Abstract

Protein-based drugs have been developed to treat a variety of conditions and assays use immobilized capture proteins for disease detection. Freeze-drying is currently the standard for the preservation of proteins, but this method is expensive and requires lengthy processing times. Anhydrous preservation in a trehalose amorphous solid matrix offers a promising alternative to freeze-drying. Light assisted drying (LAD) is a processing method to create an amorphous trehalose matrix. Proteins suspended in a trehalose solution are dehydrated using near-infrared laser light. The laser radiation accelerates drying and as water is removed the trehalose forms a protective matrix. In this work, LAD samples are characterized to determine the crystallization kinetics of the trehalose after LAD processing and the distribution of amorphous trehalose in the samples. These characteristics influence the long-term stability of the samples. Polarized light imaging revealed that LAD processed samples are stable against crystallization during low-humidity storage at room temperature. Scanning white light interferometry and Raman spectroscopy indicated that trehalose was present across samples in an amorphous form. In addition, differential scanning microcalorimetry was used to measure the thermodynamic characteristics of the protein lysozyme after LAD processing. These results demonstrate that LAD does not change the properties of this protein.

© 2020 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Optical coherence tomography-based freeze-drying microscopy

Mircea Mujat, Kristyn Greco, Kristin L. Galbally-Kinney, Daniel X. Hammer, R. Daniel Ferguson, Nicusor Iftimia, Phillip Mulhall, Puneet Sharma, Michael J. Pikal, and William J. Kessler
Biomed. Opt. Express 3(1) 55-63 (2012)

Plastinated tissue samples as three-dimensional models for optical instrument characterization

Daniel L. Marks, Eric J. Chaney, and Stephen A. Boppart
Opt. Express 16(20) 16272-16283 (2008)

Terahertz and far infrared Spectroscopy of alanine-rich peptides having variable ellipticity

Tao Ding, Ruoyu Li, J. Axel Zeitler, Thomas L. Huber, Lynn F. Gladden, Anton P. J. Middelberg, and Robert J. Falconer
Opt. Express 18(26) 27431-27444 (2010)

References

  • View by:
  • |
  • |
  • |

  1. A. M. Scott, J. D. Wolchok, and L. J. Old, “Antibody therapy of cancer,” Nat. Rev. Cancer 12(4), 278–287 (2012).
    [Crossref]
  2. B. Leader, Q. J. Baca, and D. E. Golan, “Protein therapeutics: a summary and pharmacological classification,” Nat. Rev. Drug Discovery 7(1), 21–39 (2008).
    [Crossref]
  3. V. Romanov, S. N. Davidoff, A. R. Miles, D. W. Grainger, B. K. Gale, and B. D. Brooks, “A critical comparison of protein microarray fabrication technologies,” Analyst 139(6), 1303–1326 (2014).
    [Crossref]
  4. S. F. Kingsmore, “Multiplexed protein measurement: technologies and applications of protein and antibody arrays,” Nat. Rev. Drug Discovery 5(4), 310–321 (2006).
    [Crossref]
  5. E. K. Sackmann, A. L. Fulton, and D. J. Beebe, “The present and future role of microfluidics in biomedical research,” Nature 507(7491), 181–189 (2014).
    [Crossref]
  6. J. Bjerketorp, S. Hakansson, S. Belkin, and J. K. Jansson, “Advances in preservation methods: keeping biosensor microorganisms alive and active,” Curr. Opin. Biotechnol. 17(1), 43–49 (2006).
    [Crossref]
  7. G. D. Adams, “Lyophilization of vaccines: current trends,” Methods Mol. Med. 87, 223–244 (2003).
    [Crossref]
  8. L. Chang, D. Shepherd, J. Sun, D. Ouellette, K. L. Grant, X. Tang, and M. J. Pikal, “Mechanism of protein stabilization by sugars during freeze-drying and storage: Native structure preservation, specific interaction, and/or immobilization in a glassy matrix?” J. Pharm. Sci. 94(7), 1427–1444 (2005).
    [Crossref]
  9. M. T. Cicerone, M. J. Pikal, and K. K. Qian, “Stabilization of proteins in solid form,” Adv. Drug Delivery Rev. 93, 14–24 (2015).
    [Crossref]
  10. J. H. Crowe and L. M. Crowe, “Preservation of mammalian cells-learning nature's tricks,” Nat. Biotechnol. 18(2), 145–146 (2000).
    [Crossref]
  11. W. F. Wolkers, F. Tablin, and J. H. Crowe, “From anhydrobiosis to freeze-drying of eukaryotic cells,” Comp. Biochem. Physiol., Part A: Mol. Integr. Physiol. 131(3), 535–543 (2002).
    [Crossref]
  12. J. H. Crowe, L. M. Crowe, W. F. Wolkers, A. E. Oliver, X. Ma, J. H. Auh, M. Tang, S. Zhu, J. Norris, and F. Tablin, “Stabilization of dry Mammalian cells: lessons from nature,” Integr. Comp. Biol. 45(5), 810–820 (2005).
    [Crossref]
  13. M. A. Young, A. T. Antczak, A. Wawak, G. D. Elliott, and S. R. Trammell, “Light-assisted drying for protein stabilization,” J. Biomed. Opt. 23(7), 1–8 (2018).
    [Crossref]
  14. D. Champion, M. Le Meste, and D. Simatos, “Towards an improved understanding of glass transition and relaxations in foods: molecular mobility in the glass transition range,” Trends Food Sci. Technol. 11(2), 41–55 (2000).
    [Crossref]
  15. N. Chakraborty, M. A. Menze, H. Elmoazzen, H. L. Vu, M. L. Yarmush, S. C. Hand, and M. Toner, “Trehalose transporter from African chironomid larvae improves desiccation tolerance of Chinese hamster ovary cells,” Cryobiology 64(2), 91–96 (2012).
    [Crossref]
  16. H. Y. Elmoazzen, G. Y. Lee, M. W. Li, L. K. McGinnis, K. K. Lloyd, M. Toner, and J. D. Biggers, “Further optimization of mouse spermatozoa evaporative drying techniques,” Cryobiology 59(1), 113–115 (2009).
    [Crossref]
  17. S. L. Cellemme, M. Van Vorst, E. Paramore, and G. D. Elliott, “Advancing microwave technology for dehydration processing of biologics,” Biopreserv. Biobanking 11(5), 278–284 (2013).
    [Crossref]
  18. M. Young, M. McKinnon, G. Elliott, S. Trammell, D. Levitz, A. Ozcan, and D. Erickson, “Light assisted drying (LAD) for protein stabilization: optical characterization of samples,” Proc. SPIE 10485, 104850W (2018).
    [Crossref]
  19. A. Saleki-Gerhardt and G. Zografi, “Non-isothermal and isothermal crystallization of sucrose from the amorphous state,” Pharm. Res. 11(8), 1166–1173 (1994).
    [Crossref]
  20. N. Chakraborty, D. Biswas, W. Parker, P. Moyer, and G. D. Elliott, “A role for microwave processing in the dry preservation of mammalian cells,” Biotechnol. Bioeng. 100(4), 782–796 (2008).
    [Crossref]
  21. R. W. Hartel and A. V. Shastry, “Sugar crystallization in food products,” Crit. Rev. Food Sci. 30(1), 49–112 (1991).
    [Crossref]
  22. A. A. Evans, E. Cheung, K. D. Nyberg, and A. C. Rowat, “Wrinkling of milk skin is mediated by evaporation,” Soft Matter 13(5), 1056–1062 (2017).
    [Crossref]
  23. B. Sobac and D. Brutin, “Desiccation of a sessile drop of blood: Cracks, folds formation and delamination,” Colloids Surf. A Physicochem Eng. Asp. 448, 34–44 (2014).
    [Crossref]
  24. B. D. Caddock and D. Hull, “Influence of humidity on the cracking patterns formed during the drying of sol-gel drops,” J. Mater. Sci. 37(4), 825–834 (2002).
    [Crossref]
  25. V. Ragoonanan and A. Aksan, “Heterogeneity in desiccated solutions: implications for biostabilization,” Biophys. J. 94(6), 2212–2227 (2008).
    [Crossref]
  26. D. Tuschel, “Molecular Spectroscopy Workbench Why Are the Raman Spectra of Crystalline and Amorphous Solids Different?” Spectroscopy 32(3), 26–33 (2017).

2018 (2)

M. A. Young, A. T. Antczak, A. Wawak, G. D. Elliott, and S. R. Trammell, “Light-assisted drying for protein stabilization,” J. Biomed. Opt. 23(7), 1–8 (2018).
[Crossref]

M. Young, M. McKinnon, G. Elliott, S. Trammell, D. Levitz, A. Ozcan, and D. Erickson, “Light assisted drying (LAD) for protein stabilization: optical characterization of samples,” Proc. SPIE 10485, 104850W (2018).
[Crossref]

2017 (2)

A. A. Evans, E. Cheung, K. D. Nyberg, and A. C. Rowat, “Wrinkling of milk skin is mediated by evaporation,” Soft Matter 13(5), 1056–1062 (2017).
[Crossref]

D. Tuschel, “Molecular Spectroscopy Workbench Why Are the Raman Spectra of Crystalline and Amorphous Solids Different?” Spectroscopy 32(3), 26–33 (2017).

2015 (1)

M. T. Cicerone, M. J. Pikal, and K. K. Qian, “Stabilization of proteins in solid form,” Adv. Drug Delivery Rev. 93, 14–24 (2015).
[Crossref]

2014 (3)

E. K. Sackmann, A. L. Fulton, and D. J. Beebe, “The present and future role of microfluidics in biomedical research,” Nature 507(7491), 181–189 (2014).
[Crossref]

V. Romanov, S. N. Davidoff, A. R. Miles, D. W. Grainger, B. K. Gale, and B. D. Brooks, “A critical comparison of protein microarray fabrication technologies,” Analyst 139(6), 1303–1326 (2014).
[Crossref]

B. Sobac and D. Brutin, “Desiccation of a sessile drop of blood: Cracks, folds formation and delamination,” Colloids Surf. A Physicochem Eng. Asp. 448, 34–44 (2014).
[Crossref]

2013 (1)

S. L. Cellemme, M. Van Vorst, E. Paramore, and G. D. Elliott, “Advancing microwave technology for dehydration processing of biologics,” Biopreserv. Biobanking 11(5), 278–284 (2013).
[Crossref]

2012 (2)

N. Chakraborty, M. A. Menze, H. Elmoazzen, H. L. Vu, M. L. Yarmush, S. C. Hand, and M. Toner, “Trehalose transporter from African chironomid larvae improves desiccation tolerance of Chinese hamster ovary cells,” Cryobiology 64(2), 91–96 (2012).
[Crossref]

A. M. Scott, J. D. Wolchok, and L. J. Old, “Antibody therapy of cancer,” Nat. Rev. Cancer 12(4), 278–287 (2012).
[Crossref]

2009 (1)

H. Y. Elmoazzen, G. Y. Lee, M. W. Li, L. K. McGinnis, K. K. Lloyd, M. Toner, and J. D. Biggers, “Further optimization of mouse spermatozoa evaporative drying techniques,” Cryobiology 59(1), 113–115 (2009).
[Crossref]

2008 (3)

B. Leader, Q. J. Baca, and D. E. Golan, “Protein therapeutics: a summary and pharmacological classification,” Nat. Rev. Drug Discovery 7(1), 21–39 (2008).
[Crossref]

V. Ragoonanan and A. Aksan, “Heterogeneity in desiccated solutions: implications for biostabilization,” Biophys. J. 94(6), 2212–2227 (2008).
[Crossref]

N. Chakraborty, D. Biswas, W. Parker, P. Moyer, and G. D. Elliott, “A role for microwave processing in the dry preservation of mammalian cells,” Biotechnol. Bioeng. 100(4), 782–796 (2008).
[Crossref]

2006 (2)

S. F. Kingsmore, “Multiplexed protein measurement: technologies and applications of protein and antibody arrays,” Nat. Rev. Drug Discovery 5(4), 310–321 (2006).
[Crossref]

J. Bjerketorp, S. Hakansson, S. Belkin, and J. K. Jansson, “Advances in preservation methods: keeping biosensor microorganisms alive and active,” Curr. Opin. Biotechnol. 17(1), 43–49 (2006).
[Crossref]

2005 (2)

J. H. Crowe, L. M. Crowe, W. F. Wolkers, A. E. Oliver, X. Ma, J. H. Auh, M. Tang, S. Zhu, J. Norris, and F. Tablin, “Stabilization of dry Mammalian cells: lessons from nature,” Integr. Comp. Biol. 45(5), 810–820 (2005).
[Crossref]

L. Chang, D. Shepherd, J. Sun, D. Ouellette, K. L. Grant, X. Tang, and M. J. Pikal, “Mechanism of protein stabilization by sugars during freeze-drying and storage: Native structure preservation, specific interaction, and/or immobilization in a glassy matrix?” J. Pharm. Sci. 94(7), 1427–1444 (2005).
[Crossref]

2003 (1)

G. D. Adams, “Lyophilization of vaccines: current trends,” Methods Mol. Med. 87, 223–244 (2003).
[Crossref]

2002 (2)

W. F. Wolkers, F. Tablin, and J. H. Crowe, “From anhydrobiosis to freeze-drying of eukaryotic cells,” Comp. Biochem. Physiol., Part A: Mol. Integr. Physiol. 131(3), 535–543 (2002).
[Crossref]

B. D. Caddock and D. Hull, “Influence of humidity on the cracking patterns formed during the drying of sol-gel drops,” J. Mater. Sci. 37(4), 825–834 (2002).
[Crossref]

2000 (2)

D. Champion, M. Le Meste, and D. Simatos, “Towards an improved understanding of glass transition and relaxations in foods: molecular mobility in the glass transition range,” Trends Food Sci. Technol. 11(2), 41–55 (2000).
[Crossref]

J. H. Crowe and L. M. Crowe, “Preservation of mammalian cells-learning nature's tricks,” Nat. Biotechnol. 18(2), 145–146 (2000).
[Crossref]

1994 (1)

A. Saleki-Gerhardt and G. Zografi, “Non-isothermal and isothermal crystallization of sucrose from the amorphous state,” Pharm. Res. 11(8), 1166–1173 (1994).
[Crossref]

1991 (1)

R. W. Hartel and A. V. Shastry, “Sugar crystallization in food products,” Crit. Rev. Food Sci. 30(1), 49–112 (1991).
[Crossref]

Adams, G. D.

G. D. Adams, “Lyophilization of vaccines: current trends,” Methods Mol. Med. 87, 223–244 (2003).
[Crossref]

Aksan, A.

V. Ragoonanan and A. Aksan, “Heterogeneity in desiccated solutions: implications for biostabilization,” Biophys. J. 94(6), 2212–2227 (2008).
[Crossref]

Antczak, A. T.

M. A. Young, A. T. Antczak, A. Wawak, G. D. Elliott, and S. R. Trammell, “Light-assisted drying for protein stabilization,” J. Biomed. Opt. 23(7), 1–8 (2018).
[Crossref]

Auh, J. H.

J. H. Crowe, L. M. Crowe, W. F. Wolkers, A. E. Oliver, X. Ma, J. H. Auh, M. Tang, S. Zhu, J. Norris, and F. Tablin, “Stabilization of dry Mammalian cells: lessons from nature,” Integr. Comp. Biol. 45(5), 810–820 (2005).
[Crossref]

Baca, Q. J.

B. Leader, Q. J. Baca, and D. E. Golan, “Protein therapeutics: a summary and pharmacological classification,” Nat. Rev. Drug Discovery 7(1), 21–39 (2008).
[Crossref]

Beebe, D. J.

E. K. Sackmann, A. L. Fulton, and D. J. Beebe, “The present and future role of microfluidics in biomedical research,” Nature 507(7491), 181–189 (2014).
[Crossref]

Belkin, S.

J. Bjerketorp, S. Hakansson, S. Belkin, and J. K. Jansson, “Advances in preservation methods: keeping biosensor microorganisms alive and active,” Curr. Opin. Biotechnol. 17(1), 43–49 (2006).
[Crossref]

Biggers, J. D.

H. Y. Elmoazzen, G. Y. Lee, M. W. Li, L. K. McGinnis, K. K. Lloyd, M. Toner, and J. D. Biggers, “Further optimization of mouse spermatozoa evaporative drying techniques,” Cryobiology 59(1), 113–115 (2009).
[Crossref]

Biswas, D.

N. Chakraborty, D. Biswas, W. Parker, P. Moyer, and G. D. Elliott, “A role for microwave processing in the dry preservation of mammalian cells,” Biotechnol. Bioeng. 100(4), 782–796 (2008).
[Crossref]

Bjerketorp, J.

J. Bjerketorp, S. Hakansson, S. Belkin, and J. K. Jansson, “Advances in preservation methods: keeping biosensor microorganisms alive and active,” Curr. Opin. Biotechnol. 17(1), 43–49 (2006).
[Crossref]

Brooks, B. D.

V. Romanov, S. N. Davidoff, A. R. Miles, D. W. Grainger, B. K. Gale, and B. D. Brooks, “A critical comparison of protein microarray fabrication technologies,” Analyst 139(6), 1303–1326 (2014).
[Crossref]

Brutin, D.

B. Sobac and D. Brutin, “Desiccation of a sessile drop of blood: Cracks, folds formation and delamination,” Colloids Surf. A Physicochem Eng. Asp. 448, 34–44 (2014).
[Crossref]

Caddock, B. D.

B. D. Caddock and D. Hull, “Influence of humidity on the cracking patterns formed during the drying of sol-gel drops,” J. Mater. Sci. 37(4), 825–834 (2002).
[Crossref]

Cellemme, S. L.

S. L. Cellemme, M. Van Vorst, E. Paramore, and G. D. Elliott, “Advancing microwave technology for dehydration processing of biologics,” Biopreserv. Biobanking 11(5), 278–284 (2013).
[Crossref]

Chakraborty, N.

N. Chakraborty, M. A. Menze, H. Elmoazzen, H. L. Vu, M. L. Yarmush, S. C. Hand, and M. Toner, “Trehalose transporter from African chironomid larvae improves desiccation tolerance of Chinese hamster ovary cells,” Cryobiology 64(2), 91–96 (2012).
[Crossref]

N. Chakraborty, D. Biswas, W. Parker, P. Moyer, and G. D. Elliott, “A role for microwave processing in the dry preservation of mammalian cells,” Biotechnol. Bioeng. 100(4), 782–796 (2008).
[Crossref]

Champion, D.

D. Champion, M. Le Meste, and D. Simatos, “Towards an improved understanding of glass transition and relaxations in foods: molecular mobility in the glass transition range,” Trends Food Sci. Technol. 11(2), 41–55 (2000).
[Crossref]

Chang, L.

L. Chang, D. Shepherd, J. Sun, D. Ouellette, K. L. Grant, X. Tang, and M. J. Pikal, “Mechanism of protein stabilization by sugars during freeze-drying and storage: Native structure preservation, specific interaction, and/or immobilization in a glassy matrix?” J. Pharm. Sci. 94(7), 1427–1444 (2005).
[Crossref]

Cheung, E.

A. A. Evans, E. Cheung, K. D. Nyberg, and A. C. Rowat, “Wrinkling of milk skin is mediated by evaporation,” Soft Matter 13(5), 1056–1062 (2017).
[Crossref]

Cicerone, M. T.

M. T. Cicerone, M. J. Pikal, and K. K. Qian, “Stabilization of proteins in solid form,” Adv. Drug Delivery Rev. 93, 14–24 (2015).
[Crossref]

Crowe, J. H.

J. H. Crowe, L. M. Crowe, W. F. Wolkers, A. E. Oliver, X. Ma, J. H. Auh, M. Tang, S. Zhu, J. Norris, and F. Tablin, “Stabilization of dry Mammalian cells: lessons from nature,” Integr. Comp. Biol. 45(5), 810–820 (2005).
[Crossref]

W. F. Wolkers, F. Tablin, and J. H. Crowe, “From anhydrobiosis to freeze-drying of eukaryotic cells,” Comp. Biochem. Physiol., Part A: Mol. Integr. Physiol. 131(3), 535–543 (2002).
[Crossref]

J. H. Crowe and L. M. Crowe, “Preservation of mammalian cells-learning nature's tricks,” Nat. Biotechnol. 18(2), 145–146 (2000).
[Crossref]

Crowe, L. M.

J. H. Crowe, L. M. Crowe, W. F. Wolkers, A. E. Oliver, X. Ma, J. H. Auh, M. Tang, S. Zhu, J. Norris, and F. Tablin, “Stabilization of dry Mammalian cells: lessons from nature,” Integr. Comp. Biol. 45(5), 810–820 (2005).
[Crossref]

J. H. Crowe and L. M. Crowe, “Preservation of mammalian cells-learning nature's tricks,” Nat. Biotechnol. 18(2), 145–146 (2000).
[Crossref]

Davidoff, S. N.

V. Romanov, S. N. Davidoff, A. R. Miles, D. W. Grainger, B. K. Gale, and B. D. Brooks, “A critical comparison of protein microarray fabrication technologies,” Analyst 139(6), 1303–1326 (2014).
[Crossref]

Elliott, G.

M. Young, M. McKinnon, G. Elliott, S. Trammell, D. Levitz, A. Ozcan, and D. Erickson, “Light assisted drying (LAD) for protein stabilization: optical characterization of samples,” Proc. SPIE 10485, 104850W (2018).
[Crossref]

Elliott, G. D.

M. A. Young, A. T. Antczak, A. Wawak, G. D. Elliott, and S. R. Trammell, “Light-assisted drying for protein stabilization,” J. Biomed. Opt. 23(7), 1–8 (2018).
[Crossref]

S. L. Cellemme, M. Van Vorst, E. Paramore, and G. D. Elliott, “Advancing microwave technology for dehydration processing of biologics,” Biopreserv. Biobanking 11(5), 278–284 (2013).
[Crossref]

N. Chakraborty, D. Biswas, W. Parker, P. Moyer, and G. D. Elliott, “A role for microwave processing in the dry preservation of mammalian cells,” Biotechnol. Bioeng. 100(4), 782–796 (2008).
[Crossref]

Elmoazzen, H.

N. Chakraborty, M. A. Menze, H. Elmoazzen, H. L. Vu, M. L. Yarmush, S. C. Hand, and M. Toner, “Trehalose transporter from African chironomid larvae improves desiccation tolerance of Chinese hamster ovary cells,” Cryobiology 64(2), 91–96 (2012).
[Crossref]

Elmoazzen, H. Y.

H. Y. Elmoazzen, G. Y. Lee, M. W. Li, L. K. McGinnis, K. K. Lloyd, M. Toner, and J. D. Biggers, “Further optimization of mouse spermatozoa evaporative drying techniques,” Cryobiology 59(1), 113–115 (2009).
[Crossref]

Erickson, D.

M. Young, M. McKinnon, G. Elliott, S. Trammell, D. Levitz, A. Ozcan, and D. Erickson, “Light assisted drying (LAD) for protein stabilization: optical characterization of samples,” Proc. SPIE 10485, 104850W (2018).
[Crossref]

Evans, A. A.

A. A. Evans, E. Cheung, K. D. Nyberg, and A. C. Rowat, “Wrinkling of milk skin is mediated by evaporation,” Soft Matter 13(5), 1056–1062 (2017).
[Crossref]

Fulton, A. L.

E. K. Sackmann, A. L. Fulton, and D. J. Beebe, “The present and future role of microfluidics in biomedical research,” Nature 507(7491), 181–189 (2014).
[Crossref]

Gale, B. K.

V. Romanov, S. N. Davidoff, A. R. Miles, D. W. Grainger, B. K. Gale, and B. D. Brooks, “A critical comparison of protein microarray fabrication technologies,” Analyst 139(6), 1303–1326 (2014).
[Crossref]

Golan, D. E.

B. Leader, Q. J. Baca, and D. E. Golan, “Protein therapeutics: a summary and pharmacological classification,” Nat. Rev. Drug Discovery 7(1), 21–39 (2008).
[Crossref]

Grainger, D. W.

V. Romanov, S. N. Davidoff, A. R. Miles, D. W. Grainger, B. K. Gale, and B. D. Brooks, “A critical comparison of protein microarray fabrication technologies,” Analyst 139(6), 1303–1326 (2014).
[Crossref]

Grant, K. L.

L. Chang, D. Shepherd, J. Sun, D. Ouellette, K. L. Grant, X. Tang, and M. J. Pikal, “Mechanism of protein stabilization by sugars during freeze-drying and storage: Native structure preservation, specific interaction, and/or immobilization in a glassy matrix?” J. Pharm. Sci. 94(7), 1427–1444 (2005).
[Crossref]

Hakansson, S.

J. Bjerketorp, S. Hakansson, S. Belkin, and J. K. Jansson, “Advances in preservation methods: keeping biosensor microorganisms alive and active,” Curr. Opin. Biotechnol. 17(1), 43–49 (2006).
[Crossref]

Hand, S. C.

N. Chakraborty, M. A. Menze, H. Elmoazzen, H. L. Vu, M. L. Yarmush, S. C. Hand, and M. Toner, “Trehalose transporter from African chironomid larvae improves desiccation tolerance of Chinese hamster ovary cells,” Cryobiology 64(2), 91–96 (2012).
[Crossref]

Hartel, R. W.

R. W. Hartel and A. V. Shastry, “Sugar crystallization in food products,” Crit. Rev. Food Sci. 30(1), 49–112 (1991).
[Crossref]

Hull, D.

B. D. Caddock and D. Hull, “Influence of humidity on the cracking patterns formed during the drying of sol-gel drops,” J. Mater. Sci. 37(4), 825–834 (2002).
[Crossref]

Jansson, J. K.

J. Bjerketorp, S. Hakansson, S. Belkin, and J. K. Jansson, “Advances in preservation methods: keeping biosensor microorganisms alive and active,” Curr. Opin. Biotechnol. 17(1), 43–49 (2006).
[Crossref]

Kingsmore, S. F.

S. F. Kingsmore, “Multiplexed protein measurement: technologies and applications of protein and antibody arrays,” Nat. Rev. Drug Discovery 5(4), 310–321 (2006).
[Crossref]

Le Meste, M.

D. Champion, M. Le Meste, and D. Simatos, “Towards an improved understanding of glass transition and relaxations in foods: molecular mobility in the glass transition range,” Trends Food Sci. Technol. 11(2), 41–55 (2000).
[Crossref]

Leader, B.

B. Leader, Q. J. Baca, and D. E. Golan, “Protein therapeutics: a summary and pharmacological classification,” Nat. Rev. Drug Discovery 7(1), 21–39 (2008).
[Crossref]

Lee, G. Y.

H. Y. Elmoazzen, G. Y. Lee, M. W. Li, L. K. McGinnis, K. K. Lloyd, M. Toner, and J. D. Biggers, “Further optimization of mouse spermatozoa evaporative drying techniques,” Cryobiology 59(1), 113–115 (2009).
[Crossref]

Levitz, D.

M. Young, M. McKinnon, G. Elliott, S. Trammell, D. Levitz, A. Ozcan, and D. Erickson, “Light assisted drying (LAD) for protein stabilization: optical characterization of samples,” Proc. SPIE 10485, 104850W (2018).
[Crossref]

Li, M. W.

H. Y. Elmoazzen, G. Y. Lee, M. W. Li, L. K. McGinnis, K. K. Lloyd, M. Toner, and J. D. Biggers, “Further optimization of mouse spermatozoa evaporative drying techniques,” Cryobiology 59(1), 113–115 (2009).
[Crossref]

Lloyd, K. K.

H. Y. Elmoazzen, G. Y. Lee, M. W. Li, L. K. McGinnis, K. K. Lloyd, M. Toner, and J. D. Biggers, “Further optimization of mouse spermatozoa evaporative drying techniques,” Cryobiology 59(1), 113–115 (2009).
[Crossref]

Ma, X.

J. H. Crowe, L. M. Crowe, W. F. Wolkers, A. E. Oliver, X. Ma, J. H. Auh, M. Tang, S. Zhu, J. Norris, and F. Tablin, “Stabilization of dry Mammalian cells: lessons from nature,” Integr. Comp. Biol. 45(5), 810–820 (2005).
[Crossref]

McGinnis, L. K.

H. Y. Elmoazzen, G. Y. Lee, M. W. Li, L. K. McGinnis, K. K. Lloyd, M. Toner, and J. D. Biggers, “Further optimization of mouse spermatozoa evaporative drying techniques,” Cryobiology 59(1), 113–115 (2009).
[Crossref]

McKinnon, M.

M. Young, M. McKinnon, G. Elliott, S. Trammell, D. Levitz, A. Ozcan, and D. Erickson, “Light assisted drying (LAD) for protein stabilization: optical characterization of samples,” Proc. SPIE 10485, 104850W (2018).
[Crossref]

Menze, M. A.

N. Chakraborty, M. A. Menze, H. Elmoazzen, H. L. Vu, M. L. Yarmush, S. C. Hand, and M. Toner, “Trehalose transporter from African chironomid larvae improves desiccation tolerance of Chinese hamster ovary cells,” Cryobiology 64(2), 91–96 (2012).
[Crossref]

Miles, A. R.

V. Romanov, S. N. Davidoff, A. R. Miles, D. W. Grainger, B. K. Gale, and B. D. Brooks, “A critical comparison of protein microarray fabrication technologies,” Analyst 139(6), 1303–1326 (2014).
[Crossref]

Moyer, P.

N. Chakraborty, D. Biswas, W. Parker, P. Moyer, and G. D. Elliott, “A role for microwave processing in the dry preservation of mammalian cells,” Biotechnol. Bioeng. 100(4), 782–796 (2008).
[Crossref]

Norris, J.

J. H. Crowe, L. M. Crowe, W. F. Wolkers, A. E. Oliver, X. Ma, J. H. Auh, M. Tang, S. Zhu, J. Norris, and F. Tablin, “Stabilization of dry Mammalian cells: lessons from nature,” Integr. Comp. Biol. 45(5), 810–820 (2005).
[Crossref]

Nyberg, K. D.

A. A. Evans, E. Cheung, K. D. Nyberg, and A. C. Rowat, “Wrinkling of milk skin is mediated by evaporation,” Soft Matter 13(5), 1056–1062 (2017).
[Crossref]

Old, L. J.

A. M. Scott, J. D. Wolchok, and L. J. Old, “Antibody therapy of cancer,” Nat. Rev. Cancer 12(4), 278–287 (2012).
[Crossref]

Oliver, A. E.

J. H. Crowe, L. M. Crowe, W. F. Wolkers, A. E. Oliver, X. Ma, J. H. Auh, M. Tang, S. Zhu, J. Norris, and F. Tablin, “Stabilization of dry Mammalian cells: lessons from nature,” Integr. Comp. Biol. 45(5), 810–820 (2005).
[Crossref]

Ouellette, D.

L. Chang, D. Shepherd, J. Sun, D. Ouellette, K. L. Grant, X. Tang, and M. J. Pikal, “Mechanism of protein stabilization by sugars during freeze-drying and storage: Native structure preservation, specific interaction, and/or immobilization in a glassy matrix?” J. Pharm. Sci. 94(7), 1427–1444 (2005).
[Crossref]

Ozcan, A.

M. Young, M. McKinnon, G. Elliott, S. Trammell, D. Levitz, A. Ozcan, and D. Erickson, “Light assisted drying (LAD) for protein stabilization: optical characterization of samples,” Proc. SPIE 10485, 104850W (2018).
[Crossref]

Paramore, E.

S. L. Cellemme, M. Van Vorst, E. Paramore, and G. D. Elliott, “Advancing microwave technology for dehydration processing of biologics,” Biopreserv. Biobanking 11(5), 278–284 (2013).
[Crossref]

Parker, W.

N. Chakraborty, D. Biswas, W. Parker, P. Moyer, and G. D. Elliott, “A role for microwave processing in the dry preservation of mammalian cells,” Biotechnol. Bioeng. 100(4), 782–796 (2008).
[Crossref]

Pikal, M. J.

M. T. Cicerone, M. J. Pikal, and K. K. Qian, “Stabilization of proteins in solid form,” Adv. Drug Delivery Rev. 93, 14–24 (2015).
[Crossref]

L. Chang, D. Shepherd, J. Sun, D. Ouellette, K. L. Grant, X. Tang, and M. J. Pikal, “Mechanism of protein stabilization by sugars during freeze-drying and storage: Native structure preservation, specific interaction, and/or immobilization in a glassy matrix?” J. Pharm. Sci. 94(7), 1427–1444 (2005).
[Crossref]

Qian, K. K.

M. T. Cicerone, M. J. Pikal, and K. K. Qian, “Stabilization of proteins in solid form,” Adv. Drug Delivery Rev. 93, 14–24 (2015).
[Crossref]

Ragoonanan, V.

V. Ragoonanan and A. Aksan, “Heterogeneity in desiccated solutions: implications for biostabilization,” Biophys. J. 94(6), 2212–2227 (2008).
[Crossref]

Romanov, V.

V. Romanov, S. N. Davidoff, A. R. Miles, D. W. Grainger, B. K. Gale, and B. D. Brooks, “A critical comparison of protein microarray fabrication technologies,” Analyst 139(6), 1303–1326 (2014).
[Crossref]

Rowat, A. C.

A. A. Evans, E. Cheung, K. D. Nyberg, and A. C. Rowat, “Wrinkling of milk skin is mediated by evaporation,” Soft Matter 13(5), 1056–1062 (2017).
[Crossref]

Sackmann, E. K.

E. K. Sackmann, A. L. Fulton, and D. J. Beebe, “The present and future role of microfluidics in biomedical research,” Nature 507(7491), 181–189 (2014).
[Crossref]

Saleki-Gerhardt, A.

A. Saleki-Gerhardt and G. Zografi, “Non-isothermal and isothermal crystallization of sucrose from the amorphous state,” Pharm. Res. 11(8), 1166–1173 (1994).
[Crossref]

Scott, A. M.

A. M. Scott, J. D. Wolchok, and L. J. Old, “Antibody therapy of cancer,” Nat. Rev. Cancer 12(4), 278–287 (2012).
[Crossref]

Shastry, A. V.

R. W. Hartel and A. V. Shastry, “Sugar crystallization in food products,” Crit. Rev. Food Sci. 30(1), 49–112 (1991).
[Crossref]

Shepherd, D.

L. Chang, D. Shepherd, J. Sun, D. Ouellette, K. L. Grant, X. Tang, and M. J. Pikal, “Mechanism of protein stabilization by sugars during freeze-drying and storage: Native structure preservation, specific interaction, and/or immobilization in a glassy matrix?” J. Pharm. Sci. 94(7), 1427–1444 (2005).
[Crossref]

Simatos, D.

D. Champion, M. Le Meste, and D. Simatos, “Towards an improved understanding of glass transition and relaxations in foods: molecular mobility in the glass transition range,” Trends Food Sci. Technol. 11(2), 41–55 (2000).
[Crossref]

Sobac, B.

B. Sobac and D. Brutin, “Desiccation of a sessile drop of blood: Cracks, folds formation and delamination,” Colloids Surf. A Physicochem Eng. Asp. 448, 34–44 (2014).
[Crossref]

Sun, J.

L. Chang, D. Shepherd, J. Sun, D. Ouellette, K. L. Grant, X. Tang, and M. J. Pikal, “Mechanism of protein stabilization by sugars during freeze-drying and storage: Native structure preservation, specific interaction, and/or immobilization in a glassy matrix?” J. Pharm. Sci. 94(7), 1427–1444 (2005).
[Crossref]

Tablin, F.

J. H. Crowe, L. M. Crowe, W. F. Wolkers, A. E. Oliver, X. Ma, J. H. Auh, M. Tang, S. Zhu, J. Norris, and F. Tablin, “Stabilization of dry Mammalian cells: lessons from nature,” Integr. Comp. Biol. 45(5), 810–820 (2005).
[Crossref]

W. F. Wolkers, F. Tablin, and J. H. Crowe, “From anhydrobiosis to freeze-drying of eukaryotic cells,” Comp. Biochem. Physiol., Part A: Mol. Integr. Physiol. 131(3), 535–543 (2002).
[Crossref]

Tang, M.

J. H. Crowe, L. M. Crowe, W. F. Wolkers, A. E. Oliver, X. Ma, J. H. Auh, M. Tang, S. Zhu, J. Norris, and F. Tablin, “Stabilization of dry Mammalian cells: lessons from nature,” Integr. Comp. Biol. 45(5), 810–820 (2005).
[Crossref]

Tang, X.

L. Chang, D. Shepherd, J. Sun, D. Ouellette, K. L. Grant, X. Tang, and M. J. Pikal, “Mechanism of protein stabilization by sugars during freeze-drying and storage: Native structure preservation, specific interaction, and/or immobilization in a glassy matrix?” J. Pharm. Sci. 94(7), 1427–1444 (2005).
[Crossref]

Toner, M.

N. Chakraborty, M. A. Menze, H. Elmoazzen, H. L. Vu, M. L. Yarmush, S. C. Hand, and M. Toner, “Trehalose transporter from African chironomid larvae improves desiccation tolerance of Chinese hamster ovary cells,” Cryobiology 64(2), 91–96 (2012).
[Crossref]

H. Y. Elmoazzen, G. Y. Lee, M. W. Li, L. K. McGinnis, K. K. Lloyd, M. Toner, and J. D. Biggers, “Further optimization of mouse spermatozoa evaporative drying techniques,” Cryobiology 59(1), 113–115 (2009).
[Crossref]

Trammell, S.

M. Young, M. McKinnon, G. Elliott, S. Trammell, D. Levitz, A. Ozcan, and D. Erickson, “Light assisted drying (LAD) for protein stabilization: optical characterization of samples,” Proc. SPIE 10485, 104850W (2018).
[Crossref]

Trammell, S. R.

M. A. Young, A. T. Antczak, A. Wawak, G. D. Elliott, and S. R. Trammell, “Light-assisted drying for protein stabilization,” J. Biomed. Opt. 23(7), 1–8 (2018).
[Crossref]

Tuschel, D.

D. Tuschel, “Molecular Spectroscopy Workbench Why Are the Raman Spectra of Crystalline and Amorphous Solids Different?” Spectroscopy 32(3), 26–33 (2017).

Van Vorst, M.

S. L. Cellemme, M. Van Vorst, E. Paramore, and G. D. Elliott, “Advancing microwave technology for dehydration processing of biologics,” Biopreserv. Biobanking 11(5), 278–284 (2013).
[Crossref]

Vu, H. L.

N. Chakraborty, M. A. Menze, H. Elmoazzen, H. L. Vu, M. L. Yarmush, S. C. Hand, and M. Toner, “Trehalose transporter from African chironomid larvae improves desiccation tolerance of Chinese hamster ovary cells,” Cryobiology 64(2), 91–96 (2012).
[Crossref]

Wawak, A.

M. A. Young, A. T. Antczak, A. Wawak, G. D. Elliott, and S. R. Trammell, “Light-assisted drying for protein stabilization,” J. Biomed. Opt. 23(7), 1–8 (2018).
[Crossref]

Wolchok, J. D.

A. M. Scott, J. D. Wolchok, and L. J. Old, “Antibody therapy of cancer,” Nat. Rev. Cancer 12(4), 278–287 (2012).
[Crossref]

Wolkers, W. F.

J. H. Crowe, L. M. Crowe, W. F. Wolkers, A. E. Oliver, X. Ma, J. H. Auh, M. Tang, S. Zhu, J. Norris, and F. Tablin, “Stabilization of dry Mammalian cells: lessons from nature,” Integr. Comp. Biol. 45(5), 810–820 (2005).
[Crossref]

W. F. Wolkers, F. Tablin, and J. H. Crowe, “From anhydrobiosis to freeze-drying of eukaryotic cells,” Comp. Biochem. Physiol., Part A: Mol. Integr. Physiol. 131(3), 535–543 (2002).
[Crossref]

Yarmush, M. L.

N. Chakraborty, M. A. Menze, H. Elmoazzen, H. L. Vu, M. L. Yarmush, S. C. Hand, and M. Toner, “Trehalose transporter from African chironomid larvae improves desiccation tolerance of Chinese hamster ovary cells,” Cryobiology 64(2), 91–96 (2012).
[Crossref]

Young, M.

M. Young, M. McKinnon, G. Elliott, S. Trammell, D. Levitz, A. Ozcan, and D. Erickson, “Light assisted drying (LAD) for protein stabilization: optical characterization of samples,” Proc. SPIE 10485, 104850W (2018).
[Crossref]

Young, M. A.

M. A. Young, A. T. Antczak, A. Wawak, G. D. Elliott, and S. R. Trammell, “Light-assisted drying for protein stabilization,” J. Biomed. Opt. 23(7), 1–8 (2018).
[Crossref]

Zhu, S.

J. H. Crowe, L. M. Crowe, W. F. Wolkers, A. E. Oliver, X. Ma, J. H. Auh, M. Tang, S. Zhu, J. Norris, and F. Tablin, “Stabilization of dry Mammalian cells: lessons from nature,” Integr. Comp. Biol. 45(5), 810–820 (2005).
[Crossref]

Zografi, G.

A. Saleki-Gerhardt and G. Zografi, “Non-isothermal and isothermal crystallization of sucrose from the amorphous state,” Pharm. Res. 11(8), 1166–1173 (1994).
[Crossref]

Adv. Drug Delivery Rev. (1)

M. T. Cicerone, M. J. Pikal, and K. K. Qian, “Stabilization of proteins in solid form,” Adv. Drug Delivery Rev. 93, 14–24 (2015).
[Crossref]

Analyst (1)

V. Romanov, S. N. Davidoff, A. R. Miles, D. W. Grainger, B. K. Gale, and B. D. Brooks, “A critical comparison of protein microarray fabrication technologies,” Analyst 139(6), 1303–1326 (2014).
[Crossref]

Biophys. J. (1)

V. Ragoonanan and A. Aksan, “Heterogeneity in desiccated solutions: implications for biostabilization,” Biophys. J. 94(6), 2212–2227 (2008).
[Crossref]

Biopreserv. Biobanking (1)

S. L. Cellemme, M. Van Vorst, E. Paramore, and G. D. Elliott, “Advancing microwave technology for dehydration processing of biologics,” Biopreserv. Biobanking 11(5), 278–284 (2013).
[Crossref]

Biotechnol. Bioeng. (1)

N. Chakraborty, D. Biswas, W. Parker, P. Moyer, and G. D. Elliott, “A role for microwave processing in the dry preservation of mammalian cells,” Biotechnol. Bioeng. 100(4), 782–796 (2008).
[Crossref]

Colloids Surf. A Physicochem Eng. Asp. (1)

B. Sobac and D. Brutin, “Desiccation of a sessile drop of blood: Cracks, folds formation and delamination,” Colloids Surf. A Physicochem Eng. Asp. 448, 34–44 (2014).
[Crossref]

Comp. Biochem. Physiol., Part A: Mol. Integr. Physiol. (1)

W. F. Wolkers, F. Tablin, and J. H. Crowe, “From anhydrobiosis to freeze-drying of eukaryotic cells,” Comp. Biochem. Physiol., Part A: Mol. Integr. Physiol. 131(3), 535–543 (2002).
[Crossref]

Crit. Rev. Food Sci. (1)

R. W. Hartel and A. V. Shastry, “Sugar crystallization in food products,” Crit. Rev. Food Sci. 30(1), 49–112 (1991).
[Crossref]

Cryobiology (2)

N. Chakraborty, M. A. Menze, H. Elmoazzen, H. L. Vu, M. L. Yarmush, S. C. Hand, and M. Toner, “Trehalose transporter from African chironomid larvae improves desiccation tolerance of Chinese hamster ovary cells,” Cryobiology 64(2), 91–96 (2012).
[Crossref]

H. Y. Elmoazzen, G. Y. Lee, M. W. Li, L. K. McGinnis, K. K. Lloyd, M. Toner, and J. D. Biggers, “Further optimization of mouse spermatozoa evaporative drying techniques,” Cryobiology 59(1), 113–115 (2009).
[Crossref]

Curr. Opin. Biotechnol. (1)

J. Bjerketorp, S. Hakansson, S. Belkin, and J. K. Jansson, “Advances in preservation methods: keeping biosensor microorganisms alive and active,” Curr. Opin. Biotechnol. 17(1), 43–49 (2006).
[Crossref]

Integr. Comp. Biol. (1)

J. H. Crowe, L. M. Crowe, W. F. Wolkers, A. E. Oliver, X. Ma, J. H. Auh, M. Tang, S. Zhu, J. Norris, and F. Tablin, “Stabilization of dry Mammalian cells: lessons from nature,” Integr. Comp. Biol. 45(5), 810–820 (2005).
[Crossref]

J. Biomed. Opt. (1)

M. A. Young, A. T. Antczak, A. Wawak, G. D. Elliott, and S. R. Trammell, “Light-assisted drying for protein stabilization,” J. Biomed. Opt. 23(7), 1–8 (2018).
[Crossref]

J. Mater. Sci. (1)

B. D. Caddock and D. Hull, “Influence of humidity on the cracking patterns formed during the drying of sol-gel drops,” J. Mater. Sci. 37(4), 825–834 (2002).
[Crossref]

J. Pharm. Sci. (1)

L. Chang, D. Shepherd, J. Sun, D. Ouellette, K. L. Grant, X. Tang, and M. J. Pikal, “Mechanism of protein stabilization by sugars during freeze-drying and storage: Native structure preservation, specific interaction, and/or immobilization in a glassy matrix?” J. Pharm. Sci. 94(7), 1427–1444 (2005).
[Crossref]

Methods Mol. Med. (1)

G. D. Adams, “Lyophilization of vaccines: current trends,” Methods Mol. Med. 87, 223–244 (2003).
[Crossref]

Nat. Biotechnol. (1)

J. H. Crowe and L. M. Crowe, “Preservation of mammalian cells-learning nature's tricks,” Nat. Biotechnol. 18(2), 145–146 (2000).
[Crossref]

Nat. Rev. Cancer (1)

A. M. Scott, J. D. Wolchok, and L. J. Old, “Antibody therapy of cancer,” Nat. Rev. Cancer 12(4), 278–287 (2012).
[Crossref]

Nat. Rev. Drug Discovery (2)

B. Leader, Q. J. Baca, and D. E. Golan, “Protein therapeutics: a summary and pharmacological classification,” Nat. Rev. Drug Discovery 7(1), 21–39 (2008).
[Crossref]

S. F. Kingsmore, “Multiplexed protein measurement: technologies and applications of protein and antibody arrays,” Nat. Rev. Drug Discovery 5(4), 310–321 (2006).
[Crossref]

Nature (1)

E. K. Sackmann, A. L. Fulton, and D. J. Beebe, “The present and future role of microfluidics in biomedical research,” Nature 507(7491), 181–189 (2014).
[Crossref]

Pharm. Res. (1)

A. Saleki-Gerhardt and G. Zografi, “Non-isothermal and isothermal crystallization of sucrose from the amorphous state,” Pharm. Res. 11(8), 1166–1173 (1994).
[Crossref]

Proc. SPIE (1)

M. Young, M. McKinnon, G. Elliott, S. Trammell, D. Levitz, A. Ozcan, and D. Erickson, “Light assisted drying (LAD) for protein stabilization: optical characterization of samples,” Proc. SPIE 10485, 104850W (2018).
[Crossref]

Soft Matter (1)

A. A. Evans, E. Cheung, K. D. Nyberg, and A. C. Rowat, “Wrinkling of milk skin is mediated by evaporation,” Soft Matter 13(5), 1056–1062 (2017).
[Crossref]

Spectroscopy (1)

D. Tuschel, “Molecular Spectroscopy Workbench Why Are the Raman Spectra of Crystalline and Amorphous Solids Different?” Spectroscopy 32(3), 26–33 (2017).

Trends Food Sci. Technol. (1)

D. Champion, M. Le Meste, and D. Simatos, “Towards an improved understanding of glass transition and relaxations in foods: molecular mobility in the glass transition range,” Trends Food Sci. Technol. 11(2), 41–55 (2000).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1.
Fig. 1. Experimental set-up of the light-assisted drying (LAD) technique within a controlled low relative humidity chamber. A small volume sample is illuminated with a near-IR laser. The temperature of the sample is monitored during processing using the thermal camera (Ref. [13], Fig. 1).
Fig. 2.
Fig. 2. Polarized light imaging set-up. Samples were placed on a borosilicate glass coverslip between the polarizer and analyzer and then imaged from above.
Fig. 3.
Fig. 3. Raman spectroscopy set-up. The laser beam passes through a) a lens system with a 100 µm pinhole to clean up the intensity profile followed by a b) 785 nm notch filter to spectrally clean up the beam and then an c) expander into the microscope. The Raman signal from the sample exits the microscope and passes through an d) edge filter to remove the excitation wavelength. Then it goes through a e) beam expander and collimator before passing through a f) focusing lens into the spectrometer.
Fig. 4.
Fig. 4. EMC as a function of storage time for air dried (A1-A4:) and LAD (1-8) processed samples stored at 14.3 ± 0.5% RH.
Fig. 5.
Fig. 5. Time progression of samples stored in LiCl saturated salt low RH containers. The blue circle indicates the sample (7mm diameter), the surrounding area is the coverslip. a) Samples imaged through uncrossed polarizers and b) samples imaged with cross polarizers and processed in Matlab for crystal area measurement. The white area is crystallization present in the sample.
Fig. 6.
Fig. 6. Crystal area as a function of storage time for air dried (A1-A4) and LAD (1-8) processed samples stored at 14.3 ± 0.5% RH.
Fig. 7.
Fig. 7. a) Color map of the height across sample as determine with SWLI, blue and red dashed lines are b) associated cross sections height profiles.
Fig. 8.
Fig. 8. LAD processed sample after 27 days of storage at 14.3 ± 0.5% RH. a) The non-interferometric image and b) the SWLI height map with corresponding c) height profiles.
Fig. 9.
Fig. 9. Raman spectra of a) crystalline trehalose and b) amorphous trehalose acquired with the Raman system described in Sec. 2.4.
Fig. 10.
Fig. 10. A SWLI height profile on the left is marked with three locations that correspond to the normalized Raman spectra on the right.
Fig. 11.
Fig. 11. Calorimetric curves of LAD processed, unprocessed, air dried and thermal processed lysozyme.

Tables (1)

Tables Icon

Table 1. Thermodynamic parameters for lysozyme as determined with DSC

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

E M C = m f m s m d w m d w

Metrics