Abstract

An ultra-sensitive, wide-range force loading scheme is proposed for compression optical coherence elastography (OCE) that allows for the quantitative analysis of cervical tissue elasticity ex vivo. We designed a force loading apparatus featuring a water sink for minuscule incremental loading through a volume-controlled water droplet, from which the Young’s modulus can be calculated by fitting the stress-strain curve. We validated the performance of the proposed OCE system on homogenous agar phantoms, showing the Young’s modulus can be accurately estimated using this scheme. We then measured the Young’s modulus of rodent cervical tissues acquired at different gestational ages, showing that the cervical rigidity of rodents was significantly dropped when entering the third trimester of pregnancy.

© 2020 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Nonlinear characterization of elasticity using quantitative optical coherence elastography

Yi Qiu, Farzana R. Zaki, Namas Chandra, Shawn A. Chester, and Xuan Liu
Biomed. Opt. Express 7(11) 4702-4710 (2016)

Common-path phase-sensitive optical coherence tomography provides enhanced phase stability and detection sensitivity for dynamic elastography

Gongpu Lan, Manmohan Singh, Kirill V. Larin, and Michael D. Twa
Biomed. Opt. Express 8(11) 5253-5266 (2017)

Biomechanical assessment of myocardial infarction using optical coherence elastography

Shang Wang, Manmohan Singh, Thuy Tien Tran, John Leach, Salavat R. Aglyamov, Irina V. Larina, James F. Martin, and Kirill V. Larin
Biomed. Opt. Express 9(2) 728-742 (2018)

References

  • View by:
  • |
  • |
  • |

  1. R. L. Goldenberg, J. F. Culhane, J. D. Iams, and R. Romero, “Epidemiology and causes of preterm birth,” Lancet 371(9606), 75–84 (2008).
    [Crossref]
  2. M. House and S. Socrate, “The cervix as a biomechanical structure,” Ultrasound Obstet Gynecol 28(6), 745–749 (2006).
    [Crossref]
  3. K. M. Myers, A. P. Paskaleva, M. House, and S. Socrate, “Mechanical and biochemical properties of human cervical tissue,” Acta Biomater. 4(1), 104–116 (2008).
    [Crossref]
  4. M. Zhang, Y. P. Zheng, and A. F. T. Mak, “Estimating the effective Young's modulus of soft tissues from indentation tests—nonlinear finite element analysis of effects of friction and large deformation,” Med. Eng. Phys. 19(6), 512–517 (1997).
    [Crossref]
  5. R. Akhtar, M. J. Sherratt, J. K. Cruickshank, and B. Derby, “Characterizing the elastic properties of tissues,” Mater. Today 14(3), 96–105 (2011).
    [Crossref]
  6. E. Mazza, M. Parra-Saavedra, M. Bajka, E. Gratacos, K. Nicolaides, and J. Deprest, “In vivo assessment of the biomechanical properties of the uterine cervix in pregnancy,” Prenatal Diagn. 34(1), 33–41 (2014).
    [Crossref]
  7. M. O’connell, N. Avis, B. Brown, S. Killick, and S. Lindow, “Electrical impedance measurements: an objective measure of prelabor cervical change,” J. Matern.-Fetal Neonatal Med. 14(6), 389–391 (2003).
    [Crossref]
  8. M. O’Connell, J. Tidy, S. Wisher, N. Avis, B. Brown, and S. Lindow, “An in vivo comparative study of the pregnant and nonpregnant cervix using electrical impedance measurements,” BJOG 107(8), 1040–1041 (2000).
    [Crossref]
  9. S. Badir, E. Mazza, R. Zimmermann, and M. Bajka, “Cervical softening occurs early in pregnancy: characterization of cervical stiffness in 100 healthy women using the aspiration technique,” Prenatal Diagn. 33(8), 737–741 (2013).
    [Crossref]
  10. Y. Zhang, M. L. Akins, K. Murari, J. Xi, M.-J. Li, K. Luby-Phelps, M. Mahendroo, and X. Li, “A compact fiber-optic SHG scanning endomicroscope and its application to visualize cervical remodeling during pregnancy,” Proc. Natl. Acad. Sci. 109(32), 12878–12883 (2012).
    [Crossref]
  11. M. L. Akins, K. Luby-Phelps, and M. Mahendroo, “Second harmonic generation imaging as a potential tool for staging pregnancy and predicting preterm birth,” J. Biomed. Opt. 15(2), 026020 (2010).
    [Crossref]
  12. H. Maul, L. Mackay, and R. E. Garfield, “Cervical ripening: biochemical, molecular, and clinical considerations,” Clin. Obstet. Gynecol. 49(3), 551–563 (2006).
    [Crossref]
  13. D. Schlembach, L. MacKay, L. Shi, W. L. Maner, R. E. Garfield, and H. Maul, “Cervical ripening and insufficiency: from biochemical and molecular studies to in vivo clinical examination,” Eur. J. Obstet. Gynecol. Reprod. Biol. 144, S70–S76 (2009).
    [Crossref]
  14. R. Hornung, S. Spichtig, A. Baños, M. Stahel, R. Zimmermann, and M. Wolf, “Frequency-domain near-infrared spectroscopy of the uterine cervix during regular pregnancies,” Lasers Med. Sci. 26(2), 205–212 (2011).
    [Crossref]
  15. A. Thomas, “Imaging of the cervix using sonoelastography,” Ultrasound Obstet. Gynecol. 28(3), 356–357 (2006).
    [Crossref]
  16. S. Yamaguchi, Y. Kamei, S. Kozuma, and Y. Taketani, “Tissue elastography imaging of the uterine cervix during pregnancy,” J. Med. Ultrasonics 34(4), 209–210 (2007).
    [Crossref]
  17. M. Swiatkowska-Freund and K. Preis, “Elastography of the uterine cervix: implications for success of induction of labor,” Ultrasound Obstet. Gynecol. 38(1), 52–56 (2011).
    [Crossref]
  18. F. Molina, L. Gomez, J. Florido, M. Padilla, and K. Nicolaides, “Quantification of cervical elastography: a reproducibility study,” Ultrasound Obstet Gynecol 39(6), 685–689 (2012).
    [Crossref]
  19. E. Hernandez-Andrade, S. S. Hassan, H. Ahn, S. J. Korzeniewski, L. Yeo, T. Chaiworapongsa, and R. Romero, “Evaluation of cervical stiffness during pregnancy using semiquantitative ultrasound elastography,” Ultrasound Obstet. Gynecol. 41(2), 152–161 (2013).
    [Crossref]
  20. J. M. Schmitt, “OCT elastography: imaging microscopic deformation and strain of tissue,” Opt. Express 3(6), 199–211 (1998).
    [Crossref]
  21. K. V. Larin and D. D. Sampson, “Optical coherence elastography — OCT at work in tissue biomechanics [Invited],” Biomed. Opt. Express 8(2), 1172–1202 (2017).
    [Crossref]
  22. B. F. Kennedy, P. Wijesinghe, and D. D. Sampson, “The emergence of optical elastography in biomedicine,” Nat. Photonics 11(4), 215–221 (2017).
    [Crossref]
  23. B. F. Kennedy, K. M. Kennedy, and D. D. Sampson, “A Review of Optical Coherence Elastography: Fundamentals, Techniques and Prospects,” IEEE J. Sel. Top. Quantum Electron. 20(2), 272–288 (2014).
    [Crossref]
  24. W. Shang and K. V. Larin, “Optical coherence elastography for tissue characterization: a review,” J. Biophotonics 8(4), 279–302 (2015).
    [Crossref]
  25. R. K. Wang, S. Kirkpatrick, and M. Hinds, “Phase-sensitive optical coherence elastography for mapping tissue microstrains in real time,” Appl. Phys. Lett. 90(16), 164105 (2007).
    [Crossref]
  26. M. S. Hepburn, P. Wijesinghe, L. Chin, and B. F. Kennedy, “Analysis of spatial resolution in phase-sensitive compression optical coherence elastography,” Biomed. Opt. Express 10(3), 1496–1513 (2019).
    [Crossref]
  27. K. M. Kennedy, S. Es’haghian, L. Chin, R. A. McLaughlin, D. D. Sampson, and B. F. Kennedy, “Optical palpation: optical coherence tomography-based tactile imaging using a compliant sensor,” Opt. Lett. 39(10), 3014–3017 (2014).
    [Crossref]
  28. M. Mahendroo, “Cervical remodeling in term and preterm birth: insights from an animal model,” Reproduction 143(4), 429–438 (2012).
    [Crossref]
  29. J. Xi, A. Zhang, Z. Liu, W. Liang, L. Y. Lin, S. Yu, and X. Li, “Diffractive catheter for ultrahigh-resolution spectral-domain volumetric OCT imaging,” Opt. Lett. 39(7), 2016–2019 (2014).
    [Crossref]
  30. B. Hyle Park, M. C. Pierce, B. Cense, S.-H. Yun, M. Mujat, G. J. Tearney, B. E. Bouma, and J. F. d. Boer, “Real-time fiber-based multi-functional spectral-domain optical coherence tomography at 1.3 µm,” Opt. Express 13(11), 3931–3944 (2005).
    [Crossref]
  31. B. F. Kennedy, R. A. McLaughlin, K. M. Kennedy, L. Chin, A. Curatolo, A. Tien, B. Latham, C. M. Saunders, and D. D. Sampson, “Optical coherence micro-elastography: mechanical-contrast imaging of tissue microstructure,” Biomed. Opt. Express 5(7), 2113–2124 (2014).
    [Crossref]
  32. B. F. Kennedy, S. H. Koh, R. A. McLaughlin, K. M. Kennedy, P. R. T. Munro, and D. D. Sampson, “Strain estimation in phase-sensitive optical coherence elastography,” Biomed. Opt. Express 3(8), 1865–1879 (2012).
    [Crossref]
  33. L. Bin, Y. Ronghua, Y. Peng, M. Awad, M. Choti, and R. Taylor, “Elasticity and Echogenicity Analysis of Agarose Phantoms Mimicking Liver Tumors,” inProceedings of the IEEE 32nd Annual Northeast Bioengineering Conference(2006), pp. 81–82.
  34. C. Li, Z. Huang, and R. K. Wang, “Elastic properties of soft tissue-mimicking phantoms assessed by combined use of laser ultrasonics and low coherence interferometry,” Opt. Express 19(11), 10153–10163 (2011).
    [Crossref]
  35. K. Yoshida, H. Jiang, M. Kim, J. Vink, S. Cremers, D. Paik, R. Wapner, M. Mahendroo, and K. Myers, “Quantitative Evaluation of Collagen Crosslinks and Corresponding Tensile Mechanical Properties in Mouse Cervical Tissue during Normal Pregnancy,” PLoS One 9(11), e112391 (2014).
    [Crossref]
  36. C.-H. Liu, S. Assassi, S. Theodore, C. Smith, A. Schill, M. Singh, S. Aglyamov, C. Mohan, and K. V. Larin, “Translational optical coherence elastography for assessment of systemic sclerosis,” J. Biophotonics 12, e201900236 (2019).
    [Crossref]
  37. C. Jayyosi, N. Lee, A. Willcockson, S. Nallasamy, M. Mahendroo, and K. Myers, “The mechanical response of the mouse cervix to tensile cyclic loading in term and preterm pregnancy,” Acta Biomater. 78, 308–319 (2018).
    [Crossref]
  38. K. Yoshida, C. Jayyosi, N. Lee, M. Mahendroo, and K. M. Myers, “Mechanics of cervical remodelling: insights from rodent models of pregnancy,” Interface Focus 9(5), 20190026 (2019).
    [Crossref]
  39. C. P. Read, R. A. Word, M. A. Ruscheinsky, B. C. Timmons, and M. S. Mahendroo, “Cervical remodeling during pregnancy and parturition: molecular characterization of the softening phase in mice,” Reproduction 134(2), 327–340 (2007).
    [Crossref]
  40. M. L. Akins, K. Luby-Phelps, R. A. Bank, and M. Mahendroo, “Cervical softening during pregnancy: regulated changes in collagen cross-linking and composition of matricellular proteins in the mouse,” Biol. Reprod. 84(5), 1053–1062 (2011).
    [Crossref]

2019 (3)

M. S. Hepburn, P. Wijesinghe, L. Chin, and B. F. Kennedy, “Analysis of spatial resolution in phase-sensitive compression optical coherence elastography,” Biomed. Opt. Express 10(3), 1496–1513 (2019).
[Crossref]

C.-H. Liu, S. Assassi, S. Theodore, C. Smith, A. Schill, M. Singh, S. Aglyamov, C. Mohan, and K. V. Larin, “Translational optical coherence elastography for assessment of systemic sclerosis,” J. Biophotonics 12, e201900236 (2019).
[Crossref]

K. Yoshida, C. Jayyosi, N. Lee, M. Mahendroo, and K. M. Myers, “Mechanics of cervical remodelling: insights from rodent models of pregnancy,” Interface Focus 9(5), 20190026 (2019).
[Crossref]

2018 (1)

C. Jayyosi, N. Lee, A. Willcockson, S. Nallasamy, M. Mahendroo, and K. Myers, “The mechanical response of the mouse cervix to tensile cyclic loading in term and preterm pregnancy,” Acta Biomater. 78, 308–319 (2018).
[Crossref]

2017 (2)

K. V. Larin and D. D. Sampson, “Optical coherence elastography — OCT at work in tissue biomechanics [Invited],” Biomed. Opt. Express 8(2), 1172–1202 (2017).
[Crossref]

B. F. Kennedy, P. Wijesinghe, and D. D. Sampson, “The emergence of optical elastography in biomedicine,” Nat. Photonics 11(4), 215–221 (2017).
[Crossref]

2015 (1)

W. Shang and K. V. Larin, “Optical coherence elastography for tissue characterization: a review,” J. Biophotonics 8(4), 279–302 (2015).
[Crossref]

2014 (6)

K. M. Kennedy, S. Es’haghian, L. Chin, R. A. McLaughlin, D. D. Sampson, and B. F. Kennedy, “Optical palpation: optical coherence tomography-based tactile imaging using a compliant sensor,” Opt. Lett. 39(10), 3014–3017 (2014).
[Crossref]

B. F. Kennedy, K. M. Kennedy, and D. D. Sampson, “A Review of Optical Coherence Elastography: Fundamentals, Techniques and Prospects,” IEEE J. Sel. Top. Quantum Electron. 20(2), 272–288 (2014).
[Crossref]

K. Yoshida, H. Jiang, M. Kim, J. Vink, S. Cremers, D. Paik, R. Wapner, M. Mahendroo, and K. Myers, “Quantitative Evaluation of Collagen Crosslinks and Corresponding Tensile Mechanical Properties in Mouse Cervical Tissue during Normal Pregnancy,” PLoS One 9(11), e112391 (2014).
[Crossref]

J. Xi, A. Zhang, Z. Liu, W. Liang, L. Y. Lin, S. Yu, and X. Li, “Diffractive catheter for ultrahigh-resolution spectral-domain volumetric OCT imaging,” Opt. Lett. 39(7), 2016–2019 (2014).
[Crossref]

B. F. Kennedy, R. A. McLaughlin, K. M. Kennedy, L. Chin, A. Curatolo, A. Tien, B. Latham, C. M. Saunders, and D. D. Sampson, “Optical coherence micro-elastography: mechanical-contrast imaging of tissue microstructure,” Biomed. Opt. Express 5(7), 2113–2124 (2014).
[Crossref]

E. Mazza, M. Parra-Saavedra, M. Bajka, E. Gratacos, K. Nicolaides, and J. Deprest, “In vivo assessment of the biomechanical properties of the uterine cervix in pregnancy,” Prenatal Diagn. 34(1), 33–41 (2014).
[Crossref]

2013 (2)

S. Badir, E. Mazza, R. Zimmermann, and M. Bajka, “Cervical softening occurs early in pregnancy: characterization of cervical stiffness in 100 healthy women using the aspiration technique,” Prenatal Diagn. 33(8), 737–741 (2013).
[Crossref]

E. Hernandez-Andrade, S. S. Hassan, H. Ahn, S. J. Korzeniewski, L. Yeo, T. Chaiworapongsa, and R. Romero, “Evaluation of cervical stiffness during pregnancy using semiquantitative ultrasound elastography,” Ultrasound Obstet. Gynecol. 41(2), 152–161 (2013).
[Crossref]

2012 (4)

M. Mahendroo, “Cervical remodeling in term and preterm birth: insights from an animal model,” Reproduction 143(4), 429–438 (2012).
[Crossref]

B. F. Kennedy, S. H. Koh, R. A. McLaughlin, K. M. Kennedy, P. R. T. Munro, and D. D. Sampson, “Strain estimation in phase-sensitive optical coherence elastography,” Biomed. Opt. Express 3(8), 1865–1879 (2012).
[Crossref]

F. Molina, L. Gomez, J. Florido, M. Padilla, and K. Nicolaides, “Quantification of cervical elastography: a reproducibility study,” Ultrasound Obstet Gynecol 39(6), 685–689 (2012).
[Crossref]

Y. Zhang, M. L. Akins, K. Murari, J. Xi, M.-J. Li, K. Luby-Phelps, M. Mahendroo, and X. Li, “A compact fiber-optic SHG scanning endomicroscope and its application to visualize cervical remodeling during pregnancy,” Proc. Natl. Acad. Sci. 109(32), 12878–12883 (2012).
[Crossref]

2011 (5)

R. Akhtar, M. J. Sherratt, J. K. Cruickshank, and B. Derby, “Characterizing the elastic properties of tissues,” Mater. Today 14(3), 96–105 (2011).
[Crossref]

R. Hornung, S. Spichtig, A. Baños, M. Stahel, R. Zimmermann, and M. Wolf, “Frequency-domain near-infrared spectroscopy of the uterine cervix during regular pregnancies,” Lasers Med. Sci. 26(2), 205–212 (2011).
[Crossref]

M. Swiatkowska-Freund and K. Preis, “Elastography of the uterine cervix: implications for success of induction of labor,” Ultrasound Obstet. Gynecol. 38(1), 52–56 (2011).
[Crossref]

C. Li, Z. Huang, and R. K. Wang, “Elastic properties of soft tissue-mimicking phantoms assessed by combined use of laser ultrasonics and low coherence interferometry,” Opt. Express 19(11), 10153–10163 (2011).
[Crossref]

M. L. Akins, K. Luby-Phelps, R. A. Bank, and M. Mahendroo, “Cervical softening during pregnancy: regulated changes in collagen cross-linking and composition of matricellular proteins in the mouse,” Biol. Reprod. 84(5), 1053–1062 (2011).
[Crossref]

2010 (1)

M. L. Akins, K. Luby-Phelps, and M. Mahendroo, “Second harmonic generation imaging as a potential tool for staging pregnancy and predicting preterm birth,” J. Biomed. Opt. 15(2), 026020 (2010).
[Crossref]

2009 (1)

D. Schlembach, L. MacKay, L. Shi, W. L. Maner, R. E. Garfield, and H. Maul, “Cervical ripening and insufficiency: from biochemical and molecular studies to in vivo clinical examination,” Eur. J. Obstet. Gynecol. Reprod. Biol. 144, S70–S76 (2009).
[Crossref]

2008 (2)

R. L. Goldenberg, J. F. Culhane, J. D. Iams, and R. Romero, “Epidemiology and causes of preterm birth,” Lancet 371(9606), 75–84 (2008).
[Crossref]

K. M. Myers, A. P. Paskaleva, M. House, and S. Socrate, “Mechanical and biochemical properties of human cervical tissue,” Acta Biomater. 4(1), 104–116 (2008).
[Crossref]

2007 (3)

S. Yamaguchi, Y. Kamei, S. Kozuma, and Y. Taketani, “Tissue elastography imaging of the uterine cervix during pregnancy,” J. Med. Ultrasonics 34(4), 209–210 (2007).
[Crossref]

R. K. Wang, S. Kirkpatrick, and M. Hinds, “Phase-sensitive optical coherence elastography for mapping tissue microstrains in real time,” Appl. Phys. Lett. 90(16), 164105 (2007).
[Crossref]

C. P. Read, R. A. Word, M. A. Ruscheinsky, B. C. Timmons, and M. S. Mahendroo, “Cervical remodeling during pregnancy and parturition: molecular characterization of the softening phase in mice,” Reproduction 134(2), 327–340 (2007).
[Crossref]

2006 (3)

A. Thomas, “Imaging of the cervix using sonoelastography,” Ultrasound Obstet. Gynecol. 28(3), 356–357 (2006).
[Crossref]

M. House and S. Socrate, “The cervix as a biomechanical structure,” Ultrasound Obstet Gynecol 28(6), 745–749 (2006).
[Crossref]

H. Maul, L. Mackay, and R. E. Garfield, “Cervical ripening: biochemical, molecular, and clinical considerations,” Clin. Obstet. Gynecol. 49(3), 551–563 (2006).
[Crossref]

2005 (1)

2003 (1)

M. O’connell, N. Avis, B. Brown, S. Killick, and S. Lindow, “Electrical impedance measurements: an objective measure of prelabor cervical change,” J. Matern.-Fetal Neonatal Med. 14(6), 389–391 (2003).
[Crossref]

2000 (1)

M. O’Connell, J. Tidy, S. Wisher, N. Avis, B. Brown, and S. Lindow, “An in vivo comparative study of the pregnant and nonpregnant cervix using electrical impedance measurements,” BJOG 107(8), 1040–1041 (2000).
[Crossref]

1998 (1)

1997 (1)

M. Zhang, Y. P. Zheng, and A. F. T. Mak, “Estimating the effective Young's modulus of soft tissues from indentation tests—nonlinear finite element analysis of effects of friction and large deformation,” Med. Eng. Phys. 19(6), 512–517 (1997).
[Crossref]

Aglyamov, S.

C.-H. Liu, S. Assassi, S. Theodore, C. Smith, A. Schill, M. Singh, S. Aglyamov, C. Mohan, and K. V. Larin, “Translational optical coherence elastography for assessment of systemic sclerosis,” J. Biophotonics 12, e201900236 (2019).
[Crossref]

Ahn, H.

E. Hernandez-Andrade, S. S. Hassan, H. Ahn, S. J. Korzeniewski, L. Yeo, T. Chaiworapongsa, and R. Romero, “Evaluation of cervical stiffness during pregnancy using semiquantitative ultrasound elastography,” Ultrasound Obstet. Gynecol. 41(2), 152–161 (2013).
[Crossref]

Akhtar, R.

R. Akhtar, M. J. Sherratt, J. K. Cruickshank, and B. Derby, “Characterizing the elastic properties of tissues,” Mater. Today 14(3), 96–105 (2011).
[Crossref]

Akins, M. L.

Y. Zhang, M. L. Akins, K. Murari, J. Xi, M.-J. Li, K. Luby-Phelps, M. Mahendroo, and X. Li, “A compact fiber-optic SHG scanning endomicroscope and its application to visualize cervical remodeling during pregnancy,” Proc. Natl. Acad. Sci. 109(32), 12878–12883 (2012).
[Crossref]

M. L. Akins, K. Luby-Phelps, R. A. Bank, and M. Mahendroo, “Cervical softening during pregnancy: regulated changes in collagen cross-linking and composition of matricellular proteins in the mouse,” Biol. Reprod. 84(5), 1053–1062 (2011).
[Crossref]

M. L. Akins, K. Luby-Phelps, and M. Mahendroo, “Second harmonic generation imaging as a potential tool for staging pregnancy and predicting preterm birth,” J. Biomed. Opt. 15(2), 026020 (2010).
[Crossref]

Assassi, S.

C.-H. Liu, S. Assassi, S. Theodore, C. Smith, A. Schill, M. Singh, S. Aglyamov, C. Mohan, and K. V. Larin, “Translational optical coherence elastography for assessment of systemic sclerosis,” J. Biophotonics 12, e201900236 (2019).
[Crossref]

Avis, N.

M. O’connell, N. Avis, B. Brown, S. Killick, and S. Lindow, “Electrical impedance measurements: an objective measure of prelabor cervical change,” J. Matern.-Fetal Neonatal Med. 14(6), 389–391 (2003).
[Crossref]

M. O’Connell, J. Tidy, S. Wisher, N. Avis, B. Brown, and S. Lindow, “An in vivo comparative study of the pregnant and nonpregnant cervix using electrical impedance measurements,” BJOG 107(8), 1040–1041 (2000).
[Crossref]

Awad, M.

L. Bin, Y. Ronghua, Y. Peng, M. Awad, M. Choti, and R. Taylor, “Elasticity and Echogenicity Analysis of Agarose Phantoms Mimicking Liver Tumors,” inProceedings of the IEEE 32nd Annual Northeast Bioengineering Conference(2006), pp. 81–82.

Badir, S.

S. Badir, E. Mazza, R. Zimmermann, and M. Bajka, “Cervical softening occurs early in pregnancy: characterization of cervical stiffness in 100 healthy women using the aspiration technique,” Prenatal Diagn. 33(8), 737–741 (2013).
[Crossref]

Bajka, M.

E. Mazza, M. Parra-Saavedra, M. Bajka, E. Gratacos, K. Nicolaides, and J. Deprest, “In vivo assessment of the biomechanical properties of the uterine cervix in pregnancy,” Prenatal Diagn. 34(1), 33–41 (2014).
[Crossref]

S. Badir, E. Mazza, R. Zimmermann, and M. Bajka, “Cervical softening occurs early in pregnancy: characterization of cervical stiffness in 100 healthy women using the aspiration technique,” Prenatal Diagn. 33(8), 737–741 (2013).
[Crossref]

Bank, R. A.

M. L. Akins, K. Luby-Phelps, R. A. Bank, and M. Mahendroo, “Cervical softening during pregnancy: regulated changes in collagen cross-linking and composition of matricellular proteins in the mouse,” Biol. Reprod. 84(5), 1053–1062 (2011).
[Crossref]

Baños, A.

R. Hornung, S. Spichtig, A. Baños, M. Stahel, R. Zimmermann, and M. Wolf, “Frequency-domain near-infrared spectroscopy of the uterine cervix during regular pregnancies,” Lasers Med. Sci. 26(2), 205–212 (2011).
[Crossref]

Bin, L.

L. Bin, Y. Ronghua, Y. Peng, M. Awad, M. Choti, and R. Taylor, “Elasticity and Echogenicity Analysis of Agarose Phantoms Mimicking Liver Tumors,” inProceedings of the IEEE 32nd Annual Northeast Bioengineering Conference(2006), pp. 81–82.

Boer, J. F. d.

Bouma, B. E.

Brown, B.

M. O’connell, N. Avis, B. Brown, S. Killick, and S. Lindow, “Electrical impedance measurements: an objective measure of prelabor cervical change,” J. Matern.-Fetal Neonatal Med. 14(6), 389–391 (2003).
[Crossref]

M. O’Connell, J. Tidy, S. Wisher, N. Avis, B. Brown, and S. Lindow, “An in vivo comparative study of the pregnant and nonpregnant cervix using electrical impedance measurements,” BJOG 107(8), 1040–1041 (2000).
[Crossref]

Cense, B.

Chaiworapongsa, T.

E. Hernandez-Andrade, S. S. Hassan, H. Ahn, S. J. Korzeniewski, L. Yeo, T. Chaiworapongsa, and R. Romero, “Evaluation of cervical stiffness during pregnancy using semiquantitative ultrasound elastography,” Ultrasound Obstet. Gynecol. 41(2), 152–161 (2013).
[Crossref]

Chin, L.

Choti, M.

L. Bin, Y. Ronghua, Y. Peng, M. Awad, M. Choti, and R. Taylor, “Elasticity and Echogenicity Analysis of Agarose Phantoms Mimicking Liver Tumors,” inProceedings of the IEEE 32nd Annual Northeast Bioengineering Conference(2006), pp. 81–82.

Cremers, S.

K. Yoshida, H. Jiang, M. Kim, J. Vink, S. Cremers, D. Paik, R. Wapner, M. Mahendroo, and K. Myers, “Quantitative Evaluation of Collagen Crosslinks and Corresponding Tensile Mechanical Properties in Mouse Cervical Tissue during Normal Pregnancy,” PLoS One 9(11), e112391 (2014).
[Crossref]

Cruickshank, J. K.

R. Akhtar, M. J. Sherratt, J. K. Cruickshank, and B. Derby, “Characterizing the elastic properties of tissues,” Mater. Today 14(3), 96–105 (2011).
[Crossref]

Culhane, J. F.

R. L. Goldenberg, J. F. Culhane, J. D. Iams, and R. Romero, “Epidemiology and causes of preterm birth,” Lancet 371(9606), 75–84 (2008).
[Crossref]

Curatolo, A.

Deprest, J.

E. Mazza, M. Parra-Saavedra, M. Bajka, E. Gratacos, K. Nicolaides, and J. Deprest, “In vivo assessment of the biomechanical properties of the uterine cervix in pregnancy,” Prenatal Diagn. 34(1), 33–41 (2014).
[Crossref]

Derby, B.

R. Akhtar, M. J. Sherratt, J. K. Cruickshank, and B. Derby, “Characterizing the elastic properties of tissues,” Mater. Today 14(3), 96–105 (2011).
[Crossref]

Es’haghian, S.

Florido, J.

F. Molina, L. Gomez, J. Florido, M. Padilla, and K. Nicolaides, “Quantification of cervical elastography: a reproducibility study,” Ultrasound Obstet Gynecol 39(6), 685–689 (2012).
[Crossref]

Garfield, R. E.

D. Schlembach, L. MacKay, L. Shi, W. L. Maner, R. E. Garfield, and H. Maul, “Cervical ripening and insufficiency: from biochemical and molecular studies to in vivo clinical examination,” Eur. J. Obstet. Gynecol. Reprod. Biol. 144, S70–S76 (2009).
[Crossref]

H. Maul, L. Mackay, and R. E. Garfield, “Cervical ripening: biochemical, molecular, and clinical considerations,” Clin. Obstet. Gynecol. 49(3), 551–563 (2006).
[Crossref]

Goldenberg, R. L.

R. L. Goldenberg, J. F. Culhane, J. D. Iams, and R. Romero, “Epidemiology and causes of preterm birth,” Lancet 371(9606), 75–84 (2008).
[Crossref]

Gomez, L.

F. Molina, L. Gomez, J. Florido, M. Padilla, and K. Nicolaides, “Quantification of cervical elastography: a reproducibility study,” Ultrasound Obstet Gynecol 39(6), 685–689 (2012).
[Crossref]

Gratacos, E.

E. Mazza, M. Parra-Saavedra, M. Bajka, E. Gratacos, K. Nicolaides, and J. Deprest, “In vivo assessment of the biomechanical properties of the uterine cervix in pregnancy,” Prenatal Diagn. 34(1), 33–41 (2014).
[Crossref]

Hassan, S. S.

E. Hernandez-Andrade, S. S. Hassan, H. Ahn, S. J. Korzeniewski, L. Yeo, T. Chaiworapongsa, and R. Romero, “Evaluation of cervical stiffness during pregnancy using semiquantitative ultrasound elastography,” Ultrasound Obstet. Gynecol. 41(2), 152–161 (2013).
[Crossref]

Hepburn, M. S.

Hernandez-Andrade, E.

E. Hernandez-Andrade, S. S. Hassan, H. Ahn, S. J. Korzeniewski, L. Yeo, T. Chaiworapongsa, and R. Romero, “Evaluation of cervical stiffness during pregnancy using semiquantitative ultrasound elastography,” Ultrasound Obstet. Gynecol. 41(2), 152–161 (2013).
[Crossref]

Hinds, M.

R. K. Wang, S. Kirkpatrick, and M. Hinds, “Phase-sensitive optical coherence elastography for mapping tissue microstrains in real time,” Appl. Phys. Lett. 90(16), 164105 (2007).
[Crossref]

Hornung, R.

R. Hornung, S. Spichtig, A. Baños, M. Stahel, R. Zimmermann, and M. Wolf, “Frequency-domain near-infrared spectroscopy of the uterine cervix during regular pregnancies,” Lasers Med. Sci. 26(2), 205–212 (2011).
[Crossref]

House, M.

K. M. Myers, A. P. Paskaleva, M. House, and S. Socrate, “Mechanical and biochemical properties of human cervical tissue,” Acta Biomater. 4(1), 104–116 (2008).
[Crossref]

M. House and S. Socrate, “The cervix as a biomechanical structure,” Ultrasound Obstet Gynecol 28(6), 745–749 (2006).
[Crossref]

Huang, Z.

Hyle Park, B.

Iams, J. D.

R. L. Goldenberg, J. F. Culhane, J. D. Iams, and R. Romero, “Epidemiology and causes of preterm birth,” Lancet 371(9606), 75–84 (2008).
[Crossref]

Jayyosi, C.

K. Yoshida, C. Jayyosi, N. Lee, M. Mahendroo, and K. M. Myers, “Mechanics of cervical remodelling: insights from rodent models of pregnancy,” Interface Focus 9(5), 20190026 (2019).
[Crossref]

C. Jayyosi, N. Lee, A. Willcockson, S. Nallasamy, M. Mahendroo, and K. Myers, “The mechanical response of the mouse cervix to tensile cyclic loading in term and preterm pregnancy,” Acta Biomater. 78, 308–319 (2018).
[Crossref]

Jiang, H.

K. Yoshida, H. Jiang, M. Kim, J. Vink, S. Cremers, D. Paik, R. Wapner, M. Mahendroo, and K. Myers, “Quantitative Evaluation of Collagen Crosslinks and Corresponding Tensile Mechanical Properties in Mouse Cervical Tissue during Normal Pregnancy,” PLoS One 9(11), e112391 (2014).
[Crossref]

Kamei, Y.

S. Yamaguchi, Y. Kamei, S. Kozuma, and Y. Taketani, “Tissue elastography imaging of the uterine cervix during pregnancy,” J. Med. Ultrasonics 34(4), 209–210 (2007).
[Crossref]

Kennedy, B. F.

Kennedy, K. M.

Killick, S.

M. O’connell, N. Avis, B. Brown, S. Killick, and S. Lindow, “Electrical impedance measurements: an objective measure of prelabor cervical change,” J. Matern.-Fetal Neonatal Med. 14(6), 389–391 (2003).
[Crossref]

Kim, M.

K. Yoshida, H. Jiang, M. Kim, J. Vink, S. Cremers, D. Paik, R. Wapner, M. Mahendroo, and K. Myers, “Quantitative Evaluation of Collagen Crosslinks and Corresponding Tensile Mechanical Properties in Mouse Cervical Tissue during Normal Pregnancy,” PLoS One 9(11), e112391 (2014).
[Crossref]

Kirkpatrick, S.

R. K. Wang, S. Kirkpatrick, and M. Hinds, “Phase-sensitive optical coherence elastography for mapping tissue microstrains in real time,” Appl. Phys. Lett. 90(16), 164105 (2007).
[Crossref]

Koh, S. H.

Korzeniewski, S. J.

E. Hernandez-Andrade, S. S. Hassan, H. Ahn, S. J. Korzeniewski, L. Yeo, T. Chaiworapongsa, and R. Romero, “Evaluation of cervical stiffness during pregnancy using semiquantitative ultrasound elastography,” Ultrasound Obstet. Gynecol. 41(2), 152–161 (2013).
[Crossref]

Kozuma, S.

S. Yamaguchi, Y. Kamei, S. Kozuma, and Y. Taketani, “Tissue elastography imaging of the uterine cervix during pregnancy,” J. Med. Ultrasonics 34(4), 209–210 (2007).
[Crossref]

Larin, K. V.

C.-H. Liu, S. Assassi, S. Theodore, C. Smith, A. Schill, M. Singh, S. Aglyamov, C. Mohan, and K. V. Larin, “Translational optical coherence elastography for assessment of systemic sclerosis,” J. Biophotonics 12, e201900236 (2019).
[Crossref]

K. V. Larin and D. D. Sampson, “Optical coherence elastography — OCT at work in tissue biomechanics [Invited],” Biomed. Opt. Express 8(2), 1172–1202 (2017).
[Crossref]

W. Shang and K. V. Larin, “Optical coherence elastography for tissue characterization: a review,” J. Biophotonics 8(4), 279–302 (2015).
[Crossref]

Latham, B.

Lee, N.

K. Yoshida, C. Jayyosi, N. Lee, M. Mahendroo, and K. M. Myers, “Mechanics of cervical remodelling: insights from rodent models of pregnancy,” Interface Focus 9(5), 20190026 (2019).
[Crossref]

C. Jayyosi, N. Lee, A. Willcockson, S. Nallasamy, M. Mahendroo, and K. Myers, “The mechanical response of the mouse cervix to tensile cyclic loading in term and preterm pregnancy,” Acta Biomater. 78, 308–319 (2018).
[Crossref]

Li, C.

Li, M.-J.

Y. Zhang, M. L. Akins, K. Murari, J. Xi, M.-J. Li, K. Luby-Phelps, M. Mahendroo, and X. Li, “A compact fiber-optic SHG scanning endomicroscope and its application to visualize cervical remodeling during pregnancy,” Proc. Natl. Acad. Sci. 109(32), 12878–12883 (2012).
[Crossref]

Li, X.

J. Xi, A. Zhang, Z. Liu, W. Liang, L. Y. Lin, S. Yu, and X. Li, “Diffractive catheter for ultrahigh-resolution spectral-domain volumetric OCT imaging,” Opt. Lett. 39(7), 2016–2019 (2014).
[Crossref]

Y. Zhang, M. L. Akins, K. Murari, J. Xi, M.-J. Li, K. Luby-Phelps, M. Mahendroo, and X. Li, “A compact fiber-optic SHG scanning endomicroscope and its application to visualize cervical remodeling during pregnancy,” Proc. Natl. Acad. Sci. 109(32), 12878–12883 (2012).
[Crossref]

Liang, W.

Lin, L. Y.

Lindow, S.

M. O’connell, N. Avis, B. Brown, S. Killick, and S. Lindow, “Electrical impedance measurements: an objective measure of prelabor cervical change,” J. Matern.-Fetal Neonatal Med. 14(6), 389–391 (2003).
[Crossref]

M. O’Connell, J. Tidy, S. Wisher, N. Avis, B. Brown, and S. Lindow, “An in vivo comparative study of the pregnant and nonpregnant cervix using electrical impedance measurements,” BJOG 107(8), 1040–1041 (2000).
[Crossref]

Liu, C.-H.

C.-H. Liu, S. Assassi, S. Theodore, C. Smith, A. Schill, M. Singh, S. Aglyamov, C. Mohan, and K. V. Larin, “Translational optical coherence elastography for assessment of systemic sclerosis,” J. Biophotonics 12, e201900236 (2019).
[Crossref]

Liu, Z.

Luby-Phelps, K.

Y. Zhang, M. L. Akins, K. Murari, J. Xi, M.-J. Li, K. Luby-Phelps, M. Mahendroo, and X. Li, “A compact fiber-optic SHG scanning endomicroscope and its application to visualize cervical remodeling during pregnancy,” Proc. Natl. Acad. Sci. 109(32), 12878–12883 (2012).
[Crossref]

M. L. Akins, K. Luby-Phelps, R. A. Bank, and M. Mahendroo, “Cervical softening during pregnancy: regulated changes in collagen cross-linking and composition of matricellular proteins in the mouse,” Biol. Reprod. 84(5), 1053–1062 (2011).
[Crossref]

M. L. Akins, K. Luby-Phelps, and M. Mahendroo, “Second harmonic generation imaging as a potential tool for staging pregnancy and predicting preterm birth,” J. Biomed. Opt. 15(2), 026020 (2010).
[Crossref]

MacKay, L.

D. Schlembach, L. MacKay, L. Shi, W. L. Maner, R. E. Garfield, and H. Maul, “Cervical ripening and insufficiency: from biochemical and molecular studies to in vivo clinical examination,” Eur. J. Obstet. Gynecol. Reprod. Biol. 144, S70–S76 (2009).
[Crossref]

H. Maul, L. Mackay, and R. E. Garfield, “Cervical ripening: biochemical, molecular, and clinical considerations,” Clin. Obstet. Gynecol. 49(3), 551–563 (2006).
[Crossref]

Mahendroo, M.

K. Yoshida, C. Jayyosi, N. Lee, M. Mahendroo, and K. M. Myers, “Mechanics of cervical remodelling: insights from rodent models of pregnancy,” Interface Focus 9(5), 20190026 (2019).
[Crossref]

C. Jayyosi, N. Lee, A. Willcockson, S. Nallasamy, M. Mahendroo, and K. Myers, “The mechanical response of the mouse cervix to tensile cyclic loading in term and preterm pregnancy,” Acta Biomater. 78, 308–319 (2018).
[Crossref]

K. Yoshida, H. Jiang, M. Kim, J. Vink, S. Cremers, D. Paik, R. Wapner, M. Mahendroo, and K. Myers, “Quantitative Evaluation of Collagen Crosslinks and Corresponding Tensile Mechanical Properties in Mouse Cervical Tissue during Normal Pregnancy,” PLoS One 9(11), e112391 (2014).
[Crossref]

Y. Zhang, M. L. Akins, K. Murari, J. Xi, M.-J. Li, K. Luby-Phelps, M. Mahendroo, and X. Li, “A compact fiber-optic SHG scanning endomicroscope and its application to visualize cervical remodeling during pregnancy,” Proc. Natl. Acad. Sci. 109(32), 12878–12883 (2012).
[Crossref]

M. Mahendroo, “Cervical remodeling in term and preterm birth: insights from an animal model,” Reproduction 143(4), 429–438 (2012).
[Crossref]

M. L. Akins, K. Luby-Phelps, R. A. Bank, and M. Mahendroo, “Cervical softening during pregnancy: regulated changes in collagen cross-linking and composition of matricellular proteins in the mouse,” Biol. Reprod. 84(5), 1053–1062 (2011).
[Crossref]

M. L. Akins, K. Luby-Phelps, and M. Mahendroo, “Second harmonic generation imaging as a potential tool for staging pregnancy and predicting preterm birth,” J. Biomed. Opt. 15(2), 026020 (2010).
[Crossref]

Mahendroo, M. S.

C. P. Read, R. A. Word, M. A. Ruscheinsky, B. C. Timmons, and M. S. Mahendroo, “Cervical remodeling during pregnancy and parturition: molecular characterization of the softening phase in mice,” Reproduction 134(2), 327–340 (2007).
[Crossref]

Mak, A. F. T.

M. Zhang, Y. P. Zheng, and A. F. T. Mak, “Estimating the effective Young's modulus of soft tissues from indentation tests—nonlinear finite element analysis of effects of friction and large deformation,” Med. Eng. Phys. 19(6), 512–517 (1997).
[Crossref]

Maner, W. L.

D. Schlembach, L. MacKay, L. Shi, W. L. Maner, R. E. Garfield, and H. Maul, “Cervical ripening and insufficiency: from biochemical and molecular studies to in vivo clinical examination,” Eur. J. Obstet. Gynecol. Reprod. Biol. 144, S70–S76 (2009).
[Crossref]

Maul, H.

D. Schlembach, L. MacKay, L. Shi, W. L. Maner, R. E. Garfield, and H. Maul, “Cervical ripening and insufficiency: from biochemical and molecular studies to in vivo clinical examination,” Eur. J. Obstet. Gynecol. Reprod. Biol. 144, S70–S76 (2009).
[Crossref]

H. Maul, L. Mackay, and R. E. Garfield, “Cervical ripening: biochemical, molecular, and clinical considerations,” Clin. Obstet. Gynecol. 49(3), 551–563 (2006).
[Crossref]

Mazza, E.

E. Mazza, M. Parra-Saavedra, M. Bajka, E. Gratacos, K. Nicolaides, and J. Deprest, “In vivo assessment of the biomechanical properties of the uterine cervix in pregnancy,” Prenatal Diagn. 34(1), 33–41 (2014).
[Crossref]

S. Badir, E. Mazza, R. Zimmermann, and M. Bajka, “Cervical softening occurs early in pregnancy: characterization of cervical stiffness in 100 healthy women using the aspiration technique,” Prenatal Diagn. 33(8), 737–741 (2013).
[Crossref]

McLaughlin, R. A.

Mohan, C.

C.-H. Liu, S. Assassi, S. Theodore, C. Smith, A. Schill, M. Singh, S. Aglyamov, C. Mohan, and K. V. Larin, “Translational optical coherence elastography for assessment of systemic sclerosis,” J. Biophotonics 12, e201900236 (2019).
[Crossref]

Molina, F.

F. Molina, L. Gomez, J. Florido, M. Padilla, and K. Nicolaides, “Quantification of cervical elastography: a reproducibility study,” Ultrasound Obstet Gynecol 39(6), 685–689 (2012).
[Crossref]

Mujat, M.

Munro, P. R. T.

Murari, K.

Y. Zhang, M. L. Akins, K. Murari, J. Xi, M.-J. Li, K. Luby-Phelps, M. Mahendroo, and X. Li, “A compact fiber-optic SHG scanning endomicroscope and its application to visualize cervical remodeling during pregnancy,” Proc. Natl. Acad. Sci. 109(32), 12878–12883 (2012).
[Crossref]

Myers, K.

C. Jayyosi, N. Lee, A. Willcockson, S. Nallasamy, M. Mahendroo, and K. Myers, “The mechanical response of the mouse cervix to tensile cyclic loading in term and preterm pregnancy,” Acta Biomater. 78, 308–319 (2018).
[Crossref]

K. Yoshida, H. Jiang, M. Kim, J. Vink, S. Cremers, D. Paik, R. Wapner, M. Mahendroo, and K. Myers, “Quantitative Evaluation of Collagen Crosslinks and Corresponding Tensile Mechanical Properties in Mouse Cervical Tissue during Normal Pregnancy,” PLoS One 9(11), e112391 (2014).
[Crossref]

Myers, K. M.

K. Yoshida, C. Jayyosi, N. Lee, M. Mahendroo, and K. M. Myers, “Mechanics of cervical remodelling: insights from rodent models of pregnancy,” Interface Focus 9(5), 20190026 (2019).
[Crossref]

K. M. Myers, A. P. Paskaleva, M. House, and S. Socrate, “Mechanical and biochemical properties of human cervical tissue,” Acta Biomater. 4(1), 104–116 (2008).
[Crossref]

Nallasamy, S.

C. Jayyosi, N. Lee, A. Willcockson, S. Nallasamy, M. Mahendroo, and K. Myers, “The mechanical response of the mouse cervix to tensile cyclic loading in term and preterm pregnancy,” Acta Biomater. 78, 308–319 (2018).
[Crossref]

Nicolaides, K.

E. Mazza, M. Parra-Saavedra, M. Bajka, E. Gratacos, K. Nicolaides, and J. Deprest, “In vivo assessment of the biomechanical properties of the uterine cervix in pregnancy,” Prenatal Diagn. 34(1), 33–41 (2014).
[Crossref]

F. Molina, L. Gomez, J. Florido, M. Padilla, and K. Nicolaides, “Quantification of cervical elastography: a reproducibility study,” Ultrasound Obstet Gynecol 39(6), 685–689 (2012).
[Crossref]

O’connell, M.

M. O’connell, N. Avis, B. Brown, S. Killick, and S. Lindow, “Electrical impedance measurements: an objective measure of prelabor cervical change,” J. Matern.-Fetal Neonatal Med. 14(6), 389–391 (2003).
[Crossref]

M. O’Connell, J. Tidy, S. Wisher, N. Avis, B. Brown, and S. Lindow, “An in vivo comparative study of the pregnant and nonpregnant cervix using electrical impedance measurements,” BJOG 107(8), 1040–1041 (2000).
[Crossref]

Padilla, M.

F. Molina, L. Gomez, J. Florido, M. Padilla, and K. Nicolaides, “Quantification of cervical elastography: a reproducibility study,” Ultrasound Obstet Gynecol 39(6), 685–689 (2012).
[Crossref]

Paik, D.

K. Yoshida, H. Jiang, M. Kim, J. Vink, S. Cremers, D. Paik, R. Wapner, M. Mahendroo, and K. Myers, “Quantitative Evaluation of Collagen Crosslinks and Corresponding Tensile Mechanical Properties in Mouse Cervical Tissue during Normal Pregnancy,” PLoS One 9(11), e112391 (2014).
[Crossref]

Parra-Saavedra, M.

E. Mazza, M. Parra-Saavedra, M. Bajka, E. Gratacos, K. Nicolaides, and J. Deprest, “In vivo assessment of the biomechanical properties of the uterine cervix in pregnancy,” Prenatal Diagn. 34(1), 33–41 (2014).
[Crossref]

Paskaleva, A. P.

K. M. Myers, A. P. Paskaleva, M. House, and S. Socrate, “Mechanical and biochemical properties of human cervical tissue,” Acta Biomater. 4(1), 104–116 (2008).
[Crossref]

Peng, Y.

L. Bin, Y. Ronghua, Y. Peng, M. Awad, M. Choti, and R. Taylor, “Elasticity and Echogenicity Analysis of Agarose Phantoms Mimicking Liver Tumors,” inProceedings of the IEEE 32nd Annual Northeast Bioengineering Conference(2006), pp. 81–82.

Pierce, M. C.

Preis, K.

M. Swiatkowska-Freund and K. Preis, “Elastography of the uterine cervix: implications for success of induction of labor,” Ultrasound Obstet. Gynecol. 38(1), 52–56 (2011).
[Crossref]

Read, C. P.

C. P. Read, R. A. Word, M. A. Ruscheinsky, B. C. Timmons, and M. S. Mahendroo, “Cervical remodeling during pregnancy and parturition: molecular characterization of the softening phase in mice,” Reproduction 134(2), 327–340 (2007).
[Crossref]

Romero, R.

E. Hernandez-Andrade, S. S. Hassan, H. Ahn, S. J. Korzeniewski, L. Yeo, T. Chaiworapongsa, and R. Romero, “Evaluation of cervical stiffness during pregnancy using semiquantitative ultrasound elastography,” Ultrasound Obstet. Gynecol. 41(2), 152–161 (2013).
[Crossref]

R. L. Goldenberg, J. F. Culhane, J. D. Iams, and R. Romero, “Epidemiology and causes of preterm birth,” Lancet 371(9606), 75–84 (2008).
[Crossref]

Ronghua, Y.

L. Bin, Y. Ronghua, Y. Peng, M. Awad, M. Choti, and R. Taylor, “Elasticity and Echogenicity Analysis of Agarose Phantoms Mimicking Liver Tumors,” inProceedings of the IEEE 32nd Annual Northeast Bioengineering Conference(2006), pp. 81–82.

Ruscheinsky, M. A.

C. P. Read, R. A. Word, M. A. Ruscheinsky, B. C. Timmons, and M. S. Mahendroo, “Cervical remodeling during pregnancy and parturition: molecular characterization of the softening phase in mice,” Reproduction 134(2), 327–340 (2007).
[Crossref]

Sampson, D. D.

Saunders, C. M.

Schill, A.

C.-H. Liu, S. Assassi, S. Theodore, C. Smith, A. Schill, M. Singh, S. Aglyamov, C. Mohan, and K. V. Larin, “Translational optical coherence elastography for assessment of systemic sclerosis,” J. Biophotonics 12, e201900236 (2019).
[Crossref]

Schlembach, D.

D. Schlembach, L. MacKay, L. Shi, W. L. Maner, R. E. Garfield, and H. Maul, “Cervical ripening and insufficiency: from biochemical and molecular studies to in vivo clinical examination,” Eur. J. Obstet. Gynecol. Reprod. Biol. 144, S70–S76 (2009).
[Crossref]

Schmitt, J. M.

Shang, W.

W. Shang and K. V. Larin, “Optical coherence elastography for tissue characterization: a review,” J. Biophotonics 8(4), 279–302 (2015).
[Crossref]

Sherratt, M. J.

R. Akhtar, M. J. Sherratt, J. K. Cruickshank, and B. Derby, “Characterizing the elastic properties of tissues,” Mater. Today 14(3), 96–105 (2011).
[Crossref]

Shi, L.

D. Schlembach, L. MacKay, L. Shi, W. L. Maner, R. E. Garfield, and H. Maul, “Cervical ripening and insufficiency: from biochemical and molecular studies to in vivo clinical examination,” Eur. J. Obstet. Gynecol. Reprod. Biol. 144, S70–S76 (2009).
[Crossref]

Singh, M.

C.-H. Liu, S. Assassi, S. Theodore, C. Smith, A. Schill, M. Singh, S. Aglyamov, C. Mohan, and K. V. Larin, “Translational optical coherence elastography for assessment of systemic sclerosis,” J. Biophotonics 12, e201900236 (2019).
[Crossref]

Smith, C.

C.-H. Liu, S. Assassi, S. Theodore, C. Smith, A. Schill, M. Singh, S. Aglyamov, C. Mohan, and K. V. Larin, “Translational optical coherence elastography for assessment of systemic sclerosis,” J. Biophotonics 12, e201900236 (2019).
[Crossref]

Socrate, S.

K. M. Myers, A. P. Paskaleva, M. House, and S. Socrate, “Mechanical and biochemical properties of human cervical tissue,” Acta Biomater. 4(1), 104–116 (2008).
[Crossref]

M. House and S. Socrate, “The cervix as a biomechanical structure,” Ultrasound Obstet Gynecol 28(6), 745–749 (2006).
[Crossref]

Spichtig, S.

R. Hornung, S. Spichtig, A. Baños, M. Stahel, R. Zimmermann, and M. Wolf, “Frequency-domain near-infrared spectroscopy of the uterine cervix during regular pregnancies,” Lasers Med. Sci. 26(2), 205–212 (2011).
[Crossref]

Stahel, M.

R. Hornung, S. Spichtig, A. Baños, M. Stahel, R. Zimmermann, and M. Wolf, “Frequency-domain near-infrared spectroscopy of the uterine cervix during regular pregnancies,” Lasers Med. Sci. 26(2), 205–212 (2011).
[Crossref]

Swiatkowska-Freund, M.

M. Swiatkowska-Freund and K. Preis, “Elastography of the uterine cervix: implications for success of induction of labor,” Ultrasound Obstet. Gynecol. 38(1), 52–56 (2011).
[Crossref]

Taketani, Y.

S. Yamaguchi, Y. Kamei, S. Kozuma, and Y. Taketani, “Tissue elastography imaging of the uterine cervix during pregnancy,” J. Med. Ultrasonics 34(4), 209–210 (2007).
[Crossref]

Taylor, R.

L. Bin, Y. Ronghua, Y. Peng, M. Awad, M. Choti, and R. Taylor, “Elasticity and Echogenicity Analysis of Agarose Phantoms Mimicking Liver Tumors,” inProceedings of the IEEE 32nd Annual Northeast Bioengineering Conference(2006), pp. 81–82.

Tearney, G. J.

Theodore, S.

C.-H. Liu, S. Assassi, S. Theodore, C. Smith, A. Schill, M. Singh, S. Aglyamov, C. Mohan, and K. V. Larin, “Translational optical coherence elastography for assessment of systemic sclerosis,” J. Biophotonics 12, e201900236 (2019).
[Crossref]

Thomas, A.

A. Thomas, “Imaging of the cervix using sonoelastography,” Ultrasound Obstet. Gynecol. 28(3), 356–357 (2006).
[Crossref]

Tidy, J.

M. O’Connell, J. Tidy, S. Wisher, N. Avis, B. Brown, and S. Lindow, “An in vivo comparative study of the pregnant and nonpregnant cervix using electrical impedance measurements,” BJOG 107(8), 1040–1041 (2000).
[Crossref]

Tien, A.

Timmons, B. C.

C. P. Read, R. A. Word, M. A. Ruscheinsky, B. C. Timmons, and M. S. Mahendroo, “Cervical remodeling during pregnancy and parturition: molecular characterization of the softening phase in mice,” Reproduction 134(2), 327–340 (2007).
[Crossref]

Vink, J.

K. Yoshida, H. Jiang, M. Kim, J. Vink, S. Cremers, D. Paik, R. Wapner, M. Mahendroo, and K. Myers, “Quantitative Evaluation of Collagen Crosslinks and Corresponding Tensile Mechanical Properties in Mouse Cervical Tissue during Normal Pregnancy,” PLoS One 9(11), e112391 (2014).
[Crossref]

Wang, R. K.

C. Li, Z. Huang, and R. K. Wang, “Elastic properties of soft tissue-mimicking phantoms assessed by combined use of laser ultrasonics and low coherence interferometry,” Opt. Express 19(11), 10153–10163 (2011).
[Crossref]

R. K. Wang, S. Kirkpatrick, and M. Hinds, “Phase-sensitive optical coherence elastography for mapping tissue microstrains in real time,” Appl. Phys. Lett. 90(16), 164105 (2007).
[Crossref]

Wapner, R.

K. Yoshida, H. Jiang, M. Kim, J. Vink, S. Cremers, D. Paik, R. Wapner, M. Mahendroo, and K. Myers, “Quantitative Evaluation of Collagen Crosslinks and Corresponding Tensile Mechanical Properties in Mouse Cervical Tissue during Normal Pregnancy,” PLoS One 9(11), e112391 (2014).
[Crossref]

Wijesinghe, P.

Willcockson, A.

C. Jayyosi, N. Lee, A. Willcockson, S. Nallasamy, M. Mahendroo, and K. Myers, “The mechanical response of the mouse cervix to tensile cyclic loading in term and preterm pregnancy,” Acta Biomater. 78, 308–319 (2018).
[Crossref]

Wisher, S.

M. O’Connell, J. Tidy, S. Wisher, N. Avis, B. Brown, and S. Lindow, “An in vivo comparative study of the pregnant and nonpregnant cervix using electrical impedance measurements,” BJOG 107(8), 1040–1041 (2000).
[Crossref]

Wolf, M.

R. Hornung, S. Spichtig, A. Baños, M. Stahel, R. Zimmermann, and M. Wolf, “Frequency-domain near-infrared spectroscopy of the uterine cervix during regular pregnancies,” Lasers Med. Sci. 26(2), 205–212 (2011).
[Crossref]

Word, R. A.

C. P. Read, R. A. Word, M. A. Ruscheinsky, B. C. Timmons, and M. S. Mahendroo, “Cervical remodeling during pregnancy and parturition: molecular characterization of the softening phase in mice,” Reproduction 134(2), 327–340 (2007).
[Crossref]

Xi, J.

J. Xi, A. Zhang, Z. Liu, W. Liang, L. Y. Lin, S. Yu, and X. Li, “Diffractive catheter for ultrahigh-resolution spectral-domain volumetric OCT imaging,” Opt. Lett. 39(7), 2016–2019 (2014).
[Crossref]

Y. Zhang, M. L. Akins, K. Murari, J. Xi, M.-J. Li, K. Luby-Phelps, M. Mahendroo, and X. Li, “A compact fiber-optic SHG scanning endomicroscope and its application to visualize cervical remodeling during pregnancy,” Proc. Natl. Acad. Sci. 109(32), 12878–12883 (2012).
[Crossref]

Yamaguchi, S.

S. Yamaguchi, Y. Kamei, S. Kozuma, and Y. Taketani, “Tissue elastography imaging of the uterine cervix during pregnancy,” J. Med. Ultrasonics 34(4), 209–210 (2007).
[Crossref]

Yeo, L.

E. Hernandez-Andrade, S. S. Hassan, H. Ahn, S. J. Korzeniewski, L. Yeo, T. Chaiworapongsa, and R. Romero, “Evaluation of cervical stiffness during pregnancy using semiquantitative ultrasound elastography,” Ultrasound Obstet. Gynecol. 41(2), 152–161 (2013).
[Crossref]

Yoshida, K.

K. Yoshida, C. Jayyosi, N. Lee, M. Mahendroo, and K. M. Myers, “Mechanics of cervical remodelling: insights from rodent models of pregnancy,” Interface Focus 9(5), 20190026 (2019).
[Crossref]

K. Yoshida, H. Jiang, M. Kim, J. Vink, S. Cremers, D. Paik, R. Wapner, M. Mahendroo, and K. Myers, “Quantitative Evaluation of Collagen Crosslinks and Corresponding Tensile Mechanical Properties in Mouse Cervical Tissue during Normal Pregnancy,” PLoS One 9(11), e112391 (2014).
[Crossref]

Yu, S.

Yun, S.-H.

Zhang, A.

Zhang, M.

M. Zhang, Y. P. Zheng, and A. F. T. Mak, “Estimating the effective Young's modulus of soft tissues from indentation tests—nonlinear finite element analysis of effects of friction and large deformation,” Med. Eng. Phys. 19(6), 512–517 (1997).
[Crossref]

Zhang, Y.

Y. Zhang, M. L. Akins, K. Murari, J. Xi, M.-J. Li, K. Luby-Phelps, M. Mahendroo, and X. Li, “A compact fiber-optic SHG scanning endomicroscope and its application to visualize cervical remodeling during pregnancy,” Proc. Natl. Acad. Sci. 109(32), 12878–12883 (2012).
[Crossref]

Zheng, Y. P.

M. Zhang, Y. P. Zheng, and A. F. T. Mak, “Estimating the effective Young's modulus of soft tissues from indentation tests—nonlinear finite element analysis of effects of friction and large deformation,” Med. Eng. Phys. 19(6), 512–517 (1997).
[Crossref]

Zimmermann, R.

S. Badir, E. Mazza, R. Zimmermann, and M. Bajka, “Cervical softening occurs early in pregnancy: characterization of cervical stiffness in 100 healthy women using the aspiration technique,” Prenatal Diagn. 33(8), 737–741 (2013).
[Crossref]

R. Hornung, S. Spichtig, A. Baños, M. Stahel, R. Zimmermann, and M. Wolf, “Frequency-domain near-infrared spectroscopy of the uterine cervix during regular pregnancies,” Lasers Med. Sci. 26(2), 205–212 (2011).
[Crossref]

Acta Biomater. (2)

K. M. Myers, A. P. Paskaleva, M. House, and S. Socrate, “Mechanical and biochemical properties of human cervical tissue,” Acta Biomater. 4(1), 104–116 (2008).
[Crossref]

C. Jayyosi, N. Lee, A. Willcockson, S. Nallasamy, M. Mahendroo, and K. Myers, “The mechanical response of the mouse cervix to tensile cyclic loading in term and preterm pregnancy,” Acta Biomater. 78, 308–319 (2018).
[Crossref]

Appl. Phys. Lett. (1)

R. K. Wang, S. Kirkpatrick, and M. Hinds, “Phase-sensitive optical coherence elastography for mapping tissue microstrains in real time,” Appl. Phys. Lett. 90(16), 164105 (2007).
[Crossref]

Biol. Reprod. (1)

M. L. Akins, K. Luby-Phelps, R. A. Bank, and M. Mahendroo, “Cervical softening during pregnancy: regulated changes in collagen cross-linking and composition of matricellular proteins in the mouse,” Biol. Reprod. 84(5), 1053–1062 (2011).
[Crossref]

Biomed. Opt. Express (4)

BJOG (1)

M. O’Connell, J. Tidy, S. Wisher, N. Avis, B. Brown, and S. Lindow, “An in vivo comparative study of the pregnant and nonpregnant cervix using electrical impedance measurements,” BJOG 107(8), 1040–1041 (2000).
[Crossref]

Clin. Obstet. Gynecol. (1)

H. Maul, L. Mackay, and R. E. Garfield, “Cervical ripening: biochemical, molecular, and clinical considerations,” Clin. Obstet. Gynecol. 49(3), 551–563 (2006).
[Crossref]

Eur. J. Obstet. Gynecol. Reprod. Biol. (1)

D. Schlembach, L. MacKay, L. Shi, W. L. Maner, R. E. Garfield, and H. Maul, “Cervical ripening and insufficiency: from biochemical and molecular studies to in vivo clinical examination,” Eur. J. Obstet. Gynecol. Reprod. Biol. 144, S70–S76 (2009).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

B. F. Kennedy, K. M. Kennedy, and D. D. Sampson, “A Review of Optical Coherence Elastography: Fundamentals, Techniques and Prospects,” IEEE J. Sel. Top. Quantum Electron. 20(2), 272–288 (2014).
[Crossref]

Interface Focus (1)

K. Yoshida, C. Jayyosi, N. Lee, M. Mahendroo, and K. M. Myers, “Mechanics of cervical remodelling: insights from rodent models of pregnancy,” Interface Focus 9(5), 20190026 (2019).
[Crossref]

J. Biomed. Opt. (1)

M. L. Akins, K. Luby-Phelps, and M. Mahendroo, “Second harmonic generation imaging as a potential tool for staging pregnancy and predicting preterm birth,” J. Biomed. Opt. 15(2), 026020 (2010).
[Crossref]

J. Biophotonics (2)

C.-H. Liu, S. Assassi, S. Theodore, C. Smith, A. Schill, M. Singh, S. Aglyamov, C. Mohan, and K. V. Larin, “Translational optical coherence elastography for assessment of systemic sclerosis,” J. Biophotonics 12, e201900236 (2019).
[Crossref]

W. Shang and K. V. Larin, “Optical coherence elastography for tissue characterization: a review,” J. Biophotonics 8(4), 279–302 (2015).
[Crossref]

J. Matern.-Fetal Neonatal Med. (1)

M. O’connell, N. Avis, B. Brown, S. Killick, and S. Lindow, “Electrical impedance measurements: an objective measure of prelabor cervical change,” J. Matern.-Fetal Neonatal Med. 14(6), 389–391 (2003).
[Crossref]

J. Med. Ultrasonics (1)

S. Yamaguchi, Y. Kamei, S. Kozuma, and Y. Taketani, “Tissue elastography imaging of the uterine cervix during pregnancy,” J. Med. Ultrasonics 34(4), 209–210 (2007).
[Crossref]

Lancet (1)

R. L. Goldenberg, J. F. Culhane, J. D. Iams, and R. Romero, “Epidemiology and causes of preterm birth,” Lancet 371(9606), 75–84 (2008).
[Crossref]

Lasers Med. Sci. (1)

R. Hornung, S. Spichtig, A. Baños, M. Stahel, R. Zimmermann, and M. Wolf, “Frequency-domain near-infrared spectroscopy of the uterine cervix during regular pregnancies,” Lasers Med. Sci. 26(2), 205–212 (2011).
[Crossref]

Mater. Today (1)

R. Akhtar, M. J. Sherratt, J. K. Cruickshank, and B. Derby, “Characterizing the elastic properties of tissues,” Mater. Today 14(3), 96–105 (2011).
[Crossref]

Med. Eng. Phys. (1)

M. Zhang, Y. P. Zheng, and A. F. T. Mak, “Estimating the effective Young's modulus of soft tissues from indentation tests—nonlinear finite element analysis of effects of friction and large deformation,” Med. Eng. Phys. 19(6), 512–517 (1997).
[Crossref]

Nat. Photonics (1)

B. F. Kennedy, P. Wijesinghe, and D. D. Sampson, “The emergence of optical elastography in biomedicine,” Nat. Photonics 11(4), 215–221 (2017).
[Crossref]

Opt. Express (3)

Opt. Lett. (2)

PLoS One (1)

K. Yoshida, H. Jiang, M. Kim, J. Vink, S. Cremers, D. Paik, R. Wapner, M. Mahendroo, and K. Myers, “Quantitative Evaluation of Collagen Crosslinks and Corresponding Tensile Mechanical Properties in Mouse Cervical Tissue during Normal Pregnancy,” PLoS One 9(11), e112391 (2014).
[Crossref]

Prenatal Diagn. (2)

E. Mazza, M. Parra-Saavedra, M. Bajka, E. Gratacos, K. Nicolaides, and J. Deprest, “In vivo assessment of the biomechanical properties of the uterine cervix in pregnancy,” Prenatal Diagn. 34(1), 33–41 (2014).
[Crossref]

S. Badir, E. Mazza, R. Zimmermann, and M. Bajka, “Cervical softening occurs early in pregnancy: characterization of cervical stiffness in 100 healthy women using the aspiration technique,” Prenatal Diagn. 33(8), 737–741 (2013).
[Crossref]

Proc. Natl. Acad. Sci. (1)

Y. Zhang, M. L. Akins, K. Murari, J. Xi, M.-J. Li, K. Luby-Phelps, M. Mahendroo, and X. Li, “A compact fiber-optic SHG scanning endomicroscope and its application to visualize cervical remodeling during pregnancy,” Proc. Natl. Acad. Sci. 109(32), 12878–12883 (2012).
[Crossref]

Reproduction (2)

M. Mahendroo, “Cervical remodeling in term and preterm birth: insights from an animal model,” Reproduction 143(4), 429–438 (2012).
[Crossref]

C. P. Read, R. A. Word, M. A. Ruscheinsky, B. C. Timmons, and M. S. Mahendroo, “Cervical remodeling during pregnancy and parturition: molecular characterization of the softening phase in mice,” Reproduction 134(2), 327–340 (2007).
[Crossref]

Ultrasound Obstet Gynecol (2)

F. Molina, L. Gomez, J. Florido, M. Padilla, and K. Nicolaides, “Quantification of cervical elastography: a reproducibility study,” Ultrasound Obstet Gynecol 39(6), 685–689 (2012).
[Crossref]

M. House and S. Socrate, “The cervix as a biomechanical structure,” Ultrasound Obstet Gynecol 28(6), 745–749 (2006).
[Crossref]

Ultrasound Obstet. Gynecol. (3)

A. Thomas, “Imaging of the cervix using sonoelastography,” Ultrasound Obstet. Gynecol. 28(3), 356–357 (2006).
[Crossref]

M. Swiatkowska-Freund and K. Preis, “Elastography of the uterine cervix: implications for success of induction of labor,” Ultrasound Obstet. Gynecol. 38(1), 52–56 (2011).
[Crossref]

E. Hernandez-Andrade, S. S. Hassan, H. Ahn, S. J. Korzeniewski, L. Yeo, T. Chaiworapongsa, and R. Romero, “Evaluation of cervical stiffness during pregnancy using semiquantitative ultrasound elastography,” Ultrasound Obstet. Gynecol. 41(2), 152–161 (2013).
[Crossref]

Other (1)

L. Bin, Y. Ronghua, Y. Peng, M. Awad, M. Choti, and R. Taylor, “Elasticity and Echogenicity Analysis of Agarose Phantoms Mimicking Liver Tumors,” inProceedings of the IEEE 32nd Annual Northeast Bioengineering Conference(2006), pp. 81–82.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1. (a) A simplified schematic of the common-path compression OCE system with the ultra-sensitive force loading setup. (b) The detailed three-dimensional visualization of the water loading apparatus.
Fig. 2.
Fig. 2. (a) Flowchart for OCE imaging protocol and (b) illustration of synchronization and time sequences of OCE measurements. The time intervals are not necessarily drawn to scale. (c) Phase change exhibited between baseline measurement and the first calibration measurement. (d) Phase change measured after adding the incremental stress. All images presented were cropped, showing only the glass-tissue contact surface and the tissue underneath. Scale bars: 200µm.
Fig. 3.
Fig. 3. (a) OCT intensity B-scan for a 1% agar phantom. (b) The corresponding phase difference image and (c) local strain image after applying an incremental stress. (d) The stress-strain curve for Young’s modulus calculation. All images presented were cropped, showing only the glass-tissue contact surface and the tissue underneath. Scale bars: 200 µm.
Fig. 4.
Fig. 4. Representative OCT intensity images and the corresponding phase difference images of cervical tissues acquired at different gestational ages. The incremental stress applied to induce indentation is provided in the bottom row. All images presented were cropped, showing only the glass-tissue contact surface and the tissue underneath. Scale bars: 200 µm.
Fig. 5.
Fig. 5. The measured Young’s modulus (detailed in Table 2) of cervical tissues at different gestational ages. Mean and standard deviation (SD) are computed and marked out. Among the pregnant sample groups, the measured Young’s modulus shows no significant differences, except for the day 6 and 18 groups (*: p < 0.01). The mean value of each group was connected by the red dotted line.
Fig. 6.
Fig. 6. Exemplary Young’s modulus measurements for (a) a 2% agar sample where the measurement was robust, (b) a 1% agar sample with first two data points (marked by gray area) excluded from fitting, (c) a rodent cervical tissue sample acquired at 18-day gestational age where the deformation reached saturation (marked by gray area), and (d) a non-pregnant rodent cervical tissue sample where the first batch of measurements (marked by gray area) were below the noise floor and were excluded from fitting. Error bars mark out ± 1 SD range.

Tables (3)

Tables Icon

Table 1. Details of ex vivo rodent cervical tissue samples

Tables Icon

Table 2. Measured Young’s modulus of agar phantoms with different agar concentrations.

Tables Icon

Table 3. Measured Young’s modulus of cervical tissues harvested at different gestational ages.

Metrics