K. Ellerbee, “Automated, Depth-Resolved Estimation of the Attenuation Coefficient From Optical Coherence Tomography Data,” IEEE Trans. Med. Imaging 34(12), 2592–2602 (2015).
[Crossref]

Slinker, B. K.

S. A. Glantz, B. K. Slinker, and T. B. Neilands, Primer of Applied Regression and Analysis of Variance (McGraw-Hill New York1990).

Smith, G. T.

N. Dwork, G. T. Smith, T. Leng, J. M. Pauly, and A. K. Bowden, “Automatically Determining the Confocal Parameters From OCT B-Scans for Quantification of the Attenuation Coefficients,” IEEE Trans. Med. Imaging 38(1), 261–268 (2019).
[Crossref]

G. T. Smith, N. Dwork, D. O’Connor, U. Sikora, K. L. Lurie, J. M. Pauly, and A. K. Ellerbee, “Automated, Depth-Resolved Estimation of the Attenuation Coefficient From Optical Coherence Tomography Data,” IEEE Trans. Med. Imaging 34(12), 2592–2602 (2015).
[Crossref]

Smith, H.

N. R. Draper and H. Smith, Applied Regression Analysis (John Wiley & Sons1998).

Southern, J. F.

Stefan, S.

Stinson, W. G.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, and C. A. Puliafito, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref]

Swanson, E. A.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, and C. A. Puliafito, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref]

Swartling, J.

Szu, J. I.

C. L. R. Rodriguez, J. I. Szu, M. M. Eberle, Y. Wang, M. S. Hsu, D. K. Binder, and B. H. Park, “Decreased light attenuation in cerebral cortex during cerebral edema detected using optical coherence tomography,” Neurophotonics 1(2), 025004 (2014).
[Crossref]

Tapinos, N.

Tearney, G. J.

G. van Soest, T. Goderie, E. Regar, S. Koljenovic, G. L. van Leenders, N. Gonzalo, S. van Noorden, T. Okamura, B. E. Bouma, G. J. Tearney, J. W. Oosterhuis, P. W. Serruys, and A. F. van der Steen, “Atherosclerotic tissue characterization in vivo by optical coherence tomography attenuation imaging,” J. Biomed. Opt. 15(1), 011105 (2010).
[Crossref]

S. H. Yun, G. J. Tearney, B. E. Bouma, B. H. Park, and J. F. de Boer, “High-speed spectral-domain optical coherence tomography at 1.3 mu m wavelength,” Opt. Express 11(26), 3598–3604 (2003).
[Crossref]

G. J. Tearney, M. E. Brezinski, J. F. Southern, B. E. Bouma, M. R. Hee, and J. G. Fujimoto, “Determination of the Refractive-Index of Highly Scattering Human Tissue by Optical Coherence Tomography,” Opt. Lett. 20(21), 2258–2260 (1995).
[Crossref]

Thrane, L.

Tian, H. H.

D. H. Xiang, H. H. Tian, X. L. Yang, F. Shi, W. F. Zhu, H. Y. Chen, and X. J. Chen, “Automatic Segmentation of Retinal Layer in OCT Images With Choroidal Neovascularization,” IEEE Trans. Image Process. 27(12), 5880–5891 (2018).
[Crossref]

Toms, S. A.

Valanciunaite, J.

van der Meer, F. J.

van der Steen, A. F.

G. van Soest, T. Goderie, E. Regar, S. Koljenovic, G. L. van Leenders, N. Gonzalo, S. van Noorden, T. Okamura, B. E. Bouma, G. J. Tearney, J. W. Oosterhuis, P. W. Serruys, and A. F. van der Steen, “Atherosclerotic tissue characterization in vivo by optical coherence tomography attenuation imaging,” J. Biomed. Opt. 15(1), 011105 (2010).
[Crossref]

van Leenders, G. L.

G. van Soest, T. Goderie, E. Regar, S. Koljenovic, G. L. van Leenders, N. Gonzalo, S. van Noorden, T. Okamura, B. E. Bouma, G. J. Tearney, J. W. Oosterhuis, P. W. Serruys, and A. F. van der Steen, “Atherosclerotic tissue characterization in vivo by optical coherence tomography attenuation imaging,” J. Biomed. Opt. 15(1), 011105 (2010).
[Crossref]

van Leeuwen, T. G.

M. Almasian, N. Bosschaart, T. G. van Leeuwen, and D. J. Faber, “Validation of quantitative attenuation and backscattering coefficient measurements by optical coherence tomography in the concentration-dependent and multiple scattering regime,” J. Biomed. Opt. 20(12), 121314 (2015).
[Crossref]

D. M. de Bruin, R. H. Bremmer, V. M. Kodach, R. de Kinkelder, J. van Marle, T. G. van Leeuwen, and D. J. Faber, “Optical phantoms of varying geometry based on thin building blocks with controlled optical properties,” J. Biomed. Opt. 15(2), 025001 (2010).
[Crossref]

D. J. Faber, F. J. van der Meer, M. C. G. Aalders, and T. G. van Leeuwen, “Quantitative measurement of attenuation coefficients of weakly scattering media using optical coherence tomography,” Opt. Express 12(19), 4353–4365 (2004).
[Crossref]

T. G. van Leeuwen, D. J. Faber, and M. C. Aalders, “Measurement of the axial point spread function in scattering media using single-mode fiber-based optical coherence tomography,” IEEE J. Sel. Top. Quantum Electron. 9(2), 227–233 (2003).
[Crossref]

van Marle, J.

D. M. de Bruin, R. H. Bremmer, V. M. Kodach, R. de Kinkelder, J. van Marle, T. G. van Leeuwen, and D. J. Faber, “Optical phantoms of varying geometry based on thin building blocks with controlled optical properties,” J. Biomed. Opt. 15(2), 025001 (2010).
[Crossref]

van Noorden, S.

G. van Soest, T. Goderie, E. Regar, S. Koljenovic, G. L. van Leenders, N. Gonzalo, S. van Noorden, T. Okamura, B. E. Bouma, G. J. Tearney, J. W. Oosterhuis, P. W. Serruys, and A. F. van der Steen, “Atherosclerotic tissue characterization in vivo by optical coherence tomography attenuation imaging,” J. Biomed. Opt. 15(1), 011105 (2010).
[Crossref]

van Soest, G.

G. van Soest, T. Goderie, E. Regar, S. Koljenovic, G. L. van Leenders, N. Gonzalo, S. van Noorden, T. Okamura, B. E. Bouma, G. J. Tearney, J. W. Oosterhuis, P. W. Serruys, and A. F. van der Steen, “Atherosclerotic tissue characterization in vivo by optical coherence tomography attenuation imaging,” J. Biomed. Opt. 15(1), 011105 (2010).
[Crossref]

Vermeer, K. A.

Wan, S. R.

K. Y. Li, W. X. Liang, J. Mavadia-Shukla, H. C. Park, D. Li, W. Yuan, S. R. Wan, and X. D. Li, “Super-achromatic optical coherence tomography capsule for ultrahigh-resolution imaging of esophagus,” J. Biophotonics 12(3), e201800205 (2019).
[Crossref]

Wang, C.

Wang, H.

Wang, L. R.

Wang, Y.

J. Liu, N. Ding, Y. Yu, X. C. Yuan, S. Z. Luo, J. M. Luan, Y. Q. Zhao, Y. Wang, and Z. H. Ma, “Optimized depth-resolved estimation to measure optical attenuation coefficients from optical coherence tomography and its application in cerebral damage determination,” J. Biomed. Opt. 24(3), 1–11 (2019).
[Crossref]

C. L. R. Rodriguez, J. I. Szu, M. M. Eberle, Y. Wang, M. S. Hsu, D. K. Binder, and B. H. Park, “Decreased light attenuation in cerebral cortex during cerebral edema detected using optical coherence tomography,” Neurophotonics 1(2), 025004 (2014).
[Crossref]

Weda, J. J.

Wei, Y. X.

Wojtkowski, M.

Wu, X. D.

Xi, J.

Xi, J. F.

C. Kut, K. L. Chaichana, J. F. Xi, S. M. Raza, X. B. Ye, E. R. McVeigh, F. J. Rodriguez, A. Quinones-Hinojosa, and X. D. Li, “Detection of human brain cancer infiltration ex vivo and in vivo using quantitative optical coherence tomography,” Sci. Transl. Med. 7(292), 292ra100 (2015).
[Crossref]

Xiang, D. H.

D. H. Xiang, H. H. Tian, X. L. Yang, F. Shi, W. F. Zhu, H. Y. Chen, and X. J. Chen, “Automatic Segmentation of Retinal Layer in OCT Images With Choroidal Neovascularization,” IEEE Trans. Image Process. 27(12), 5880–5891 (2018).
[Crossref]

Xu, Z. Y.

Yang, N.

Yang, T.

Yang, X. L.

D. H. Xiang, H. H. Tian, X. L. Yang, F. Shi, W. F. Zhu, H. Y. Chen, and X. J. Chen, “Automatic Segmentation of Retinal Layer in OCT Images With Choroidal Neovascularization,” IEEE Trans. Image Process. 27(12), 5880–5891 (2018).
[Crossref]

Ye, X. B.

C. Kut, K. L. Chaichana, J. F. Xi, S. M. Raza, X. B. Ye, E. R. McVeigh, F. J. Rodriguez, A. Quinones-Hinojosa, and X. D. Li, “Detection of human brain cancer infiltration ex vivo and in vivo using quantitative optical coherence tomography,” Sci. Transl. Med. 7(292), 292ra100 (2015).
[Crossref]

Yu, S. Y.

Yu, Y.

J. Liu, N. Ding, Y. Yu, X. C. Yuan, S. Z. Luo, J. M. Luan, Y. Q. Zhao, Y. Wang, and Z. H. Ma, “Optimized depth-resolved estimation to measure optical attenuation coefficients from optical coherence tomography and its application in cerebral damage determination,” J. Biomed. Opt. 24(3), 1–11 (2019).
[Crossref]

Yuan, W.

K. Y. Li, W. X. Liang, J. Mavadia-Shukla, H. C. Park, D. Li, W. Yuan, S. R. Wan, and X. D. Li, “Super-achromatic optical coherence tomography capsule for ultrahigh-resolution imaging of esophagus,” J. Biophotonics 12(3), e201800205 (2019).
[Crossref]

M. Gan, C. Wang, T. Yang, N. Yang, M. Zhang, W. Yuan, X. D. Li, and L. R. Wang, “Robust layer segmentation of esophageal OCT images based on graph search using edge-enhanced weights,” Biomed. Opt. Express 9(9), 4481–4495 (2018).
[Crossref]

J. L. Zhang, W. Yuan, W. X. Liang, S. Y. Yu, Y. M. Liang, Z. Y. Xu, Y. X. Wei, and X. D. Li, “Automatic and robust segmentation of endoscopic OCT images and optical staining,” Biomed. Opt. Express 8(5), 2697–2708 (2017).
[Crossref]

W. Yuan, C. Kut, W. Liang, and X. Li, “Robust and fast characterization of OCT-based optical attenuation using a novel frequency-domain algorithm for brain cancer detection,” Sci. Rep. 7(1), 44909 (2017).
[Crossref]

Yuan, X. C.

J. Liu, N. Ding, Y. Yu, X. C. Yuan, S. Z. Luo, J. M. Luan, Y. Q. Zhao, Y. Wang, and Z. H. Ma, “Optimized depth-resolved estimation to measure optical attenuation coefficients from optical coherence tomography and its application in cerebral damage determination,” J. Biomed. Opt. 24(3), 1–11 (2019).
[Crossref]

Yun, S. H.

Zezell, D. M.

M. M. Amaral, D. M. Zezell, A. F. G. Monte, A. C. B. de Cara, J. C. R. Araujo, A. Antunes, and A. Z. Freitas, “General model for depth-resolved estimation of the optical attenuation coefficients in optical coherence tomography,” J. Biophotonics 12(10), e201800402 (2019).
[Crossref]

Zhang, J. L.

Zhang, M.

Zhang, X.

Zhao, Y. Q.

J. Liu, N. Ding, Y. Yu, X. C. Yuan, S. Z. Luo, J. M. Luan, Y. Q. Zhao, Y. Wang, and Z. H. Ma, “Optimized depth-resolved estimation to measure optical attenuation coefficients from optical coherence tomography and its application in cerebral damage determination,” J. Biomed. Opt. 24(3), 1–11 (2019).
[Crossref]

Zhou, L. X.

Zhu, J.

Zhu, W. F.

D. H. Xiang, H. H. Tian, X. L. Yang, F. Shi, W. F. Zhu, H. Y. Chen, and X. J. Chen, “Automatic Segmentation of Retinal Layer in OCT Images With Choroidal Neovascularization,” IEEE Trans. Image Process. 27(12), 5880–5891 (2018).
[Crossref]

Appl. Opt. (2)

Biomed. Opt. Express (9)

J. Xi, Y. Chen, and X. Li, “Characterizing optical properties of nano contrast agents by using cross-referencing OCT imaging,” Biomed. Opt. Express 4(6), 842–851 (2013).
[Crossref]

K. A. Vermeer, J. Mo, J. J. Weda, H. G. Lemij, and J. F. de Boer, “Depth-resolved model-based reconstruction of attenuation coefficients in optical coherence tomography,” Biomed. Opt. Express 5(1), 322–337 (2014).
[Crossref]

J. L. Zhang, W. Yuan, W. X. Liang, S. Y. Yu, Y. M. Liang, Z. Y. Xu, Y. X. Wei, and X. D. Li, “Automatic and robust segmentation of endoscopic OCT images and optical staining,” Biomed. Opt. Express 8(5), 2697–2708 (2017).
[Crossref]

J. F. de Boer, R. Leitge, and M. Wojtkowski, “Twenty-five years of optical coherence tomography: the paradigm shift in sensitivity and speed provided by Fourier domain OCT [Invited],” Biomed. Opt. Express 8(7), 3248–3280 (2017).
[Crossref]

H. Wang, C. Magnain, S. Sakadžić, B. Fischl, and D. A. Boas, “Characterizing the optical properties of human brain tissue with high numerical aperture optical coherence tomography,” Biomed. Opt. Express 8(12), 5617 (2017).
[Crossref]

M. Gan, C. Wang, T. Yang, N. Yang, M. Zhang, W. Yuan, X. D. Li, and L. R. Wang, “Robust layer segmentation of esophageal OCT images based on graph search using edge-enhanced weights,” Biomed. Opt. Express 9(9), 4481–4495 (2018).
[Crossref]

A. Shah, L. X. Zhou, M. D. Abramoff, and X. D. Wu, “Multiple surface segmentation using convolution neural nets: application to retinal layer segmentation in OCT images,” Biomed. Opt. Express 9(9), 4509–4526 (2018).
[Crossref]

S. Stefan, K. S. Jeong, C. Polucha, N. Tapinos, S. A. Toms, and J. Lee, “Determination of confocal profile and curved focal plane for OCT mapping of the attenuation coefficient,” Biomed. Opt. Express 9(10), 5084–5099 (2018).
[Crossref]

C. Wang, M. Gan, N. Yang, T. Yang, M. Zhang, S. H. Nao, J. Zhu, H. Y. Ge, and L. R. Wang, “Fast esophageal layer segmentation in OCT images of guinea pigs based on sparse Bayesian classification and graph search,” Biomed. Opt. Express 10(2), 978–994 (2019).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (2)

A. I. Kholodnykh, I. Y. Petrova, M. Motamedi, and R. O. Esenaliev, “Accurate measurement of total attenuation coefficient of thin tissue with optical coherence tomography,” IEEE J. Sel. Top. Quantum Electron. 9(2), 210–221 (2003).
[Crossref]

T. G. van Leeuwen, D. J. Faber, and M. C. Aalders, “Measurement of the axial point spread function in scattering media using single-mode fiber-based optical coherence tomography,” IEEE J. Sel. Top. Quantum Electron. 9(2), 227–233 (2003).
[Crossref]

IEEE Trans. Image Process. (1)

D. H. Xiang, H. H. Tian, X. L. Yang, F. Shi, W. F. Zhu, H. Y. Chen, and X. J. Chen, “Automatic Segmentation of Retinal Layer in OCT Images With Choroidal Neovascularization,” IEEE Trans. Image Process. 27(12), 5880–5891 (2018).
[Crossref]

IEEE Trans. Med. Imaging (2)

N. Dwork, G. T. Smith, T. Leng, J. M. Pauly, and A. K. Bowden, “Automatically Determining the Confocal Parameters From OCT B-Scans for Quantification of the Attenuation Coefficients,” IEEE Trans. Med. Imaging 38(1), 261–268 (2019).
[Crossref]

G. T. Smith, N. Dwork, D. O’Connor, U. Sikora, K. L. Lurie, J. M. Pauly, and A. K. Ellerbee, “Automated, Depth-Resolved Estimation of the Attenuation Coefficient From Optical Coherence Tomography Data,” IEEE Trans. Med. Imaging 34(12), 2592–2602 (2015).
[Crossref]

J. Biomed. Opt. (4)

G. van Soest, T. Goderie, E. Regar, S. Koljenovic, G. L. van Leenders, N. Gonzalo, S. van Noorden, T. Okamura, B. E. Bouma, G. J. Tearney, J. W. Oosterhuis, P. W. Serruys, and A. F. van der Steen, “Atherosclerotic tissue characterization in vivo by optical coherence tomography attenuation imaging,” J. Biomed. Opt. 15(1), 011105 (2010).
[Crossref]

M. Almasian, N. Bosschaart, T. G. van Leeuwen, and D. J. Faber, “Validation of quantitative attenuation and backscattering coefficient measurements by optical coherence tomography in the concentration-dependent and multiple scattering regime,” J. Biomed. Opt. 20(12), 121314 (2015).
[Crossref]

D. M. de Bruin, R. H. Bremmer, V. M. Kodach, R. de Kinkelder, J. van Marle, T. G. van Leeuwen, and D. J. Faber, “Optical phantoms of varying geometry based on thin building blocks with controlled optical properties,” J. Biomed. Opt. 15(2), 025001 (2010).
[Crossref]

J. Liu, N. Ding, Y. Yu, X. C. Yuan, S. Z. Luo, J. M. Luan, Y. Q. Zhao, Y. Wang, and Z. H. Ma, “Optimized depth-resolved estimation to measure optical attenuation coefficients from optical coherence tomography and its application in cerebral damage determination,” J. Biomed. Opt. 24(3), 1–11 (2019).
[Crossref]

J. Biophotonics (2)

M. M. Amaral, D. M. Zezell, A. F. G. Monte, A. C. B. de Cara, J. C. R. Araujo, A. Antunes, and A. Z. Freitas, “General model for depth-resolved estimation of the optical attenuation coefficients in optical coherence tomography,” J. Biophotonics 12(10), e201800402 (2019).
[Crossref]

K. Y. Li, W. X. Liang, J. Mavadia-Shukla, H. C. Park, D. Li, W. Yuan, S. R. Wan, and X. D. Li, “Super-achromatic optical coherence tomography capsule for ultrahigh-resolution imaging of esophagus,” J. Biophotonics 12(3), e201800205 (2019).
[Crossref]

J. Opt. Soc. Am. A (1)

Neurophotonics (1)

C. L. R. Rodriguez, J. I. Szu, M. M. Eberle, Y. Wang, M. S. Hsu, D. K. Binder, and B. H. Park, “Decreased light attenuation in cerebral cortex during cerebral edema detected using optical coherence tomography,” Neurophotonics 1(2), 025004 (2014).
[Crossref]

Opt. Express (5)

Opt. Lett. (1)

Phys. Med. Biol. (1)

S. L. Jacques, “Optical properties of biological tissues: a review,” Phys. Med. Biol. 58(11), R37–R61 (2013).
[Crossref]

Proc. SPIE (1)

J. M. Schmitt, A. Knuttel, A. Gandjbakhche, and R. F. Bonner, “Optical Characterization of Dense Tissues Using Low-Coherence Interferometry,” Proc. SPIE 1889, 197–211 (1993).
[Crossref]

Sci. Rep. (1)

W. Yuan, C. Kut, W. Liang, and X. Li, “Robust and fast characterization of OCT-based optical attenuation using a novel frequency-domain algorithm for brain cancer detection,” Sci. Rep. 7(1), 44909 (2017).
[Crossref]

Sci. Transl. Med. (1)

C. Kut, K. L. Chaichana, J. F. Xi, S. M. Raza, X. B. Ye, E. R. McVeigh, F. J. Rodriguez, A. Quinones-Hinojosa, and X. D. Li, “Detection of human brain cancer infiltration ex vivo and in vivo using quantitative optical coherence tomography,” Sci. Transl. Med. 7(292), 292ra100 (2015).
[Crossref]

Science (1)

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, and C. A. Puliafito, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref]

Other (2)

S. A. Glantz, B. K. Slinker, and T. B. Neilands, Primer of Applied Regression and Analysis of Variance (McGraw-Hill New York1990).

N. R. Draper and H. Smith, Applied Regression Analysis (John Wiley & Sons1998).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1. Estimation bias of Vermeer’s method on OCT data with noise floor. a, c, e. Synthesized OCT A-line data with the same length of effective signals (red dashed line), but different noise floor lengths, corresponding to the cases of long (a), short (c), and no (e) noise floor, respectively. g. Part of e resulting from overcutting of the noise floor. b, d, f, h. Corresponding depth-dependent attenuation profiles $\tilde{\mu }(z )$ obtained by Vermeer’s algorithm (blue curve) compared against ground truth profiles ${\mu _{\textrm{Ideal}}}(z)$ of matching lengths (black curve).
Fig. 2.
Fig. 2. Numerical simulation results of single- and multiple-layer digital phantoms. a. Simulated OCT signals (in logarithmic scale) of five different single-layer phantoms, with the corresponding attenuation coefficients indicated in matching color. b. Attenuation profiles recovered from OCT signals in a with both Vermeer’s method (solid lines) and the new algorithm herein proposed (dashed lines). c. Simulated OCT signal (in logarithmic scale) from a noisy 5-layer heterogeneous phantom with attenuation coefficients of 0.5 mm−1, 1 mm−1, 3 mm−1, 2 mm−1, and 0.5 mm−1 (from top to bottom), respectively. d. Attenuation profiles recovered from the OCT signal in c with Vermeer’s method (blue curve) and the new algorithm herein proposed (yellow curve).
Fig. 3.
Fig. 3. OCT intensity and attenuation coefficient images of a single-layer silicone-TiO2 phantom. a. Normalized OCT image. b. Averaged OCT magnitude of all A-lines (black curve) for noise floor determination. The noise floor portion is demarcated by purple double arrow, and the transition depth is indicated by a blue arrow. The effective signal portion used for global fitting of ${\mu _{\textrm{Ideal}}}$ is overlaid with the resultant single-exponential decay curve (red curve). c. $\tilde{\mu }$-image calculated with noise floor (w/ NF) using Eq. (1) after axial PSF correction and surface alignment. d. Mean attenuation profiles averaged over all A-lines of c, e, f and g. The black curve is the globally fitted value. Attenuation profile of c from 2.3 mm to 5.7 mm is plotted separately in the right panel. e, f, g. $\tilde{\mu }$-, $\hat{\mu }$- and $\mu $-images calculated from truncated A-lines without noise floor. Bright (dark) striped artefacts representing over- (under-) estimation bias are indicated by red (yellow) arrowheads in $\hat{\mu }$- and $\mu $-images. All OCT images shown are 5 mm width in the lateral direction.
Fig. 4.
Fig. 4. OCT image and the corresponding attenuation images of a multi-layer silicone-TiO2 phantom. a. Normalized OCT image. b. $\tilde{\mu }$-image calculated over the entire imaging depth of 5.7 mm with noise floor (w/ NF). c, d, e. $\tilde{\mu }$-, $\hat{\mu }$- and $\mu $-images calculated without noise floor (w/o NF). Bright (dark) striped artefacts representing over- (under-) estimation bias are indicated by red (yellow) arrowheads in the $\hat{\mu }$-image. f. Comparison of mean attenuation profiles averaged over all constituent A-lines of subfigures b, c, d and e, respectively. g. Quantitative comparison of the average value and standard error of mean attenuation profiles shown in f over all depths within each layer. h. A 3D volumetric $\mu $-image demonstrating the consist estimation accuracy of our algorithm. All OCT images shown are 5 mm width in the lateral direction.
Fig. 5.
Fig. 5. OCT images and the corresponding attenuation images of normal ventral tongue mucosa and a resected leukoplakia tissue sample. a. Normalized OCT image of normal ventral tongue mucosa. b. Normalized OCT image of resected leukoplakia tissue from ventral tongue mucosa. c, d. Corresponding $\mu $-images calculated with our algorithm of a and b respectively. The upper and lower boundaries of the epithelium layer (EP) are marked by yellow dash curves, while the dysplasia-invaded portion of EP is delineated with a red dash curve in d. e, f. $\hat{\mu }$-images calculated with the algorithm by Liu et al. [20] of a and b respectively. Bright (dark) striped artefacts representing over- (under-) estimation bias are indicated by red (yellow) arrowheads. All OCT images shown are 5 mm width in the lateral direction.

Equations (16)

Equations on this page are rendered with MathJax. Learn more.

μ ~ [ n ] A 2 [ n ] 2 δ n + 1 N A 2 [ m ] ,
μ ^ [ n ] A 2 [ n ] 2 δ n + 1 N A 2 [ m ] + A 2 [ N ] μ [ N ] .
μ Ideal ( z ) = A 2 ( z ) 2 z A 2 ( y ) d y A 2 ( z ) 2 z D A 2 ( y ) d y = μ ~ ( z ) ,
μ ~ w / NF ( z ) = A 2 ( z ) 2 z F A 2 ( y ) d y + 2 F D A 2 ( y ) d y < A 2 ( z ) 2 z F A 2 ( y ) d y + 2 F B 2 ( y ) d y μ ~ Ideal ( z ) .
μ ~ ( z ) = μ Ideal ( z ) × ( 1 + D A 2 ( y ) d y z D A 2 ( y ) d y ) .
d L ( z ) = μ ( z ) L ( z ) d z ,
A 2 ( z ) = C β h L R [ L ( z ) L ( z + δ ) ] e 0 z μ ( y ) d y C β h L R μ ( z ) L ( z ) δ e 0 z μ ( y ) d y = C β h L R μ ( z ) L ( 0 ) δ e 2 0 z μ ( y ) d y ,
z D A 2 ( s ) d s = C β h L R L ( 0 ) δ z D μ ( s ) e 2 0 s μ ( y ) d y d s = C β h L R L ( 0 ) δ ( 1 2 e 2 0 s μ ( y ) d y ) | s = z s = D = A 2 ( z ) μ ( z ) e 2 0 z μ ( y ) d y 1 2 ( e 2 0 z μ ( y ) d y e 2 0 D μ ( y ) d y ) = A 2 ( z ) 2 μ ( z ) ( 1 e 2 z D μ ( y ) d y ) .
μ ( z ) = A 2 ( z ) 2 z D A 2 ( y ) d y ( 1 e 2 z D μ ( y ) d y ) .
μ [ n ] = A 2 [ n ] 2 δ n + 1 N A 2 [ m ] ( 1 e 2 δ n + 1 N μ [ m ] ) .
h = [ 1 + ( z z f α z R ) 2 ] 1 ,
μ ^ [ n ] μ [ n ] = A 2 [ n ] 2 δ n + 1 N A 2 [ m ] + A 2 [ N ] μ [ N ] 1 1 + p A 2 [ n ] 2 δ n + 1 N A 2 [ m ] + A 2 [ N ] μ [ N ] = μ [ n ] A 2 [ N ] μ [ N ] p 1 + p 2 δ n + 1 N A 2 [ m ] + A 2 [ N ] μ [ N ] 1 1 + p .
μ ^ [ n ] μ [ n ] μ [ n ] p .
μ [ n ] μ [ n ] = A 2 [ n ] 2 δ n + 1 N A 2 [ m ] [ e 2 δ n + 1 N μ [ m ] e 2 δ n + 1 N μ [ m ] ] = μ [ n ] e 2 δ n + 1 N μ [ m ] 1 e 2 δ n + 1 N ( μ [ m ] μ [ m ] ) 1 e 2 δ n + 1 N μ [ m ] .
μ [ n ] μ [ n ] μ [ n ] e 2 δ n + 1 N μ [ m ] n + 1 N ( μ [ m ] μ [ m ] ) n + 1 N μ [ m ]
μ [ n ] e 2 δ n + 1 N μ [ m ] p .

Metrics