Abstract

Methyglyoxal (MGO) is an important pathological factor for diabetic cardiovascular complications. Conventional methods for MGO detection in biological samples, such as high performance liquid chromatography (HPLC)-UV spectrometry, LC-fluorescence spectrometry, and HPLC-mass spectrometry, are time-consuming, high-cost, and complicated. Here, we present a method for MGO quantitative detection based on far-IR spectral analyses. Our method uses o-phenylenediamine (OPD) to produce a chemical reaction with MGO, which results in multiple fingerprint feature changes associated with the molar ratio of MGO and OPD. We use the linear relationship between MGO concentration and peak intensity of the reaction product to quantitatively determine MGO concentration. The corresponding linear detectable range is 5∼2500 nmol/mL nmol per mL with a correlation coefficient of 0.999. This quantitative method is also tested by blood samples with adjusted MGO concentrations, and shows 95% accuracy with only 30s testing time. Our method provides a fast, simple and economical approach to determining MGO concentration in blood.

© 2020 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Application of a near-infrared laser tweezers Raman spectroscopy system for label-free analysis and differentiation of diabetic red blood cells

Jinyong Lin, Lingdong Shao, Sufang Qiu, Xingwu Huang, Mengmeng Liu, Zuci Zheng, Duo Lin, Yongliang Xu, Zhihua Li, Yao Lin, Rong Chen, and Shangyuan Feng
Biomed. Opt. Express 9(3) 984-993 (2018)

Hollow optical-fiber based infrared spectroscopy for measurement of blood glucose level by using multi-reflection prism

Saiko Kino, Suguru Omori, Takashi Katagiri, and Yuji Matsuura
Biomed. Opt. Express 7(2) 701-708 (2016)

Multicomponent blood analysis by near-infrared Raman spectroscopy

Andrew J. Berger, Tae-Woong Koo, Irving Itzkan, Gary Horowitz, and Michael S. Feld
Appl. Opt. 38(13) 2916-2926 (1999)

References

  • View by:
  • |
  • |
  • |

  1. K. Ogurtsova, J. D. da Rocha Fernandes, Y. Huang, U. Linnenkamp, L. Guariguata, N. H. Cho, D. Cavan, J. E. Shaw, and L. E. Makaroff, “IDF Diabetes Atlas: Global estimates for the prevalence of diabetes for 2015 and 2040,” Diabetes Res. Clin. Pract. 128, 40–50 (2017).
    [Crossref]
  2. S. M. Donahoe, G. C. Stewart, C. H. McCabe, S. Mohanavelu, S. A. Murphy, C. P. Cannon, and E. M. Antman, “Diabetes and Mortality Following Acute Coronary Syndromes,” JAMA 298(7), 765–775 (2007).
    [Crossref]
  3. V. L. Roger, A. S. Go, D. M. Lloyd-Jones, R. J. Adams, J. D. Berry, T. M. Brown, M. R. Carnethon, S. Dai, G. de Simone, E. S. Ford, C. S. Fox, H. J. Fullerton, C. Gillespie, K. J. Greenlund, S. M. Hailpern, J. A. Heit, P. M. Ho, V. J. Howard, B. M. Kissela, S. J. Kittner, D. T. Lackland, J. H. Lichtman, L. D. Lisabeth, D. M. Makuc, G. M. Marcus, A. Marelli, D. B. Matchar, M. M. McDermott, J. B. Meigs, C. S. Moy, D. Mozaffarian, M. E. Mussolino, G. Nichol, N. P. Paynter, W. D. Rosamond, P. D. Sorlie, R. S. Stafford, T. N. Turan, M. B. Turner, N. D. Wong, and J. Wylie-Rosett, “Heart disease and stroke statistics-2011 update: a report from the American Heart Association,” Circulation 123(4), e18–e209 (2011).
    [Crossref]
  4. F. S. Ahmad, H. Ning, J. D. Rich, C. W. Yancy, D. M. Lloyd-Jones, and J. T. Wilkins, “Hypertension, Obesity, Diabetes, and Heart Failure-Free Survival,” JACC: Heart Failure 4(12), 911–919 (2016).
    [Crossref]
  5. E. Ritz and S. R. Orth, “Nephropathy in Patients with Type 2 Diabetes Mellitus,” N. Engl. J. Med. 341(15), 1127–1133 (1999).
    [Crossref]
  6. G. S. Mintz and G. Guagliumi, “Intravascular imaging in coronary artery disease,” Lancet 390(10096), 793–809 (2017).
    [Crossref]
  7. P. S. Douglas, U. Hoffmann, M. R. Patel, D. B. Mark, H. R. Al-Khalidi, B. Cavanaugh, J. Cole, R. J. Dolor, C. B. Fordyce, M. Huang, M. A. Khan, A. S. Kosinski, M. W. Krucoff, V. Malhotra, M. H. Picard, J. E. Udelson, E. J. Velazquez, E. Yow, L. S. Cooper, and K. L. Lee, “Outcomes of Anatomical versus Functional Testing for Coronary Artery Disease,” N. Engl. J. Med. 372(14), 1291–1300 (2015).
    [Crossref]
  8. R. Heo, R. Nakazato, D. Kalra, and J. K. Min, “Noninvasive Imaging in Coronary Artery Disease,” Semin. Nucl. Med. 44(5), 398–409 (2014).
    [Crossref]
  9. D. Engelbertsen, D. V. Anand, G. N. Fredrikson, D. Hopkins, R. Corder, P. K. Shah, A. Lahiri, J. Nilsson, and E. Bengtsson, “High levels of IgM against methylglyoxal-modified apolipoprotein B100 are associated with less coronary artery calcification in patients with type 2 diabetes,” J. Intern. Med. 271(1), 82–89 (2012).
    [Crossref]
  10. P. E. Morgan, P. J. Sheahan, D. I. Pattison, and M. J. Davies, “Methylglyoxal adversely affects the cellular redox balance in human coronary artery endothelial cells: A potential mechanism of action via modification of critical arginine residues,” Free Radical Biol. Med. 53, S147–S148 (2012).
    [Crossref]
  11. M. G. A. van Eupen, M. T. Schram, H. M. Colhoun, J. L. J. M. Scheijen, C. D. A. Stehouwer, and C. G. Schalkwijk, “Plasma levels of advanced glycation endproducts are associated with type 1 diabetes and coronary artery calcification,” Cardiovasc. Diabetol. 12(1), 149 (2013).
    [Crossref]
  12. V. Lankin, G. Konovalova, A. Tikhaze, K. Shumaev, E. Kumskova, and M. Viigimaa, “The initiation of free radical peroxidation of low-density lipoproteins by glucose and its metabolite methylglyoxal: a common molecular mechanism of vascular wall injure in atherosclerosis and diabetes,” Mol. Cell. Biochem. 395(1-2), 241–252 (2014).
    [Crossref]
  13. M. Heier, H. D. Margeirsdottir, P. A. Torjesen, I. Seljeflot, K. H. Stensæth, M. Gaarder, C. Brunborg, K. F. Hanssen, and K. Dahl-Jørgensen, “The advanced glycation end product methylglyoxal-derived hydroimidazolone-1 and early signs of atherosclerosis in childhood diabetes,” Diabetes Vasc. Dis. Res. 12(2), 139–145 (2015).
    [Crossref]
  14. Y. Dai, Y. Shen, Q. R. Li, F. H. Ding, X. Q. Wang, H. J. Liu, X. X. Yan, L. J. Wang, K. Yang, H. B. Wang, Q. J. Chen, W. F. Shen, R. Y. Zhang, and L. Lu, “Glycated Apolipoprotein A-IV Induces Atherogenesis in Patients With CAD in Type 2 Diabetes,” J. Am. Coll. Cardiol. 70(16), 2006–2019 (2017).
    [Crossref]
  15. A. Moraru, J. Wiederstein, D. Pfaff, T. Fleming, A. K. Miller, P. Nawroth, and A. A. Teleman, “Elevated Levels of the Reactive Metabolite Methylglyoxal Recapitulate Progression of Type 2 Diabetes,” Cell Metab. 27(4), 926–934.e8 (2018).
    [Crossref]
  16. I. Nemet, L. Varga-Defterdarović, and Z. Turk, “Preparation and quantification of methylglyoxal in human plasma using reverse-phase high-performance liquid chromatography,” Clin. Biochem. 37(10), 875–881 (2004).
    [Crossref]
  17. M. Y. Khuhawar, A. J. Kandhro, and F. D. Khand, “Liquid Chromatographic Determination of Glyoxal and Methylglyoxal from Serum of Diabetic Patients using Meso-Stilbenediamine as Derivatizing Reagent,” Anal. Lett. 39(10), 2205–2215 (2006).
    [Crossref]
  18. N. R. Neng, C. A. A. Cordeiro, A. P. Freire, and J. M. F. Nogueira, “Determination of glyoxal and methylglyoxal in environmental and biological matrices by stir bar sorptive extraction with in-situ derivatization,” J. Chromatogr. A 1169(1-2), 47–52 (2007).
    [Crossref]
  19. Y. Ogasawara, R. Tanaka, S. Koike, Y. Horiuchi, M. Miyashita, and M. Arai, “Determination of methylglyoxal in human blood plasma using fluorescence high performance liquid chromatography after derivatization with 1,2-diamino-4,5-methylenedioxybenzene,” J. Chromatogr. B: Anal. Technol. Biomed. Life Sci. 1029-1030, 102–105 (2016).
    [Crossref]
  20. K. Dhananjayan, F. Irrgang, R. Raju, D. G. Harman, C. Moran, V. Srikanth, and G. Münch, “Determination of glyoxal and methylglyoxal in serum by UHPLC coupled with fluorescence detection,” Anal. Biochem. 573, 51–66 (2019).
    [Crossref]
  21. L. J. M. Scheijen Jean and G. Schalkwijk Casper, “Quantification of glyoxal, methylglyoxal and 3-deoxyglucosone in blood and plasma by ultra performance liquid chromatography tandem mass spectrometry: evaluation of blood specimen,” Clin. Chem. Lab. Med. 52(1), 85–91 (2014).
    [Crossref]
  22. M. Pastor-Belda, A. J. Fernández-García, N. Campillo, M. D. Pérez-Cárceles, M. Motas, M. Hernández-Córdoba, and P. Viñas, “Glyoxal and methylglyoxal as urinary markers of diabetes. Determination using a dispersive liquid–liquid microextraction procedure combined with gas chromatography–mass spectrometry,” J. Chromatogr. A 1509, 43–49 (2017).
    [Crossref]
  23. M. H. El-Maghrabey, T. Nakatani, N. Kishikawa, and N. Kuroda, “Aromatic aldehydes as selective fluorogenic derivatizing agents for α-dicarbonyl compounds. Application to HPLC analysis of some advanced glycation end products and oxidative stress biomarkers in human serum,” J. Pharm. Biomed. Anal. 158, 38–46 (2018).
    [Crossref]
  24. N. Rabbani and P. J. Thornalley, “Measurement of methylglyoxal by stable isotopic dilution analysis LC-MS/MS with corroborative prediction in physiological samples,” Nat. Protoc. 9(8), 1969–1979 (2014).
    [Crossref]
  25. C. Polson, P. Sarkar, B. Incledon, V. Raguvaran, and R. Grant, “Optimization of protein precipitation based upon effectiveness of protein removal and ionization effect in liquid chromatography–tandem mass spectrometry,” J. Chromatogr. B: Anal. Technol. Biomed. Life Sci. 785(2), 263–275 (2003).
    [Crossref]
  26. J. Zhang, H. Zhang, M. Li, D. Zhang, Q. Chu, and J. Ye, “A novel capillary electrophoretic method for determining methylglyoxal and glyoxal in urine and water samples,” J. Chromatogr. A 1217(31), 5124–5129 (2010).
    [Crossref]
  27. A. Shrivastava and V. Gupta, “Methods for the determination of limit of detection and limit of quantitation of the analytical methods,” Chron. Young Sci. 2(1), 21–25 (2011).
    [Crossref]

2019 (1)

K. Dhananjayan, F. Irrgang, R. Raju, D. G. Harman, C. Moran, V. Srikanth, and G. Münch, “Determination of glyoxal and methylglyoxal in serum by UHPLC coupled with fluorescence detection,” Anal. Biochem. 573, 51–66 (2019).
[Crossref]

2018 (2)

M. H. El-Maghrabey, T. Nakatani, N. Kishikawa, and N. Kuroda, “Aromatic aldehydes as selective fluorogenic derivatizing agents for α-dicarbonyl compounds. Application to HPLC analysis of some advanced glycation end products and oxidative stress biomarkers in human serum,” J. Pharm. Biomed. Anal. 158, 38–46 (2018).
[Crossref]

A. Moraru, J. Wiederstein, D. Pfaff, T. Fleming, A. K. Miller, P. Nawroth, and A. A. Teleman, “Elevated Levels of the Reactive Metabolite Methylglyoxal Recapitulate Progression of Type 2 Diabetes,” Cell Metab. 27(4), 926–934.e8 (2018).
[Crossref]

2017 (4)

Y. Dai, Y. Shen, Q. R. Li, F. H. Ding, X. Q. Wang, H. J. Liu, X. X. Yan, L. J. Wang, K. Yang, H. B. Wang, Q. J. Chen, W. F. Shen, R. Y. Zhang, and L. Lu, “Glycated Apolipoprotein A-IV Induces Atherogenesis in Patients With CAD in Type 2 Diabetes,” J. Am. Coll. Cardiol. 70(16), 2006–2019 (2017).
[Crossref]

K. Ogurtsova, J. D. da Rocha Fernandes, Y. Huang, U. Linnenkamp, L. Guariguata, N. H. Cho, D. Cavan, J. E. Shaw, and L. E. Makaroff, “IDF Diabetes Atlas: Global estimates for the prevalence of diabetes for 2015 and 2040,” Diabetes Res. Clin. Pract. 128, 40–50 (2017).
[Crossref]

G. S. Mintz and G. Guagliumi, “Intravascular imaging in coronary artery disease,” Lancet 390(10096), 793–809 (2017).
[Crossref]

M. Pastor-Belda, A. J. Fernández-García, N. Campillo, M. D. Pérez-Cárceles, M. Motas, M. Hernández-Córdoba, and P. Viñas, “Glyoxal and methylglyoxal as urinary markers of diabetes. Determination using a dispersive liquid–liquid microextraction procedure combined with gas chromatography–mass spectrometry,” J. Chromatogr. A 1509, 43–49 (2017).
[Crossref]

2016 (2)

Y. Ogasawara, R. Tanaka, S. Koike, Y. Horiuchi, M. Miyashita, and M. Arai, “Determination of methylglyoxal in human blood plasma using fluorescence high performance liquid chromatography after derivatization with 1,2-diamino-4,5-methylenedioxybenzene,” J. Chromatogr. B: Anal. Technol. Biomed. Life Sci. 1029-1030, 102–105 (2016).
[Crossref]

F. S. Ahmad, H. Ning, J. D. Rich, C. W. Yancy, D. M. Lloyd-Jones, and J. T. Wilkins, “Hypertension, Obesity, Diabetes, and Heart Failure-Free Survival,” JACC: Heart Failure 4(12), 911–919 (2016).
[Crossref]

2015 (2)

P. S. Douglas, U. Hoffmann, M. R. Patel, D. B. Mark, H. R. Al-Khalidi, B. Cavanaugh, J. Cole, R. J. Dolor, C. B. Fordyce, M. Huang, M. A. Khan, A. S. Kosinski, M. W. Krucoff, V. Malhotra, M. H. Picard, J. E. Udelson, E. J. Velazquez, E. Yow, L. S. Cooper, and K. L. Lee, “Outcomes of Anatomical versus Functional Testing for Coronary Artery Disease,” N. Engl. J. Med. 372(14), 1291–1300 (2015).
[Crossref]

M. Heier, H. D. Margeirsdottir, P. A. Torjesen, I. Seljeflot, K. H. Stensæth, M. Gaarder, C. Brunborg, K. F. Hanssen, and K. Dahl-Jørgensen, “The advanced glycation end product methylglyoxal-derived hydroimidazolone-1 and early signs of atherosclerosis in childhood diabetes,” Diabetes Vasc. Dis. Res. 12(2), 139–145 (2015).
[Crossref]

2014 (4)

V. Lankin, G. Konovalova, A. Tikhaze, K. Shumaev, E. Kumskova, and M. Viigimaa, “The initiation of free radical peroxidation of low-density lipoproteins by glucose and its metabolite methylglyoxal: a common molecular mechanism of vascular wall injure in atherosclerosis and diabetes,” Mol. Cell. Biochem. 395(1-2), 241–252 (2014).
[Crossref]

R. Heo, R. Nakazato, D. Kalra, and J. K. Min, “Noninvasive Imaging in Coronary Artery Disease,” Semin. Nucl. Med. 44(5), 398–409 (2014).
[Crossref]

L. J. M. Scheijen Jean and G. Schalkwijk Casper, “Quantification of glyoxal, methylglyoxal and 3-deoxyglucosone in blood and plasma by ultra performance liquid chromatography tandem mass spectrometry: evaluation of blood specimen,” Clin. Chem. Lab. Med. 52(1), 85–91 (2014).
[Crossref]

N. Rabbani and P. J. Thornalley, “Measurement of methylglyoxal by stable isotopic dilution analysis LC-MS/MS with corroborative prediction in physiological samples,” Nat. Protoc. 9(8), 1969–1979 (2014).
[Crossref]

2013 (1)

M. G. A. van Eupen, M. T. Schram, H. M. Colhoun, J. L. J. M. Scheijen, C. D. A. Stehouwer, and C. G. Schalkwijk, “Plasma levels of advanced glycation endproducts are associated with type 1 diabetes and coronary artery calcification,” Cardiovasc. Diabetol. 12(1), 149 (2013).
[Crossref]

2012 (2)

D. Engelbertsen, D. V. Anand, G. N. Fredrikson, D. Hopkins, R. Corder, P. K. Shah, A. Lahiri, J. Nilsson, and E. Bengtsson, “High levels of IgM against methylglyoxal-modified apolipoprotein B100 are associated with less coronary artery calcification in patients with type 2 diabetes,” J. Intern. Med. 271(1), 82–89 (2012).
[Crossref]

P. E. Morgan, P. J. Sheahan, D. I. Pattison, and M. J. Davies, “Methylglyoxal adversely affects the cellular redox balance in human coronary artery endothelial cells: A potential mechanism of action via modification of critical arginine residues,” Free Radical Biol. Med. 53, S147–S148 (2012).
[Crossref]

2011 (2)

V. L. Roger, A. S. Go, D. M. Lloyd-Jones, R. J. Adams, J. D. Berry, T. M. Brown, M. R. Carnethon, S. Dai, G. de Simone, E. S. Ford, C. S. Fox, H. J. Fullerton, C. Gillespie, K. J. Greenlund, S. M. Hailpern, J. A. Heit, P. M. Ho, V. J. Howard, B. M. Kissela, S. J. Kittner, D. T. Lackland, J. H. Lichtman, L. D. Lisabeth, D. M. Makuc, G. M. Marcus, A. Marelli, D. B. Matchar, M. M. McDermott, J. B. Meigs, C. S. Moy, D. Mozaffarian, M. E. Mussolino, G. Nichol, N. P. Paynter, W. D. Rosamond, P. D. Sorlie, R. S. Stafford, T. N. Turan, M. B. Turner, N. D. Wong, and J. Wylie-Rosett, “Heart disease and stroke statistics-2011 update: a report from the American Heart Association,” Circulation 123(4), e18–e209 (2011).
[Crossref]

A. Shrivastava and V. Gupta, “Methods for the determination of limit of detection and limit of quantitation of the analytical methods,” Chron. Young Sci. 2(1), 21–25 (2011).
[Crossref]

2010 (1)

J. Zhang, H. Zhang, M. Li, D. Zhang, Q. Chu, and J. Ye, “A novel capillary electrophoretic method for determining methylglyoxal and glyoxal in urine and water samples,” J. Chromatogr. A 1217(31), 5124–5129 (2010).
[Crossref]

2007 (2)

N. R. Neng, C. A. A. Cordeiro, A. P. Freire, and J. M. F. Nogueira, “Determination of glyoxal and methylglyoxal in environmental and biological matrices by stir bar sorptive extraction with in-situ derivatization,” J. Chromatogr. A 1169(1-2), 47–52 (2007).
[Crossref]

S. M. Donahoe, G. C. Stewart, C. H. McCabe, S. Mohanavelu, S. A. Murphy, C. P. Cannon, and E. M. Antman, “Diabetes and Mortality Following Acute Coronary Syndromes,” JAMA 298(7), 765–775 (2007).
[Crossref]

2006 (1)

M. Y. Khuhawar, A. J. Kandhro, and F. D. Khand, “Liquid Chromatographic Determination of Glyoxal and Methylglyoxal from Serum of Diabetic Patients using Meso-Stilbenediamine as Derivatizing Reagent,” Anal. Lett. 39(10), 2205–2215 (2006).
[Crossref]

2004 (1)

I. Nemet, L. Varga-Defterdarović, and Z. Turk, “Preparation and quantification of methylglyoxal in human plasma using reverse-phase high-performance liquid chromatography,” Clin. Biochem. 37(10), 875–881 (2004).
[Crossref]

2003 (1)

C. Polson, P. Sarkar, B. Incledon, V. Raguvaran, and R. Grant, “Optimization of protein precipitation based upon effectiveness of protein removal and ionization effect in liquid chromatography–tandem mass spectrometry,” J. Chromatogr. B: Anal. Technol. Biomed. Life Sci. 785(2), 263–275 (2003).
[Crossref]

1999 (1)

E. Ritz and S. R. Orth, “Nephropathy in Patients with Type 2 Diabetes Mellitus,” N. Engl. J. Med. 341(15), 1127–1133 (1999).
[Crossref]

Adams, R. J.

V. L. Roger, A. S. Go, D. M. Lloyd-Jones, R. J. Adams, J. D. Berry, T. M. Brown, M. R. Carnethon, S. Dai, G. de Simone, E. S. Ford, C. S. Fox, H. J. Fullerton, C. Gillespie, K. J. Greenlund, S. M. Hailpern, J. A. Heit, P. M. Ho, V. J. Howard, B. M. Kissela, S. J. Kittner, D. T. Lackland, J. H. Lichtman, L. D. Lisabeth, D. M. Makuc, G. M. Marcus, A. Marelli, D. B. Matchar, M. M. McDermott, J. B. Meigs, C. S. Moy, D. Mozaffarian, M. E. Mussolino, G. Nichol, N. P. Paynter, W. D. Rosamond, P. D. Sorlie, R. S. Stafford, T. N. Turan, M. B. Turner, N. D. Wong, and J. Wylie-Rosett, “Heart disease and stroke statistics-2011 update: a report from the American Heart Association,” Circulation 123(4), e18–e209 (2011).
[Crossref]

Ahmad, F. S.

F. S. Ahmad, H. Ning, J. D. Rich, C. W. Yancy, D. M. Lloyd-Jones, and J. T. Wilkins, “Hypertension, Obesity, Diabetes, and Heart Failure-Free Survival,” JACC: Heart Failure 4(12), 911–919 (2016).
[Crossref]

Al-Khalidi, H. R.

P. S. Douglas, U. Hoffmann, M. R. Patel, D. B. Mark, H. R. Al-Khalidi, B. Cavanaugh, J. Cole, R. J. Dolor, C. B. Fordyce, M. Huang, M. A. Khan, A. S. Kosinski, M. W. Krucoff, V. Malhotra, M. H. Picard, J. E. Udelson, E. J. Velazquez, E. Yow, L. S. Cooper, and K. L. Lee, “Outcomes of Anatomical versus Functional Testing for Coronary Artery Disease,” N. Engl. J. Med. 372(14), 1291–1300 (2015).
[Crossref]

Anand, D. V.

D. Engelbertsen, D. V. Anand, G. N. Fredrikson, D. Hopkins, R. Corder, P. K. Shah, A. Lahiri, J. Nilsson, and E. Bengtsson, “High levels of IgM against methylglyoxal-modified apolipoprotein B100 are associated with less coronary artery calcification in patients with type 2 diabetes,” J. Intern. Med. 271(1), 82–89 (2012).
[Crossref]

Antman, E. M.

S. M. Donahoe, G. C. Stewart, C. H. McCabe, S. Mohanavelu, S. A. Murphy, C. P. Cannon, and E. M. Antman, “Diabetes and Mortality Following Acute Coronary Syndromes,” JAMA 298(7), 765–775 (2007).
[Crossref]

Arai, M.

Y. Ogasawara, R. Tanaka, S. Koike, Y. Horiuchi, M. Miyashita, and M. Arai, “Determination of methylglyoxal in human blood plasma using fluorescence high performance liquid chromatography after derivatization with 1,2-diamino-4,5-methylenedioxybenzene,” J. Chromatogr. B: Anal. Technol. Biomed. Life Sci. 1029-1030, 102–105 (2016).
[Crossref]

Bengtsson, E.

D. Engelbertsen, D. V. Anand, G. N. Fredrikson, D. Hopkins, R. Corder, P. K. Shah, A. Lahiri, J. Nilsson, and E. Bengtsson, “High levels of IgM against methylglyoxal-modified apolipoprotein B100 are associated with less coronary artery calcification in patients with type 2 diabetes,” J. Intern. Med. 271(1), 82–89 (2012).
[Crossref]

Berry, J. D.

V. L. Roger, A. S. Go, D. M. Lloyd-Jones, R. J. Adams, J. D. Berry, T. M. Brown, M. R. Carnethon, S. Dai, G. de Simone, E. S. Ford, C. S. Fox, H. J. Fullerton, C. Gillespie, K. J. Greenlund, S. M. Hailpern, J. A. Heit, P. M. Ho, V. J. Howard, B. M. Kissela, S. J. Kittner, D. T. Lackland, J. H. Lichtman, L. D. Lisabeth, D. M. Makuc, G. M. Marcus, A. Marelli, D. B. Matchar, M. M. McDermott, J. B. Meigs, C. S. Moy, D. Mozaffarian, M. E. Mussolino, G. Nichol, N. P. Paynter, W. D. Rosamond, P. D. Sorlie, R. S. Stafford, T. N. Turan, M. B. Turner, N. D. Wong, and J. Wylie-Rosett, “Heart disease and stroke statistics-2011 update: a report from the American Heart Association,” Circulation 123(4), e18–e209 (2011).
[Crossref]

Brown, T. M.

V. L. Roger, A. S. Go, D. M. Lloyd-Jones, R. J. Adams, J. D. Berry, T. M. Brown, M. R. Carnethon, S. Dai, G. de Simone, E. S. Ford, C. S. Fox, H. J. Fullerton, C. Gillespie, K. J. Greenlund, S. M. Hailpern, J. A. Heit, P. M. Ho, V. J. Howard, B. M. Kissela, S. J. Kittner, D. T. Lackland, J. H. Lichtman, L. D. Lisabeth, D. M. Makuc, G. M. Marcus, A. Marelli, D. B. Matchar, M. M. McDermott, J. B. Meigs, C. S. Moy, D. Mozaffarian, M. E. Mussolino, G. Nichol, N. P. Paynter, W. D. Rosamond, P. D. Sorlie, R. S. Stafford, T. N. Turan, M. B. Turner, N. D. Wong, and J. Wylie-Rosett, “Heart disease and stroke statistics-2011 update: a report from the American Heart Association,” Circulation 123(4), e18–e209 (2011).
[Crossref]

Brunborg, C.

M. Heier, H. D. Margeirsdottir, P. A. Torjesen, I. Seljeflot, K. H. Stensæth, M. Gaarder, C. Brunborg, K. F. Hanssen, and K. Dahl-Jørgensen, “The advanced glycation end product methylglyoxal-derived hydroimidazolone-1 and early signs of atherosclerosis in childhood diabetes,” Diabetes Vasc. Dis. Res. 12(2), 139–145 (2015).
[Crossref]

Campillo, N.

M. Pastor-Belda, A. J. Fernández-García, N. Campillo, M. D. Pérez-Cárceles, M. Motas, M. Hernández-Córdoba, and P. Viñas, “Glyoxal and methylglyoxal as urinary markers of diabetes. Determination using a dispersive liquid–liquid microextraction procedure combined with gas chromatography–mass spectrometry,” J. Chromatogr. A 1509, 43–49 (2017).
[Crossref]

Cannon, C. P.

S. M. Donahoe, G. C. Stewart, C. H. McCabe, S. Mohanavelu, S. A. Murphy, C. P. Cannon, and E. M. Antman, “Diabetes and Mortality Following Acute Coronary Syndromes,” JAMA 298(7), 765–775 (2007).
[Crossref]

Carnethon, M. R.

V. L. Roger, A. S. Go, D. M. Lloyd-Jones, R. J. Adams, J. D. Berry, T. M. Brown, M. R. Carnethon, S. Dai, G. de Simone, E. S. Ford, C. S. Fox, H. J. Fullerton, C. Gillespie, K. J. Greenlund, S. M. Hailpern, J. A. Heit, P. M. Ho, V. J. Howard, B. M. Kissela, S. J. Kittner, D. T. Lackland, J. H. Lichtman, L. D. Lisabeth, D. M. Makuc, G. M. Marcus, A. Marelli, D. B. Matchar, M. M. McDermott, J. B. Meigs, C. S. Moy, D. Mozaffarian, M. E. Mussolino, G. Nichol, N. P. Paynter, W. D. Rosamond, P. D. Sorlie, R. S. Stafford, T. N. Turan, M. B. Turner, N. D. Wong, and J. Wylie-Rosett, “Heart disease and stroke statistics-2011 update: a report from the American Heart Association,” Circulation 123(4), e18–e209 (2011).
[Crossref]

Cavan, D.

K. Ogurtsova, J. D. da Rocha Fernandes, Y. Huang, U. Linnenkamp, L. Guariguata, N. H. Cho, D. Cavan, J. E. Shaw, and L. E. Makaroff, “IDF Diabetes Atlas: Global estimates for the prevalence of diabetes for 2015 and 2040,” Diabetes Res. Clin. Pract. 128, 40–50 (2017).
[Crossref]

Cavanaugh, B.

P. S. Douglas, U. Hoffmann, M. R. Patel, D. B. Mark, H. R. Al-Khalidi, B. Cavanaugh, J. Cole, R. J. Dolor, C. B. Fordyce, M. Huang, M. A. Khan, A. S. Kosinski, M. W. Krucoff, V. Malhotra, M. H. Picard, J. E. Udelson, E. J. Velazquez, E. Yow, L. S. Cooper, and K. L. Lee, “Outcomes of Anatomical versus Functional Testing for Coronary Artery Disease,” N. Engl. J. Med. 372(14), 1291–1300 (2015).
[Crossref]

Chen, Q. J.

Y. Dai, Y. Shen, Q. R. Li, F. H. Ding, X. Q. Wang, H. J. Liu, X. X. Yan, L. J. Wang, K. Yang, H. B. Wang, Q. J. Chen, W. F. Shen, R. Y. Zhang, and L. Lu, “Glycated Apolipoprotein A-IV Induces Atherogenesis in Patients With CAD in Type 2 Diabetes,” J. Am. Coll. Cardiol. 70(16), 2006–2019 (2017).
[Crossref]

Cho, N. H.

K. Ogurtsova, J. D. da Rocha Fernandes, Y. Huang, U. Linnenkamp, L. Guariguata, N. H. Cho, D. Cavan, J. E. Shaw, and L. E. Makaroff, “IDF Diabetes Atlas: Global estimates for the prevalence of diabetes for 2015 and 2040,” Diabetes Res. Clin. Pract. 128, 40–50 (2017).
[Crossref]

Chu, Q.

J. Zhang, H. Zhang, M. Li, D. Zhang, Q. Chu, and J. Ye, “A novel capillary electrophoretic method for determining methylglyoxal and glyoxal in urine and water samples,” J. Chromatogr. A 1217(31), 5124–5129 (2010).
[Crossref]

Cole, J.

P. S. Douglas, U. Hoffmann, M. R. Patel, D. B. Mark, H. R. Al-Khalidi, B. Cavanaugh, J. Cole, R. J. Dolor, C. B. Fordyce, M. Huang, M. A. Khan, A. S. Kosinski, M. W. Krucoff, V. Malhotra, M. H. Picard, J. E. Udelson, E. J. Velazquez, E. Yow, L. S. Cooper, and K. L. Lee, “Outcomes of Anatomical versus Functional Testing for Coronary Artery Disease,” N. Engl. J. Med. 372(14), 1291–1300 (2015).
[Crossref]

Colhoun, H. M.

M. G. A. van Eupen, M. T. Schram, H. M. Colhoun, J. L. J. M. Scheijen, C. D. A. Stehouwer, and C. G. Schalkwijk, “Plasma levels of advanced glycation endproducts are associated with type 1 diabetes and coronary artery calcification,” Cardiovasc. Diabetol. 12(1), 149 (2013).
[Crossref]

Cooper, L. S.

P. S. Douglas, U. Hoffmann, M. R. Patel, D. B. Mark, H. R. Al-Khalidi, B. Cavanaugh, J. Cole, R. J. Dolor, C. B. Fordyce, M. Huang, M. A. Khan, A. S. Kosinski, M. W. Krucoff, V. Malhotra, M. H. Picard, J. E. Udelson, E. J. Velazquez, E. Yow, L. S. Cooper, and K. L. Lee, “Outcomes of Anatomical versus Functional Testing for Coronary Artery Disease,” N. Engl. J. Med. 372(14), 1291–1300 (2015).
[Crossref]

Cordeiro, C. A. A.

N. R. Neng, C. A. A. Cordeiro, A. P. Freire, and J. M. F. Nogueira, “Determination of glyoxal and methylglyoxal in environmental and biological matrices by stir bar sorptive extraction with in-situ derivatization,” J. Chromatogr. A 1169(1-2), 47–52 (2007).
[Crossref]

Corder, R.

D. Engelbertsen, D. V. Anand, G. N. Fredrikson, D. Hopkins, R. Corder, P. K. Shah, A. Lahiri, J. Nilsson, and E. Bengtsson, “High levels of IgM against methylglyoxal-modified apolipoprotein B100 are associated with less coronary artery calcification in patients with type 2 diabetes,” J. Intern. Med. 271(1), 82–89 (2012).
[Crossref]

da Rocha Fernandes, J. D.

K. Ogurtsova, J. D. da Rocha Fernandes, Y. Huang, U. Linnenkamp, L. Guariguata, N. H. Cho, D. Cavan, J. E. Shaw, and L. E. Makaroff, “IDF Diabetes Atlas: Global estimates for the prevalence of diabetes for 2015 and 2040,” Diabetes Res. Clin. Pract. 128, 40–50 (2017).
[Crossref]

Dahl-Jørgensen, K.

M. Heier, H. D. Margeirsdottir, P. A. Torjesen, I. Seljeflot, K. H. Stensæth, M. Gaarder, C. Brunborg, K. F. Hanssen, and K. Dahl-Jørgensen, “The advanced glycation end product methylglyoxal-derived hydroimidazolone-1 and early signs of atherosclerosis in childhood diabetes,” Diabetes Vasc. Dis. Res. 12(2), 139–145 (2015).
[Crossref]

Dai, S.

V. L. Roger, A. S. Go, D. M. Lloyd-Jones, R. J. Adams, J. D. Berry, T. M. Brown, M. R. Carnethon, S. Dai, G. de Simone, E. S. Ford, C. S. Fox, H. J. Fullerton, C. Gillespie, K. J. Greenlund, S. M. Hailpern, J. A. Heit, P. M. Ho, V. J. Howard, B. M. Kissela, S. J. Kittner, D. T. Lackland, J. H. Lichtman, L. D. Lisabeth, D. M. Makuc, G. M. Marcus, A. Marelli, D. B. Matchar, M. M. McDermott, J. B. Meigs, C. S. Moy, D. Mozaffarian, M. E. Mussolino, G. Nichol, N. P. Paynter, W. D. Rosamond, P. D. Sorlie, R. S. Stafford, T. N. Turan, M. B. Turner, N. D. Wong, and J. Wylie-Rosett, “Heart disease and stroke statistics-2011 update: a report from the American Heart Association,” Circulation 123(4), e18–e209 (2011).
[Crossref]

Dai, Y.

Y. Dai, Y. Shen, Q. R. Li, F. H. Ding, X. Q. Wang, H. J. Liu, X. X. Yan, L. J. Wang, K. Yang, H. B. Wang, Q. J. Chen, W. F. Shen, R. Y. Zhang, and L. Lu, “Glycated Apolipoprotein A-IV Induces Atherogenesis in Patients With CAD in Type 2 Diabetes,” J. Am. Coll. Cardiol. 70(16), 2006–2019 (2017).
[Crossref]

Davies, M. J.

P. E. Morgan, P. J. Sheahan, D. I. Pattison, and M. J. Davies, “Methylglyoxal adversely affects the cellular redox balance in human coronary artery endothelial cells: A potential mechanism of action via modification of critical arginine residues,” Free Radical Biol. Med. 53, S147–S148 (2012).
[Crossref]

de Simone, G.

V. L. Roger, A. S. Go, D. M. Lloyd-Jones, R. J. Adams, J. D. Berry, T. M. Brown, M. R. Carnethon, S. Dai, G. de Simone, E. S. Ford, C. S. Fox, H. J. Fullerton, C. Gillespie, K. J. Greenlund, S. M. Hailpern, J. A. Heit, P. M. Ho, V. J. Howard, B. M. Kissela, S. J. Kittner, D. T. Lackland, J. H. Lichtman, L. D. Lisabeth, D. M. Makuc, G. M. Marcus, A. Marelli, D. B. Matchar, M. M. McDermott, J. B. Meigs, C. S. Moy, D. Mozaffarian, M. E. Mussolino, G. Nichol, N. P. Paynter, W. D. Rosamond, P. D. Sorlie, R. S. Stafford, T. N. Turan, M. B. Turner, N. D. Wong, and J. Wylie-Rosett, “Heart disease and stroke statistics-2011 update: a report from the American Heart Association,” Circulation 123(4), e18–e209 (2011).
[Crossref]

Dhananjayan, K.

K. Dhananjayan, F. Irrgang, R. Raju, D. G. Harman, C. Moran, V. Srikanth, and G. Münch, “Determination of glyoxal and methylglyoxal in serum by UHPLC coupled with fluorescence detection,” Anal. Biochem. 573, 51–66 (2019).
[Crossref]

Ding, F. H.

Y. Dai, Y. Shen, Q. R. Li, F. H. Ding, X. Q. Wang, H. J. Liu, X. X. Yan, L. J. Wang, K. Yang, H. B. Wang, Q. J. Chen, W. F. Shen, R. Y. Zhang, and L. Lu, “Glycated Apolipoprotein A-IV Induces Atherogenesis in Patients With CAD in Type 2 Diabetes,” J. Am. Coll. Cardiol. 70(16), 2006–2019 (2017).
[Crossref]

Dolor, R. J.

P. S. Douglas, U. Hoffmann, M. R. Patel, D. B. Mark, H. R. Al-Khalidi, B. Cavanaugh, J. Cole, R. J. Dolor, C. B. Fordyce, M. Huang, M. A. Khan, A. S. Kosinski, M. W. Krucoff, V. Malhotra, M. H. Picard, J. E. Udelson, E. J. Velazquez, E. Yow, L. S. Cooper, and K. L. Lee, “Outcomes of Anatomical versus Functional Testing for Coronary Artery Disease,” N. Engl. J. Med. 372(14), 1291–1300 (2015).
[Crossref]

Donahoe, S. M.

S. M. Donahoe, G. C. Stewart, C. H. McCabe, S. Mohanavelu, S. A. Murphy, C. P. Cannon, and E. M. Antman, “Diabetes and Mortality Following Acute Coronary Syndromes,” JAMA 298(7), 765–775 (2007).
[Crossref]

Douglas, P. S.

P. S. Douglas, U. Hoffmann, M. R. Patel, D. B. Mark, H. R. Al-Khalidi, B. Cavanaugh, J. Cole, R. J. Dolor, C. B. Fordyce, M. Huang, M. A. Khan, A. S. Kosinski, M. W. Krucoff, V. Malhotra, M. H. Picard, J. E. Udelson, E. J. Velazquez, E. Yow, L. S. Cooper, and K. L. Lee, “Outcomes of Anatomical versus Functional Testing for Coronary Artery Disease,” N. Engl. J. Med. 372(14), 1291–1300 (2015).
[Crossref]

El-Maghrabey, M. H.

M. H. El-Maghrabey, T. Nakatani, N. Kishikawa, and N. Kuroda, “Aromatic aldehydes as selective fluorogenic derivatizing agents for α-dicarbonyl compounds. Application to HPLC analysis of some advanced glycation end products and oxidative stress biomarkers in human serum,” J. Pharm. Biomed. Anal. 158, 38–46 (2018).
[Crossref]

Engelbertsen, D.

D. Engelbertsen, D. V. Anand, G. N. Fredrikson, D. Hopkins, R. Corder, P. K. Shah, A. Lahiri, J. Nilsson, and E. Bengtsson, “High levels of IgM against methylglyoxal-modified apolipoprotein B100 are associated with less coronary artery calcification in patients with type 2 diabetes,” J. Intern. Med. 271(1), 82–89 (2012).
[Crossref]

Fernández-García, A. J.

M. Pastor-Belda, A. J. Fernández-García, N. Campillo, M. D. Pérez-Cárceles, M. Motas, M. Hernández-Córdoba, and P. Viñas, “Glyoxal and methylglyoxal as urinary markers of diabetes. Determination using a dispersive liquid–liquid microextraction procedure combined with gas chromatography–mass spectrometry,” J. Chromatogr. A 1509, 43–49 (2017).
[Crossref]

Fleming, T.

A. Moraru, J. Wiederstein, D. Pfaff, T. Fleming, A. K. Miller, P. Nawroth, and A. A. Teleman, “Elevated Levels of the Reactive Metabolite Methylglyoxal Recapitulate Progression of Type 2 Diabetes,” Cell Metab. 27(4), 926–934.e8 (2018).
[Crossref]

Ford, E. S.

V. L. Roger, A. S. Go, D. M. Lloyd-Jones, R. J. Adams, J. D. Berry, T. M. Brown, M. R. Carnethon, S. Dai, G. de Simone, E. S. Ford, C. S. Fox, H. J. Fullerton, C. Gillespie, K. J. Greenlund, S. M. Hailpern, J. A. Heit, P. M. Ho, V. J. Howard, B. M. Kissela, S. J. Kittner, D. T. Lackland, J. H. Lichtman, L. D. Lisabeth, D. M. Makuc, G. M. Marcus, A. Marelli, D. B. Matchar, M. M. McDermott, J. B. Meigs, C. S. Moy, D. Mozaffarian, M. E. Mussolino, G. Nichol, N. P. Paynter, W. D. Rosamond, P. D. Sorlie, R. S. Stafford, T. N. Turan, M. B. Turner, N. D. Wong, and J. Wylie-Rosett, “Heart disease and stroke statistics-2011 update: a report from the American Heart Association,” Circulation 123(4), e18–e209 (2011).
[Crossref]

Fordyce, C. B.

P. S. Douglas, U. Hoffmann, M. R. Patel, D. B. Mark, H. R. Al-Khalidi, B. Cavanaugh, J. Cole, R. J. Dolor, C. B. Fordyce, M. Huang, M. A. Khan, A. S. Kosinski, M. W. Krucoff, V. Malhotra, M. H. Picard, J. E. Udelson, E. J. Velazquez, E. Yow, L. S. Cooper, and K. L. Lee, “Outcomes of Anatomical versus Functional Testing for Coronary Artery Disease,” N. Engl. J. Med. 372(14), 1291–1300 (2015).
[Crossref]

Fox, C. S.

V. L. Roger, A. S. Go, D. M. Lloyd-Jones, R. J. Adams, J. D. Berry, T. M. Brown, M. R. Carnethon, S. Dai, G. de Simone, E. S. Ford, C. S. Fox, H. J. Fullerton, C. Gillespie, K. J. Greenlund, S. M. Hailpern, J. A. Heit, P. M. Ho, V. J. Howard, B. M. Kissela, S. J. Kittner, D. T. Lackland, J. H. Lichtman, L. D. Lisabeth, D. M. Makuc, G. M. Marcus, A. Marelli, D. B. Matchar, M. M. McDermott, J. B. Meigs, C. S. Moy, D. Mozaffarian, M. E. Mussolino, G. Nichol, N. P. Paynter, W. D. Rosamond, P. D. Sorlie, R. S. Stafford, T. N. Turan, M. B. Turner, N. D. Wong, and J. Wylie-Rosett, “Heart disease and stroke statistics-2011 update: a report from the American Heart Association,” Circulation 123(4), e18–e209 (2011).
[Crossref]

Fredrikson, G. N.

D. Engelbertsen, D. V. Anand, G. N. Fredrikson, D. Hopkins, R. Corder, P. K. Shah, A. Lahiri, J. Nilsson, and E. Bengtsson, “High levels of IgM against methylglyoxal-modified apolipoprotein B100 are associated with less coronary artery calcification in patients with type 2 diabetes,” J. Intern. Med. 271(1), 82–89 (2012).
[Crossref]

Freire, A. P.

N. R. Neng, C. A. A. Cordeiro, A. P. Freire, and J. M. F. Nogueira, “Determination of glyoxal and methylglyoxal in environmental and biological matrices by stir bar sorptive extraction with in-situ derivatization,” J. Chromatogr. A 1169(1-2), 47–52 (2007).
[Crossref]

Fullerton, H. J.

V. L. Roger, A. S. Go, D. M. Lloyd-Jones, R. J. Adams, J. D. Berry, T. M. Brown, M. R. Carnethon, S. Dai, G. de Simone, E. S. Ford, C. S. Fox, H. J. Fullerton, C. Gillespie, K. J. Greenlund, S. M. Hailpern, J. A. Heit, P. M. Ho, V. J. Howard, B. M. Kissela, S. J. Kittner, D. T. Lackland, J. H. Lichtman, L. D. Lisabeth, D. M. Makuc, G. M. Marcus, A. Marelli, D. B. Matchar, M. M. McDermott, J. B. Meigs, C. S. Moy, D. Mozaffarian, M. E. Mussolino, G. Nichol, N. P. Paynter, W. D. Rosamond, P. D. Sorlie, R. S. Stafford, T. N. Turan, M. B. Turner, N. D. Wong, and J. Wylie-Rosett, “Heart disease and stroke statistics-2011 update: a report from the American Heart Association,” Circulation 123(4), e18–e209 (2011).
[Crossref]

Gaarder, M.

M. Heier, H. D. Margeirsdottir, P. A. Torjesen, I. Seljeflot, K. H. Stensæth, M. Gaarder, C. Brunborg, K. F. Hanssen, and K. Dahl-Jørgensen, “The advanced glycation end product methylglyoxal-derived hydroimidazolone-1 and early signs of atherosclerosis in childhood diabetes,” Diabetes Vasc. Dis. Res. 12(2), 139–145 (2015).
[Crossref]

Gillespie, C.

V. L. Roger, A. S. Go, D. M. Lloyd-Jones, R. J. Adams, J. D. Berry, T. M. Brown, M. R. Carnethon, S. Dai, G. de Simone, E. S. Ford, C. S. Fox, H. J. Fullerton, C. Gillespie, K. J. Greenlund, S. M. Hailpern, J. A. Heit, P. M. Ho, V. J. Howard, B. M. Kissela, S. J. Kittner, D. T. Lackland, J. H. Lichtman, L. D. Lisabeth, D. M. Makuc, G. M. Marcus, A. Marelli, D. B. Matchar, M. M. McDermott, J. B. Meigs, C. S. Moy, D. Mozaffarian, M. E. Mussolino, G. Nichol, N. P. Paynter, W. D. Rosamond, P. D. Sorlie, R. S. Stafford, T. N. Turan, M. B. Turner, N. D. Wong, and J. Wylie-Rosett, “Heart disease and stroke statistics-2011 update: a report from the American Heart Association,” Circulation 123(4), e18–e209 (2011).
[Crossref]

Go, A. S.

V. L. Roger, A. S. Go, D. M. Lloyd-Jones, R. J. Adams, J. D. Berry, T. M. Brown, M. R. Carnethon, S. Dai, G. de Simone, E. S. Ford, C. S. Fox, H. J. Fullerton, C. Gillespie, K. J. Greenlund, S. M. Hailpern, J. A. Heit, P. M. Ho, V. J. Howard, B. M. Kissela, S. J. Kittner, D. T. Lackland, J. H. Lichtman, L. D. Lisabeth, D. M. Makuc, G. M. Marcus, A. Marelli, D. B. Matchar, M. M. McDermott, J. B. Meigs, C. S. Moy, D. Mozaffarian, M. E. Mussolino, G. Nichol, N. P. Paynter, W. D. Rosamond, P. D. Sorlie, R. S. Stafford, T. N. Turan, M. B. Turner, N. D. Wong, and J. Wylie-Rosett, “Heart disease and stroke statistics-2011 update: a report from the American Heart Association,” Circulation 123(4), e18–e209 (2011).
[Crossref]

Grant, R.

C. Polson, P. Sarkar, B. Incledon, V. Raguvaran, and R. Grant, “Optimization of protein precipitation based upon effectiveness of protein removal and ionization effect in liquid chromatography–tandem mass spectrometry,” J. Chromatogr. B: Anal. Technol. Biomed. Life Sci. 785(2), 263–275 (2003).
[Crossref]

Greenlund, K. J.

V. L. Roger, A. S. Go, D. M. Lloyd-Jones, R. J. Adams, J. D. Berry, T. M. Brown, M. R. Carnethon, S. Dai, G. de Simone, E. S. Ford, C. S. Fox, H. J. Fullerton, C. Gillespie, K. J. Greenlund, S. M. Hailpern, J. A. Heit, P. M. Ho, V. J. Howard, B. M. Kissela, S. J. Kittner, D. T. Lackland, J. H. Lichtman, L. D. Lisabeth, D. M. Makuc, G. M. Marcus, A. Marelli, D. B. Matchar, M. M. McDermott, J. B. Meigs, C. S. Moy, D. Mozaffarian, M. E. Mussolino, G. Nichol, N. P. Paynter, W. D. Rosamond, P. D. Sorlie, R. S. Stafford, T. N. Turan, M. B. Turner, N. D. Wong, and J. Wylie-Rosett, “Heart disease and stroke statistics-2011 update: a report from the American Heart Association,” Circulation 123(4), e18–e209 (2011).
[Crossref]

Guagliumi, G.

G. S. Mintz and G. Guagliumi, “Intravascular imaging in coronary artery disease,” Lancet 390(10096), 793–809 (2017).
[Crossref]

Guariguata, L.

K. Ogurtsova, J. D. da Rocha Fernandes, Y. Huang, U. Linnenkamp, L. Guariguata, N. H. Cho, D. Cavan, J. E. Shaw, and L. E. Makaroff, “IDF Diabetes Atlas: Global estimates for the prevalence of diabetes for 2015 and 2040,” Diabetes Res. Clin. Pract. 128, 40–50 (2017).
[Crossref]

Gupta, V.

A. Shrivastava and V. Gupta, “Methods for the determination of limit of detection and limit of quantitation of the analytical methods,” Chron. Young Sci. 2(1), 21–25 (2011).
[Crossref]

Hailpern, S. M.

V. L. Roger, A. S. Go, D. M. Lloyd-Jones, R. J. Adams, J. D. Berry, T. M. Brown, M. R. Carnethon, S. Dai, G. de Simone, E. S. Ford, C. S. Fox, H. J. Fullerton, C. Gillespie, K. J. Greenlund, S. M. Hailpern, J. A. Heit, P. M. Ho, V. J. Howard, B. M. Kissela, S. J. Kittner, D. T. Lackland, J. H. Lichtman, L. D. Lisabeth, D. M. Makuc, G. M. Marcus, A. Marelli, D. B. Matchar, M. M. McDermott, J. B. Meigs, C. S. Moy, D. Mozaffarian, M. E. Mussolino, G. Nichol, N. P. Paynter, W. D. Rosamond, P. D. Sorlie, R. S. Stafford, T. N. Turan, M. B. Turner, N. D. Wong, and J. Wylie-Rosett, “Heart disease and stroke statistics-2011 update: a report from the American Heart Association,” Circulation 123(4), e18–e209 (2011).
[Crossref]

Hanssen, K. F.

M. Heier, H. D. Margeirsdottir, P. A. Torjesen, I. Seljeflot, K. H. Stensæth, M. Gaarder, C. Brunborg, K. F. Hanssen, and K. Dahl-Jørgensen, “The advanced glycation end product methylglyoxal-derived hydroimidazolone-1 and early signs of atherosclerosis in childhood diabetes,” Diabetes Vasc. Dis. Res. 12(2), 139–145 (2015).
[Crossref]

Harman, D. G.

K. Dhananjayan, F. Irrgang, R. Raju, D. G. Harman, C. Moran, V. Srikanth, and G. Münch, “Determination of glyoxal and methylglyoxal in serum by UHPLC coupled with fluorescence detection,” Anal. Biochem. 573, 51–66 (2019).
[Crossref]

Heier, M.

M. Heier, H. D. Margeirsdottir, P. A. Torjesen, I. Seljeflot, K. H. Stensæth, M. Gaarder, C. Brunborg, K. F. Hanssen, and K. Dahl-Jørgensen, “The advanced glycation end product methylglyoxal-derived hydroimidazolone-1 and early signs of atherosclerosis in childhood diabetes,” Diabetes Vasc. Dis. Res. 12(2), 139–145 (2015).
[Crossref]

Heit, J. A.

V. L. Roger, A. S. Go, D. M. Lloyd-Jones, R. J. Adams, J. D. Berry, T. M. Brown, M. R. Carnethon, S. Dai, G. de Simone, E. S. Ford, C. S. Fox, H. J. Fullerton, C. Gillespie, K. J. Greenlund, S. M. Hailpern, J. A. Heit, P. M. Ho, V. J. Howard, B. M. Kissela, S. J. Kittner, D. T. Lackland, J. H. Lichtman, L. D. Lisabeth, D. M. Makuc, G. M. Marcus, A. Marelli, D. B. Matchar, M. M. McDermott, J. B. Meigs, C. S. Moy, D. Mozaffarian, M. E. Mussolino, G. Nichol, N. P. Paynter, W. D. Rosamond, P. D. Sorlie, R. S. Stafford, T. N. Turan, M. B. Turner, N. D. Wong, and J. Wylie-Rosett, “Heart disease and stroke statistics-2011 update: a report from the American Heart Association,” Circulation 123(4), e18–e209 (2011).
[Crossref]

Heo, R.

R. Heo, R. Nakazato, D. Kalra, and J. K. Min, “Noninvasive Imaging in Coronary Artery Disease,” Semin. Nucl. Med. 44(5), 398–409 (2014).
[Crossref]

Hernández-Córdoba, M.

M. Pastor-Belda, A. J. Fernández-García, N. Campillo, M. D. Pérez-Cárceles, M. Motas, M. Hernández-Córdoba, and P. Viñas, “Glyoxal and methylglyoxal as urinary markers of diabetes. Determination using a dispersive liquid–liquid microextraction procedure combined with gas chromatography–mass spectrometry,” J. Chromatogr. A 1509, 43–49 (2017).
[Crossref]

Ho, P. M.

V. L. Roger, A. S. Go, D. M. Lloyd-Jones, R. J. Adams, J. D. Berry, T. M. Brown, M. R. Carnethon, S. Dai, G. de Simone, E. S. Ford, C. S. Fox, H. J. Fullerton, C. Gillespie, K. J. Greenlund, S. M. Hailpern, J. A. Heit, P. M. Ho, V. J. Howard, B. M. Kissela, S. J. Kittner, D. T. Lackland, J. H. Lichtman, L. D. Lisabeth, D. M. Makuc, G. M. Marcus, A. Marelli, D. B. Matchar, M. M. McDermott, J. B. Meigs, C. S. Moy, D. Mozaffarian, M. E. Mussolino, G. Nichol, N. P. Paynter, W. D. Rosamond, P. D. Sorlie, R. S. Stafford, T. N. Turan, M. B. Turner, N. D. Wong, and J. Wylie-Rosett, “Heart disease and stroke statistics-2011 update: a report from the American Heart Association,” Circulation 123(4), e18–e209 (2011).
[Crossref]

Hoffmann, U.

P. S. Douglas, U. Hoffmann, M. R. Patel, D. B. Mark, H. R. Al-Khalidi, B. Cavanaugh, J. Cole, R. J. Dolor, C. B. Fordyce, M. Huang, M. A. Khan, A. S. Kosinski, M. W. Krucoff, V. Malhotra, M. H. Picard, J. E. Udelson, E. J. Velazquez, E. Yow, L. S. Cooper, and K. L. Lee, “Outcomes of Anatomical versus Functional Testing for Coronary Artery Disease,” N. Engl. J. Med. 372(14), 1291–1300 (2015).
[Crossref]

Hopkins, D.

D. Engelbertsen, D. V. Anand, G. N. Fredrikson, D. Hopkins, R. Corder, P. K. Shah, A. Lahiri, J. Nilsson, and E. Bengtsson, “High levels of IgM against methylglyoxal-modified apolipoprotein B100 are associated with less coronary artery calcification in patients with type 2 diabetes,” J. Intern. Med. 271(1), 82–89 (2012).
[Crossref]

Horiuchi, Y.

Y. Ogasawara, R. Tanaka, S. Koike, Y. Horiuchi, M. Miyashita, and M. Arai, “Determination of methylglyoxal in human blood plasma using fluorescence high performance liquid chromatography after derivatization with 1,2-diamino-4,5-methylenedioxybenzene,” J. Chromatogr. B: Anal. Technol. Biomed. Life Sci. 1029-1030, 102–105 (2016).
[Crossref]

Howard, V. J.

V. L. Roger, A. S. Go, D. M. Lloyd-Jones, R. J. Adams, J. D. Berry, T. M. Brown, M. R. Carnethon, S. Dai, G. de Simone, E. S. Ford, C. S. Fox, H. J. Fullerton, C. Gillespie, K. J. Greenlund, S. M. Hailpern, J. A. Heit, P. M. Ho, V. J. Howard, B. M. Kissela, S. J. Kittner, D. T. Lackland, J. H. Lichtman, L. D. Lisabeth, D. M. Makuc, G. M. Marcus, A. Marelli, D. B. Matchar, M. M. McDermott, J. B. Meigs, C. S. Moy, D. Mozaffarian, M. E. Mussolino, G. Nichol, N. P. Paynter, W. D. Rosamond, P. D. Sorlie, R. S. Stafford, T. N. Turan, M. B. Turner, N. D. Wong, and J. Wylie-Rosett, “Heart disease and stroke statistics-2011 update: a report from the American Heart Association,” Circulation 123(4), e18–e209 (2011).
[Crossref]

Huang, M.

P. S. Douglas, U. Hoffmann, M. R. Patel, D. B. Mark, H. R. Al-Khalidi, B. Cavanaugh, J. Cole, R. J. Dolor, C. B. Fordyce, M. Huang, M. A. Khan, A. S. Kosinski, M. W. Krucoff, V. Malhotra, M. H. Picard, J. E. Udelson, E. J. Velazquez, E. Yow, L. S. Cooper, and K. L. Lee, “Outcomes of Anatomical versus Functional Testing for Coronary Artery Disease,” N. Engl. J. Med. 372(14), 1291–1300 (2015).
[Crossref]

Huang, Y.

K. Ogurtsova, J. D. da Rocha Fernandes, Y. Huang, U. Linnenkamp, L. Guariguata, N. H. Cho, D. Cavan, J. E. Shaw, and L. E. Makaroff, “IDF Diabetes Atlas: Global estimates for the prevalence of diabetes for 2015 and 2040,” Diabetes Res. Clin. Pract. 128, 40–50 (2017).
[Crossref]

Incledon, B.

C. Polson, P. Sarkar, B. Incledon, V. Raguvaran, and R. Grant, “Optimization of protein precipitation based upon effectiveness of protein removal and ionization effect in liquid chromatography–tandem mass spectrometry,” J. Chromatogr. B: Anal. Technol. Biomed. Life Sci. 785(2), 263–275 (2003).
[Crossref]

Irrgang, F.

K. Dhananjayan, F. Irrgang, R. Raju, D. G. Harman, C. Moran, V. Srikanth, and G. Münch, “Determination of glyoxal and methylglyoxal in serum by UHPLC coupled with fluorescence detection,” Anal. Biochem. 573, 51–66 (2019).
[Crossref]

Kalra, D.

R. Heo, R. Nakazato, D. Kalra, and J. K. Min, “Noninvasive Imaging in Coronary Artery Disease,” Semin. Nucl. Med. 44(5), 398–409 (2014).
[Crossref]

Kandhro, A. J.

M. Y. Khuhawar, A. J. Kandhro, and F. D. Khand, “Liquid Chromatographic Determination of Glyoxal and Methylglyoxal from Serum of Diabetic Patients using Meso-Stilbenediamine as Derivatizing Reagent,” Anal. Lett. 39(10), 2205–2215 (2006).
[Crossref]

Khan, M. A.

P. S. Douglas, U. Hoffmann, M. R. Patel, D. B. Mark, H. R. Al-Khalidi, B. Cavanaugh, J. Cole, R. J. Dolor, C. B. Fordyce, M. Huang, M. A. Khan, A. S. Kosinski, M. W. Krucoff, V. Malhotra, M. H. Picard, J. E. Udelson, E. J. Velazquez, E. Yow, L. S. Cooper, and K. L. Lee, “Outcomes of Anatomical versus Functional Testing for Coronary Artery Disease,” N. Engl. J. Med. 372(14), 1291–1300 (2015).
[Crossref]

Khand, F. D.

M. Y. Khuhawar, A. J. Kandhro, and F. D. Khand, “Liquid Chromatographic Determination of Glyoxal and Methylglyoxal from Serum of Diabetic Patients using Meso-Stilbenediamine as Derivatizing Reagent,” Anal. Lett. 39(10), 2205–2215 (2006).
[Crossref]

Khuhawar, M. Y.

M. Y. Khuhawar, A. J. Kandhro, and F. D. Khand, “Liquid Chromatographic Determination of Glyoxal and Methylglyoxal from Serum of Diabetic Patients using Meso-Stilbenediamine as Derivatizing Reagent,” Anal. Lett. 39(10), 2205–2215 (2006).
[Crossref]

Kishikawa, N.

M. H. El-Maghrabey, T. Nakatani, N. Kishikawa, and N. Kuroda, “Aromatic aldehydes as selective fluorogenic derivatizing agents for α-dicarbonyl compounds. Application to HPLC analysis of some advanced glycation end products and oxidative stress biomarkers in human serum,” J. Pharm. Biomed. Anal. 158, 38–46 (2018).
[Crossref]

Kissela, B. M.

V. L. Roger, A. S. Go, D. M. Lloyd-Jones, R. J. Adams, J. D. Berry, T. M. Brown, M. R. Carnethon, S. Dai, G. de Simone, E. S. Ford, C. S. Fox, H. J. Fullerton, C. Gillespie, K. J. Greenlund, S. M. Hailpern, J. A. Heit, P. M. Ho, V. J. Howard, B. M. Kissela, S. J. Kittner, D. T. Lackland, J. H. Lichtman, L. D. Lisabeth, D. M. Makuc, G. M. Marcus, A. Marelli, D. B. Matchar, M. M. McDermott, J. B. Meigs, C. S. Moy, D. Mozaffarian, M. E. Mussolino, G. Nichol, N. P. Paynter, W. D. Rosamond, P. D. Sorlie, R. S. Stafford, T. N. Turan, M. B. Turner, N. D. Wong, and J. Wylie-Rosett, “Heart disease and stroke statistics-2011 update: a report from the American Heart Association,” Circulation 123(4), e18–e209 (2011).
[Crossref]

Kittner, S. J.

V. L. Roger, A. S. Go, D. M. Lloyd-Jones, R. J. Adams, J. D. Berry, T. M. Brown, M. R. Carnethon, S. Dai, G. de Simone, E. S. Ford, C. S. Fox, H. J. Fullerton, C. Gillespie, K. J. Greenlund, S. M. Hailpern, J. A. Heit, P. M. Ho, V. J. Howard, B. M. Kissela, S. J. Kittner, D. T. Lackland, J. H. Lichtman, L. D. Lisabeth, D. M. Makuc, G. M. Marcus, A. Marelli, D. B. Matchar, M. M. McDermott, J. B. Meigs, C. S. Moy, D. Mozaffarian, M. E. Mussolino, G. Nichol, N. P. Paynter, W. D. Rosamond, P. D. Sorlie, R. S. Stafford, T. N. Turan, M. B. Turner, N. D. Wong, and J. Wylie-Rosett, “Heart disease and stroke statistics-2011 update: a report from the American Heart Association,” Circulation 123(4), e18–e209 (2011).
[Crossref]

Koike, S.

Y. Ogasawara, R. Tanaka, S. Koike, Y. Horiuchi, M. Miyashita, and M. Arai, “Determination of methylglyoxal in human blood plasma using fluorescence high performance liquid chromatography after derivatization with 1,2-diamino-4,5-methylenedioxybenzene,” J. Chromatogr. B: Anal. Technol. Biomed. Life Sci. 1029-1030, 102–105 (2016).
[Crossref]

Konovalova, G.

V. Lankin, G. Konovalova, A. Tikhaze, K. Shumaev, E. Kumskova, and M. Viigimaa, “The initiation of free radical peroxidation of low-density lipoproteins by glucose and its metabolite methylglyoxal: a common molecular mechanism of vascular wall injure in atherosclerosis and diabetes,” Mol. Cell. Biochem. 395(1-2), 241–252 (2014).
[Crossref]

Kosinski, A. S.

P. S. Douglas, U. Hoffmann, M. R. Patel, D. B. Mark, H. R. Al-Khalidi, B. Cavanaugh, J. Cole, R. J. Dolor, C. B. Fordyce, M. Huang, M. A. Khan, A. S. Kosinski, M. W. Krucoff, V. Malhotra, M. H. Picard, J. E. Udelson, E. J. Velazquez, E. Yow, L. S. Cooper, and K. L. Lee, “Outcomes of Anatomical versus Functional Testing for Coronary Artery Disease,” N. Engl. J. Med. 372(14), 1291–1300 (2015).
[Crossref]

Krucoff, M. W.

P. S. Douglas, U. Hoffmann, M. R. Patel, D. B. Mark, H. R. Al-Khalidi, B. Cavanaugh, J. Cole, R. J. Dolor, C. B. Fordyce, M. Huang, M. A. Khan, A. S. Kosinski, M. W. Krucoff, V. Malhotra, M. H. Picard, J. E. Udelson, E. J. Velazquez, E. Yow, L. S. Cooper, and K. L. Lee, “Outcomes of Anatomical versus Functional Testing for Coronary Artery Disease,” N. Engl. J. Med. 372(14), 1291–1300 (2015).
[Crossref]

Kumskova, E.

V. Lankin, G. Konovalova, A. Tikhaze, K. Shumaev, E. Kumskova, and M. Viigimaa, “The initiation of free radical peroxidation of low-density lipoproteins by glucose and its metabolite methylglyoxal: a common molecular mechanism of vascular wall injure in atherosclerosis and diabetes,” Mol. Cell. Biochem. 395(1-2), 241–252 (2014).
[Crossref]

Kuroda, N.

M. H. El-Maghrabey, T. Nakatani, N. Kishikawa, and N. Kuroda, “Aromatic aldehydes as selective fluorogenic derivatizing agents for α-dicarbonyl compounds. Application to HPLC analysis of some advanced glycation end products and oxidative stress biomarkers in human serum,” J. Pharm. Biomed. Anal. 158, 38–46 (2018).
[Crossref]

Lackland, D. T.

V. L. Roger, A. S. Go, D. M. Lloyd-Jones, R. J. Adams, J. D. Berry, T. M. Brown, M. R. Carnethon, S. Dai, G. de Simone, E. S. Ford, C. S. Fox, H. J. Fullerton, C. Gillespie, K. J. Greenlund, S. M. Hailpern, J. A. Heit, P. M. Ho, V. J. Howard, B. M. Kissela, S. J. Kittner, D. T. Lackland, J. H. Lichtman, L. D. Lisabeth, D. M. Makuc, G. M. Marcus, A. Marelli, D. B. Matchar, M. M. McDermott, J. B. Meigs, C. S. Moy, D. Mozaffarian, M. E. Mussolino, G. Nichol, N. P. Paynter, W. D. Rosamond, P. D. Sorlie, R. S. Stafford, T. N. Turan, M. B. Turner, N. D. Wong, and J. Wylie-Rosett, “Heart disease and stroke statistics-2011 update: a report from the American Heart Association,” Circulation 123(4), e18–e209 (2011).
[Crossref]

Lahiri, A.

D. Engelbertsen, D. V. Anand, G. N. Fredrikson, D. Hopkins, R. Corder, P. K. Shah, A. Lahiri, J. Nilsson, and E. Bengtsson, “High levels of IgM against methylglyoxal-modified apolipoprotein B100 are associated with less coronary artery calcification in patients with type 2 diabetes,” J. Intern. Med. 271(1), 82–89 (2012).
[Crossref]

Lankin, V.

V. Lankin, G. Konovalova, A. Tikhaze, K. Shumaev, E. Kumskova, and M. Viigimaa, “The initiation of free radical peroxidation of low-density lipoproteins by glucose and its metabolite methylglyoxal: a common molecular mechanism of vascular wall injure in atherosclerosis and diabetes,” Mol. Cell. Biochem. 395(1-2), 241–252 (2014).
[Crossref]

Lee, K. L.

P. S. Douglas, U. Hoffmann, M. R. Patel, D. B. Mark, H. R. Al-Khalidi, B. Cavanaugh, J. Cole, R. J. Dolor, C. B. Fordyce, M. Huang, M. A. Khan, A. S. Kosinski, M. W. Krucoff, V. Malhotra, M. H. Picard, J. E. Udelson, E. J. Velazquez, E. Yow, L. S. Cooper, and K. L. Lee, “Outcomes of Anatomical versus Functional Testing for Coronary Artery Disease,” N. Engl. J. Med. 372(14), 1291–1300 (2015).
[Crossref]

Li, M.

J. Zhang, H. Zhang, M. Li, D. Zhang, Q. Chu, and J. Ye, “A novel capillary electrophoretic method for determining methylglyoxal and glyoxal in urine and water samples,” J. Chromatogr. A 1217(31), 5124–5129 (2010).
[Crossref]

Li, Q. R.

Y. Dai, Y. Shen, Q. R. Li, F. H. Ding, X. Q. Wang, H. J. Liu, X. X. Yan, L. J. Wang, K. Yang, H. B. Wang, Q. J. Chen, W. F. Shen, R. Y. Zhang, and L. Lu, “Glycated Apolipoprotein A-IV Induces Atherogenesis in Patients With CAD in Type 2 Diabetes,” J. Am. Coll. Cardiol. 70(16), 2006–2019 (2017).
[Crossref]

Lichtman, J. H.

V. L. Roger, A. S. Go, D. M. Lloyd-Jones, R. J. Adams, J. D. Berry, T. M. Brown, M. R. Carnethon, S. Dai, G. de Simone, E. S. Ford, C. S. Fox, H. J. Fullerton, C. Gillespie, K. J. Greenlund, S. M. Hailpern, J. A. Heit, P. M. Ho, V. J. Howard, B. M. Kissela, S. J. Kittner, D. T. Lackland, J. H. Lichtman, L. D. Lisabeth, D. M. Makuc, G. M. Marcus, A. Marelli, D. B. Matchar, M. M. McDermott, J. B. Meigs, C. S. Moy, D. Mozaffarian, M. E. Mussolino, G. Nichol, N. P. Paynter, W. D. Rosamond, P. D. Sorlie, R. S. Stafford, T. N. Turan, M. B. Turner, N. D. Wong, and J. Wylie-Rosett, “Heart disease and stroke statistics-2011 update: a report from the American Heart Association,” Circulation 123(4), e18–e209 (2011).
[Crossref]

Linnenkamp, U.

K. Ogurtsova, J. D. da Rocha Fernandes, Y. Huang, U. Linnenkamp, L. Guariguata, N. H. Cho, D. Cavan, J. E. Shaw, and L. E. Makaroff, “IDF Diabetes Atlas: Global estimates for the prevalence of diabetes for 2015 and 2040,” Diabetes Res. Clin. Pract. 128, 40–50 (2017).
[Crossref]

Lisabeth, L. D.

V. L. Roger, A. S. Go, D. M. Lloyd-Jones, R. J. Adams, J. D. Berry, T. M. Brown, M. R. Carnethon, S. Dai, G. de Simone, E. S. Ford, C. S. Fox, H. J. Fullerton, C. Gillespie, K. J. Greenlund, S. M. Hailpern, J. A. Heit, P. M. Ho, V. J. Howard, B. M. Kissela, S. J. Kittner, D. T. Lackland, J. H. Lichtman, L. D. Lisabeth, D. M. Makuc, G. M. Marcus, A. Marelli, D. B. Matchar, M. M. McDermott, J. B. Meigs, C. S. Moy, D. Mozaffarian, M. E. Mussolino, G. Nichol, N. P. Paynter, W. D. Rosamond, P. D. Sorlie, R. S. Stafford, T. N. Turan, M. B. Turner, N. D. Wong, and J. Wylie-Rosett, “Heart disease and stroke statistics-2011 update: a report from the American Heart Association,” Circulation 123(4), e18–e209 (2011).
[Crossref]

Liu, H. J.

Y. Dai, Y. Shen, Q. R. Li, F. H. Ding, X. Q. Wang, H. J. Liu, X. X. Yan, L. J. Wang, K. Yang, H. B. Wang, Q. J. Chen, W. F. Shen, R. Y. Zhang, and L. Lu, “Glycated Apolipoprotein A-IV Induces Atherogenesis in Patients With CAD in Type 2 Diabetes,” J. Am. Coll. Cardiol. 70(16), 2006–2019 (2017).
[Crossref]

Lloyd-Jones, D. M.

F. S. Ahmad, H. Ning, J. D. Rich, C. W. Yancy, D. M. Lloyd-Jones, and J. T. Wilkins, “Hypertension, Obesity, Diabetes, and Heart Failure-Free Survival,” JACC: Heart Failure 4(12), 911–919 (2016).
[Crossref]

V. L. Roger, A. S. Go, D. M. Lloyd-Jones, R. J. Adams, J. D. Berry, T. M. Brown, M. R. Carnethon, S. Dai, G. de Simone, E. S. Ford, C. S. Fox, H. J. Fullerton, C. Gillespie, K. J. Greenlund, S. M. Hailpern, J. A. Heit, P. M. Ho, V. J. Howard, B. M. Kissela, S. J. Kittner, D. T. Lackland, J. H. Lichtman, L. D. Lisabeth, D. M. Makuc, G. M. Marcus, A. Marelli, D. B. Matchar, M. M. McDermott, J. B. Meigs, C. S. Moy, D. Mozaffarian, M. E. Mussolino, G. Nichol, N. P. Paynter, W. D. Rosamond, P. D. Sorlie, R. S. Stafford, T. N. Turan, M. B. Turner, N. D. Wong, and J. Wylie-Rosett, “Heart disease and stroke statistics-2011 update: a report from the American Heart Association,” Circulation 123(4), e18–e209 (2011).
[Crossref]

Lu, L.

Y. Dai, Y. Shen, Q. R. Li, F. H. Ding, X. Q. Wang, H. J. Liu, X. X. Yan, L. J. Wang, K. Yang, H. B. Wang, Q. J. Chen, W. F. Shen, R. Y. Zhang, and L. Lu, “Glycated Apolipoprotein A-IV Induces Atherogenesis in Patients With CAD in Type 2 Diabetes,” J. Am. Coll. Cardiol. 70(16), 2006–2019 (2017).
[Crossref]

Makaroff, L. E.

K. Ogurtsova, J. D. da Rocha Fernandes, Y. Huang, U. Linnenkamp, L. Guariguata, N. H. Cho, D. Cavan, J. E. Shaw, and L. E. Makaroff, “IDF Diabetes Atlas: Global estimates for the prevalence of diabetes for 2015 and 2040,” Diabetes Res. Clin. Pract. 128, 40–50 (2017).
[Crossref]

Makuc, D. M.

V. L. Roger, A. S. Go, D. M. Lloyd-Jones, R. J. Adams, J. D. Berry, T. M. Brown, M. R. Carnethon, S. Dai, G. de Simone, E. S. Ford, C. S. Fox, H. J. Fullerton, C. Gillespie, K. J. Greenlund, S. M. Hailpern, J. A. Heit, P. M. Ho, V. J. Howard, B. M. Kissela, S. J. Kittner, D. T. Lackland, J. H. Lichtman, L. D. Lisabeth, D. M. Makuc, G. M. Marcus, A. Marelli, D. B. Matchar, M. M. McDermott, J. B. Meigs, C. S. Moy, D. Mozaffarian, M. E. Mussolino, G. Nichol, N. P. Paynter, W. D. Rosamond, P. D. Sorlie, R. S. Stafford, T. N. Turan, M. B. Turner, N. D. Wong, and J. Wylie-Rosett, “Heart disease and stroke statistics-2011 update: a report from the American Heart Association,” Circulation 123(4), e18–e209 (2011).
[Crossref]

Malhotra, V.

P. S. Douglas, U. Hoffmann, M. R. Patel, D. B. Mark, H. R. Al-Khalidi, B. Cavanaugh, J. Cole, R. J. Dolor, C. B. Fordyce, M. Huang, M. A. Khan, A. S. Kosinski, M. W. Krucoff, V. Malhotra, M. H. Picard, J. E. Udelson, E. J. Velazquez, E. Yow, L. S. Cooper, and K. L. Lee, “Outcomes of Anatomical versus Functional Testing for Coronary Artery Disease,” N. Engl. J. Med. 372(14), 1291–1300 (2015).
[Crossref]

Marcus, G. M.

V. L. Roger, A. S. Go, D. M. Lloyd-Jones, R. J. Adams, J. D. Berry, T. M. Brown, M. R. Carnethon, S. Dai, G. de Simone, E. S. Ford, C. S. Fox, H. J. Fullerton, C. Gillespie, K. J. Greenlund, S. M. Hailpern, J. A. Heit, P. M. Ho, V. J. Howard, B. M. Kissela, S. J. Kittner, D. T. Lackland, J. H. Lichtman, L. D. Lisabeth, D. M. Makuc, G. M. Marcus, A. Marelli, D. B. Matchar, M. M. McDermott, J. B. Meigs, C. S. Moy, D. Mozaffarian, M. E. Mussolino, G. Nichol, N. P. Paynter, W. D. Rosamond, P. D. Sorlie, R. S. Stafford, T. N. Turan, M. B. Turner, N. D. Wong, and J. Wylie-Rosett, “Heart disease and stroke statistics-2011 update: a report from the American Heart Association,” Circulation 123(4), e18–e209 (2011).
[Crossref]

Marelli, A.

V. L. Roger, A. S. Go, D. M. Lloyd-Jones, R. J. Adams, J. D. Berry, T. M. Brown, M. R. Carnethon, S. Dai, G. de Simone, E. S. Ford, C. S. Fox, H. J. Fullerton, C. Gillespie, K. J. Greenlund, S. M. Hailpern, J. A. Heit, P. M. Ho, V. J. Howard, B. M. Kissela, S. J. Kittner, D. T. Lackland, J. H. Lichtman, L. D. Lisabeth, D. M. Makuc, G. M. Marcus, A. Marelli, D. B. Matchar, M. M. McDermott, J. B. Meigs, C. S. Moy, D. Mozaffarian, M. E. Mussolino, G. Nichol, N. P. Paynter, W. D. Rosamond, P. D. Sorlie, R. S. Stafford, T. N. Turan, M. B. Turner, N. D. Wong, and J. Wylie-Rosett, “Heart disease and stroke statistics-2011 update: a report from the American Heart Association,” Circulation 123(4), e18–e209 (2011).
[Crossref]

Margeirsdottir, H. D.

M. Heier, H. D. Margeirsdottir, P. A. Torjesen, I. Seljeflot, K. H. Stensæth, M. Gaarder, C. Brunborg, K. F. Hanssen, and K. Dahl-Jørgensen, “The advanced glycation end product methylglyoxal-derived hydroimidazolone-1 and early signs of atherosclerosis in childhood diabetes,” Diabetes Vasc. Dis. Res. 12(2), 139–145 (2015).
[Crossref]

Mark, D. B.

P. S. Douglas, U. Hoffmann, M. R. Patel, D. B. Mark, H. R. Al-Khalidi, B. Cavanaugh, J. Cole, R. J. Dolor, C. B. Fordyce, M. Huang, M. A. Khan, A. S. Kosinski, M. W. Krucoff, V. Malhotra, M. H. Picard, J. E. Udelson, E. J. Velazquez, E. Yow, L. S. Cooper, and K. L. Lee, “Outcomes of Anatomical versus Functional Testing for Coronary Artery Disease,” N. Engl. J. Med. 372(14), 1291–1300 (2015).
[Crossref]

Matchar, D. B.

V. L. Roger, A. S. Go, D. M. Lloyd-Jones, R. J. Adams, J. D. Berry, T. M. Brown, M. R. Carnethon, S. Dai, G. de Simone, E. S. Ford, C. S. Fox, H. J. Fullerton, C. Gillespie, K. J. Greenlund, S. M. Hailpern, J. A. Heit, P. M. Ho, V. J. Howard, B. M. Kissela, S. J. Kittner, D. T. Lackland, J. H. Lichtman, L. D. Lisabeth, D. M. Makuc, G. M. Marcus, A. Marelli, D. B. Matchar, M. M. McDermott, J. B. Meigs, C. S. Moy, D. Mozaffarian, M. E. Mussolino, G. Nichol, N. P. Paynter, W. D. Rosamond, P. D. Sorlie, R. S. Stafford, T. N. Turan, M. B. Turner, N. D. Wong, and J. Wylie-Rosett, “Heart disease and stroke statistics-2011 update: a report from the American Heart Association,” Circulation 123(4), e18–e209 (2011).
[Crossref]

McCabe, C. H.

S. M. Donahoe, G. C. Stewart, C. H. McCabe, S. Mohanavelu, S. A. Murphy, C. P. Cannon, and E. M. Antman, “Diabetes and Mortality Following Acute Coronary Syndromes,” JAMA 298(7), 765–775 (2007).
[Crossref]

McDermott, M. M.

V. L. Roger, A. S. Go, D. M. Lloyd-Jones, R. J. Adams, J. D. Berry, T. M. Brown, M. R. Carnethon, S. Dai, G. de Simone, E. S. Ford, C. S. Fox, H. J. Fullerton, C. Gillespie, K. J. Greenlund, S. M. Hailpern, J. A. Heit, P. M. Ho, V. J. Howard, B. M. Kissela, S. J. Kittner, D. T. Lackland, J. H. Lichtman, L. D. Lisabeth, D. M. Makuc, G. M. Marcus, A. Marelli, D. B. Matchar, M. M. McDermott, J. B. Meigs, C. S. Moy, D. Mozaffarian, M. E. Mussolino, G. Nichol, N. P. Paynter, W. D. Rosamond, P. D. Sorlie, R. S. Stafford, T. N. Turan, M. B. Turner, N. D. Wong, and J. Wylie-Rosett, “Heart disease and stroke statistics-2011 update: a report from the American Heart Association,” Circulation 123(4), e18–e209 (2011).
[Crossref]

Meigs, J. B.

V. L. Roger, A. S. Go, D. M. Lloyd-Jones, R. J. Adams, J. D. Berry, T. M. Brown, M. R. Carnethon, S. Dai, G. de Simone, E. S. Ford, C. S. Fox, H. J. Fullerton, C. Gillespie, K. J. Greenlund, S. M. Hailpern, J. A. Heit, P. M. Ho, V. J. Howard, B. M. Kissela, S. J. Kittner, D. T. Lackland, J. H. Lichtman, L. D. Lisabeth, D. M. Makuc, G. M. Marcus, A. Marelli, D. B. Matchar, M. M. McDermott, J. B. Meigs, C. S. Moy, D. Mozaffarian, M. E. Mussolino, G. Nichol, N. P. Paynter, W. D. Rosamond, P. D. Sorlie, R. S. Stafford, T. N. Turan, M. B. Turner, N. D. Wong, and J. Wylie-Rosett, “Heart disease and stroke statistics-2011 update: a report from the American Heart Association,” Circulation 123(4), e18–e209 (2011).
[Crossref]

Miller, A. K.

A. Moraru, J. Wiederstein, D. Pfaff, T. Fleming, A. K. Miller, P. Nawroth, and A. A. Teleman, “Elevated Levels of the Reactive Metabolite Methylglyoxal Recapitulate Progression of Type 2 Diabetes,” Cell Metab. 27(4), 926–934.e8 (2018).
[Crossref]

Min, J. K.

R. Heo, R. Nakazato, D. Kalra, and J. K. Min, “Noninvasive Imaging in Coronary Artery Disease,” Semin. Nucl. Med. 44(5), 398–409 (2014).
[Crossref]

Mintz, G. S.

G. S. Mintz and G. Guagliumi, “Intravascular imaging in coronary artery disease,” Lancet 390(10096), 793–809 (2017).
[Crossref]

Miyashita, M.

Y. Ogasawara, R. Tanaka, S. Koike, Y. Horiuchi, M. Miyashita, and M. Arai, “Determination of methylglyoxal in human blood plasma using fluorescence high performance liquid chromatography after derivatization with 1,2-diamino-4,5-methylenedioxybenzene,” J. Chromatogr. B: Anal. Technol. Biomed. Life Sci. 1029-1030, 102–105 (2016).
[Crossref]

Mohanavelu, S.

S. M. Donahoe, G. C. Stewart, C. H. McCabe, S. Mohanavelu, S. A. Murphy, C. P. Cannon, and E. M. Antman, “Diabetes and Mortality Following Acute Coronary Syndromes,” JAMA 298(7), 765–775 (2007).
[Crossref]

Moran, C.

K. Dhananjayan, F. Irrgang, R. Raju, D. G. Harman, C. Moran, V. Srikanth, and G. Münch, “Determination of glyoxal and methylglyoxal in serum by UHPLC coupled with fluorescence detection,” Anal. Biochem. 573, 51–66 (2019).
[Crossref]

Moraru, A.

A. Moraru, J. Wiederstein, D. Pfaff, T. Fleming, A. K. Miller, P. Nawroth, and A. A. Teleman, “Elevated Levels of the Reactive Metabolite Methylglyoxal Recapitulate Progression of Type 2 Diabetes,” Cell Metab. 27(4), 926–934.e8 (2018).
[Crossref]

Morgan, P. E.

P. E. Morgan, P. J. Sheahan, D. I. Pattison, and M. J. Davies, “Methylglyoxal adversely affects the cellular redox balance in human coronary artery endothelial cells: A potential mechanism of action via modification of critical arginine residues,” Free Radical Biol. Med. 53, S147–S148 (2012).
[Crossref]

Motas, M.

M. Pastor-Belda, A. J. Fernández-García, N. Campillo, M. D. Pérez-Cárceles, M. Motas, M. Hernández-Córdoba, and P. Viñas, “Glyoxal and methylglyoxal as urinary markers of diabetes. Determination using a dispersive liquid–liquid microextraction procedure combined with gas chromatography–mass spectrometry,” J. Chromatogr. A 1509, 43–49 (2017).
[Crossref]

Moy, C. S.

V. L. Roger, A. S. Go, D. M. Lloyd-Jones, R. J. Adams, J. D. Berry, T. M. Brown, M. R. Carnethon, S. Dai, G. de Simone, E. S. Ford, C. S. Fox, H. J. Fullerton, C. Gillespie, K. J. Greenlund, S. M. Hailpern, J. A. Heit, P. M. Ho, V. J. Howard, B. M. Kissela, S. J. Kittner, D. T. Lackland, J. H. Lichtman, L. D. Lisabeth, D. M. Makuc, G. M. Marcus, A. Marelli, D. B. Matchar, M. M. McDermott, J. B. Meigs, C. S. Moy, D. Mozaffarian, M. E. Mussolino, G. Nichol, N. P. Paynter, W. D. Rosamond, P. D. Sorlie, R. S. Stafford, T. N. Turan, M. B. Turner, N. D. Wong, and J. Wylie-Rosett, “Heart disease and stroke statistics-2011 update: a report from the American Heart Association,” Circulation 123(4), e18–e209 (2011).
[Crossref]

Mozaffarian, D.

V. L. Roger, A. S. Go, D. M. Lloyd-Jones, R. J. Adams, J. D. Berry, T. M. Brown, M. R. Carnethon, S. Dai, G. de Simone, E. S. Ford, C. S. Fox, H. J. Fullerton, C. Gillespie, K. J. Greenlund, S. M. Hailpern, J. A. Heit, P. M. Ho, V. J. Howard, B. M. Kissela, S. J. Kittner, D. T. Lackland, J. H. Lichtman, L. D. Lisabeth, D. M. Makuc, G. M. Marcus, A. Marelli, D. B. Matchar, M. M. McDermott, J. B. Meigs, C. S. Moy, D. Mozaffarian, M. E. Mussolino, G. Nichol, N. P. Paynter, W. D. Rosamond, P. D. Sorlie, R. S. Stafford, T. N. Turan, M. B. Turner, N. D. Wong, and J. Wylie-Rosett, “Heart disease and stroke statistics-2011 update: a report from the American Heart Association,” Circulation 123(4), e18–e209 (2011).
[Crossref]

Münch, G.

K. Dhananjayan, F. Irrgang, R. Raju, D. G. Harman, C. Moran, V. Srikanth, and G. Münch, “Determination of glyoxal and methylglyoxal in serum by UHPLC coupled with fluorescence detection,” Anal. Biochem. 573, 51–66 (2019).
[Crossref]

Murphy, S. A.

S. M. Donahoe, G. C. Stewart, C. H. McCabe, S. Mohanavelu, S. A. Murphy, C. P. Cannon, and E. M. Antman, “Diabetes and Mortality Following Acute Coronary Syndromes,” JAMA 298(7), 765–775 (2007).
[Crossref]

Mussolino, M. E.

V. L. Roger, A. S. Go, D. M. Lloyd-Jones, R. J. Adams, J. D. Berry, T. M. Brown, M. R. Carnethon, S. Dai, G. de Simone, E. S. Ford, C. S. Fox, H. J. Fullerton, C. Gillespie, K. J. Greenlund, S. M. Hailpern, J. A. Heit, P. M. Ho, V. J. Howard, B. M. Kissela, S. J. Kittner, D. T. Lackland, J. H. Lichtman, L. D. Lisabeth, D. M. Makuc, G. M. Marcus, A. Marelli, D. B. Matchar, M. M. McDermott, J. B. Meigs, C. S. Moy, D. Mozaffarian, M. E. Mussolino, G. Nichol, N. P. Paynter, W. D. Rosamond, P. D. Sorlie, R. S. Stafford, T. N. Turan, M. B. Turner, N. D. Wong, and J. Wylie-Rosett, “Heart disease and stroke statistics-2011 update: a report from the American Heart Association,” Circulation 123(4), e18–e209 (2011).
[Crossref]

Nakatani, T.

M. H. El-Maghrabey, T. Nakatani, N. Kishikawa, and N. Kuroda, “Aromatic aldehydes as selective fluorogenic derivatizing agents for α-dicarbonyl compounds. Application to HPLC analysis of some advanced glycation end products and oxidative stress biomarkers in human serum,” J. Pharm. Biomed. Anal. 158, 38–46 (2018).
[Crossref]

Nakazato, R.

R. Heo, R. Nakazato, D. Kalra, and J. K. Min, “Noninvasive Imaging in Coronary Artery Disease,” Semin. Nucl. Med. 44(5), 398–409 (2014).
[Crossref]

Nawroth, P.

A. Moraru, J. Wiederstein, D. Pfaff, T. Fleming, A. K. Miller, P. Nawroth, and A. A. Teleman, “Elevated Levels of the Reactive Metabolite Methylglyoxal Recapitulate Progression of Type 2 Diabetes,” Cell Metab. 27(4), 926–934.e8 (2018).
[Crossref]

Nemet, I.

I. Nemet, L. Varga-Defterdarović, and Z. Turk, “Preparation and quantification of methylglyoxal in human plasma using reverse-phase high-performance liquid chromatography,” Clin. Biochem. 37(10), 875–881 (2004).
[Crossref]

Neng, N. R.

N. R. Neng, C. A. A. Cordeiro, A. P. Freire, and J. M. F. Nogueira, “Determination of glyoxal and methylglyoxal in environmental and biological matrices by stir bar sorptive extraction with in-situ derivatization,” J. Chromatogr. A 1169(1-2), 47–52 (2007).
[Crossref]

Nichol, G.

V. L. Roger, A. S. Go, D. M. Lloyd-Jones, R. J. Adams, J. D. Berry, T. M. Brown, M. R. Carnethon, S. Dai, G. de Simone, E. S. Ford, C. S. Fox, H. J. Fullerton, C. Gillespie, K. J. Greenlund, S. M. Hailpern, J. A. Heit, P. M. Ho, V. J. Howard, B. M. Kissela, S. J. Kittner, D. T. Lackland, J. H. Lichtman, L. D. Lisabeth, D. M. Makuc, G. M. Marcus, A. Marelli, D. B. Matchar, M. M. McDermott, J. B. Meigs, C. S. Moy, D. Mozaffarian, M. E. Mussolino, G. Nichol, N. P. Paynter, W. D. Rosamond, P. D. Sorlie, R. S. Stafford, T. N. Turan, M. B. Turner, N. D. Wong, and J. Wylie-Rosett, “Heart disease and stroke statistics-2011 update: a report from the American Heart Association,” Circulation 123(4), e18–e209 (2011).
[Crossref]

Nilsson, J.

D. Engelbertsen, D. V. Anand, G. N. Fredrikson, D. Hopkins, R. Corder, P. K. Shah, A. Lahiri, J. Nilsson, and E. Bengtsson, “High levels of IgM against methylglyoxal-modified apolipoprotein B100 are associated with less coronary artery calcification in patients with type 2 diabetes,” J. Intern. Med. 271(1), 82–89 (2012).
[Crossref]

Ning, H.

F. S. Ahmad, H. Ning, J. D. Rich, C. W. Yancy, D. M. Lloyd-Jones, and J. T. Wilkins, “Hypertension, Obesity, Diabetes, and Heart Failure-Free Survival,” JACC: Heart Failure 4(12), 911–919 (2016).
[Crossref]

Nogueira, J. M. F.

N. R. Neng, C. A. A. Cordeiro, A. P. Freire, and J. M. F. Nogueira, “Determination of glyoxal and methylglyoxal in environmental and biological matrices by stir bar sorptive extraction with in-situ derivatization,” J. Chromatogr. A 1169(1-2), 47–52 (2007).
[Crossref]

Ogasawara, Y.

Y. Ogasawara, R. Tanaka, S. Koike, Y. Horiuchi, M. Miyashita, and M. Arai, “Determination of methylglyoxal in human blood plasma using fluorescence high performance liquid chromatography after derivatization with 1,2-diamino-4,5-methylenedioxybenzene,” J. Chromatogr. B: Anal. Technol. Biomed. Life Sci. 1029-1030, 102–105 (2016).
[Crossref]

Ogurtsova, K.

K. Ogurtsova, J. D. da Rocha Fernandes, Y. Huang, U. Linnenkamp, L. Guariguata, N. H. Cho, D. Cavan, J. E. Shaw, and L. E. Makaroff, “IDF Diabetes Atlas: Global estimates for the prevalence of diabetes for 2015 and 2040,” Diabetes Res. Clin. Pract. 128, 40–50 (2017).
[Crossref]

Orth, S. R.

E. Ritz and S. R. Orth, “Nephropathy in Patients with Type 2 Diabetes Mellitus,” N. Engl. J. Med. 341(15), 1127–1133 (1999).
[Crossref]

Pastor-Belda, M.

M. Pastor-Belda, A. J. Fernández-García, N. Campillo, M. D. Pérez-Cárceles, M. Motas, M. Hernández-Córdoba, and P. Viñas, “Glyoxal and methylglyoxal as urinary markers of diabetes. Determination using a dispersive liquid–liquid microextraction procedure combined with gas chromatography–mass spectrometry,” J. Chromatogr. A 1509, 43–49 (2017).
[Crossref]

Patel, M. R.

P. S. Douglas, U. Hoffmann, M. R. Patel, D. B. Mark, H. R. Al-Khalidi, B. Cavanaugh, J. Cole, R. J. Dolor, C. B. Fordyce, M. Huang, M. A. Khan, A. S. Kosinski, M. W. Krucoff, V. Malhotra, M. H. Picard, J. E. Udelson, E. J. Velazquez, E. Yow, L. S. Cooper, and K. L. Lee, “Outcomes of Anatomical versus Functional Testing for Coronary Artery Disease,” N. Engl. J. Med. 372(14), 1291–1300 (2015).
[Crossref]

Pattison, D. I.

P. E. Morgan, P. J. Sheahan, D. I. Pattison, and M. J. Davies, “Methylglyoxal adversely affects the cellular redox balance in human coronary artery endothelial cells: A potential mechanism of action via modification of critical arginine residues,” Free Radical Biol. Med. 53, S147–S148 (2012).
[Crossref]

Paynter, N. P.

V. L. Roger, A. S. Go, D. M. Lloyd-Jones, R. J. Adams, J. D. Berry, T. M. Brown, M. R. Carnethon, S. Dai, G. de Simone, E. S. Ford, C. S. Fox, H. J. Fullerton, C. Gillespie, K. J. Greenlund, S. M. Hailpern, J. A. Heit, P. M. Ho, V. J. Howard, B. M. Kissela, S. J. Kittner, D. T. Lackland, J. H. Lichtman, L. D. Lisabeth, D. M. Makuc, G. M. Marcus, A. Marelli, D. B. Matchar, M. M. McDermott, J. B. Meigs, C. S. Moy, D. Mozaffarian, M. E. Mussolino, G. Nichol, N. P. Paynter, W. D. Rosamond, P. D. Sorlie, R. S. Stafford, T. N. Turan, M. B. Turner, N. D. Wong, and J. Wylie-Rosett, “Heart disease and stroke statistics-2011 update: a report from the American Heart Association,” Circulation 123(4), e18–e209 (2011).
[Crossref]

Pérez-Cárceles, M. D.

M. Pastor-Belda, A. J. Fernández-García, N. Campillo, M. D. Pérez-Cárceles, M. Motas, M. Hernández-Córdoba, and P. Viñas, “Glyoxal and methylglyoxal as urinary markers of diabetes. Determination using a dispersive liquid–liquid microextraction procedure combined with gas chromatography–mass spectrometry,” J. Chromatogr. A 1509, 43–49 (2017).
[Crossref]

Pfaff, D.

A. Moraru, J. Wiederstein, D. Pfaff, T. Fleming, A. K. Miller, P. Nawroth, and A. A. Teleman, “Elevated Levels of the Reactive Metabolite Methylglyoxal Recapitulate Progression of Type 2 Diabetes,” Cell Metab. 27(4), 926–934.e8 (2018).
[Crossref]

Picard, M. H.

P. S. Douglas, U. Hoffmann, M. R. Patel, D. B. Mark, H. R. Al-Khalidi, B. Cavanaugh, J. Cole, R. J. Dolor, C. B. Fordyce, M. Huang, M. A. Khan, A. S. Kosinski, M. W. Krucoff, V. Malhotra, M. H. Picard, J. E. Udelson, E. J. Velazquez, E. Yow, L. S. Cooper, and K. L. Lee, “Outcomes of Anatomical versus Functional Testing for Coronary Artery Disease,” N. Engl. J. Med. 372(14), 1291–1300 (2015).
[Crossref]

Polson, C.

C. Polson, P. Sarkar, B. Incledon, V. Raguvaran, and R. Grant, “Optimization of protein precipitation based upon effectiveness of protein removal and ionization effect in liquid chromatography–tandem mass spectrometry,” J. Chromatogr. B: Anal. Technol. Biomed. Life Sci. 785(2), 263–275 (2003).
[Crossref]

Rabbani, N.

N. Rabbani and P. J. Thornalley, “Measurement of methylglyoxal by stable isotopic dilution analysis LC-MS/MS with corroborative prediction in physiological samples,” Nat. Protoc. 9(8), 1969–1979 (2014).
[Crossref]

Raguvaran, V.

C. Polson, P. Sarkar, B. Incledon, V. Raguvaran, and R. Grant, “Optimization of protein precipitation based upon effectiveness of protein removal and ionization effect in liquid chromatography–tandem mass spectrometry,” J. Chromatogr. B: Anal. Technol. Biomed. Life Sci. 785(2), 263–275 (2003).
[Crossref]

Raju, R.

K. Dhananjayan, F. Irrgang, R. Raju, D. G. Harman, C. Moran, V. Srikanth, and G. Münch, “Determination of glyoxal and methylglyoxal in serum by UHPLC coupled with fluorescence detection,” Anal. Biochem. 573, 51–66 (2019).
[Crossref]

Rich, J. D.

F. S. Ahmad, H. Ning, J. D. Rich, C. W. Yancy, D. M. Lloyd-Jones, and J. T. Wilkins, “Hypertension, Obesity, Diabetes, and Heart Failure-Free Survival,” JACC: Heart Failure 4(12), 911–919 (2016).
[Crossref]

Ritz, E.

E. Ritz and S. R. Orth, “Nephropathy in Patients with Type 2 Diabetes Mellitus,” N. Engl. J. Med. 341(15), 1127–1133 (1999).
[Crossref]

Roger, V. L.

V. L. Roger, A. S. Go, D. M. Lloyd-Jones, R. J. Adams, J. D. Berry, T. M. Brown, M. R. Carnethon, S. Dai, G. de Simone, E. S. Ford, C. S. Fox, H. J. Fullerton, C. Gillespie, K. J. Greenlund, S. M. Hailpern, J. A. Heit, P. M. Ho, V. J. Howard, B. M. Kissela, S. J. Kittner, D. T. Lackland, J. H. Lichtman, L. D. Lisabeth, D. M. Makuc, G. M. Marcus, A. Marelli, D. B. Matchar, M. M. McDermott, J. B. Meigs, C. S. Moy, D. Mozaffarian, M. E. Mussolino, G. Nichol, N. P. Paynter, W. D. Rosamond, P. D. Sorlie, R. S. Stafford, T. N. Turan, M. B. Turner, N. D. Wong, and J. Wylie-Rosett, “Heart disease and stroke statistics-2011 update: a report from the American Heart Association,” Circulation 123(4), e18–e209 (2011).
[Crossref]

Rosamond, W. D.

V. L. Roger, A. S. Go, D. M. Lloyd-Jones, R. J. Adams, J. D. Berry, T. M. Brown, M. R. Carnethon, S. Dai, G. de Simone, E. S. Ford, C. S. Fox, H. J. Fullerton, C. Gillespie, K. J. Greenlund, S. M. Hailpern, J. A. Heit, P. M. Ho, V. J. Howard, B. M. Kissela, S. J. Kittner, D. T. Lackland, J. H. Lichtman, L. D. Lisabeth, D. M. Makuc, G. M. Marcus, A. Marelli, D. B. Matchar, M. M. McDermott, J. B. Meigs, C. S. Moy, D. Mozaffarian, M. E. Mussolino, G. Nichol, N. P. Paynter, W. D. Rosamond, P. D. Sorlie, R. S. Stafford, T. N. Turan, M. B. Turner, N. D. Wong, and J. Wylie-Rosett, “Heart disease and stroke statistics-2011 update: a report from the American Heart Association,” Circulation 123(4), e18–e209 (2011).
[Crossref]

Sarkar, P.

C. Polson, P. Sarkar, B. Incledon, V. Raguvaran, and R. Grant, “Optimization of protein precipitation based upon effectiveness of protein removal and ionization effect in liquid chromatography–tandem mass spectrometry,” J. Chromatogr. B: Anal. Technol. Biomed. Life Sci. 785(2), 263–275 (2003).
[Crossref]

Schalkwijk, C. G.

M. G. A. van Eupen, M. T. Schram, H. M. Colhoun, J. L. J. M. Scheijen, C. D. A. Stehouwer, and C. G. Schalkwijk, “Plasma levels of advanced glycation endproducts are associated with type 1 diabetes and coronary artery calcification,” Cardiovasc. Diabetol. 12(1), 149 (2013).
[Crossref]

Schalkwijk Casper, G.

L. J. M. Scheijen Jean and G. Schalkwijk Casper, “Quantification of glyoxal, methylglyoxal and 3-deoxyglucosone in blood and plasma by ultra performance liquid chromatography tandem mass spectrometry: evaluation of blood specimen,” Clin. Chem. Lab. Med. 52(1), 85–91 (2014).
[Crossref]

Scheijen, J. L. J. M.

M. G. A. van Eupen, M. T. Schram, H. M. Colhoun, J. L. J. M. Scheijen, C. D. A. Stehouwer, and C. G. Schalkwijk, “Plasma levels of advanced glycation endproducts are associated with type 1 diabetes and coronary artery calcification,” Cardiovasc. Diabetol. 12(1), 149 (2013).
[Crossref]

Scheijen Jean, L. J. M.

L. J. M. Scheijen Jean and G. Schalkwijk Casper, “Quantification of glyoxal, methylglyoxal and 3-deoxyglucosone in blood and plasma by ultra performance liquid chromatography tandem mass spectrometry: evaluation of blood specimen,” Clin. Chem. Lab. Med. 52(1), 85–91 (2014).
[Crossref]

Schram, M. T.

M. G. A. van Eupen, M. T. Schram, H. M. Colhoun, J. L. J. M. Scheijen, C. D. A. Stehouwer, and C. G. Schalkwijk, “Plasma levels of advanced glycation endproducts are associated with type 1 diabetes and coronary artery calcification,” Cardiovasc. Diabetol. 12(1), 149 (2013).
[Crossref]

Seljeflot, I.

M. Heier, H. D. Margeirsdottir, P. A. Torjesen, I. Seljeflot, K. H. Stensæth, M. Gaarder, C. Brunborg, K. F. Hanssen, and K. Dahl-Jørgensen, “The advanced glycation end product methylglyoxal-derived hydroimidazolone-1 and early signs of atherosclerosis in childhood diabetes,” Diabetes Vasc. Dis. Res. 12(2), 139–145 (2015).
[Crossref]

Shah, P. K.

D. Engelbertsen, D. V. Anand, G. N. Fredrikson, D. Hopkins, R. Corder, P. K. Shah, A. Lahiri, J. Nilsson, and E. Bengtsson, “High levels of IgM against methylglyoxal-modified apolipoprotein B100 are associated with less coronary artery calcification in patients with type 2 diabetes,” J. Intern. Med. 271(1), 82–89 (2012).
[Crossref]

Shaw, J. E.

K. Ogurtsova, J. D. da Rocha Fernandes, Y. Huang, U. Linnenkamp, L. Guariguata, N. H. Cho, D. Cavan, J. E. Shaw, and L. E. Makaroff, “IDF Diabetes Atlas: Global estimates for the prevalence of diabetes for 2015 and 2040,” Diabetes Res. Clin. Pract. 128, 40–50 (2017).
[Crossref]

Sheahan, P. J.

P. E. Morgan, P. J. Sheahan, D. I. Pattison, and M. J. Davies, “Methylglyoxal adversely affects the cellular redox balance in human coronary artery endothelial cells: A potential mechanism of action via modification of critical arginine residues,” Free Radical Biol. Med. 53, S147–S148 (2012).
[Crossref]

Shen, W. F.

Y. Dai, Y. Shen, Q. R. Li, F. H. Ding, X. Q. Wang, H. J. Liu, X. X. Yan, L. J. Wang, K. Yang, H. B. Wang, Q. J. Chen, W. F. Shen, R. Y. Zhang, and L. Lu, “Glycated Apolipoprotein A-IV Induces Atherogenesis in Patients With CAD in Type 2 Diabetes,” J. Am. Coll. Cardiol. 70(16), 2006–2019 (2017).
[Crossref]

Shen, Y.

Y. Dai, Y. Shen, Q. R. Li, F. H. Ding, X. Q. Wang, H. J. Liu, X. X. Yan, L. J. Wang, K. Yang, H. B. Wang, Q. J. Chen, W. F. Shen, R. Y. Zhang, and L. Lu, “Glycated Apolipoprotein A-IV Induces Atherogenesis in Patients With CAD in Type 2 Diabetes,” J. Am. Coll. Cardiol. 70(16), 2006–2019 (2017).
[Crossref]

Shrivastava, A.

A. Shrivastava and V. Gupta, “Methods for the determination of limit of detection and limit of quantitation of the analytical methods,” Chron. Young Sci. 2(1), 21–25 (2011).
[Crossref]

Shumaev, K.

V. Lankin, G. Konovalova, A. Tikhaze, K. Shumaev, E. Kumskova, and M. Viigimaa, “The initiation of free radical peroxidation of low-density lipoproteins by glucose and its metabolite methylglyoxal: a common molecular mechanism of vascular wall injure in atherosclerosis and diabetes,” Mol. Cell. Biochem. 395(1-2), 241–252 (2014).
[Crossref]

Sorlie, P. D.

V. L. Roger, A. S. Go, D. M. Lloyd-Jones, R. J. Adams, J. D. Berry, T. M. Brown, M. R. Carnethon, S. Dai, G. de Simone, E. S. Ford, C. S. Fox, H. J. Fullerton, C. Gillespie, K. J. Greenlund, S. M. Hailpern, J. A. Heit, P. M. Ho, V. J. Howard, B. M. Kissela, S. J. Kittner, D. T. Lackland, J. H. Lichtman, L. D. Lisabeth, D. M. Makuc, G. M. Marcus, A. Marelli, D. B. Matchar, M. M. McDermott, J. B. Meigs, C. S. Moy, D. Mozaffarian, M. E. Mussolino, G. Nichol, N. P. Paynter, W. D. Rosamond, P. D. Sorlie, R. S. Stafford, T. N. Turan, M. B. Turner, N. D. Wong, and J. Wylie-Rosett, “Heart disease and stroke statistics-2011 update: a report from the American Heart Association,” Circulation 123(4), e18–e209 (2011).
[Crossref]

Srikanth, V.

K. Dhananjayan, F. Irrgang, R. Raju, D. G. Harman, C. Moran, V. Srikanth, and G. Münch, “Determination of glyoxal and methylglyoxal in serum by UHPLC coupled with fluorescence detection,” Anal. Biochem. 573, 51–66 (2019).
[Crossref]

Stafford, R. S.

V. L. Roger, A. S. Go, D. M. Lloyd-Jones, R. J. Adams, J. D. Berry, T. M. Brown, M. R. Carnethon, S. Dai, G. de Simone, E. S. Ford, C. S. Fox, H. J. Fullerton, C. Gillespie, K. J. Greenlund, S. M. Hailpern, J. A. Heit, P. M. Ho, V. J. Howard, B. M. Kissela, S. J. Kittner, D. T. Lackland, J. H. Lichtman, L. D. Lisabeth, D. M. Makuc, G. M. Marcus, A. Marelli, D. B. Matchar, M. M. McDermott, J. B. Meigs, C. S. Moy, D. Mozaffarian, M. E. Mussolino, G. Nichol, N. P. Paynter, W. D. Rosamond, P. D. Sorlie, R. S. Stafford, T. N. Turan, M. B. Turner, N. D. Wong, and J. Wylie-Rosett, “Heart disease and stroke statistics-2011 update: a report from the American Heart Association,” Circulation 123(4), e18–e209 (2011).
[Crossref]

Stehouwer, C. D. A.

M. G. A. van Eupen, M. T. Schram, H. M. Colhoun, J. L. J. M. Scheijen, C. D. A. Stehouwer, and C. G. Schalkwijk, “Plasma levels of advanced glycation endproducts are associated with type 1 diabetes and coronary artery calcification,” Cardiovasc. Diabetol. 12(1), 149 (2013).
[Crossref]

Stensæth, K. H.

M. Heier, H. D. Margeirsdottir, P. A. Torjesen, I. Seljeflot, K. H. Stensæth, M. Gaarder, C. Brunborg, K. F. Hanssen, and K. Dahl-Jørgensen, “The advanced glycation end product methylglyoxal-derived hydroimidazolone-1 and early signs of atherosclerosis in childhood diabetes,” Diabetes Vasc. Dis. Res. 12(2), 139–145 (2015).
[Crossref]

Stewart, G. C.

S. M. Donahoe, G. C. Stewart, C. H. McCabe, S. Mohanavelu, S. A. Murphy, C. P. Cannon, and E. M. Antman, “Diabetes and Mortality Following Acute Coronary Syndromes,” JAMA 298(7), 765–775 (2007).
[Crossref]

Tanaka, R.

Y. Ogasawara, R. Tanaka, S. Koike, Y. Horiuchi, M. Miyashita, and M. Arai, “Determination of methylglyoxal in human blood plasma using fluorescence high performance liquid chromatography after derivatization with 1,2-diamino-4,5-methylenedioxybenzene,” J. Chromatogr. B: Anal. Technol. Biomed. Life Sci. 1029-1030, 102–105 (2016).
[Crossref]

Teleman, A. A.

A. Moraru, J. Wiederstein, D. Pfaff, T. Fleming, A. K. Miller, P. Nawroth, and A. A. Teleman, “Elevated Levels of the Reactive Metabolite Methylglyoxal Recapitulate Progression of Type 2 Diabetes,” Cell Metab. 27(4), 926–934.e8 (2018).
[Crossref]

Thornalley, P. J.

N. Rabbani and P. J. Thornalley, “Measurement of methylglyoxal by stable isotopic dilution analysis LC-MS/MS with corroborative prediction in physiological samples,” Nat. Protoc. 9(8), 1969–1979 (2014).
[Crossref]

Tikhaze, A.

V. Lankin, G. Konovalova, A. Tikhaze, K. Shumaev, E. Kumskova, and M. Viigimaa, “The initiation of free radical peroxidation of low-density lipoproteins by glucose and its metabolite methylglyoxal: a common molecular mechanism of vascular wall injure in atherosclerosis and diabetes,” Mol. Cell. Biochem. 395(1-2), 241–252 (2014).
[Crossref]

Torjesen, P. A.

M. Heier, H. D. Margeirsdottir, P. A. Torjesen, I. Seljeflot, K. H. Stensæth, M. Gaarder, C. Brunborg, K. F. Hanssen, and K. Dahl-Jørgensen, “The advanced glycation end product methylglyoxal-derived hydroimidazolone-1 and early signs of atherosclerosis in childhood diabetes,” Diabetes Vasc. Dis. Res. 12(2), 139–145 (2015).
[Crossref]

Turan, T. N.

V. L. Roger, A. S. Go, D. M. Lloyd-Jones, R. J. Adams, J. D. Berry, T. M. Brown, M. R. Carnethon, S. Dai, G. de Simone, E. S. Ford, C. S. Fox, H. J. Fullerton, C. Gillespie, K. J. Greenlund, S. M. Hailpern, J. A. Heit, P. M. Ho, V. J. Howard, B. M. Kissela, S. J. Kittner, D. T. Lackland, J. H. Lichtman, L. D. Lisabeth, D. M. Makuc, G. M. Marcus, A. Marelli, D. B. Matchar, M. M. McDermott, J. B. Meigs, C. S. Moy, D. Mozaffarian, M. E. Mussolino, G. Nichol, N. P. Paynter, W. D. Rosamond, P. D. Sorlie, R. S. Stafford, T. N. Turan, M. B. Turner, N. D. Wong, and J. Wylie-Rosett, “Heart disease and stroke statistics-2011 update: a report from the American Heart Association,” Circulation 123(4), e18–e209 (2011).
[Crossref]

Turk, Z.

I. Nemet, L. Varga-Defterdarović, and Z. Turk, “Preparation and quantification of methylglyoxal in human plasma using reverse-phase high-performance liquid chromatography,” Clin. Biochem. 37(10), 875–881 (2004).
[Crossref]

Turner, M. B.

V. L. Roger, A. S. Go, D. M. Lloyd-Jones, R. J. Adams, J. D. Berry, T. M. Brown, M. R. Carnethon, S. Dai, G. de Simone, E. S. Ford, C. S. Fox, H. J. Fullerton, C. Gillespie, K. J. Greenlund, S. M. Hailpern, J. A. Heit, P. M. Ho, V. J. Howard, B. M. Kissela, S. J. Kittner, D. T. Lackland, J. H. Lichtman, L. D. Lisabeth, D. M. Makuc, G. M. Marcus, A. Marelli, D. B. Matchar, M. M. McDermott, J. B. Meigs, C. S. Moy, D. Mozaffarian, M. E. Mussolino, G. Nichol, N. P. Paynter, W. D. Rosamond, P. D. Sorlie, R. S. Stafford, T. N. Turan, M. B. Turner, N. D. Wong, and J. Wylie-Rosett, “Heart disease and stroke statistics-2011 update: a report from the American Heart Association,” Circulation 123(4), e18–e209 (2011).
[Crossref]

Udelson, J. E.

P. S. Douglas, U. Hoffmann, M. R. Patel, D. B. Mark, H. R. Al-Khalidi, B. Cavanaugh, J. Cole, R. J. Dolor, C. B. Fordyce, M. Huang, M. A. Khan, A. S. Kosinski, M. W. Krucoff, V. Malhotra, M. H. Picard, J. E. Udelson, E. J. Velazquez, E. Yow, L. S. Cooper, and K. L. Lee, “Outcomes of Anatomical versus Functional Testing for Coronary Artery Disease,” N. Engl. J. Med. 372(14), 1291–1300 (2015).
[Crossref]

van Eupen, M. G. A.

M. G. A. van Eupen, M. T. Schram, H. M. Colhoun, J. L. J. M. Scheijen, C. D. A. Stehouwer, and C. G. Schalkwijk, “Plasma levels of advanced glycation endproducts are associated with type 1 diabetes and coronary artery calcification,” Cardiovasc. Diabetol. 12(1), 149 (2013).
[Crossref]

Varga-Defterdarovic, L.

I. Nemet, L. Varga-Defterdarović, and Z. Turk, “Preparation and quantification of methylglyoxal in human plasma using reverse-phase high-performance liquid chromatography,” Clin. Biochem. 37(10), 875–881 (2004).
[Crossref]

Velazquez, E. J.

P. S. Douglas, U. Hoffmann, M. R. Patel, D. B. Mark, H. R. Al-Khalidi, B. Cavanaugh, J. Cole, R. J. Dolor, C. B. Fordyce, M. Huang, M. A. Khan, A. S. Kosinski, M. W. Krucoff, V. Malhotra, M. H. Picard, J. E. Udelson, E. J. Velazquez, E. Yow, L. S. Cooper, and K. L. Lee, “Outcomes of Anatomical versus Functional Testing for Coronary Artery Disease,” N. Engl. J. Med. 372(14), 1291–1300 (2015).
[Crossref]

Viigimaa, M.

V. Lankin, G. Konovalova, A. Tikhaze, K. Shumaev, E. Kumskova, and M. Viigimaa, “The initiation of free radical peroxidation of low-density lipoproteins by glucose and its metabolite methylglyoxal: a common molecular mechanism of vascular wall injure in atherosclerosis and diabetes,” Mol. Cell. Biochem. 395(1-2), 241–252 (2014).
[Crossref]

Viñas, P.

M. Pastor-Belda, A. J. Fernández-García, N. Campillo, M. D. Pérez-Cárceles, M. Motas, M. Hernández-Córdoba, and P. Viñas, “Glyoxal and methylglyoxal as urinary markers of diabetes. Determination using a dispersive liquid–liquid microextraction procedure combined with gas chromatography–mass spectrometry,” J. Chromatogr. A 1509, 43–49 (2017).
[Crossref]

Wang, H. B.

Y. Dai, Y. Shen, Q. R. Li, F. H. Ding, X. Q. Wang, H. J. Liu, X. X. Yan, L. J. Wang, K. Yang, H. B. Wang, Q. J. Chen, W. F. Shen, R. Y. Zhang, and L. Lu, “Glycated Apolipoprotein A-IV Induces Atherogenesis in Patients With CAD in Type 2 Diabetes,” J. Am. Coll. Cardiol. 70(16), 2006–2019 (2017).
[Crossref]

Wang, L. J.

Y. Dai, Y. Shen, Q. R. Li, F. H. Ding, X. Q. Wang, H. J. Liu, X. X. Yan, L. J. Wang, K. Yang, H. B. Wang, Q. J. Chen, W. F. Shen, R. Y. Zhang, and L. Lu, “Glycated Apolipoprotein A-IV Induces Atherogenesis in Patients With CAD in Type 2 Diabetes,” J. Am. Coll. Cardiol. 70(16), 2006–2019 (2017).
[Crossref]

Wang, X. Q.

Y. Dai, Y. Shen, Q. R. Li, F. H. Ding, X. Q. Wang, H. J. Liu, X. X. Yan, L. J. Wang, K. Yang, H. B. Wang, Q. J. Chen, W. F. Shen, R. Y. Zhang, and L. Lu, “Glycated Apolipoprotein A-IV Induces Atherogenesis in Patients With CAD in Type 2 Diabetes,” J. Am. Coll. Cardiol. 70(16), 2006–2019 (2017).
[Crossref]

Wiederstein, J.

A. Moraru, J. Wiederstein, D. Pfaff, T. Fleming, A. K. Miller, P. Nawroth, and A. A. Teleman, “Elevated Levels of the Reactive Metabolite Methylglyoxal Recapitulate Progression of Type 2 Diabetes,” Cell Metab. 27(4), 926–934.e8 (2018).
[Crossref]

Wilkins, J. T.

F. S. Ahmad, H. Ning, J. D. Rich, C. W. Yancy, D. M. Lloyd-Jones, and J. T. Wilkins, “Hypertension, Obesity, Diabetes, and Heart Failure-Free Survival,” JACC: Heart Failure 4(12), 911–919 (2016).
[Crossref]

Wong, N. D.

V. L. Roger, A. S. Go, D. M. Lloyd-Jones, R. J. Adams, J. D. Berry, T. M. Brown, M. R. Carnethon, S. Dai, G. de Simone, E. S. Ford, C. S. Fox, H. J. Fullerton, C. Gillespie, K. J. Greenlund, S. M. Hailpern, J. A. Heit, P. M. Ho, V. J. Howard, B. M. Kissela, S. J. Kittner, D. T. Lackland, J. H. Lichtman, L. D. Lisabeth, D. M. Makuc, G. M. Marcus, A. Marelli, D. B. Matchar, M. M. McDermott, J. B. Meigs, C. S. Moy, D. Mozaffarian, M. E. Mussolino, G. Nichol, N. P. Paynter, W. D. Rosamond, P. D. Sorlie, R. S. Stafford, T. N. Turan, M. B. Turner, N. D. Wong, and J. Wylie-Rosett, “Heart disease and stroke statistics-2011 update: a report from the American Heart Association,” Circulation 123(4), e18–e209 (2011).
[Crossref]

Wylie-Rosett, J.

V. L. Roger, A. S. Go, D. M. Lloyd-Jones, R. J. Adams, J. D. Berry, T. M. Brown, M. R. Carnethon, S. Dai, G. de Simone, E. S. Ford, C. S. Fox, H. J. Fullerton, C. Gillespie, K. J. Greenlund, S. M. Hailpern, J. A. Heit, P. M. Ho, V. J. Howard, B. M. Kissela, S. J. Kittner, D. T. Lackland, J. H. Lichtman, L. D. Lisabeth, D. M. Makuc, G. M. Marcus, A. Marelli, D. B. Matchar, M. M. McDermott, J. B. Meigs, C. S. Moy, D. Mozaffarian, M. E. Mussolino, G. Nichol, N. P. Paynter, W. D. Rosamond, P. D. Sorlie, R. S. Stafford, T. N. Turan, M. B. Turner, N. D. Wong, and J. Wylie-Rosett, “Heart disease and stroke statistics-2011 update: a report from the American Heart Association,” Circulation 123(4), e18–e209 (2011).
[Crossref]

Yan, X. X.

Y. Dai, Y. Shen, Q. R. Li, F. H. Ding, X. Q. Wang, H. J. Liu, X. X. Yan, L. J. Wang, K. Yang, H. B. Wang, Q. J. Chen, W. F. Shen, R. Y. Zhang, and L. Lu, “Glycated Apolipoprotein A-IV Induces Atherogenesis in Patients With CAD in Type 2 Diabetes,” J. Am. Coll. Cardiol. 70(16), 2006–2019 (2017).
[Crossref]

Yancy, C. W.

F. S. Ahmad, H. Ning, J. D. Rich, C. W. Yancy, D. M. Lloyd-Jones, and J. T. Wilkins, “Hypertension, Obesity, Diabetes, and Heart Failure-Free Survival,” JACC: Heart Failure 4(12), 911–919 (2016).
[Crossref]

Yang, K.

Y. Dai, Y. Shen, Q. R. Li, F. H. Ding, X. Q. Wang, H. J. Liu, X. X. Yan, L. J. Wang, K. Yang, H. B. Wang, Q. J. Chen, W. F. Shen, R. Y. Zhang, and L. Lu, “Glycated Apolipoprotein A-IV Induces Atherogenesis in Patients With CAD in Type 2 Diabetes,” J. Am. Coll. Cardiol. 70(16), 2006–2019 (2017).
[Crossref]

Ye, J.

J. Zhang, H. Zhang, M. Li, D. Zhang, Q. Chu, and J. Ye, “A novel capillary electrophoretic method for determining methylglyoxal and glyoxal in urine and water samples,” J. Chromatogr. A 1217(31), 5124–5129 (2010).
[Crossref]

Yow, E.

P. S. Douglas, U. Hoffmann, M. R. Patel, D. B. Mark, H. R. Al-Khalidi, B. Cavanaugh, J. Cole, R. J. Dolor, C. B. Fordyce, M. Huang, M. A. Khan, A. S. Kosinski, M. W. Krucoff, V. Malhotra, M. H. Picard, J. E. Udelson, E. J. Velazquez, E. Yow, L. S. Cooper, and K. L. Lee, “Outcomes of Anatomical versus Functional Testing for Coronary Artery Disease,” N. Engl. J. Med. 372(14), 1291–1300 (2015).
[Crossref]

Zhang, D.

J. Zhang, H. Zhang, M. Li, D. Zhang, Q. Chu, and J. Ye, “A novel capillary electrophoretic method for determining methylglyoxal and glyoxal in urine and water samples,” J. Chromatogr. A 1217(31), 5124–5129 (2010).
[Crossref]

Zhang, H.

J. Zhang, H. Zhang, M. Li, D. Zhang, Q. Chu, and J. Ye, “A novel capillary electrophoretic method for determining methylglyoxal and glyoxal in urine and water samples,” J. Chromatogr. A 1217(31), 5124–5129 (2010).
[Crossref]

Zhang, J.

J. Zhang, H. Zhang, M. Li, D. Zhang, Q. Chu, and J. Ye, “A novel capillary electrophoretic method for determining methylglyoxal and glyoxal in urine and water samples,” J. Chromatogr. A 1217(31), 5124–5129 (2010).
[Crossref]

Zhang, R. Y.

Y. Dai, Y. Shen, Q. R. Li, F. H. Ding, X. Q. Wang, H. J. Liu, X. X. Yan, L. J. Wang, K. Yang, H. B. Wang, Q. J. Chen, W. F. Shen, R. Y. Zhang, and L. Lu, “Glycated Apolipoprotein A-IV Induces Atherogenesis in Patients With CAD in Type 2 Diabetes,” J. Am. Coll. Cardiol. 70(16), 2006–2019 (2017).
[Crossref]

Anal. Biochem. (1)

K. Dhananjayan, F. Irrgang, R. Raju, D. G. Harman, C. Moran, V. Srikanth, and G. Münch, “Determination of glyoxal and methylglyoxal in serum by UHPLC coupled with fluorescence detection,” Anal. Biochem. 573, 51–66 (2019).
[Crossref]

Anal. Lett. (1)

M. Y. Khuhawar, A. J. Kandhro, and F. D. Khand, “Liquid Chromatographic Determination of Glyoxal and Methylglyoxal from Serum of Diabetic Patients using Meso-Stilbenediamine as Derivatizing Reagent,” Anal. Lett. 39(10), 2205–2215 (2006).
[Crossref]

Cardiovasc. Diabetol. (1)

M. G. A. van Eupen, M. T. Schram, H. M. Colhoun, J. L. J. M. Scheijen, C. D. A. Stehouwer, and C. G. Schalkwijk, “Plasma levels of advanced glycation endproducts are associated with type 1 diabetes and coronary artery calcification,” Cardiovasc. Diabetol. 12(1), 149 (2013).
[Crossref]

Cell Metab. (1)

A. Moraru, J. Wiederstein, D. Pfaff, T. Fleming, A. K. Miller, P. Nawroth, and A. A. Teleman, “Elevated Levels of the Reactive Metabolite Methylglyoxal Recapitulate Progression of Type 2 Diabetes,” Cell Metab. 27(4), 926–934.e8 (2018).
[Crossref]

Chron. Young Sci. (1)

A. Shrivastava and V. Gupta, “Methods for the determination of limit of detection and limit of quantitation of the analytical methods,” Chron. Young Sci. 2(1), 21–25 (2011).
[Crossref]

Circulation (1)

V. L. Roger, A. S. Go, D. M. Lloyd-Jones, R. J. Adams, J. D. Berry, T. M. Brown, M. R. Carnethon, S. Dai, G. de Simone, E. S. Ford, C. S. Fox, H. J. Fullerton, C. Gillespie, K. J. Greenlund, S. M. Hailpern, J. A. Heit, P. M. Ho, V. J. Howard, B. M. Kissela, S. J. Kittner, D. T. Lackland, J. H. Lichtman, L. D. Lisabeth, D. M. Makuc, G. M. Marcus, A. Marelli, D. B. Matchar, M. M. McDermott, J. B. Meigs, C. S. Moy, D. Mozaffarian, M. E. Mussolino, G. Nichol, N. P. Paynter, W. D. Rosamond, P. D. Sorlie, R. S. Stafford, T. N. Turan, M. B. Turner, N. D. Wong, and J. Wylie-Rosett, “Heart disease and stroke statistics-2011 update: a report from the American Heart Association,” Circulation 123(4), e18–e209 (2011).
[Crossref]

Clin. Biochem. (1)

I. Nemet, L. Varga-Defterdarović, and Z. Turk, “Preparation and quantification of methylglyoxal in human plasma using reverse-phase high-performance liquid chromatography,” Clin. Biochem. 37(10), 875–881 (2004).
[Crossref]

Clin. Chem. Lab. Med. (1)

L. J. M. Scheijen Jean and G. Schalkwijk Casper, “Quantification of glyoxal, methylglyoxal and 3-deoxyglucosone in blood and plasma by ultra performance liquid chromatography tandem mass spectrometry: evaluation of blood specimen,” Clin. Chem. Lab. Med. 52(1), 85–91 (2014).
[Crossref]

Diabetes Res. Clin. Pract. (1)

K. Ogurtsova, J. D. da Rocha Fernandes, Y. Huang, U. Linnenkamp, L. Guariguata, N. H. Cho, D. Cavan, J. E. Shaw, and L. E. Makaroff, “IDF Diabetes Atlas: Global estimates for the prevalence of diabetes for 2015 and 2040,” Diabetes Res. Clin. Pract. 128, 40–50 (2017).
[Crossref]

Diabetes Vasc. Dis. Res. (1)

M. Heier, H. D. Margeirsdottir, P. A. Torjesen, I. Seljeflot, K. H. Stensæth, M. Gaarder, C. Brunborg, K. F. Hanssen, and K. Dahl-Jørgensen, “The advanced glycation end product methylglyoxal-derived hydroimidazolone-1 and early signs of atherosclerosis in childhood diabetes,” Diabetes Vasc. Dis. Res. 12(2), 139–145 (2015).
[Crossref]

Free Radical Biol. Med. (1)

P. E. Morgan, P. J. Sheahan, D. I. Pattison, and M. J. Davies, “Methylglyoxal adversely affects the cellular redox balance in human coronary artery endothelial cells: A potential mechanism of action via modification of critical arginine residues,” Free Radical Biol. Med. 53, S147–S148 (2012).
[Crossref]

J. Am. Coll. Cardiol. (1)

Y. Dai, Y. Shen, Q. R. Li, F. H. Ding, X. Q. Wang, H. J. Liu, X. X. Yan, L. J. Wang, K. Yang, H. B. Wang, Q. J. Chen, W. F. Shen, R. Y. Zhang, and L. Lu, “Glycated Apolipoprotein A-IV Induces Atherogenesis in Patients With CAD in Type 2 Diabetes,” J. Am. Coll. Cardiol. 70(16), 2006–2019 (2017).
[Crossref]

J. Chromatogr. A (3)

N. R. Neng, C. A. A. Cordeiro, A. P. Freire, and J. M. F. Nogueira, “Determination of glyoxal and methylglyoxal in environmental and biological matrices by stir bar sorptive extraction with in-situ derivatization,” J. Chromatogr. A 1169(1-2), 47–52 (2007).
[Crossref]

M. Pastor-Belda, A. J. Fernández-García, N. Campillo, M. D. Pérez-Cárceles, M. Motas, M. Hernández-Córdoba, and P. Viñas, “Glyoxal and methylglyoxal as urinary markers of diabetes. Determination using a dispersive liquid–liquid microextraction procedure combined with gas chromatography–mass spectrometry,” J. Chromatogr. A 1509, 43–49 (2017).
[Crossref]

J. Zhang, H. Zhang, M. Li, D. Zhang, Q. Chu, and J. Ye, “A novel capillary electrophoretic method for determining methylglyoxal and glyoxal in urine and water samples,” J. Chromatogr. A 1217(31), 5124–5129 (2010).
[Crossref]

J. Chromatogr. B: Anal. Technol. Biomed. Life Sci. (2)

C. Polson, P. Sarkar, B. Incledon, V. Raguvaran, and R. Grant, “Optimization of protein precipitation based upon effectiveness of protein removal and ionization effect in liquid chromatography–tandem mass spectrometry,” J. Chromatogr. B: Anal. Technol. Biomed. Life Sci. 785(2), 263–275 (2003).
[Crossref]

Y. Ogasawara, R. Tanaka, S. Koike, Y. Horiuchi, M. Miyashita, and M. Arai, “Determination of methylglyoxal in human blood plasma using fluorescence high performance liquid chromatography after derivatization with 1,2-diamino-4,5-methylenedioxybenzene,” J. Chromatogr. B: Anal. Technol. Biomed. Life Sci. 1029-1030, 102–105 (2016).
[Crossref]

J. Intern. Med. (1)

D. Engelbertsen, D. V. Anand, G. N. Fredrikson, D. Hopkins, R. Corder, P. K. Shah, A. Lahiri, J. Nilsson, and E. Bengtsson, “High levels of IgM against methylglyoxal-modified apolipoprotein B100 are associated with less coronary artery calcification in patients with type 2 diabetes,” J. Intern. Med. 271(1), 82–89 (2012).
[Crossref]

J. Pharm. Biomed. Anal. (1)

M. H. El-Maghrabey, T. Nakatani, N. Kishikawa, and N. Kuroda, “Aromatic aldehydes as selective fluorogenic derivatizing agents for α-dicarbonyl compounds. Application to HPLC analysis of some advanced glycation end products and oxidative stress biomarkers in human serum,” J. Pharm. Biomed. Anal. 158, 38–46 (2018).
[Crossref]

JACC: Heart Failure (1)

F. S. Ahmad, H. Ning, J. D. Rich, C. W. Yancy, D. M. Lloyd-Jones, and J. T. Wilkins, “Hypertension, Obesity, Diabetes, and Heart Failure-Free Survival,” JACC: Heart Failure 4(12), 911–919 (2016).
[Crossref]

JAMA (1)

S. M. Donahoe, G. C. Stewart, C. H. McCabe, S. Mohanavelu, S. A. Murphy, C. P. Cannon, and E. M. Antman, “Diabetes and Mortality Following Acute Coronary Syndromes,” JAMA 298(7), 765–775 (2007).
[Crossref]

Lancet (1)

G. S. Mintz and G. Guagliumi, “Intravascular imaging in coronary artery disease,” Lancet 390(10096), 793–809 (2017).
[Crossref]

Mol. Cell. Biochem. (1)

V. Lankin, G. Konovalova, A. Tikhaze, K. Shumaev, E. Kumskova, and M. Viigimaa, “The initiation of free radical peroxidation of low-density lipoproteins by glucose and its metabolite methylglyoxal: a common molecular mechanism of vascular wall injure in atherosclerosis and diabetes,” Mol. Cell. Biochem. 395(1-2), 241–252 (2014).
[Crossref]

N. Engl. J. Med. (2)

P. S. Douglas, U. Hoffmann, M. R. Patel, D. B. Mark, H. R. Al-Khalidi, B. Cavanaugh, J. Cole, R. J. Dolor, C. B. Fordyce, M. Huang, M. A. Khan, A. S. Kosinski, M. W. Krucoff, V. Malhotra, M. H. Picard, J. E. Udelson, E. J. Velazquez, E. Yow, L. S. Cooper, and K. L. Lee, “Outcomes of Anatomical versus Functional Testing for Coronary Artery Disease,” N. Engl. J. Med. 372(14), 1291–1300 (2015).
[Crossref]

E. Ritz and S. R. Orth, “Nephropathy in Patients with Type 2 Diabetes Mellitus,” N. Engl. J. Med. 341(15), 1127–1133 (1999).
[Crossref]

Nat. Protoc. (1)

N. Rabbani and P. J. Thornalley, “Measurement of methylglyoxal by stable isotopic dilution analysis LC-MS/MS with corroborative prediction in physiological samples,” Nat. Protoc. 9(8), 1969–1979 (2014).
[Crossref]

Semin. Nucl. Med. (1)

R. Heo, R. Nakazato, D. Kalra, and J. K. Min, “Noninvasive Imaging in Coronary Artery Disease,” Semin. Nucl. Med. 44(5), 398–409 (2014).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1. Fingerprint spectrum of (a) MGO, (c) OPD, (d) 2-methyquinoxoline (2-MQ) and (e) the reaction product from the same molar amount of MGO and OPD. (b) Chemical reaction equation of MGO and OPD.
Fig. 2.
Fig. 2. Spectra of products from reactions with different molar ratios of MGO and OPD: (a) excess MGO reaction and (b) insufficient MGO reaction. Intensities of (c) OPD peak at 70 cm−1 and (d) 2-MQ peak at 407 cm−1 as a function of the OPD percentage.
Fig. 3.
Fig. 3. (a) Spectral changes of the reaction products and (b) corresponding intensity changes of the 2-MQ peak at 407 cm−1 due to the increasing MGO concentrations.
Fig. 4.
Fig. 4. Test results of MGO concentration in protein-free serum.

Tables (1)

Tables Icon

Table 1. Representative examples of equivalent MGO, excess MGO, and insufficient MGO reactions

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

C M G O = 33.82 × I 407 c m 1 × 10 3
L o D = 3 × S . D . / S . D . s l o p e s l o p e

Metrics