Abstract

We describe a method to measure tissue dynamics in mouse barrel cortex during functional activation via phase-sensitive optical coherence tomography (PhS-OCT). The method measures the phase changes in OCT signals, which are induced by the tissue volume change, upon which to localize the activated tissue region. Phase unwrapping, compensation and normalization are applied to increase the dynamic range of the OCT phase detection. To guide the OCT scanning, intrinsic optical signal imaging (IOSI) system equipped with a green light laser source (532 nm) is integrated with the PhS-OCT system to provide a full field time-lapsed images of the reflectance that is used to identify the transversal 2D localized tissue response in the mouse brain. The OCT results show a localized decrease in the OCT phase signal in the activated region of the mouse brain tissue. The decrease in the phase signal may be originated from the brain tissue compression caused by the vasodilatation in the activated region. The activated region revealed in the cross-sectional OCT image is consistent with that identified by the IOSI imaging, indicating the phase change in the OCT signals may associate with the changes in the corresponding hemodynamics. In vivo localized tissue dynamics in the barrel cortex at depth during whisker stimulation is observed and monitored in this study.

© 2020 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Optical coherence tomography angiography of stimulus evoked hemodynamic responses in individual retinal layers

Taeyoon Son, Benquan Wang, Damber Thapa, Yiming Lu, Yanjun Chen, Dingcai Cao, and Xincheng Yao
Biomed. Opt. Express 7(8) 3151-3162 (2016)

Imaging hemodynamic response after ischemic stroke in mouse cortex using visible-light optical coherence tomography

Siyu Chen, Qi Liu, Xiao Shu, Brian Soetikno, Shanbao Tong, and Hao F. Zhang
Biomed. Opt. Express 7(9) 3377-3389 (2016)

Statistical parametric mapping of stimuli evoked changes in total blood flow velocity in the mouse cortex obtained with extended-focus optical coherence microscopy

Paul J. Marchand, Arno Bouwens, Tristan Bolmont, Vincent K. Shamaei, David Nguyen, Daniel Szlag, Jérôme Extermann, and Theo Lasser
Biomed. Opt. Express 8(1) 1-15 (2017)

References

  • View by:
  • |
  • |
  • |

  1. D. Turgut, M. G. Burnett, Y. Guoqiang, Z. Chao, F. Daisuke, A. G. Yodh, J. A. Detre, and J. H. Greenberg, “Spatiotemporal quantification of cerebral blood flow during functional activation in rat somatosensory cortex using laser-speckle flowmetry,” J. Cereb. Blood Flow Metab. 24(5), 518–525 (2004).
    [Crossref]
  2. A. K. Dunn, A. Devor, A. M. Dale, and D. A. Boas, “Spatial extent of oxygen metabolism and hemodynamic changes during functional activation of the rat somatosensory cortex,” NeuroImage 27(2), 279–290 (2005).
    [Crossref]
  3. L. Pengcheng, L. Qingming, L. Weihua, C. Shangbin, C. Haiying, and Z. Shaoqun, “Spatiotemporal characteristics of cerebral blood volume changes in rat somatosensory cortex evoked by sciatic nerve stimulation and obtained by optical imaging,” J. Biomed. Opt. 8(4), 629–635 (2003).
    [Crossref]
  4. Y. Ma, M. A. Shaik, S. H. Kim, M. G. Kozberg, D. N. Thibodeaux, H. T. Zhao, H. Yu, and E. M. C. Hillman, “Wide-field optical mapping of neural activity and brain haemodynamics: considerations and novel approaches,” Philos. Trans. R. Soc., B 371(1705), 20150360 (2016).
    [Crossref]
  5. Y. Yuan, Y. Zhao, H. Jia, M. Liu, S. Hu, Y. Li, and X. Li, “Cortical Hemodynamic Responses Under Focused Ultrasound Stimulation Using Real-Time Laser Speckle Contrast Imaging,” Front. Neurosci. 12, 269 (2018).
    [Crossref]
  6. U. Dirnagl, B. Kaplan, M. Jacewicz, and W. Pulsinelli, “Continuous measurement of cerebral cortical blood flow by laser-Doppler flowmetry in a rat stroke model,” J. Cereb. Blood Flow Metab. 9(5), 589–596 (1989).
    [Crossref]
  7. R. Bonner and R. Nossal, “Model for laser Doppler measurements of blood flow in tissue,” Appl. Opt. 20(12), 2097–2107 (1981).
    [Crossref]
  8. M. F. Swiontkowski, “Laser Doppler Flowmetry—Development and Clinical Application,” Iowa Orthop. J. 11, 119–126 (1991).
  9. F. Marco and Q. Valentina, “A brief reviw on the history of human functional near-infrared spectroscopy (fNIRS) development and fields of application,” NeuroImage 63(2), 921–935 (2012).
    [Crossref]
  10. V. Quaresima and M. Ferrari, “Functional Near-Infrared Spectroscopy (fNIRS) for Assessing Cerebral Cortex Function During Human Behavior in Natural/Social Situations: A Concise Review,” Organ. Res. Methods 22(1), 46–68 (2019).
    [Crossref]
  11. J. Vivek, S. Srinivasan, G. Sava, R. Iwona, W. Svetlana, James. G. Weicheng, D. A. Fujimoto, and Boas, “Depth-resolved microscopy of cortical hemodynamics with optical coherence tomography,” Opt. Lett. 34(20), 3086–3088 (2009).
    [Crossref]
  12. H. Radhakrishnan and V. J. Srinivasan, “Compartment-resolved imaging of cortical functional hyperemia with OCT angiography,” Biomed. Opt. Express 4(8), 1255–1268 (2013).
    [Crossref]
  13. J. Lee, J. Y. Jiang, W. Wu, F. Lesage, and D. A. Boas, “Statistical intensity variation analysis for rapid volumetric imaging of capillary network flux,” Biomed. Opt. Express 5(4), 1160–1172 (2014).
    [Crossref]
  14. V. J. Srinivasan and H. Radhakrishnan, “Optical Coherence Tomography angiography reveals laminar microvascular hemodynamics in the rat somatosensory cortex during activation,” NeuroImage 102(2), 393–406 (2014).
    [Crossref]
  15. P. J. Marchand, A. Bouwens, T. Bolmont, V. K. Shamaei, D. Nguyen, D. Szlag, J. Extermann, and T. Lasser, “Statistical parametric mapping of stimuli evoked changes in total blood flow velocity in the mouse cortex obtained with extended-focus optical coherence microscopy,” Biomed. Opt. Express 8(1), 1–15 (2017).
    [Crossref]
  16. L. Yuandong, W. Wei, and R. K. Wang, “Capillary flow homogenization during functional activation revealed by optical coherence tomography angiography based capillary velocimetry,” Sci. Rep. 8(1), 4107 (2018).
    [Crossref]
  17. P. Shin, W. Choi, J. Joo, and W.-Y. Oh, “Quantitative hemodynamic analysis of cerebral blood flow and neurovascular coupling using optical coherence tomography angiography,” J. Cereb. Blood Flow Metab. 39(10), 1983–1994 (2019).
    [Crossref]
  18. W. Wei, Y. Li, Z. Xie, A. Deegan, and K. R. Wang, “Spatial and Temporal Heterogeneities of Capillary Hemodynamics and Its Functional Coupling During Neural Activation,” IEEE Trans. Med. Imaging 38(5), 1295–1303 (2019).
    [Crossref]
  19. C. Stosiek, O. Garaschuk, K. Holthoff, and A. Konnerth, “Two-photon calcium imaging of neuronal networks,” Proc. Natl. Acad. Sci. U. S. A. 100(12), 7319–7324 (2003).
    [Crossref]
  20. M. L. Castanares, V. Gautam, J. Drury, H. Bachor, and V. R. Daria, “Efficient multi-site two-photon functional imaging of neuronal circuits,” Biomed. Opt. Express 7(12), 5325–5334 (2016).
    [Crossref]
  21. M. Li, F. Liu, H. Jiang, T. S. Lee, and S. Tang, “Long-Term Two-Photon Imaging in Awake Macaque Monkey,” Neuron 93(5), 1049–1057.e3 (2017).
    [Crossref]
  22. J. Lecoq, J. Savall, D. Vučinić, B. F. Grewe, H. Kim, J. Z. Li, L. J. Kitch, and M. J. Schnitzer, “Visualizing mammalian brain area interactions by dual-axis two-photon calcium imaging,” Nat. Neurosci. 17(12), 1825–1829 (2014).
    [Crossref]
  23. K. Holthoff and O. Witte, “Intrinsic optical signals in rat neocortical slices measured with near-infrared dark-field microscopy reveal changes in extracellular space,” J. Neurosci. 16(8), 2740–2749 (1996).
    [Crossref]
  24. S. Rezaei-Mazinani, A. Ivanov, C. M. Proctor, P. Gkoupidenis, C. Bernard, G. G. Malliaras, and E. Ismailova, “Monitoring Intrinsic Optical Signals in Brain Tissue with Organic Photodetectors,” Adv. Mater. Technol. 3(5), 1700333 (2018).
    [Crossref]
  25. O. W. Witte, H. Niermann, and K. Holthoff, “Cell swelling and ion redistribution assessed with intrinsic optical signals,” An. Acad. Bras. Cienc. 73(3), 337–350 (2001).
    [Crossref]
  26. R. D. Fields, “Signaling by Neuronal Swelling,” Sci. Signaling 4(155), tr1 (2011).
    [Crossref]
  27. P. H. Tomlins and R. K. Wang, “Theory, developments and applications of optical coherence tomography,” J. Phys. D: Appl. Phys. 38(15), 2519–2535 (2005).
    [Crossref]
  28. R. U. Maheswari, H. Takaoka, R. Homma, H. Kadono, and M. Tanifuji, “Implementation of optical coherence tomography (OCT) in visualization of functional structures of cat visual cortex,” Opt. Commun. 202(1-3), 47–54 (2002).
    [Crossref]
  29. R. U. Maheswari, H. Takaoka, H. Kadono, R. Homma, and M. Tanifuji, “Novel functional imaging technique from brain surface with optical coherence tomography enabling visualization of depth resolved functional structure in vivo,” J. Neurosci. Methods 124(1), 83–92 (2003).
    [Crossref]
  30. A. D. Aguirre, Y. Chen, J. G. Fujimoto, L. Ruvinskaya, A. Devor, and D. A. Boas, “Depth-resolved imaging of functional activation in the rat cerebral cortex using optical coherence tomography,” Opt. Lett. 31(23), 3459–3461 (2006).
    [Crossref]
  31. C. Yu, A. D. Aguirre, R. Lana, D. Anna, D. A. Boas, and J. G. Fujimoto, “Optical coherence tomography (OCT) reveals depth-resolved dynamics during functional brain activation,” J. Neurosci. Methods 178(1), 162–173 (2009).
    [Crossref]
  32. Y. Xin-Cheng, Y. Angela, P. Beth, and J. S. George, “Rapid optical coherence tomography and recording functional scattering changes from activated frog retina,” Appl. Opt. 44(11), 2019–2023 (2005).
    [Crossref]
  33. K. Bizheva, R. Pflug, B. Hermann, B. Povazay, H. Sattmann, P. Qiu, E. Anger, H. Reitsamer, S. Popov, J. R. Taylor, A. Unterhuber, P. Ahnelt, and W. Drexler, “Optophysiology: depth-resolved probing of retinal physiology with functional ultrahigh-resolution optical coherence tomography,” Proc. Natl. Acad. Sci. U. S. A. 103(13), 5066–5071 (2006).
    [Crossref]
  34. V. J. Srinivasan, M. Wojtkowski, J. G. Fujimoto, and J. S. Duker, “In vivo measurement of retinal physiology with high-speed ultrahigh-resolution optical coherence tomography,” Opt. Lett. 31(15), 2308–2310 (2006).
    [Crossref]
  35. T. Son, M. Alam, D. Toslak, B. Wang, Y. Lu, and X. Yao, “Functional optical coherence tomography of neurovascular coupling interactions in the retina,” J. Biophotonics 11(12), e201800089 (2018).
    [Crossref]
  36. L. Mariya, D. L. Marks, P. Kurt, G. Rhanor, and S. A. Boppart, “Functional optical coherence tomography for detecting neural activity through scattering changes,” Opt. Lett. 28(14), 1218–1220 (2003).
    [Crossref]
  37. R. K. Wang, S. Kirkpatrick, and M. Hinds, “Phase-sensitive optical coherence elastography for mapping tissue microstrains in real time,” Appl. Phys. Lett. 90(16), 164105 (2007).
    [Crossref]
  38. R. K. Wang and A. L. Nuttall, “Phase-sensitive optical coherence tomography imaging of the tissue motion within the organ of Corti at a subnanometer scale: a preliminary study,” J. Biomed. Opt. 15(5), 056005 (2010).
    [Crossref]
  39. H. Spahr, C. Pfäffle, S. Burhan, L. Kutzner, F. Hilge, G. Hüttmann, and D. Hillmann, “Phase-sensitive interferometry of decorrelated speckle patterns,” Sci. Rep. 9(1), 11748 (2019).
    [Crossref]
  40. T. Akkin, C. Joo, and J. F. D. Boer, “Depth-Resolved Measurement of Transient Structural Changes during Action Potential Propagation,” Biophys. J. 93(4), 1347–1353 (2007).
    [Crossref]
  41. T. Akkin, D. Landowne, and A. Sivaprakasam, “Optical Coherence Tomography Phase Measurement of Transient Changes in Squid Giant Axons During Activity,” J. Membr. Biol. 231(1), 35–46 (2009).
    [Crossref]
  42. Y. J. Yeh, A. J. Black, D. Landowne, and T. Akkin, “Optical coherence tomography for cross-sectional imaging of neural activity,” Neurophotonics 2(3), 035001 (2015).
    [Crossref]
  43. B. H. Park, D. H. Kim, M. M. Hasan, M. R. Haque, M. S. Islam, M. E. Adams, M. Q. Tong, and S. L. Sang, “OCT intensity and phase fluctuations correlated with activity-dependent neuronal calcium dynamics in the Drosophila CNS [Invited],” Biomed. Opt. Express 8(2), 726–735 (2017).
    [Crossref]
  44. Y. Li, U. Baran, and R. K. Wang, “Application of thinned-skull cranial window to mouse cerebral blood flow imaging using optical microangiography,” PLoS One 9(11), e113658 (2014).
    [Crossref]
  45. Z. Luo, Z. Yuan, Y. T. Pan, and C. W. Du, “Simultaneous imaging of cortical hemodynamics and blood oxygenation change during cerebral ischemia using dual-wavelength laser speckle contrast imaging,” Opt. Lett. 34(9), 1480–1482 (2009).
    [Crossref]
  46. J. Qin, L. Shi, S. Dziennis, R. Reif, and R. K. Wang, “Fast synchronized dual-wavelength laser speckle imaging system for monitoring hemodynamic changes in a stroke mouse model,” Opt. Lett. 37(19), 4005–4007 (2012).
    [Crossref]
  47. S. J. Kirkpatrick, D. D. Duncan, and E. M. Wells-Gray, “Detrimental effects of speckle-pixel size matching in laser speckle contrast imaging,” Opt. Lett. 33(24), 2886–2888 (2008).
    [Crossref]
  48. R. Wang and Z. Ma, “A practical approach to eliminate autocorrelation artefacts for volume-rate spectral domain optical coherence tomography,” Phys. Med. Biol. 51(12), 3231–3239 (2006).
    [Crossref]
  49. R. K. Wang, “Optical Microangiography: A Label Free 3D Imaging Technology to Visualize and Quantify Blood Circulations within Tissue Beds in vivo,” IEEE J. Sel. Top. Quantum Electron. 16(3), 545–554 (2010).
    [Crossref]
  50. C. L. Chen and R. K. Wang, “Optical coherence tomography based angiography [Invited],” Biomed. Opt. Express 8(2), 1056–1082 (2017).
    [Crossref]
  51. Y.-R. Gao, S. E. Greene, and P. J. Drew, “Mechanical restriction of intracortical vessel dilation by brain tissue sculpts the hemodynamic response,” NeuroImage 115, 162–176 (2015).
    [Crossref]
  52. E. T. Zhang, C. B. Inman, and R. O. Weller, “Interrelationships of the pia mater and the perivascular (Virchow-Robin) spaces in the human cerebrum,” J. Anat. 170, 111–123 (1990).
  53. V. Rangroo Thrane, A. S. Thrane, B. A. Plog, M. Thiyagarajan, J. J. Iliff, R. Deane, E. A. Nagelhus, and M. Nedergaard, “Paravascular microcirculation facilitates rapid lipid transport and astrocyte signaling in the brain,” Sci. Rep. 3(1), 2582 (2013).
    [Crossref]
  54. B. Rappaz, P. Marquet, E. Cuche, Y. Emery, C. Depeursinge, and P. J. Magistretti, “Measurement of the integral refractive index and dynamic cell morphometry of living cells with digital holographic microscopy,” Opt. Express 13(23), 9361–9373 (2005).
    [Crossref]

2019 (4)

V. Quaresima and M. Ferrari, “Functional Near-Infrared Spectroscopy (fNIRS) for Assessing Cerebral Cortex Function During Human Behavior in Natural/Social Situations: A Concise Review,” Organ. Res. Methods 22(1), 46–68 (2019).
[Crossref]

P. Shin, W. Choi, J. Joo, and W.-Y. Oh, “Quantitative hemodynamic analysis of cerebral blood flow and neurovascular coupling using optical coherence tomography angiography,” J. Cereb. Blood Flow Metab. 39(10), 1983–1994 (2019).
[Crossref]

W. Wei, Y. Li, Z. Xie, A. Deegan, and K. R. Wang, “Spatial and Temporal Heterogeneities of Capillary Hemodynamics and Its Functional Coupling During Neural Activation,” IEEE Trans. Med. Imaging 38(5), 1295–1303 (2019).
[Crossref]

H. Spahr, C. Pfäffle, S. Burhan, L. Kutzner, F. Hilge, G. Hüttmann, and D. Hillmann, “Phase-sensitive interferometry of decorrelated speckle patterns,” Sci. Rep. 9(1), 11748 (2019).
[Crossref]

2018 (4)

Y. Yuan, Y. Zhao, H. Jia, M. Liu, S. Hu, Y. Li, and X. Li, “Cortical Hemodynamic Responses Under Focused Ultrasound Stimulation Using Real-Time Laser Speckle Contrast Imaging,” Front. Neurosci. 12, 269 (2018).
[Crossref]

L. Yuandong, W. Wei, and R. K. Wang, “Capillary flow homogenization during functional activation revealed by optical coherence tomography angiography based capillary velocimetry,” Sci. Rep. 8(1), 4107 (2018).
[Crossref]

S. Rezaei-Mazinani, A. Ivanov, C. M. Proctor, P. Gkoupidenis, C. Bernard, G. G. Malliaras, and E. Ismailova, “Monitoring Intrinsic Optical Signals in Brain Tissue with Organic Photodetectors,” Adv. Mater. Technol. 3(5), 1700333 (2018).
[Crossref]

T. Son, M. Alam, D. Toslak, B. Wang, Y. Lu, and X. Yao, “Functional optical coherence tomography of neurovascular coupling interactions in the retina,” J. Biophotonics 11(12), e201800089 (2018).
[Crossref]

2017 (4)

2016 (2)

Y. Ma, M. A. Shaik, S. H. Kim, M. G. Kozberg, D. N. Thibodeaux, H. T. Zhao, H. Yu, and E. M. C. Hillman, “Wide-field optical mapping of neural activity and brain haemodynamics: considerations and novel approaches,” Philos. Trans. R. Soc., B 371(1705), 20150360 (2016).
[Crossref]

M. L. Castanares, V. Gautam, J. Drury, H. Bachor, and V. R. Daria, “Efficient multi-site two-photon functional imaging of neuronal circuits,” Biomed. Opt. Express 7(12), 5325–5334 (2016).
[Crossref]

2015 (2)

Y.-R. Gao, S. E. Greene, and P. J. Drew, “Mechanical restriction of intracortical vessel dilation by brain tissue sculpts the hemodynamic response,” NeuroImage 115, 162–176 (2015).
[Crossref]

Y. J. Yeh, A. J. Black, D. Landowne, and T. Akkin, “Optical coherence tomography for cross-sectional imaging of neural activity,” Neurophotonics 2(3), 035001 (2015).
[Crossref]

2014 (4)

Y. Li, U. Baran, and R. K. Wang, “Application of thinned-skull cranial window to mouse cerebral blood flow imaging using optical microangiography,” PLoS One 9(11), e113658 (2014).
[Crossref]

J. Lecoq, J. Savall, D. Vučinić, B. F. Grewe, H. Kim, J. Z. Li, L. J. Kitch, and M. J. Schnitzer, “Visualizing mammalian brain area interactions by dual-axis two-photon calcium imaging,” Nat. Neurosci. 17(12), 1825–1829 (2014).
[Crossref]

J. Lee, J. Y. Jiang, W. Wu, F. Lesage, and D. A. Boas, “Statistical intensity variation analysis for rapid volumetric imaging of capillary network flux,” Biomed. Opt. Express 5(4), 1160–1172 (2014).
[Crossref]

V. J. Srinivasan and H. Radhakrishnan, “Optical Coherence Tomography angiography reveals laminar microvascular hemodynamics in the rat somatosensory cortex during activation,” NeuroImage 102(2), 393–406 (2014).
[Crossref]

2013 (2)

H. Radhakrishnan and V. J. Srinivasan, “Compartment-resolved imaging of cortical functional hyperemia with OCT angiography,” Biomed. Opt. Express 4(8), 1255–1268 (2013).
[Crossref]

V. Rangroo Thrane, A. S. Thrane, B. A. Plog, M. Thiyagarajan, J. J. Iliff, R. Deane, E. A. Nagelhus, and M. Nedergaard, “Paravascular microcirculation facilitates rapid lipid transport and astrocyte signaling in the brain,” Sci. Rep. 3(1), 2582 (2013).
[Crossref]

2012 (2)

J. Qin, L. Shi, S. Dziennis, R. Reif, and R. K. Wang, “Fast synchronized dual-wavelength laser speckle imaging system for monitoring hemodynamic changes in a stroke mouse model,” Opt. Lett. 37(19), 4005–4007 (2012).
[Crossref]

F. Marco and Q. Valentina, “A brief reviw on the history of human functional near-infrared spectroscopy (fNIRS) development and fields of application,” NeuroImage 63(2), 921–935 (2012).
[Crossref]

2011 (1)

R. D. Fields, “Signaling by Neuronal Swelling,” Sci. Signaling 4(155), tr1 (2011).
[Crossref]

2010 (2)

R. K. Wang, “Optical Microangiography: A Label Free 3D Imaging Technology to Visualize and Quantify Blood Circulations within Tissue Beds in vivo,” IEEE J. Sel. Top. Quantum Electron. 16(3), 545–554 (2010).
[Crossref]

R. K. Wang and A. L. Nuttall, “Phase-sensitive optical coherence tomography imaging of the tissue motion within the organ of Corti at a subnanometer scale: a preliminary study,” J. Biomed. Opt. 15(5), 056005 (2010).
[Crossref]

2009 (4)

Z. Luo, Z. Yuan, Y. T. Pan, and C. W. Du, “Simultaneous imaging of cortical hemodynamics and blood oxygenation change during cerebral ischemia using dual-wavelength laser speckle contrast imaging,” Opt. Lett. 34(9), 1480–1482 (2009).
[Crossref]

T. Akkin, D. Landowne, and A. Sivaprakasam, “Optical Coherence Tomography Phase Measurement of Transient Changes in Squid Giant Axons During Activity,” J. Membr. Biol. 231(1), 35–46 (2009).
[Crossref]

C. Yu, A. D. Aguirre, R. Lana, D. Anna, D. A. Boas, and J. G. Fujimoto, “Optical coherence tomography (OCT) reveals depth-resolved dynamics during functional brain activation,” J. Neurosci. Methods 178(1), 162–173 (2009).
[Crossref]

J. Vivek, S. Srinivasan, G. Sava, R. Iwona, W. Svetlana, James. G. Weicheng, D. A. Fujimoto, and Boas, “Depth-resolved microscopy of cortical hemodynamics with optical coherence tomography,” Opt. Lett. 34(20), 3086–3088 (2009).
[Crossref]

2008 (1)

2007 (2)

R. K. Wang, S. Kirkpatrick, and M. Hinds, “Phase-sensitive optical coherence elastography for mapping tissue microstrains in real time,” Appl. Phys. Lett. 90(16), 164105 (2007).
[Crossref]

T. Akkin, C. Joo, and J. F. D. Boer, “Depth-Resolved Measurement of Transient Structural Changes during Action Potential Propagation,” Biophys. J. 93(4), 1347–1353 (2007).
[Crossref]

2006 (4)

R. Wang and Z. Ma, “A practical approach to eliminate autocorrelation artefacts for volume-rate spectral domain optical coherence tomography,” Phys. Med. Biol. 51(12), 3231–3239 (2006).
[Crossref]

A. D. Aguirre, Y. Chen, J. G. Fujimoto, L. Ruvinskaya, A. Devor, and D. A. Boas, “Depth-resolved imaging of functional activation in the rat cerebral cortex using optical coherence tomography,” Opt. Lett. 31(23), 3459–3461 (2006).
[Crossref]

K. Bizheva, R. Pflug, B. Hermann, B. Povazay, H. Sattmann, P. Qiu, E. Anger, H. Reitsamer, S. Popov, J. R. Taylor, A. Unterhuber, P. Ahnelt, and W. Drexler, “Optophysiology: depth-resolved probing of retinal physiology with functional ultrahigh-resolution optical coherence tomography,” Proc. Natl. Acad. Sci. U. S. A. 103(13), 5066–5071 (2006).
[Crossref]

V. J. Srinivasan, M. Wojtkowski, J. G. Fujimoto, and J. S. Duker, “In vivo measurement of retinal physiology with high-speed ultrahigh-resolution optical coherence tomography,” Opt. Lett. 31(15), 2308–2310 (2006).
[Crossref]

2005 (4)

Y. Xin-Cheng, Y. Angela, P. Beth, and J. S. George, “Rapid optical coherence tomography and recording functional scattering changes from activated frog retina,” Appl. Opt. 44(11), 2019–2023 (2005).
[Crossref]

P. H. Tomlins and R. K. Wang, “Theory, developments and applications of optical coherence tomography,” J. Phys. D: Appl. Phys. 38(15), 2519–2535 (2005).
[Crossref]

A. K. Dunn, A. Devor, A. M. Dale, and D. A. Boas, “Spatial extent of oxygen metabolism and hemodynamic changes during functional activation of the rat somatosensory cortex,” NeuroImage 27(2), 279–290 (2005).
[Crossref]

B. Rappaz, P. Marquet, E. Cuche, Y. Emery, C. Depeursinge, and P. J. Magistretti, “Measurement of the integral refractive index and dynamic cell morphometry of living cells with digital holographic microscopy,” Opt. Express 13(23), 9361–9373 (2005).
[Crossref]

2004 (1)

D. Turgut, M. G. Burnett, Y. Guoqiang, Z. Chao, F. Daisuke, A. G. Yodh, J. A. Detre, and J. H. Greenberg, “Spatiotemporal quantification of cerebral blood flow during functional activation in rat somatosensory cortex using laser-speckle flowmetry,” J. Cereb. Blood Flow Metab. 24(5), 518–525 (2004).
[Crossref]

2003 (4)

L. Pengcheng, L. Qingming, L. Weihua, C. Shangbin, C. Haiying, and Z. Shaoqun, “Spatiotemporal characteristics of cerebral blood volume changes in rat somatosensory cortex evoked by sciatic nerve stimulation and obtained by optical imaging,” J. Biomed. Opt. 8(4), 629–635 (2003).
[Crossref]

C. Stosiek, O. Garaschuk, K. Holthoff, and A. Konnerth, “Two-photon calcium imaging of neuronal networks,” Proc. Natl. Acad. Sci. U. S. A. 100(12), 7319–7324 (2003).
[Crossref]

R. U. Maheswari, H. Takaoka, H. Kadono, R. Homma, and M. Tanifuji, “Novel functional imaging technique from brain surface with optical coherence tomography enabling visualization of depth resolved functional structure in vivo,” J. Neurosci. Methods 124(1), 83–92 (2003).
[Crossref]

L. Mariya, D. L. Marks, P. Kurt, G. Rhanor, and S. A. Boppart, “Functional optical coherence tomography for detecting neural activity through scattering changes,” Opt. Lett. 28(14), 1218–1220 (2003).
[Crossref]

2002 (1)

R. U. Maheswari, H. Takaoka, R. Homma, H. Kadono, and M. Tanifuji, “Implementation of optical coherence tomography (OCT) in visualization of functional structures of cat visual cortex,” Opt. Commun. 202(1-3), 47–54 (2002).
[Crossref]

2001 (1)

O. W. Witte, H. Niermann, and K. Holthoff, “Cell swelling and ion redistribution assessed with intrinsic optical signals,” An. Acad. Bras. Cienc. 73(3), 337–350 (2001).
[Crossref]

1996 (1)

K. Holthoff and O. Witte, “Intrinsic optical signals in rat neocortical slices measured with near-infrared dark-field microscopy reveal changes in extracellular space,” J. Neurosci. 16(8), 2740–2749 (1996).
[Crossref]

1991 (1)

M. F. Swiontkowski, “Laser Doppler Flowmetry—Development and Clinical Application,” Iowa Orthop. J. 11, 119–126 (1991).

1990 (1)

E. T. Zhang, C. B. Inman, and R. O. Weller, “Interrelationships of the pia mater and the perivascular (Virchow-Robin) spaces in the human cerebrum,” J. Anat. 170, 111–123 (1990).

1989 (1)

U. Dirnagl, B. Kaplan, M. Jacewicz, and W. Pulsinelli, “Continuous measurement of cerebral cortical blood flow by laser-Doppler flowmetry in a rat stroke model,” J. Cereb. Blood Flow Metab. 9(5), 589–596 (1989).
[Crossref]

1981 (1)

Adams, M. E.

Aguirre, A. D.

C. Yu, A. D. Aguirre, R. Lana, D. Anna, D. A. Boas, and J. G. Fujimoto, “Optical coherence tomography (OCT) reveals depth-resolved dynamics during functional brain activation,” J. Neurosci. Methods 178(1), 162–173 (2009).
[Crossref]

A. D. Aguirre, Y. Chen, J. G. Fujimoto, L. Ruvinskaya, A. Devor, and D. A. Boas, “Depth-resolved imaging of functional activation in the rat cerebral cortex using optical coherence tomography,” Opt. Lett. 31(23), 3459–3461 (2006).
[Crossref]

Ahnelt, P.

K. Bizheva, R. Pflug, B. Hermann, B. Povazay, H. Sattmann, P. Qiu, E. Anger, H. Reitsamer, S. Popov, J. R. Taylor, A. Unterhuber, P. Ahnelt, and W. Drexler, “Optophysiology: depth-resolved probing of retinal physiology with functional ultrahigh-resolution optical coherence tomography,” Proc. Natl. Acad. Sci. U. S. A. 103(13), 5066–5071 (2006).
[Crossref]

Akkin, T.

Y. J. Yeh, A. J. Black, D. Landowne, and T. Akkin, “Optical coherence tomography for cross-sectional imaging of neural activity,” Neurophotonics 2(3), 035001 (2015).
[Crossref]

T. Akkin, D. Landowne, and A. Sivaprakasam, “Optical Coherence Tomography Phase Measurement of Transient Changes in Squid Giant Axons During Activity,” J. Membr. Biol. 231(1), 35–46 (2009).
[Crossref]

T. Akkin, C. Joo, and J. F. D. Boer, “Depth-Resolved Measurement of Transient Structural Changes during Action Potential Propagation,” Biophys. J. 93(4), 1347–1353 (2007).
[Crossref]

Alam, M.

T. Son, M. Alam, D. Toslak, B. Wang, Y. Lu, and X. Yao, “Functional optical coherence tomography of neurovascular coupling interactions in the retina,” J. Biophotonics 11(12), e201800089 (2018).
[Crossref]

Angela, Y.

Anger, E.

K. Bizheva, R. Pflug, B. Hermann, B. Povazay, H. Sattmann, P. Qiu, E. Anger, H. Reitsamer, S. Popov, J. R. Taylor, A. Unterhuber, P. Ahnelt, and W. Drexler, “Optophysiology: depth-resolved probing of retinal physiology with functional ultrahigh-resolution optical coherence tomography,” Proc. Natl. Acad. Sci. U. S. A. 103(13), 5066–5071 (2006).
[Crossref]

Anna, D.

C. Yu, A. D. Aguirre, R. Lana, D. Anna, D. A. Boas, and J. G. Fujimoto, “Optical coherence tomography (OCT) reveals depth-resolved dynamics during functional brain activation,” J. Neurosci. Methods 178(1), 162–173 (2009).
[Crossref]

Bachor, H.

Baran, U.

Y. Li, U. Baran, and R. K. Wang, “Application of thinned-skull cranial window to mouse cerebral blood flow imaging using optical microangiography,” PLoS One 9(11), e113658 (2014).
[Crossref]

Bernard, C.

S. Rezaei-Mazinani, A. Ivanov, C. M. Proctor, P. Gkoupidenis, C. Bernard, G. G. Malliaras, and E. Ismailova, “Monitoring Intrinsic Optical Signals in Brain Tissue with Organic Photodetectors,” Adv. Mater. Technol. 3(5), 1700333 (2018).
[Crossref]

Beth, P.

Bizheva, K.

K. Bizheva, R. Pflug, B. Hermann, B. Povazay, H. Sattmann, P. Qiu, E. Anger, H. Reitsamer, S. Popov, J. R. Taylor, A. Unterhuber, P. Ahnelt, and W. Drexler, “Optophysiology: depth-resolved probing of retinal physiology with functional ultrahigh-resolution optical coherence tomography,” Proc. Natl. Acad. Sci. U. S. A. 103(13), 5066–5071 (2006).
[Crossref]

Black, A. J.

Y. J. Yeh, A. J. Black, D. Landowne, and T. Akkin, “Optical coherence tomography for cross-sectional imaging of neural activity,” Neurophotonics 2(3), 035001 (2015).
[Crossref]

Boas,

Boas, D. A.

J. Lee, J. Y. Jiang, W. Wu, F. Lesage, and D. A. Boas, “Statistical intensity variation analysis for rapid volumetric imaging of capillary network flux,” Biomed. Opt. Express 5(4), 1160–1172 (2014).
[Crossref]

C. Yu, A. D. Aguirre, R. Lana, D. Anna, D. A. Boas, and J. G. Fujimoto, “Optical coherence tomography (OCT) reveals depth-resolved dynamics during functional brain activation,” J. Neurosci. Methods 178(1), 162–173 (2009).
[Crossref]

A. D. Aguirre, Y. Chen, J. G. Fujimoto, L. Ruvinskaya, A. Devor, and D. A. Boas, “Depth-resolved imaging of functional activation in the rat cerebral cortex using optical coherence tomography,” Opt. Lett. 31(23), 3459–3461 (2006).
[Crossref]

A. K. Dunn, A. Devor, A. M. Dale, and D. A. Boas, “Spatial extent of oxygen metabolism and hemodynamic changes during functional activation of the rat somatosensory cortex,” NeuroImage 27(2), 279–290 (2005).
[Crossref]

Boer, J. F. D.

T. Akkin, C. Joo, and J. F. D. Boer, “Depth-Resolved Measurement of Transient Structural Changes during Action Potential Propagation,” Biophys. J. 93(4), 1347–1353 (2007).
[Crossref]

Bolmont, T.

Bonner, R.

Boppart, S. A.

Bouwens, A.

Burhan, S.

H. Spahr, C. Pfäffle, S. Burhan, L. Kutzner, F. Hilge, G. Hüttmann, and D. Hillmann, “Phase-sensitive interferometry of decorrelated speckle patterns,” Sci. Rep. 9(1), 11748 (2019).
[Crossref]

Burnett, M. G.

D. Turgut, M. G. Burnett, Y. Guoqiang, Z. Chao, F. Daisuke, A. G. Yodh, J. A. Detre, and J. H. Greenberg, “Spatiotemporal quantification of cerebral blood flow during functional activation in rat somatosensory cortex using laser-speckle flowmetry,” J. Cereb. Blood Flow Metab. 24(5), 518–525 (2004).
[Crossref]

Castanares, M. L.

Chao, Z.

D. Turgut, M. G. Burnett, Y. Guoqiang, Z. Chao, F. Daisuke, A. G. Yodh, J. A. Detre, and J. H. Greenberg, “Spatiotemporal quantification of cerebral blood flow during functional activation in rat somatosensory cortex using laser-speckle flowmetry,” J. Cereb. Blood Flow Metab. 24(5), 518–525 (2004).
[Crossref]

Chen, C. L.

Chen, Y.

Choi, W.

P. Shin, W. Choi, J. Joo, and W.-Y. Oh, “Quantitative hemodynamic analysis of cerebral blood flow and neurovascular coupling using optical coherence tomography angiography,” J. Cereb. Blood Flow Metab. 39(10), 1983–1994 (2019).
[Crossref]

Cuche, E.

Daisuke, F.

D. Turgut, M. G. Burnett, Y. Guoqiang, Z. Chao, F. Daisuke, A. G. Yodh, J. A. Detre, and J. H. Greenberg, “Spatiotemporal quantification of cerebral blood flow during functional activation in rat somatosensory cortex using laser-speckle flowmetry,” J. Cereb. Blood Flow Metab. 24(5), 518–525 (2004).
[Crossref]

Dale, A. M.

A. K. Dunn, A. Devor, A. M. Dale, and D. A. Boas, “Spatial extent of oxygen metabolism and hemodynamic changes during functional activation of the rat somatosensory cortex,” NeuroImage 27(2), 279–290 (2005).
[Crossref]

Daria, V. R.

Deane, R.

V. Rangroo Thrane, A. S. Thrane, B. A. Plog, M. Thiyagarajan, J. J. Iliff, R. Deane, E. A. Nagelhus, and M. Nedergaard, “Paravascular microcirculation facilitates rapid lipid transport and astrocyte signaling in the brain,” Sci. Rep. 3(1), 2582 (2013).
[Crossref]

Deegan, A.

W. Wei, Y. Li, Z. Xie, A. Deegan, and K. R. Wang, “Spatial and Temporal Heterogeneities of Capillary Hemodynamics and Its Functional Coupling During Neural Activation,” IEEE Trans. Med. Imaging 38(5), 1295–1303 (2019).
[Crossref]

Depeursinge, C.

Detre, J. A.

D. Turgut, M. G. Burnett, Y. Guoqiang, Z. Chao, F. Daisuke, A. G. Yodh, J. A. Detre, and J. H. Greenberg, “Spatiotemporal quantification of cerebral blood flow during functional activation in rat somatosensory cortex using laser-speckle flowmetry,” J. Cereb. Blood Flow Metab. 24(5), 518–525 (2004).
[Crossref]

Devor, A.

A. D. Aguirre, Y. Chen, J. G. Fujimoto, L. Ruvinskaya, A. Devor, and D. A. Boas, “Depth-resolved imaging of functional activation in the rat cerebral cortex using optical coherence tomography,” Opt. Lett. 31(23), 3459–3461 (2006).
[Crossref]

A. K. Dunn, A. Devor, A. M. Dale, and D. A. Boas, “Spatial extent of oxygen metabolism and hemodynamic changes during functional activation of the rat somatosensory cortex,” NeuroImage 27(2), 279–290 (2005).
[Crossref]

Dirnagl, U.

U. Dirnagl, B. Kaplan, M. Jacewicz, and W. Pulsinelli, “Continuous measurement of cerebral cortical blood flow by laser-Doppler flowmetry in a rat stroke model,” J. Cereb. Blood Flow Metab. 9(5), 589–596 (1989).
[Crossref]

Drew, P. J.

Y.-R. Gao, S. E. Greene, and P. J. Drew, “Mechanical restriction of intracortical vessel dilation by brain tissue sculpts the hemodynamic response,” NeuroImage 115, 162–176 (2015).
[Crossref]

Drexler, W.

K. Bizheva, R. Pflug, B. Hermann, B. Povazay, H. Sattmann, P. Qiu, E. Anger, H. Reitsamer, S. Popov, J. R. Taylor, A. Unterhuber, P. Ahnelt, and W. Drexler, “Optophysiology: depth-resolved probing of retinal physiology with functional ultrahigh-resolution optical coherence tomography,” Proc. Natl. Acad. Sci. U. S. A. 103(13), 5066–5071 (2006).
[Crossref]

Drury, J.

Du, C. W.

Duker, J. S.

Duncan, D. D.

Dunn, A. K.

A. K. Dunn, A. Devor, A. M. Dale, and D. A. Boas, “Spatial extent of oxygen metabolism and hemodynamic changes during functional activation of the rat somatosensory cortex,” NeuroImage 27(2), 279–290 (2005).
[Crossref]

Dziennis, S.

Emery, Y.

Extermann, J.

Ferrari, M.

V. Quaresima and M. Ferrari, “Functional Near-Infrared Spectroscopy (fNIRS) for Assessing Cerebral Cortex Function During Human Behavior in Natural/Social Situations: A Concise Review,” Organ. Res. Methods 22(1), 46–68 (2019).
[Crossref]

Fields, R. D.

R. D. Fields, “Signaling by Neuronal Swelling,” Sci. Signaling 4(155), tr1 (2011).
[Crossref]

Fujimoto, D. A.

Fujimoto, J. G.

Gao, Y.-R.

Y.-R. Gao, S. E. Greene, and P. J. Drew, “Mechanical restriction of intracortical vessel dilation by brain tissue sculpts the hemodynamic response,” NeuroImage 115, 162–176 (2015).
[Crossref]

Garaschuk, O.

C. Stosiek, O. Garaschuk, K. Holthoff, and A. Konnerth, “Two-photon calcium imaging of neuronal networks,” Proc. Natl. Acad. Sci. U. S. A. 100(12), 7319–7324 (2003).
[Crossref]

Gautam, V.

George, J. S.

Gkoupidenis, P.

S. Rezaei-Mazinani, A. Ivanov, C. M. Proctor, P. Gkoupidenis, C. Bernard, G. G. Malliaras, and E. Ismailova, “Monitoring Intrinsic Optical Signals in Brain Tissue with Organic Photodetectors,” Adv. Mater. Technol. 3(5), 1700333 (2018).
[Crossref]

Greenberg, J. H.

D. Turgut, M. G. Burnett, Y. Guoqiang, Z. Chao, F. Daisuke, A. G. Yodh, J. A. Detre, and J. H. Greenberg, “Spatiotemporal quantification of cerebral blood flow during functional activation in rat somatosensory cortex using laser-speckle flowmetry,” J. Cereb. Blood Flow Metab. 24(5), 518–525 (2004).
[Crossref]

Greene, S. E.

Y.-R. Gao, S. E. Greene, and P. J. Drew, “Mechanical restriction of intracortical vessel dilation by brain tissue sculpts the hemodynamic response,” NeuroImage 115, 162–176 (2015).
[Crossref]

Grewe, B. F.

J. Lecoq, J. Savall, D. Vučinić, B. F. Grewe, H. Kim, J. Z. Li, L. J. Kitch, and M. J. Schnitzer, “Visualizing mammalian brain area interactions by dual-axis two-photon calcium imaging,” Nat. Neurosci. 17(12), 1825–1829 (2014).
[Crossref]

Guoqiang, Y.

D. Turgut, M. G. Burnett, Y. Guoqiang, Z. Chao, F. Daisuke, A. G. Yodh, J. A. Detre, and J. H. Greenberg, “Spatiotemporal quantification of cerebral blood flow during functional activation in rat somatosensory cortex using laser-speckle flowmetry,” J. Cereb. Blood Flow Metab. 24(5), 518–525 (2004).
[Crossref]

Haiying, C.

L. Pengcheng, L. Qingming, L. Weihua, C. Shangbin, C. Haiying, and Z. Shaoqun, “Spatiotemporal characteristics of cerebral blood volume changes in rat somatosensory cortex evoked by sciatic nerve stimulation and obtained by optical imaging,” J. Biomed. Opt. 8(4), 629–635 (2003).
[Crossref]

Haque, M. R.

Hasan, M. M.

Hermann, B.

K. Bizheva, R. Pflug, B. Hermann, B. Povazay, H. Sattmann, P. Qiu, E. Anger, H. Reitsamer, S. Popov, J. R. Taylor, A. Unterhuber, P. Ahnelt, and W. Drexler, “Optophysiology: depth-resolved probing of retinal physiology with functional ultrahigh-resolution optical coherence tomography,” Proc. Natl. Acad. Sci. U. S. A. 103(13), 5066–5071 (2006).
[Crossref]

Hilge, F.

H. Spahr, C. Pfäffle, S. Burhan, L. Kutzner, F. Hilge, G. Hüttmann, and D. Hillmann, “Phase-sensitive interferometry of decorrelated speckle patterns,” Sci. Rep. 9(1), 11748 (2019).
[Crossref]

Hillman, E. M. C.

Y. Ma, M. A. Shaik, S. H. Kim, M. G. Kozberg, D. N. Thibodeaux, H. T. Zhao, H. Yu, and E. M. C. Hillman, “Wide-field optical mapping of neural activity and brain haemodynamics: considerations and novel approaches,” Philos. Trans. R. Soc., B 371(1705), 20150360 (2016).
[Crossref]

Hillmann, D.

H. Spahr, C. Pfäffle, S. Burhan, L. Kutzner, F. Hilge, G. Hüttmann, and D. Hillmann, “Phase-sensitive interferometry of decorrelated speckle patterns,” Sci. Rep. 9(1), 11748 (2019).
[Crossref]

Hinds, M.

R. K. Wang, S. Kirkpatrick, and M. Hinds, “Phase-sensitive optical coherence elastography for mapping tissue microstrains in real time,” Appl. Phys. Lett. 90(16), 164105 (2007).
[Crossref]

Holthoff, K.

C. Stosiek, O. Garaschuk, K. Holthoff, and A. Konnerth, “Two-photon calcium imaging of neuronal networks,” Proc. Natl. Acad. Sci. U. S. A. 100(12), 7319–7324 (2003).
[Crossref]

O. W. Witte, H. Niermann, and K. Holthoff, “Cell swelling and ion redistribution assessed with intrinsic optical signals,” An. Acad. Bras. Cienc. 73(3), 337–350 (2001).
[Crossref]

K. Holthoff and O. Witte, “Intrinsic optical signals in rat neocortical slices measured with near-infrared dark-field microscopy reveal changes in extracellular space,” J. Neurosci. 16(8), 2740–2749 (1996).
[Crossref]

Homma, R.

R. U. Maheswari, H. Takaoka, H. Kadono, R. Homma, and M. Tanifuji, “Novel functional imaging technique from brain surface with optical coherence tomography enabling visualization of depth resolved functional structure in vivo,” J. Neurosci. Methods 124(1), 83–92 (2003).
[Crossref]

R. U. Maheswari, H. Takaoka, R. Homma, H. Kadono, and M. Tanifuji, “Implementation of optical coherence tomography (OCT) in visualization of functional structures of cat visual cortex,” Opt. Commun. 202(1-3), 47–54 (2002).
[Crossref]

Hu, S.

Y. Yuan, Y. Zhao, H. Jia, M. Liu, S. Hu, Y. Li, and X. Li, “Cortical Hemodynamic Responses Under Focused Ultrasound Stimulation Using Real-Time Laser Speckle Contrast Imaging,” Front. Neurosci. 12, 269 (2018).
[Crossref]

Hüttmann, G.

H. Spahr, C. Pfäffle, S. Burhan, L. Kutzner, F. Hilge, G. Hüttmann, and D. Hillmann, “Phase-sensitive interferometry of decorrelated speckle patterns,” Sci. Rep. 9(1), 11748 (2019).
[Crossref]

Iliff, J. J.

V. Rangroo Thrane, A. S. Thrane, B. A. Plog, M. Thiyagarajan, J. J. Iliff, R. Deane, E. A. Nagelhus, and M. Nedergaard, “Paravascular microcirculation facilitates rapid lipid transport and astrocyte signaling in the brain,” Sci. Rep. 3(1), 2582 (2013).
[Crossref]

Inman, C. B.

E. T. Zhang, C. B. Inman, and R. O. Weller, “Interrelationships of the pia mater and the perivascular (Virchow-Robin) spaces in the human cerebrum,” J. Anat. 170, 111–123 (1990).

Islam, M. S.

Ismailova, E.

S. Rezaei-Mazinani, A. Ivanov, C. M. Proctor, P. Gkoupidenis, C. Bernard, G. G. Malliaras, and E. Ismailova, “Monitoring Intrinsic Optical Signals in Brain Tissue with Organic Photodetectors,” Adv. Mater. Technol. 3(5), 1700333 (2018).
[Crossref]

Ivanov, A.

S. Rezaei-Mazinani, A. Ivanov, C. M. Proctor, P. Gkoupidenis, C. Bernard, G. G. Malliaras, and E. Ismailova, “Monitoring Intrinsic Optical Signals in Brain Tissue with Organic Photodetectors,” Adv. Mater. Technol. 3(5), 1700333 (2018).
[Crossref]

Iwona, R.

Jacewicz, M.

U. Dirnagl, B. Kaplan, M. Jacewicz, and W. Pulsinelli, “Continuous measurement of cerebral cortical blood flow by laser-Doppler flowmetry in a rat stroke model,” J. Cereb. Blood Flow Metab. 9(5), 589–596 (1989).
[Crossref]

Jia, H.

Y. Yuan, Y. Zhao, H. Jia, M. Liu, S. Hu, Y. Li, and X. Li, “Cortical Hemodynamic Responses Under Focused Ultrasound Stimulation Using Real-Time Laser Speckle Contrast Imaging,” Front. Neurosci. 12, 269 (2018).
[Crossref]

Jiang, H.

M. Li, F. Liu, H. Jiang, T. S. Lee, and S. Tang, “Long-Term Two-Photon Imaging in Awake Macaque Monkey,” Neuron 93(5), 1049–1057.e3 (2017).
[Crossref]

Jiang, J. Y.

Joo, C.

T. Akkin, C. Joo, and J. F. D. Boer, “Depth-Resolved Measurement of Transient Structural Changes during Action Potential Propagation,” Biophys. J. 93(4), 1347–1353 (2007).
[Crossref]

Joo, J.

P. Shin, W. Choi, J. Joo, and W.-Y. Oh, “Quantitative hemodynamic analysis of cerebral blood flow and neurovascular coupling using optical coherence tomography angiography,” J. Cereb. Blood Flow Metab. 39(10), 1983–1994 (2019).
[Crossref]

Kadono, H.

R. U. Maheswari, H. Takaoka, H. Kadono, R. Homma, and M. Tanifuji, “Novel functional imaging technique from brain surface with optical coherence tomography enabling visualization of depth resolved functional structure in vivo,” J. Neurosci. Methods 124(1), 83–92 (2003).
[Crossref]

R. U. Maheswari, H. Takaoka, R. Homma, H. Kadono, and M. Tanifuji, “Implementation of optical coherence tomography (OCT) in visualization of functional structures of cat visual cortex,” Opt. Commun. 202(1-3), 47–54 (2002).
[Crossref]

Kaplan, B.

U. Dirnagl, B. Kaplan, M. Jacewicz, and W. Pulsinelli, “Continuous measurement of cerebral cortical blood flow by laser-Doppler flowmetry in a rat stroke model,” J. Cereb. Blood Flow Metab. 9(5), 589–596 (1989).
[Crossref]

Kim, D. H.

Kim, H.

J. Lecoq, J. Savall, D. Vučinić, B. F. Grewe, H. Kim, J. Z. Li, L. J. Kitch, and M. J. Schnitzer, “Visualizing mammalian brain area interactions by dual-axis two-photon calcium imaging,” Nat. Neurosci. 17(12), 1825–1829 (2014).
[Crossref]

Kim, S. H.

Y. Ma, M. A. Shaik, S. H. Kim, M. G. Kozberg, D. N. Thibodeaux, H. T. Zhao, H. Yu, and E. M. C. Hillman, “Wide-field optical mapping of neural activity and brain haemodynamics: considerations and novel approaches,” Philos. Trans. R. Soc., B 371(1705), 20150360 (2016).
[Crossref]

Kirkpatrick, S.

R. K. Wang, S. Kirkpatrick, and M. Hinds, “Phase-sensitive optical coherence elastography for mapping tissue microstrains in real time,” Appl. Phys. Lett. 90(16), 164105 (2007).
[Crossref]

Kirkpatrick, S. J.

Kitch, L. J.

J. Lecoq, J. Savall, D. Vučinić, B. F. Grewe, H. Kim, J. Z. Li, L. J. Kitch, and M. J. Schnitzer, “Visualizing mammalian brain area interactions by dual-axis two-photon calcium imaging,” Nat. Neurosci. 17(12), 1825–1829 (2014).
[Crossref]

Konnerth, A.

C. Stosiek, O. Garaschuk, K. Holthoff, and A. Konnerth, “Two-photon calcium imaging of neuronal networks,” Proc. Natl. Acad. Sci. U. S. A. 100(12), 7319–7324 (2003).
[Crossref]

Kozberg, M. G.

Y. Ma, M. A. Shaik, S. H. Kim, M. G. Kozberg, D. N. Thibodeaux, H. T. Zhao, H. Yu, and E. M. C. Hillman, “Wide-field optical mapping of neural activity and brain haemodynamics: considerations and novel approaches,” Philos. Trans. R. Soc., B 371(1705), 20150360 (2016).
[Crossref]

Kurt, P.

Kutzner, L.

H. Spahr, C. Pfäffle, S. Burhan, L. Kutzner, F. Hilge, G. Hüttmann, and D. Hillmann, “Phase-sensitive interferometry of decorrelated speckle patterns,” Sci. Rep. 9(1), 11748 (2019).
[Crossref]

Lana, R.

C. Yu, A. D. Aguirre, R. Lana, D. Anna, D. A. Boas, and J. G. Fujimoto, “Optical coherence tomography (OCT) reveals depth-resolved dynamics during functional brain activation,” J. Neurosci. Methods 178(1), 162–173 (2009).
[Crossref]

Landowne, D.

Y. J. Yeh, A. J. Black, D. Landowne, and T. Akkin, “Optical coherence tomography for cross-sectional imaging of neural activity,” Neurophotonics 2(3), 035001 (2015).
[Crossref]

T. Akkin, D. Landowne, and A. Sivaprakasam, “Optical Coherence Tomography Phase Measurement of Transient Changes in Squid Giant Axons During Activity,” J. Membr. Biol. 231(1), 35–46 (2009).
[Crossref]

Lasser, T.

Lecoq, J.

J. Lecoq, J. Savall, D. Vučinić, B. F. Grewe, H. Kim, J. Z. Li, L. J. Kitch, and M. J. Schnitzer, “Visualizing mammalian brain area interactions by dual-axis two-photon calcium imaging,” Nat. Neurosci. 17(12), 1825–1829 (2014).
[Crossref]

Lee, J.

Lee, T. S.

M. Li, F. Liu, H. Jiang, T. S. Lee, and S. Tang, “Long-Term Two-Photon Imaging in Awake Macaque Monkey,” Neuron 93(5), 1049–1057.e3 (2017).
[Crossref]

Lesage, F.

Li, J. Z.

J. Lecoq, J. Savall, D. Vučinić, B. F. Grewe, H. Kim, J. Z. Li, L. J. Kitch, and M. J. Schnitzer, “Visualizing mammalian brain area interactions by dual-axis two-photon calcium imaging,” Nat. Neurosci. 17(12), 1825–1829 (2014).
[Crossref]

Li, M.

M. Li, F. Liu, H. Jiang, T. S. Lee, and S. Tang, “Long-Term Two-Photon Imaging in Awake Macaque Monkey,” Neuron 93(5), 1049–1057.e3 (2017).
[Crossref]

Li, X.

Y. Yuan, Y. Zhao, H. Jia, M. Liu, S. Hu, Y. Li, and X. Li, “Cortical Hemodynamic Responses Under Focused Ultrasound Stimulation Using Real-Time Laser Speckle Contrast Imaging,” Front. Neurosci. 12, 269 (2018).
[Crossref]

Li, Y.

W. Wei, Y. Li, Z. Xie, A. Deegan, and K. R. Wang, “Spatial and Temporal Heterogeneities of Capillary Hemodynamics and Its Functional Coupling During Neural Activation,” IEEE Trans. Med. Imaging 38(5), 1295–1303 (2019).
[Crossref]

Y. Yuan, Y. Zhao, H. Jia, M. Liu, S. Hu, Y. Li, and X. Li, “Cortical Hemodynamic Responses Under Focused Ultrasound Stimulation Using Real-Time Laser Speckle Contrast Imaging,” Front. Neurosci. 12, 269 (2018).
[Crossref]

Y. Li, U. Baran, and R. K. Wang, “Application of thinned-skull cranial window to mouse cerebral blood flow imaging using optical microangiography,” PLoS One 9(11), e113658 (2014).
[Crossref]

Liu, F.

M. Li, F. Liu, H. Jiang, T. S. Lee, and S. Tang, “Long-Term Two-Photon Imaging in Awake Macaque Monkey,” Neuron 93(5), 1049–1057.e3 (2017).
[Crossref]

Liu, M.

Y. Yuan, Y. Zhao, H. Jia, M. Liu, S. Hu, Y. Li, and X. Li, “Cortical Hemodynamic Responses Under Focused Ultrasound Stimulation Using Real-Time Laser Speckle Contrast Imaging,” Front. Neurosci. 12, 269 (2018).
[Crossref]

Lu, Y.

T. Son, M. Alam, D. Toslak, B. Wang, Y. Lu, and X. Yao, “Functional optical coherence tomography of neurovascular coupling interactions in the retina,” J. Biophotonics 11(12), e201800089 (2018).
[Crossref]

Luo, Z.

Ma, Y.

Y. Ma, M. A. Shaik, S. H. Kim, M. G. Kozberg, D. N. Thibodeaux, H. T. Zhao, H. Yu, and E. M. C. Hillman, “Wide-field optical mapping of neural activity and brain haemodynamics: considerations and novel approaches,” Philos. Trans. R. Soc., B 371(1705), 20150360 (2016).
[Crossref]

Ma, Z.

R. Wang and Z. Ma, “A practical approach to eliminate autocorrelation artefacts for volume-rate spectral domain optical coherence tomography,” Phys. Med. Biol. 51(12), 3231–3239 (2006).
[Crossref]

Magistretti, P. J.

Maheswari, R. U.

R. U. Maheswari, H. Takaoka, H. Kadono, R. Homma, and M. Tanifuji, “Novel functional imaging technique from brain surface with optical coherence tomography enabling visualization of depth resolved functional structure in vivo,” J. Neurosci. Methods 124(1), 83–92 (2003).
[Crossref]

R. U. Maheswari, H. Takaoka, R. Homma, H. Kadono, and M. Tanifuji, “Implementation of optical coherence tomography (OCT) in visualization of functional structures of cat visual cortex,” Opt. Commun. 202(1-3), 47–54 (2002).
[Crossref]

Malliaras, G. G.

S. Rezaei-Mazinani, A. Ivanov, C. M. Proctor, P. Gkoupidenis, C. Bernard, G. G. Malliaras, and E. Ismailova, “Monitoring Intrinsic Optical Signals in Brain Tissue with Organic Photodetectors,” Adv. Mater. Technol. 3(5), 1700333 (2018).
[Crossref]

Marchand, P. J.

Marco, F.

F. Marco and Q. Valentina, “A brief reviw on the history of human functional near-infrared spectroscopy (fNIRS) development and fields of application,” NeuroImage 63(2), 921–935 (2012).
[Crossref]

Mariya, L.

Marks, D. L.

Marquet, P.

Nagelhus, E. A.

V. Rangroo Thrane, A. S. Thrane, B. A. Plog, M. Thiyagarajan, J. J. Iliff, R. Deane, E. A. Nagelhus, and M. Nedergaard, “Paravascular microcirculation facilitates rapid lipid transport and astrocyte signaling in the brain,” Sci. Rep. 3(1), 2582 (2013).
[Crossref]

Nedergaard, M.

V. Rangroo Thrane, A. S. Thrane, B. A. Plog, M. Thiyagarajan, J. J. Iliff, R. Deane, E. A. Nagelhus, and M. Nedergaard, “Paravascular microcirculation facilitates rapid lipid transport and astrocyte signaling in the brain,” Sci. Rep. 3(1), 2582 (2013).
[Crossref]

Nguyen, D.

Niermann, H.

O. W. Witte, H. Niermann, and K. Holthoff, “Cell swelling and ion redistribution assessed with intrinsic optical signals,” An. Acad. Bras. Cienc. 73(3), 337–350 (2001).
[Crossref]

Nossal, R.

Nuttall, A. L.

R. K. Wang and A. L. Nuttall, “Phase-sensitive optical coherence tomography imaging of the tissue motion within the organ of Corti at a subnanometer scale: a preliminary study,” J. Biomed. Opt. 15(5), 056005 (2010).
[Crossref]

Oh, W.-Y.

P. Shin, W. Choi, J. Joo, and W.-Y. Oh, “Quantitative hemodynamic analysis of cerebral blood flow and neurovascular coupling using optical coherence tomography angiography,” J. Cereb. Blood Flow Metab. 39(10), 1983–1994 (2019).
[Crossref]

Pan, Y. T.

Park, B. H.

Pengcheng, L.

L. Pengcheng, L. Qingming, L. Weihua, C. Shangbin, C. Haiying, and Z. Shaoqun, “Spatiotemporal characteristics of cerebral blood volume changes in rat somatosensory cortex evoked by sciatic nerve stimulation and obtained by optical imaging,” J. Biomed. Opt. 8(4), 629–635 (2003).
[Crossref]

Pfäffle, C.

H. Spahr, C. Pfäffle, S. Burhan, L. Kutzner, F. Hilge, G. Hüttmann, and D. Hillmann, “Phase-sensitive interferometry of decorrelated speckle patterns,” Sci. Rep. 9(1), 11748 (2019).
[Crossref]

Pflug, R.

K. Bizheva, R. Pflug, B. Hermann, B. Povazay, H. Sattmann, P. Qiu, E. Anger, H. Reitsamer, S. Popov, J. R. Taylor, A. Unterhuber, P. Ahnelt, and W. Drexler, “Optophysiology: depth-resolved probing of retinal physiology with functional ultrahigh-resolution optical coherence tomography,” Proc. Natl. Acad. Sci. U. S. A. 103(13), 5066–5071 (2006).
[Crossref]

Plog, B. A.

V. Rangroo Thrane, A. S. Thrane, B. A. Plog, M. Thiyagarajan, J. J. Iliff, R. Deane, E. A. Nagelhus, and M. Nedergaard, “Paravascular microcirculation facilitates rapid lipid transport and astrocyte signaling in the brain,” Sci. Rep. 3(1), 2582 (2013).
[Crossref]

Popov, S.

K. Bizheva, R. Pflug, B. Hermann, B. Povazay, H. Sattmann, P. Qiu, E. Anger, H. Reitsamer, S. Popov, J. R. Taylor, A. Unterhuber, P. Ahnelt, and W. Drexler, “Optophysiology: depth-resolved probing of retinal physiology with functional ultrahigh-resolution optical coherence tomography,” Proc. Natl. Acad. Sci. U. S. A. 103(13), 5066–5071 (2006).
[Crossref]

Povazay, B.

K. Bizheva, R. Pflug, B. Hermann, B. Povazay, H. Sattmann, P. Qiu, E. Anger, H. Reitsamer, S. Popov, J. R. Taylor, A. Unterhuber, P. Ahnelt, and W. Drexler, “Optophysiology: depth-resolved probing of retinal physiology with functional ultrahigh-resolution optical coherence tomography,” Proc. Natl. Acad. Sci. U. S. A. 103(13), 5066–5071 (2006).
[Crossref]

Proctor, C. M.

S. Rezaei-Mazinani, A. Ivanov, C. M. Proctor, P. Gkoupidenis, C. Bernard, G. G. Malliaras, and E. Ismailova, “Monitoring Intrinsic Optical Signals in Brain Tissue with Organic Photodetectors,” Adv. Mater. Technol. 3(5), 1700333 (2018).
[Crossref]

Pulsinelli, W.

U. Dirnagl, B. Kaplan, M. Jacewicz, and W. Pulsinelli, “Continuous measurement of cerebral cortical blood flow by laser-Doppler flowmetry in a rat stroke model,” J. Cereb. Blood Flow Metab. 9(5), 589–596 (1989).
[Crossref]

Qin, J.

Qingming, L.

L. Pengcheng, L. Qingming, L. Weihua, C. Shangbin, C. Haiying, and Z. Shaoqun, “Spatiotemporal characteristics of cerebral blood volume changes in rat somatosensory cortex evoked by sciatic nerve stimulation and obtained by optical imaging,” J. Biomed. Opt. 8(4), 629–635 (2003).
[Crossref]

Qiu, P.

K. Bizheva, R. Pflug, B. Hermann, B. Povazay, H. Sattmann, P. Qiu, E. Anger, H. Reitsamer, S. Popov, J. R. Taylor, A. Unterhuber, P. Ahnelt, and W. Drexler, “Optophysiology: depth-resolved probing of retinal physiology with functional ultrahigh-resolution optical coherence tomography,” Proc. Natl. Acad. Sci. U. S. A. 103(13), 5066–5071 (2006).
[Crossref]

Quaresima, V.

V. Quaresima and M. Ferrari, “Functional Near-Infrared Spectroscopy (fNIRS) for Assessing Cerebral Cortex Function During Human Behavior in Natural/Social Situations: A Concise Review,” Organ. Res. Methods 22(1), 46–68 (2019).
[Crossref]

Radhakrishnan, H.

V. J. Srinivasan and H. Radhakrishnan, “Optical Coherence Tomography angiography reveals laminar microvascular hemodynamics in the rat somatosensory cortex during activation,” NeuroImage 102(2), 393–406 (2014).
[Crossref]

H. Radhakrishnan and V. J. Srinivasan, “Compartment-resolved imaging of cortical functional hyperemia with OCT angiography,” Biomed. Opt. Express 4(8), 1255–1268 (2013).
[Crossref]

Rangroo Thrane, V.

V. Rangroo Thrane, A. S. Thrane, B. A. Plog, M. Thiyagarajan, J. J. Iliff, R. Deane, E. A. Nagelhus, and M. Nedergaard, “Paravascular microcirculation facilitates rapid lipid transport and astrocyte signaling in the brain,” Sci. Rep. 3(1), 2582 (2013).
[Crossref]

Rappaz, B.

Reif, R.

Reitsamer, H.

K. Bizheva, R. Pflug, B. Hermann, B. Povazay, H. Sattmann, P. Qiu, E. Anger, H. Reitsamer, S. Popov, J. R. Taylor, A. Unterhuber, P. Ahnelt, and W. Drexler, “Optophysiology: depth-resolved probing of retinal physiology with functional ultrahigh-resolution optical coherence tomography,” Proc. Natl. Acad. Sci. U. S. A. 103(13), 5066–5071 (2006).
[Crossref]

Rezaei-Mazinani, S.

S. Rezaei-Mazinani, A. Ivanov, C. M. Proctor, P. Gkoupidenis, C. Bernard, G. G. Malliaras, and E. Ismailova, “Monitoring Intrinsic Optical Signals in Brain Tissue with Organic Photodetectors,” Adv. Mater. Technol. 3(5), 1700333 (2018).
[Crossref]

Rhanor, G.

Ruvinskaya, L.

Sang, S. L.

Sattmann, H.

K. Bizheva, R. Pflug, B. Hermann, B. Povazay, H. Sattmann, P. Qiu, E. Anger, H. Reitsamer, S. Popov, J. R. Taylor, A. Unterhuber, P. Ahnelt, and W. Drexler, “Optophysiology: depth-resolved probing of retinal physiology with functional ultrahigh-resolution optical coherence tomography,” Proc. Natl. Acad. Sci. U. S. A. 103(13), 5066–5071 (2006).
[Crossref]

Sava, G.

Savall, J.

J. Lecoq, J. Savall, D. Vučinić, B. F. Grewe, H. Kim, J. Z. Li, L. J. Kitch, and M. J. Schnitzer, “Visualizing mammalian brain area interactions by dual-axis two-photon calcium imaging,” Nat. Neurosci. 17(12), 1825–1829 (2014).
[Crossref]

Schnitzer, M. J.

J. Lecoq, J. Savall, D. Vučinić, B. F. Grewe, H. Kim, J. Z. Li, L. J. Kitch, and M. J. Schnitzer, “Visualizing mammalian brain area interactions by dual-axis two-photon calcium imaging,” Nat. Neurosci. 17(12), 1825–1829 (2014).
[Crossref]

Shaik, M. A.

Y. Ma, M. A. Shaik, S. H. Kim, M. G. Kozberg, D. N. Thibodeaux, H. T. Zhao, H. Yu, and E. M. C. Hillman, “Wide-field optical mapping of neural activity and brain haemodynamics: considerations and novel approaches,” Philos. Trans. R. Soc., B 371(1705), 20150360 (2016).
[Crossref]

Shamaei, V. K.

Shangbin, C.

L. Pengcheng, L. Qingming, L. Weihua, C. Shangbin, C. Haiying, and Z. Shaoqun, “Spatiotemporal characteristics of cerebral blood volume changes in rat somatosensory cortex evoked by sciatic nerve stimulation and obtained by optical imaging,” J. Biomed. Opt. 8(4), 629–635 (2003).
[Crossref]

Shaoqun, Z.

L. Pengcheng, L. Qingming, L. Weihua, C. Shangbin, C. Haiying, and Z. Shaoqun, “Spatiotemporal characteristics of cerebral blood volume changes in rat somatosensory cortex evoked by sciatic nerve stimulation and obtained by optical imaging,” J. Biomed. Opt. 8(4), 629–635 (2003).
[Crossref]

Shi, L.

Shin, P.

P. Shin, W. Choi, J. Joo, and W.-Y. Oh, “Quantitative hemodynamic analysis of cerebral blood flow and neurovascular coupling using optical coherence tomography angiography,” J. Cereb. Blood Flow Metab. 39(10), 1983–1994 (2019).
[Crossref]

Sivaprakasam, A.

T. Akkin, D. Landowne, and A. Sivaprakasam, “Optical Coherence Tomography Phase Measurement of Transient Changes in Squid Giant Axons During Activity,” J. Membr. Biol. 231(1), 35–46 (2009).
[Crossref]

Son, T.

T. Son, M. Alam, D. Toslak, B. Wang, Y. Lu, and X. Yao, “Functional optical coherence tomography of neurovascular coupling interactions in the retina,” J. Biophotonics 11(12), e201800089 (2018).
[Crossref]

Spahr, H.

H. Spahr, C. Pfäffle, S. Burhan, L. Kutzner, F. Hilge, G. Hüttmann, and D. Hillmann, “Phase-sensitive interferometry of decorrelated speckle patterns,” Sci. Rep. 9(1), 11748 (2019).
[Crossref]

Srinivasan, S.

Srinivasan, V. J.

Stosiek, C.

C. Stosiek, O. Garaschuk, K. Holthoff, and A. Konnerth, “Two-photon calcium imaging of neuronal networks,” Proc. Natl. Acad. Sci. U. S. A. 100(12), 7319–7324 (2003).
[Crossref]

Svetlana, W.

Swiontkowski, M. F.

M. F. Swiontkowski, “Laser Doppler Flowmetry—Development and Clinical Application,” Iowa Orthop. J. 11, 119–126 (1991).

Szlag, D.

Takaoka, H.

R. U. Maheswari, H. Takaoka, H. Kadono, R. Homma, and M. Tanifuji, “Novel functional imaging technique from brain surface with optical coherence tomography enabling visualization of depth resolved functional structure in vivo,” J. Neurosci. Methods 124(1), 83–92 (2003).
[Crossref]

R. U. Maheswari, H. Takaoka, R. Homma, H. Kadono, and M. Tanifuji, “Implementation of optical coherence tomography (OCT) in visualization of functional structures of cat visual cortex,” Opt. Commun. 202(1-3), 47–54 (2002).
[Crossref]

Tang, S.

M. Li, F. Liu, H. Jiang, T. S. Lee, and S. Tang, “Long-Term Two-Photon Imaging in Awake Macaque Monkey,” Neuron 93(5), 1049–1057.e3 (2017).
[Crossref]

Tanifuji, M.

R. U. Maheswari, H. Takaoka, H. Kadono, R. Homma, and M. Tanifuji, “Novel functional imaging technique from brain surface with optical coherence tomography enabling visualization of depth resolved functional structure in vivo,” J. Neurosci. Methods 124(1), 83–92 (2003).
[Crossref]

R. U. Maheswari, H. Takaoka, R. Homma, H. Kadono, and M. Tanifuji, “Implementation of optical coherence tomography (OCT) in visualization of functional structures of cat visual cortex,” Opt. Commun. 202(1-3), 47–54 (2002).
[Crossref]

Taylor, J. R.

K. Bizheva, R. Pflug, B. Hermann, B. Povazay, H. Sattmann, P. Qiu, E. Anger, H. Reitsamer, S. Popov, J. R. Taylor, A. Unterhuber, P. Ahnelt, and W. Drexler, “Optophysiology: depth-resolved probing of retinal physiology with functional ultrahigh-resolution optical coherence tomography,” Proc. Natl. Acad. Sci. U. S. A. 103(13), 5066–5071 (2006).
[Crossref]

Thibodeaux, D. N.

Y. Ma, M. A. Shaik, S. H. Kim, M. G. Kozberg, D. N. Thibodeaux, H. T. Zhao, H. Yu, and E. M. C. Hillman, “Wide-field optical mapping of neural activity and brain haemodynamics: considerations and novel approaches,” Philos. Trans. R. Soc., B 371(1705), 20150360 (2016).
[Crossref]

Thiyagarajan, M.

V. Rangroo Thrane, A. S. Thrane, B. A. Plog, M. Thiyagarajan, J. J. Iliff, R. Deane, E. A. Nagelhus, and M. Nedergaard, “Paravascular microcirculation facilitates rapid lipid transport and astrocyte signaling in the brain,” Sci. Rep. 3(1), 2582 (2013).
[Crossref]

Thrane, A. S.

V. Rangroo Thrane, A. S. Thrane, B. A. Plog, M. Thiyagarajan, J. J. Iliff, R. Deane, E. A. Nagelhus, and M. Nedergaard, “Paravascular microcirculation facilitates rapid lipid transport and astrocyte signaling in the brain,” Sci. Rep. 3(1), 2582 (2013).
[Crossref]

Tomlins, P. H.

P. H. Tomlins and R. K. Wang, “Theory, developments and applications of optical coherence tomography,” J. Phys. D: Appl. Phys. 38(15), 2519–2535 (2005).
[Crossref]

Tong, M. Q.

Toslak, D.

T. Son, M. Alam, D. Toslak, B. Wang, Y. Lu, and X. Yao, “Functional optical coherence tomography of neurovascular coupling interactions in the retina,” J. Biophotonics 11(12), e201800089 (2018).
[Crossref]

Turgut, D.

D. Turgut, M. G. Burnett, Y. Guoqiang, Z. Chao, F. Daisuke, A. G. Yodh, J. A. Detre, and J. H. Greenberg, “Spatiotemporal quantification of cerebral blood flow during functional activation in rat somatosensory cortex using laser-speckle flowmetry,” J. Cereb. Blood Flow Metab. 24(5), 518–525 (2004).
[Crossref]

Unterhuber, A.

K. Bizheva, R. Pflug, B. Hermann, B. Povazay, H. Sattmann, P. Qiu, E. Anger, H. Reitsamer, S. Popov, J. R. Taylor, A. Unterhuber, P. Ahnelt, and W. Drexler, “Optophysiology: depth-resolved probing of retinal physiology with functional ultrahigh-resolution optical coherence tomography,” Proc. Natl. Acad. Sci. U. S. A. 103(13), 5066–5071 (2006).
[Crossref]

Valentina, Q.

F. Marco and Q. Valentina, “A brief reviw on the history of human functional near-infrared spectroscopy (fNIRS) development and fields of application,” NeuroImage 63(2), 921–935 (2012).
[Crossref]

Vivek, J.

Vucinic, D.

J. Lecoq, J. Savall, D. Vučinić, B. F. Grewe, H. Kim, J. Z. Li, L. J. Kitch, and M. J. Schnitzer, “Visualizing mammalian brain area interactions by dual-axis two-photon calcium imaging,” Nat. Neurosci. 17(12), 1825–1829 (2014).
[Crossref]

Wang, B.

T. Son, M. Alam, D. Toslak, B. Wang, Y. Lu, and X. Yao, “Functional optical coherence tomography of neurovascular coupling interactions in the retina,” J. Biophotonics 11(12), e201800089 (2018).
[Crossref]

Wang, K. R.

W. Wei, Y. Li, Z. Xie, A. Deegan, and K. R. Wang, “Spatial and Temporal Heterogeneities of Capillary Hemodynamics and Its Functional Coupling During Neural Activation,” IEEE Trans. Med. Imaging 38(5), 1295–1303 (2019).
[Crossref]

Wang, R.

R. Wang and Z. Ma, “A practical approach to eliminate autocorrelation artefacts for volume-rate spectral domain optical coherence tomography,” Phys. Med. Biol. 51(12), 3231–3239 (2006).
[Crossref]

Wang, R. K.

L. Yuandong, W. Wei, and R. K. Wang, “Capillary flow homogenization during functional activation revealed by optical coherence tomography angiography based capillary velocimetry,” Sci. Rep. 8(1), 4107 (2018).
[Crossref]

C. L. Chen and R. K. Wang, “Optical coherence tomography based angiography [Invited],” Biomed. Opt. Express 8(2), 1056–1082 (2017).
[Crossref]

Y. Li, U. Baran, and R. K. Wang, “Application of thinned-skull cranial window to mouse cerebral blood flow imaging using optical microangiography,” PLoS One 9(11), e113658 (2014).
[Crossref]

J. Qin, L. Shi, S. Dziennis, R. Reif, and R. K. Wang, “Fast synchronized dual-wavelength laser speckle imaging system for monitoring hemodynamic changes in a stroke mouse model,” Opt. Lett. 37(19), 4005–4007 (2012).
[Crossref]

R. K. Wang, “Optical Microangiography: A Label Free 3D Imaging Technology to Visualize and Quantify Blood Circulations within Tissue Beds in vivo,” IEEE J. Sel. Top. Quantum Electron. 16(3), 545–554 (2010).
[Crossref]

R. K. Wang and A. L. Nuttall, “Phase-sensitive optical coherence tomography imaging of the tissue motion within the organ of Corti at a subnanometer scale: a preliminary study,” J. Biomed. Opt. 15(5), 056005 (2010).
[Crossref]

R. K. Wang, S. Kirkpatrick, and M. Hinds, “Phase-sensitive optical coherence elastography for mapping tissue microstrains in real time,” Appl. Phys. Lett. 90(16), 164105 (2007).
[Crossref]

P. H. Tomlins and R. K. Wang, “Theory, developments and applications of optical coherence tomography,” J. Phys. D: Appl. Phys. 38(15), 2519–2535 (2005).
[Crossref]

Wei, W.

W. Wei, Y. Li, Z. Xie, A. Deegan, and K. R. Wang, “Spatial and Temporal Heterogeneities of Capillary Hemodynamics and Its Functional Coupling During Neural Activation,” IEEE Trans. Med. Imaging 38(5), 1295–1303 (2019).
[Crossref]

L. Yuandong, W. Wei, and R. K. Wang, “Capillary flow homogenization during functional activation revealed by optical coherence tomography angiography based capillary velocimetry,” Sci. Rep. 8(1), 4107 (2018).
[Crossref]

Weicheng, James. G.

Weihua, L.

L. Pengcheng, L. Qingming, L. Weihua, C. Shangbin, C. Haiying, and Z. Shaoqun, “Spatiotemporal characteristics of cerebral blood volume changes in rat somatosensory cortex evoked by sciatic nerve stimulation and obtained by optical imaging,” J. Biomed. Opt. 8(4), 629–635 (2003).
[Crossref]

Weller, R. O.

E. T. Zhang, C. B. Inman, and R. O. Weller, “Interrelationships of the pia mater and the perivascular (Virchow-Robin) spaces in the human cerebrum,” J. Anat. 170, 111–123 (1990).

Wells-Gray, E. M.

Witte, O.

K. Holthoff and O. Witte, “Intrinsic optical signals in rat neocortical slices measured with near-infrared dark-field microscopy reveal changes in extracellular space,” J. Neurosci. 16(8), 2740–2749 (1996).
[Crossref]

Witte, O. W.

O. W. Witte, H. Niermann, and K. Holthoff, “Cell swelling and ion redistribution assessed with intrinsic optical signals,” An. Acad. Bras. Cienc. 73(3), 337–350 (2001).
[Crossref]

Wojtkowski, M.

Wu, W.

Xie, Z.

W. Wei, Y. Li, Z. Xie, A. Deegan, and K. R. Wang, “Spatial and Temporal Heterogeneities of Capillary Hemodynamics and Its Functional Coupling During Neural Activation,” IEEE Trans. Med. Imaging 38(5), 1295–1303 (2019).
[Crossref]

Xin-Cheng, Y.

Yao, X.

T. Son, M. Alam, D. Toslak, B. Wang, Y. Lu, and X. Yao, “Functional optical coherence tomography of neurovascular coupling interactions in the retina,” J. Biophotonics 11(12), e201800089 (2018).
[Crossref]

Yeh, Y. J.

Y. J. Yeh, A. J. Black, D. Landowne, and T. Akkin, “Optical coherence tomography for cross-sectional imaging of neural activity,” Neurophotonics 2(3), 035001 (2015).
[Crossref]

Yodh, A. G.

D. Turgut, M. G. Burnett, Y. Guoqiang, Z. Chao, F. Daisuke, A. G. Yodh, J. A. Detre, and J. H. Greenberg, “Spatiotemporal quantification of cerebral blood flow during functional activation in rat somatosensory cortex using laser-speckle flowmetry,” J. Cereb. Blood Flow Metab. 24(5), 518–525 (2004).
[Crossref]

Yu, C.

C. Yu, A. D. Aguirre, R. Lana, D. Anna, D. A. Boas, and J. G. Fujimoto, “Optical coherence tomography (OCT) reveals depth-resolved dynamics during functional brain activation,” J. Neurosci. Methods 178(1), 162–173 (2009).
[Crossref]

Yu, H.

Y. Ma, M. A. Shaik, S. H. Kim, M. G. Kozberg, D. N. Thibodeaux, H. T. Zhao, H. Yu, and E. M. C. Hillman, “Wide-field optical mapping of neural activity and brain haemodynamics: considerations and novel approaches,” Philos. Trans. R. Soc., B 371(1705), 20150360 (2016).
[Crossref]

Yuan, Y.

Y. Yuan, Y. Zhao, H. Jia, M. Liu, S. Hu, Y. Li, and X. Li, “Cortical Hemodynamic Responses Under Focused Ultrasound Stimulation Using Real-Time Laser Speckle Contrast Imaging,” Front. Neurosci. 12, 269 (2018).
[Crossref]

Yuan, Z.

Yuandong, L.

L. Yuandong, W. Wei, and R. K. Wang, “Capillary flow homogenization during functional activation revealed by optical coherence tomography angiography based capillary velocimetry,” Sci. Rep. 8(1), 4107 (2018).
[Crossref]

Zhang, E. T.

E. T. Zhang, C. B. Inman, and R. O. Weller, “Interrelationships of the pia mater and the perivascular (Virchow-Robin) spaces in the human cerebrum,” J. Anat. 170, 111–123 (1990).

Zhao, H. T.

Y. Ma, M. A. Shaik, S. H. Kim, M. G. Kozberg, D. N. Thibodeaux, H. T. Zhao, H. Yu, and E. M. C. Hillman, “Wide-field optical mapping of neural activity and brain haemodynamics: considerations and novel approaches,” Philos. Trans. R. Soc., B 371(1705), 20150360 (2016).
[Crossref]

Zhao, Y.

Y. Yuan, Y. Zhao, H. Jia, M. Liu, S. Hu, Y. Li, and X. Li, “Cortical Hemodynamic Responses Under Focused Ultrasound Stimulation Using Real-Time Laser Speckle Contrast Imaging,” Front. Neurosci. 12, 269 (2018).
[Crossref]

Adv. Mater. Technol. (1)

S. Rezaei-Mazinani, A. Ivanov, C. M. Proctor, P. Gkoupidenis, C. Bernard, G. G. Malliaras, and E. Ismailova, “Monitoring Intrinsic Optical Signals in Brain Tissue with Organic Photodetectors,” Adv. Mater. Technol. 3(5), 1700333 (2018).
[Crossref]

An. Acad. Bras. Cienc. (1)

O. W. Witte, H. Niermann, and K. Holthoff, “Cell swelling and ion redistribution assessed with intrinsic optical signals,” An. Acad. Bras. Cienc. 73(3), 337–350 (2001).
[Crossref]

Appl. Opt. (2)

Appl. Phys. Lett. (1)

R. K. Wang, S. Kirkpatrick, and M. Hinds, “Phase-sensitive optical coherence elastography for mapping tissue microstrains in real time,” Appl. Phys. Lett. 90(16), 164105 (2007).
[Crossref]

Biomed. Opt. Express (6)

Biophys. J. (1)

T. Akkin, C. Joo, and J. F. D. Boer, “Depth-Resolved Measurement of Transient Structural Changes during Action Potential Propagation,” Biophys. J. 93(4), 1347–1353 (2007).
[Crossref]

Front. Neurosci. (1)

Y. Yuan, Y. Zhao, H. Jia, M. Liu, S. Hu, Y. Li, and X. Li, “Cortical Hemodynamic Responses Under Focused Ultrasound Stimulation Using Real-Time Laser Speckle Contrast Imaging,” Front. Neurosci. 12, 269 (2018).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

R. K. Wang, “Optical Microangiography: A Label Free 3D Imaging Technology to Visualize and Quantify Blood Circulations within Tissue Beds in vivo,” IEEE J. Sel. Top. Quantum Electron. 16(3), 545–554 (2010).
[Crossref]

IEEE Trans. Med. Imaging (1)

W. Wei, Y. Li, Z. Xie, A. Deegan, and K. R. Wang, “Spatial and Temporal Heterogeneities of Capillary Hemodynamics and Its Functional Coupling During Neural Activation,” IEEE Trans. Med. Imaging 38(5), 1295–1303 (2019).
[Crossref]

Iowa Orthop. J. (1)

M. F. Swiontkowski, “Laser Doppler Flowmetry—Development and Clinical Application,” Iowa Orthop. J. 11, 119–126 (1991).

J. Anat. (1)

E. T. Zhang, C. B. Inman, and R. O. Weller, “Interrelationships of the pia mater and the perivascular (Virchow-Robin) spaces in the human cerebrum,” J. Anat. 170, 111–123 (1990).

J. Biomed. Opt. (2)

R. K. Wang and A. L. Nuttall, “Phase-sensitive optical coherence tomography imaging of the tissue motion within the organ of Corti at a subnanometer scale: a preliminary study,” J. Biomed. Opt. 15(5), 056005 (2010).
[Crossref]

L. Pengcheng, L. Qingming, L. Weihua, C. Shangbin, C. Haiying, and Z. Shaoqun, “Spatiotemporal characteristics of cerebral blood volume changes in rat somatosensory cortex evoked by sciatic nerve stimulation and obtained by optical imaging,” J. Biomed. Opt. 8(4), 629–635 (2003).
[Crossref]

J. Biophotonics (1)

T. Son, M. Alam, D. Toslak, B. Wang, Y. Lu, and X. Yao, “Functional optical coherence tomography of neurovascular coupling interactions in the retina,” J. Biophotonics 11(12), e201800089 (2018).
[Crossref]

J. Cereb. Blood Flow Metab. (3)

P. Shin, W. Choi, J. Joo, and W.-Y. Oh, “Quantitative hemodynamic analysis of cerebral blood flow and neurovascular coupling using optical coherence tomography angiography,” J. Cereb. Blood Flow Metab. 39(10), 1983–1994 (2019).
[Crossref]

D. Turgut, M. G. Burnett, Y. Guoqiang, Z. Chao, F. Daisuke, A. G. Yodh, J. A. Detre, and J. H. Greenberg, “Spatiotemporal quantification of cerebral blood flow during functional activation in rat somatosensory cortex using laser-speckle flowmetry,” J. Cereb. Blood Flow Metab. 24(5), 518–525 (2004).
[Crossref]

U. Dirnagl, B. Kaplan, M. Jacewicz, and W. Pulsinelli, “Continuous measurement of cerebral cortical blood flow by laser-Doppler flowmetry in a rat stroke model,” J. Cereb. Blood Flow Metab. 9(5), 589–596 (1989).
[Crossref]

J. Membr. Biol. (1)

T. Akkin, D. Landowne, and A. Sivaprakasam, “Optical Coherence Tomography Phase Measurement of Transient Changes in Squid Giant Axons During Activity,” J. Membr. Biol. 231(1), 35–46 (2009).
[Crossref]

J. Neurosci. (1)

K. Holthoff and O. Witte, “Intrinsic optical signals in rat neocortical slices measured with near-infrared dark-field microscopy reveal changes in extracellular space,” J. Neurosci. 16(8), 2740–2749 (1996).
[Crossref]

J. Neurosci. Methods (2)

R. U. Maheswari, H. Takaoka, H. Kadono, R. Homma, and M. Tanifuji, “Novel functional imaging technique from brain surface with optical coherence tomography enabling visualization of depth resolved functional structure in vivo,” J. Neurosci. Methods 124(1), 83–92 (2003).
[Crossref]

C. Yu, A. D. Aguirre, R. Lana, D. Anna, D. A. Boas, and J. G. Fujimoto, “Optical coherence tomography (OCT) reveals depth-resolved dynamics during functional brain activation,” J. Neurosci. Methods 178(1), 162–173 (2009).
[Crossref]

J. Phys. D: Appl. Phys. (1)

P. H. Tomlins and R. K. Wang, “Theory, developments and applications of optical coherence tomography,” J. Phys. D: Appl. Phys. 38(15), 2519–2535 (2005).
[Crossref]

Nat. Neurosci. (1)

J. Lecoq, J. Savall, D. Vučinić, B. F. Grewe, H. Kim, J. Z. Li, L. J. Kitch, and M. J. Schnitzer, “Visualizing mammalian brain area interactions by dual-axis two-photon calcium imaging,” Nat. Neurosci. 17(12), 1825–1829 (2014).
[Crossref]

NeuroImage (4)

F. Marco and Q. Valentina, “A brief reviw on the history of human functional near-infrared spectroscopy (fNIRS) development and fields of application,” NeuroImage 63(2), 921–935 (2012).
[Crossref]

A. K. Dunn, A. Devor, A. M. Dale, and D. A. Boas, “Spatial extent of oxygen metabolism and hemodynamic changes during functional activation of the rat somatosensory cortex,” NeuroImage 27(2), 279–290 (2005).
[Crossref]

V. J. Srinivasan and H. Radhakrishnan, “Optical Coherence Tomography angiography reveals laminar microvascular hemodynamics in the rat somatosensory cortex during activation,” NeuroImage 102(2), 393–406 (2014).
[Crossref]

Y.-R. Gao, S. E. Greene, and P. J. Drew, “Mechanical restriction of intracortical vessel dilation by brain tissue sculpts the hemodynamic response,” NeuroImage 115, 162–176 (2015).
[Crossref]

Neuron (1)

M. Li, F. Liu, H. Jiang, T. S. Lee, and S. Tang, “Long-Term Two-Photon Imaging in Awake Macaque Monkey,” Neuron 93(5), 1049–1057.e3 (2017).
[Crossref]

Neurophotonics (1)

Y. J. Yeh, A. J. Black, D. Landowne, and T. Akkin, “Optical coherence tomography for cross-sectional imaging of neural activity,” Neurophotonics 2(3), 035001 (2015).
[Crossref]

Opt. Commun. (1)

R. U. Maheswari, H. Takaoka, R. Homma, H. Kadono, and M. Tanifuji, “Implementation of optical coherence tomography (OCT) in visualization of functional structures of cat visual cortex,” Opt. Commun. 202(1-3), 47–54 (2002).
[Crossref]

Opt. Express (1)

Opt. Lett. (7)

A. D. Aguirre, Y. Chen, J. G. Fujimoto, L. Ruvinskaya, A. Devor, and D. A. Boas, “Depth-resolved imaging of functional activation in the rat cerebral cortex using optical coherence tomography,” Opt. Lett. 31(23), 3459–3461 (2006).
[Crossref]

S. J. Kirkpatrick, D. D. Duncan, and E. M. Wells-Gray, “Detrimental effects of speckle-pixel size matching in laser speckle contrast imaging,” Opt. Lett. 33(24), 2886–2888 (2008).
[Crossref]

J. Qin, L. Shi, S. Dziennis, R. Reif, and R. K. Wang, “Fast synchronized dual-wavelength laser speckle imaging system for monitoring hemodynamic changes in a stroke mouse model,” Opt. Lett. 37(19), 4005–4007 (2012).
[Crossref]

V. J. Srinivasan, M. Wojtkowski, J. G. Fujimoto, and J. S. Duker, “In vivo measurement of retinal physiology with high-speed ultrahigh-resolution optical coherence tomography,” Opt. Lett. 31(15), 2308–2310 (2006).
[Crossref]

L. Mariya, D. L. Marks, P. Kurt, G. Rhanor, and S. A. Boppart, “Functional optical coherence tomography for detecting neural activity through scattering changes,” Opt. Lett. 28(14), 1218–1220 (2003).
[Crossref]

Z. Luo, Z. Yuan, Y. T. Pan, and C. W. Du, “Simultaneous imaging of cortical hemodynamics and blood oxygenation change during cerebral ischemia using dual-wavelength laser speckle contrast imaging,” Opt. Lett. 34(9), 1480–1482 (2009).
[Crossref]

J. Vivek, S. Srinivasan, G. Sava, R. Iwona, W. Svetlana, James. G. Weicheng, D. A. Fujimoto, and Boas, “Depth-resolved microscopy of cortical hemodynamics with optical coherence tomography,” Opt. Lett. 34(20), 3086–3088 (2009).
[Crossref]

Organ. Res. Methods (1)

V. Quaresima and M. Ferrari, “Functional Near-Infrared Spectroscopy (fNIRS) for Assessing Cerebral Cortex Function During Human Behavior in Natural/Social Situations: A Concise Review,” Organ. Res. Methods 22(1), 46–68 (2019).
[Crossref]

Philos. Trans. R. Soc., B (1)

Y. Ma, M. A. Shaik, S. H. Kim, M. G. Kozberg, D. N. Thibodeaux, H. T. Zhao, H. Yu, and E. M. C. Hillman, “Wide-field optical mapping of neural activity and brain haemodynamics: considerations and novel approaches,” Philos. Trans. R. Soc., B 371(1705), 20150360 (2016).
[Crossref]

Phys. Med. Biol. (1)

R. Wang and Z. Ma, “A practical approach to eliminate autocorrelation artefacts for volume-rate spectral domain optical coherence tomography,” Phys. Med. Biol. 51(12), 3231–3239 (2006).
[Crossref]

PLoS One (1)

Y. Li, U. Baran, and R. K. Wang, “Application of thinned-skull cranial window to mouse cerebral blood flow imaging using optical microangiography,” PLoS One 9(11), e113658 (2014).
[Crossref]

Proc. Natl. Acad. Sci. U. S. A. (2)

K. Bizheva, R. Pflug, B. Hermann, B. Povazay, H. Sattmann, P. Qiu, E. Anger, H. Reitsamer, S. Popov, J. R. Taylor, A. Unterhuber, P. Ahnelt, and W. Drexler, “Optophysiology: depth-resolved probing of retinal physiology with functional ultrahigh-resolution optical coherence tomography,” Proc. Natl. Acad. Sci. U. S. A. 103(13), 5066–5071 (2006).
[Crossref]

C. Stosiek, O. Garaschuk, K. Holthoff, and A. Konnerth, “Two-photon calcium imaging of neuronal networks,” Proc. Natl. Acad. Sci. U. S. A. 100(12), 7319–7324 (2003).
[Crossref]

Sci. Rep. (3)

H. Spahr, C. Pfäffle, S. Burhan, L. Kutzner, F. Hilge, G. Hüttmann, and D. Hillmann, “Phase-sensitive interferometry of decorrelated speckle patterns,” Sci. Rep. 9(1), 11748 (2019).
[Crossref]

L. Yuandong, W. Wei, and R. K. Wang, “Capillary flow homogenization during functional activation revealed by optical coherence tomography angiography based capillary velocimetry,” Sci. Rep. 8(1), 4107 (2018).
[Crossref]

V. Rangroo Thrane, A. S. Thrane, B. A. Plog, M. Thiyagarajan, J. J. Iliff, R. Deane, E. A. Nagelhus, and M. Nedergaard, “Paravascular microcirculation facilitates rapid lipid transport and astrocyte signaling in the brain,” Sci. Rep. 3(1), 2582 (2013).
[Crossref]

Sci. Signaling (1)

R. D. Fields, “Signaling by Neuronal Swelling,” Sci. Signaling 4(155), tr1 (2011).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1. Left: Schematic diagram of the multi-functional optical imaging system. SLD: superluminescent diode, OC: optical circulator, PC: polarization controller, FL: focusing lens, AL: adjusting lens, C: camera, ZL: zoom lens. Right: data processing flow chart.
Fig. 2.
Fig. 2. Wide-field reflectance mapping of the mouse barrel cortex (BC) during whisker stimulation. A) Schematic of mouse functional cortex map and photography of the cranial window delineating the relative location of BC. B) Sequence of reflectance images indicating the relative changes in HbT contents at BC in response to 10 s of whisker stimulation; C) Time course of the relative reflectance changes averaged over a region centered on the activated area R1 (indicated by red box) and non-activated region R2 (indicated by black box) respectively. Scale bar = 1 mm.
Fig. 3.
Fig. 3. Cross-sectional stimulus-induced relative phase changes (ΔP/P) mapping and curves obtained from OCT imaging. A) Relative phase change images at 12s (during whisker stimulation) without using phase unwrapping and normalization; B) Relative phase change images at 14s with phase unwrapping but without normalization; C) Relative phase change images at 14s with phase unwrapping and normalization; D), E) and F) are the corresponding time course (from 3.33 s to 15.66 s) raw phase curves for the pixels located at R1 indicated by the white star (red curve) and R2 indicated by the yellow star (black curve) in A), respectively. Scale bar = 300 µm.
Fig. 4.
Fig. 4. Cross-sectional OCT imaging of stimulus induced changes in tissue volume in the mouse brain. A) Sequence of images showing the relative changes in tissue volume in response to 10-second whisker stimulation duration from 5s to 15s after the stimulation onset (images within the stimulation period are tagged by the white dots). Cross-sections of B) OCT structure image; C) OMAG image; D) ΔP/P image and E) IOSI image at 14 s. F) and G) Time course of ΔP/P signals averaged over a region centered on the activated area R1 (indicated in the white box) and non-activated region R2 (indicated in the black box), respectively (mean ± SEM: n = 5). Scale bar = 300 µm.

Metrics