Abstract

High-resolution elastographic assessment of the cornea can greatly assist clinical diagnosis and treatment of various ocular diseases. Here, we report on the first noncontact depth-resolved micro-scale optical coherence elastography of the cornea achieved using shear wave imaging optical coherence tomography (SWI-OCT) combined with the spectral analysis of the corneal Lamb wave propagation. This imaging method relies on a focused air-puff device to load the cornea with highly-localized low-pressure short-duration air stream and applies phase-resolved OCT detection to capture the low-amplitude deformation with nano-scale sensitivity. The SWI-OCT system is used here to image the corneal Lamb wave propagation with the frame rate the same as the OCT A-line acquisition speed. Based on the spectral analysis of the corneal temporal deformation profiles, the phase velocity of the Lamb wave is obtained at different depths for the major frequency components, which shows the depthwise distribution of the corneal stiffness related to its structural features. Our pilot experiments on ex vivo rabbit eyes demonstrate the feasibility of this method in depth-resolved micro-scale elastography of the cornea. The assessment of the Lamb wave dispersion is also presented, suggesting the potential for the quantitative measurement of corneal viscoelasticity.

© 2014 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Noncontact quantitative biomechanical characterization of cardiac muscle using shear wave imaging optical coherence tomography

Shang Wang, Andrew L. Lopez, Yuka Morikawa, Ge Tao, Jiasong Li, Irina V. Larina, James F. Martin, and Kirill V. Larin
Biomed. Opt. Express 5(7) 1980-1992 (2014)

Measuring mechanical wave speed, dispersion, and viscoelastic modulus of the cornea using optical coherence elastography

Antoine Ramier, Behrouz Tavakol, and Seok-Hyun Yun
Opt. Express 27(12) 16635-16649 (2019)

Spatial characterization of corneal biomechanical properties with optical coherence elastography after UV cross-linking

Michael D. Twa, Jiasong Li, Srilatha Vantipalli, Manmohan Singh, Salavat Aglyamov, Stanislav Emelianov, and Kirill V. Larin
Biomed. Opt. Express 5(5) 1419-1427 (2014)

References

  • View by:
  • |
  • |
  • |

  1. I. F. Comaish and M. A. Lawless, “Progressive post-LASIK keratectasia: Biomechanical instability or chronic disease process?” J. Cataract Refract. Surg. 28(12), 2206–2213 (2002).
    [Crossref] [PubMed]
  2. S. Shah, M. Laiquzzaman, R. Bhojwani, S. Mantry, and I. Cunliffe, “Assessment of the Biomechanical Properties of the Cornea with the Ocular Response Analyzer in Normal and Keratoconic Eyes,” Invest. Ophthalmol. Vis. Sci. 48(7), 3026–3031 (2007).
    [Crossref] [PubMed]
  3. L. T. Nordan, “Keratoconus: diagnosis and treatment,” Int. Ophthalmol. Clin. 37(1), 51–63 (1997).
    [Crossref] [PubMed]
  4. C. Edmund, “Corneal elasticity and ocular rigidity in normal and keratoconic eyes,” Acta Ophthalmol. (Copenh.) 66(2), 134–140 (1988).
    [Crossref] [PubMed]
  5. G. P. Djotyan, R. M. Kurtz, D. C. Fernández, and T. Juhasz, “An Analytically Solvable Model for Biomechanical Response of the Cornea to Refractive Surgery,” J. Biomech. Eng. 123(5), 440–445 (2001).
    [Crossref] [PubMed]
  6. L. E. Probst, Complex cases with LASIK: advanced techniques and complication management (SLACK, 2000).
  7. J. S. Pepose, S. K. Feigenbaum, M. A. Qazi, J. P. Sanderson, and C. J. Roberts, “Changes in corneal biomechanics and intraocular pressure following LASIK using static, dynamic, and noncontact tonometry,” Am. J. Ophthalmol. 143(1), 39–47 (2007).
    [Crossref] [PubMed]
  8. E. Spoerl, M. Huhle, and T. Seiler, “Induction of cross-links in corneal tissue,” Exp. Eye Res. 66(1), 97–103 (1998).
    [Crossref] [PubMed]
  9. J. Seifert, C. M. Hammer, J. Rheinlaender, S. Sel, M. Scholz, F. Paulsen, and T. E. Schäffer, “Distribution of Young’s modulus in porcine corneas after riboflavin/UVA-induced collagen cross-linking as measured by atomic force microscopy,” PLoS ONE 9(1), e88186 (2014).
    [Crossref] [PubMed]
  10. M. Jedzierowska, R. Koprowski, and Z. Wróbel, “Overview of the Ocular Biomechanical Properties Measured by the Ocular Response Analyzer and the Corvis ST,” in Information Technologies in Biomedicine, Volume 4, E. Piętka, J. Kawa, and W. Wieclawek, eds. (Springer International Publishing, 2014), pp. 377–386.
  11. A. Kotecha, “What biomechanical properties of the cornea are relevant for the clinician?” Surv. Ophthalmol. 52(6Suppl 2), S109–S114 (2007).
    [Crossref] [PubMed]
  12. K. W. Hollman, S. Y. Emelianov, J. H. Neiss, G. Jotyan, G. J. Spooner, T. Juhasz, R. M. Kurtz, and M. O’Donnell, “Strain imaging of corneal tissue with an ultrasound elasticity microscope,” Cornea 21(1), 68–73 (2002).
    [Crossref] [PubMed]
  13. M. Tanter, D. Touboul, J. L. Gennisson, J. Bercoff, and M. Fink, “High-resolution quantitative imaging of cornea elasticity using supersonic shear imaging,” IEEE Trans. Med. Imaging 28(12), 1881–1893 (2009).
    [Crossref] [PubMed]
  14. T. M. Nguyen, J. F. Aubry, D. Touboul, M. Fink, J. L. Gennisson, J. Bercoff, and M. Tanter, “Monitoring of cornea elastic properties changes during UV-A/riboflavin-induced corneal collagen cross-linking using supersonic shear wave imaging: a pilot study,” Invest. Ophthalmol. Vis. Sci. 53(9), 5948–5954 (2012).
    [Crossref] [PubMed]
  15. D. Touboul, J.-L. Gennisson, T.-M. Nguyen, A. Robinet, C. J. Roberts, M. Tanter, and N. Grenier, “Supersonic Shear Wave Elastography for the In Vivo Evaluation of Transepithelial Corneal Collagen Cross-Linking,” Invest. Ophthalmol. Vis. Sci. 55(3), 1976–1984 (2014).
    [Crossref] [PubMed]
  16. F. A. Duck, “Medical and non-medical protection standards for ultrasound and infrasound,” Prog. Biophys. Mol. Biol. 93(1-3), 176–191 (2007).
    [Crossref] [PubMed]
  17. G. Scarcelli and S. H. Yun, “Confocal Brillouin microscopy for three-dimensional mechanical imaging,” Nat. Photonics 2(1), 39–43 (2008).
    [Crossref] [PubMed]
  18. J. Schmitt, “OCT elastography: imaging microscopic deformation and strain of tissue,” Opt. Express 3(6), 199–211 (1998).
    [Crossref] [PubMed]
  19. G. Scarcelli and S. H. Yun, “In vivo Brillouin optical microscopy of the human eye,” Opt. Express 20(8), 9197–9202 (2012).
    [Crossref] [PubMed]
  20. G. Scarcelli, R. Pineda, and S. H. Yun, “Brillouin optical microscopy for corneal biomechanics,” Invest. Ophthalmol. Vis. Sci. 53(1), 185–190 (2012).
    [Crossref] [PubMed]
  21. G. Scarcelli, S. Kling, E. Quijano, R. Pineda, S. Marcos, and S. H. Yun, “Brillouin microscopy of collagen crosslinking: noncontact depth-dependent analysis of corneal elastic modulus,” Invest. Ophthalmol. Vis. Sci. 54(2), 1418–1425 (2013).
    [Crossref] [PubMed]
  22. G. Scarcelli, S. Besner, R. Pineda, and S. H. Yun, “Biomechanical characterization of keratoconus corneas ex vivo with brillouin microscopy,” Invest. Ophthalmol. Vis. Sci. 55(7), 4490–4495 (2014).
    [Crossref] [PubMed]
  23. S. Reiß, G. Burau, O. Stachs, R. Guthoff, and H. Stolz, “Spatially resolved Brillouin spectroscopy to determine the rheological properties of the eye lens,” Biomed. Opt. Express 2(8), 2144–2159 (2011).
    [Crossref] [PubMed]
  24. G. Scarcelli, P. Kim, and S. H. Yun, “In vivo measurement of age-related stiffening in the crystalline lens by Brillouin optical microscopy,” Biophys. J. 101(6), 1539–1545 (2011).
    [Crossref] [PubMed]
  25. D. Huang, “Optical coherence tomography,” in Harvard-MIT Division of Health Science and Technology(Massachusetts Institute of Technology, Boston, 1993).
  26. V. Christopoulos, L. Kagemann, G. Wollstein, H. Ishikawa, M. L. Gabriele, M. Wojtkowski, V. Srinivasan, J. G. Fujimoto, J. S. Duker, D. K. Dhaliwal, and J. S. Schuman, “In vivo corneal high-speed, ultra high-resolution optical coherence tomography,” Arch. Ophthalmol. 125(8), 1027–1035 (2007).
    [Crossref] [PubMed]
  27. I. Grulkowski, M. Gora, M. Szkulmowski, I. Gorczynska, D. Szlag, S. Marcos, A. Kowalczyk, and M. Wojtkowski, “Anterior segment imaging with Spectral OCT system using a high-speed CMOS camera,” Opt. Express 17(6), 4842–4858 (2009).
    [Crossref] [PubMed]
  28. S. G. Adie, X. Liang, B. F. Kennedy, R. John, D. D. Sampson, and S. A. Boppart, “Spectroscopic optical coherence elastography,” Opt. Express 18(25), 25519–25534 (2010).
    [Crossref] [PubMed]
  29. C. Li, G. Guan, X. Cheng, Z. Huang, and R. K. Wang, “Quantitative elastography provided by surface acoustic waves measured by phase-sensitive optical coherence tomography,” Opt. Lett. 37(4), 722–724 (2012).
    [Crossref] [PubMed]
  30. J. G. Fujimoto, C. Pitris, S. A. Boppart, and M. E. Brezinski, “Optical coherence tomography: an emerging technology for biomedical imaging and optical biopsy,” Neoplasia 2(1-2), 9–25 (2000).
    [Crossref] [PubMed]
  31. X. Liang, A. L. Oldenburg, V. Crecea, E. J. Chaney, and S. A. Boppart, “Optical micro-scale mapping of dynamic biomechanical tissue properties,” Opt. Express 16(15), 11052–11065 (2008).
    [Crossref] [PubMed]
  32. W. Qi, R. Chen, L. Chou, G. Liu, J. Zhang, Q. Zhou, and Z. Chen, “Phase-resolved acoustic radiation force optical coherence elastography,” J. Biomed. Opt. 17(11), 110505 (2012).
    [Crossref] [PubMed]
  33. K. M. Kennedy, R. A. McLaughlin, B. F. Kennedy, A. Tien, B. Latham, C. M. Saunders, and D. D. Sampson, “Needle optical coherence elastography for the measurement of microscale mechanical contrast deep within human breast tissues,” J. Biomed. Opt. 18(12), 121510 (2013).
    [Crossref] [PubMed]
  34. X. Liang, V. Crecea, and S. A. Boppart, “Dynamic Optical Coherence Elastography: a review,” J. Innov. Opt. Health Sci. 3(4), 221–233 (2010).
    [Crossref] [PubMed]
  35. C. Sun, B. Standish, and V. X. D. Yang, “Optical coherence elastography: current status and future applications,” J. Biomed. Opt. 16(4), 043001 (2011).
    [Crossref] [PubMed]
  36. B. F. Kennedy, K. M. Kennedy, and D. D. Sampson, “A Review of Optical Coherence Elastography: Fundamentals, Techniques and Prospects,” IEEE J. Quantum Electron. 20, 1–17 (2014).
  37. B. F. Kennedy, X. Liang, S. G. Adie, D. K. Gerstmann, B. C. Quirk, S. A. Boppart, and D. D. Sampson, “In vivo three-dimensional optical coherence elastography,” Opt. Express 19(7), 6623–6634 (2011).
    [Crossref] [PubMed]
  38. A. Nahas, M. Bauer, S. Roux, and A. C. Boccara, “3D static elastography at the micrometer scale using Full Field OCT,” Biomed. Opt. Express 4(10), 2138–2149 (2013).
    [Crossref] [PubMed]
  39. B. F. Kennedy, T. R. Hillman, R. A. McLaughlin, B. C. Quirk, and D. D. Sampson, “In vivo dynamic optical coherence elastography using a ring actuator,” Opt. Express 17(24), 21762–21772 (2009).
    [Crossref] [PubMed]
  40. X. Liang and S. A. Boppart, “Biomechanical properties of in vivo human skin from dynamic optical coherence elastography,” IEEE Trans. Biomed. Eng. 57(4), 953–959 (2010).
    [Crossref] [PubMed]
  41. C. Li, G. Guan, R. Reif, Z. Huang, and R. K. Wang, “Determining elastic properties of skin by measuring surface waves from an impulse mechanical stimulus using phase-sensitive optical coherence tomography,” J. R. Soc. Interface 9(70), 831–841 (2012).
    [Crossref] [PubMed]
  42. C. Li, Z. Huang, and R. K. Wang, “Elastic properties of soft tissue-mimicking phantoms assessed by combined use of laser ultrasonics and low coherence interferometry,” Opt. Express 19(11), 10153–10163 (2011).
    [Crossref] [PubMed]
  43. S. Wang, J. Li, R. K. Manapuram, F. M. Menodiado, D. R. Ingram, M. D. Twa, A. J. Lazar, D. C. Lev, R. E. Pollock, and K. V. Larin, “Noncontact measurement of elasticity for the detection of soft-tissue tumors using phase-sensitive optical coherence tomography combined with a focused air-puff system,” Opt. Lett. 37(24), 5184–5186 (2012).
    [Crossref] [PubMed]
  44. S. Song, Z. Huang, T. M. Nguyen, E. Y. Wong, B. Arnal, M. O’Donnell, and R. K. Wang, “Shear modulus imaging by direct visualization of propagating shear waves with phase-sensitive optical coherence tomography,” J. Biomed. Opt. 18(12), 121509 (2013).
    [Crossref] [PubMed]
  45. D. Alonso-Caneiro, K. Karnowski, B. J. Kaluzny, A. Kowalczyk, and M. Wojtkowski, “Assessment of corneal dynamics with high-speed swept source Optical Coherence Tomography combined with an air puff system,” Opt. Express 19(15), 14188–14199 (2011).
    [Crossref] [PubMed]
  46. C. Dorronsoro, D. Pascual, P. Pérez-Merino, S. Kling, and S. Marcos, “Dynamic OCT measurement of corneal deformation by an air puff in normal and cross-linked corneas,” Biomed. Opt. Express 3(3), 473–487 (2012).
    [Crossref] [PubMed]
  47. M. R. Ford, W. J. Dupps, A. M. Rollins, A. S. Roy, and Z. Hu, “Method for optical coherence elastography of the cornea,” J. Biomed. Opt. 16(1), 016005 (2011).
    [Crossref] [PubMed]
  48. C. Li, G. Guan, Z. Huang, M. Johnstone, and R. K. Wang, “Noncontact all-optical measurement of corneal elasticity,” Opt. Lett. 37(10), 1625–1627 (2012).
    [Crossref] [PubMed]
  49. R. K. Manapuram, S. R. Aglyamov, F. M. Monediado, M. Mashiatulla, J. Li, S. Y. Emelianov, and K. V. Larin, “In vivo estimation of elastic wave parameters using phase-stabilized swept source optical coherence elastography,” J. Biomed. Opt. 17(10), 100501 (2012).
    [Crossref] [PubMed]
  50. S. Wang and K. V. Larin, “Shear wave imaging optical coherence tomography (SWI-OCT) for ocular tissue biomechanics,” Opt. Lett. 39(1), 41–44 (2014).
    [Crossref] [PubMed]
  51. S. Wang, S. Aglyamov, A. Karpiouk, J. Li, S. Emelianov, F. Manns, and K. V. Larin, “Assessing the mechanical properties of tissue-mimicking phantoms at different depths as an approach to measure biomechanical gradient of crystalline lens,” Biomed. Opt. Express 4(12), 2769–2780 (2013).
    [Crossref] [PubMed]
  52. S. Wang, T. Sherlock, B. Salazar, N. Sudheendran, R. K. Manapuram, K. Kourentzi, P. Ruchhoeft, R. C. Willson, and K. V. Larin, “Detection and Monitoring of Microparticles Under Skin by Optical Coherence Tomography as an Approach to Continuous Glucose Sensing Using Implanted Retroreflectors,” IEEE Sens. J. 13(11), 4534–4541 (2013).
    [Crossref]
  53. S. Wang, K. V. Larin, L. Jiasong, S. Vantipalli, R. K. Manapuram, S. Aglyamov, S. Emelianov, and M. D. Twa, “A focused air-pulse system for optical-coherence-tomography-based measurements of tissue elasticity,” Laser Phys. Lett. 10(7), 075605 (2013).
    [Crossref]
  54. M. J. Doughty and M. L. Zaman, “Human Corneal Thickness and Its Impact on Intraocular Pressure Measures: A Review and Meta-analysis Approach,” Surv. Ophthalmol. 44(5), 367–408 (2000).
    [Crossref] [PubMed]
  55. H. Lamb, “On Waves in an Elastic Plate,” Proc. R. Soc. A 93, 114–128 (1917).
    [Crossref]
  56. T. M. Nguyen, M. Couade, J. Bercoff, and M. Tanter, “Assessment of viscous and elastic properties of sub-wavelength layered soft tissues using shear wave spectroscopy: theoretical framework and in vitro experimental validation,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 58(11), 2305–2315 (2011).
    [Crossref] [PubMed]
  57. I. Z. Nenadic, M. W. Urban, S. A. Mitchell, and J. F. Greenleaf, “Lamb wave dispersion ultrasound vibrometry (LDUV) method for quantifying mechanical properties of viscoelastic solids,” Phys. Med. Biol. 56(7), 2245–2264 (2011).
    [Crossref] [PubMed]
  58. M. A. Choma, A. K. Ellerbee, C. Yang, T. L. Creazzo, and J. A. Izatt, “Spectral-domain phase microscopy,” Opt. Lett. 30(10), 1162–1164 (2005).
    [Crossref] [PubMed]
  59. S. Song, Z. Huang, and R. K. Wang, “Tracking mechanical wave propagation within tissue using phase-sensitive optical coherence tomography: motion artifact and its compensation,” J. Biomed. Opt. 18(12), 121505 (2013).
    [Crossref] [PubMed]
  60. M. Asejczyk-Widlicka, D. W. Sródka, H. Kasprzak, and B. K. Pierscionek, “Modelling the elastic properties of the anterior eye and their contribution to maintenance of image quality: the role of the limbus,” Eye (Lond.) 21(8), 1087–1094 (2007).
    [Crossref] [PubMed]
  61. J. M. Dias and N. M. Ziebarth, “Anterior and posterior corneal stroma elasticity assessed using nanoindentation,” Exp. Eye Res. 115, 41–46 (2013).
    [Crossref] [PubMed]
  62. J. B. Randleman, D. G. Dawson, H. E. Grossniklaus, B. E. McCarey, and H. F. Edelhauser, “Depth-dependent cohesive tensile strength in human donor corneas: implications for refractive surgery,” J. Refract. Surg. 24(1), S85–S89 (2008).
    [PubMed]
  63. I. Z. Nenadic, M. W. Urban, M. Bernal, and J. F. Greenleaf, “Phase velocities and attenuations of shear, Lamb, and Rayleigh waves in plate-like tissues submerged in a fluid (L),” J. Acoust. Soc. Am. 130(6), 3549–3552 (2011).
    [Crossref] [PubMed]
  64. J. Wu, M. Conry, C. Gu, F. Wang, Z. Yaqoob, and C. Yang, “Paired-angle-rotation scanning optical coherence tomography forward-imaging probe,” Opt. Lett. 31(9), 1265–1267 (2006).
    [Crossref] [PubMed]
  65. N. R. Munce, A. Mariampillai, B. A. Standish, M. Pop, K. J. Anderson, G. Y. Liu, T. Luk, B. K. Courtney, G. A. Wright, I. A. Vitkin, and V. X. Yang, “Electrostatic forward-viewing scanning probe for Doppler optical coherence tomography using a dissipative polymer catheter,” Opt. Lett. 33(7), 657–659 (2008).
    [Crossref] [PubMed]
  66. W. Drexler, U. Morgner, R. K. Ghanta, F. X. Kärtner, J. S. Schuman, and J. G. Fujimoto, “Ultrahigh-resolution ophthalmic optical coherence tomography,” Nat. Med. 7(4), 502–507 (2001).
    [Crossref] [PubMed]
  67. R. Righetti, J. Ophir, and P. Ktonas, “Axial resolution in elastography,” Ultrasound Med. Biol. 28(1), 101–113 (2002).
    [Crossref] [PubMed]
  68. K. M. Kennedy, C. Ford, B. F. Kennedy, M. B. Bush, and D. D. Sampson, “Analysis of mechanical contrast in optical coherence elastography,” J. Biomed. Opt. 18(12), 121508 (2013).
    [Crossref] [PubMed]
  69. M. Couade, M. Pernot, C. Prada, E. Messas, J. Emmerich, P. Bruneval, A. Criton, M. Fink, and M. Tanter, “Quantitative Assessment of Arterial Wall Biomechanical Properties Using Shear Wave Imaging,” Ultrasound Med. Biol. 36(10), 1662–1676 (2010).
    [Crossref] [PubMed]
  70. S. Chen, M. W. Urban, C. Pislaru, R. Kinnick, Y. Zheng, A. Yao, and J. F. Greenleaf, “Shearwave dispersion ultrasound vibrometry (SDUV) for measuring tissue elasticity and viscosity,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 56(1), 55–62 (2009).
    [Crossref] [PubMed]

2014 (5)

J. Seifert, C. M. Hammer, J. Rheinlaender, S. Sel, M. Scholz, F. Paulsen, and T. E. Schäffer, “Distribution of Young’s modulus in porcine corneas after riboflavin/UVA-induced collagen cross-linking as measured by atomic force microscopy,” PLoS ONE 9(1), e88186 (2014).
[Crossref] [PubMed]

D. Touboul, J.-L. Gennisson, T.-M. Nguyen, A. Robinet, C. J. Roberts, M. Tanter, and N. Grenier, “Supersonic Shear Wave Elastography for the In Vivo Evaluation of Transepithelial Corneal Collagen Cross-Linking,” Invest. Ophthalmol. Vis. Sci. 55(3), 1976–1984 (2014).
[Crossref] [PubMed]

G. Scarcelli, S. Besner, R. Pineda, and S. H. Yun, “Biomechanical characterization of keratoconus corneas ex vivo with brillouin microscopy,” Invest. Ophthalmol. Vis. Sci. 55(7), 4490–4495 (2014).
[Crossref] [PubMed]

B. F. Kennedy, K. M. Kennedy, and D. D. Sampson, “A Review of Optical Coherence Elastography: Fundamentals, Techniques and Prospects,” IEEE J. Quantum Electron. 20, 1–17 (2014).

S. Wang and K. V. Larin, “Shear wave imaging optical coherence tomography (SWI-OCT) for ocular tissue biomechanics,” Opt. Lett. 39(1), 41–44 (2014).
[Crossref] [PubMed]

2013 (10)

S. Wang, S. Aglyamov, A. Karpiouk, J. Li, S. Emelianov, F. Manns, and K. V. Larin, “Assessing the mechanical properties of tissue-mimicking phantoms at different depths as an approach to measure biomechanical gradient of crystalline lens,” Biomed. Opt. Express 4(12), 2769–2780 (2013).
[Crossref] [PubMed]

S. Wang, T. Sherlock, B. Salazar, N. Sudheendran, R. K. Manapuram, K. Kourentzi, P. Ruchhoeft, R. C. Willson, and K. V. Larin, “Detection and Monitoring of Microparticles Under Skin by Optical Coherence Tomography as an Approach to Continuous Glucose Sensing Using Implanted Retroreflectors,” IEEE Sens. J. 13(11), 4534–4541 (2013).
[Crossref]

S. Wang, K. V. Larin, L. Jiasong, S. Vantipalli, R. K. Manapuram, S. Aglyamov, S. Emelianov, and M. D. Twa, “A focused air-pulse system for optical-coherence-tomography-based measurements of tissue elasticity,” Laser Phys. Lett. 10(7), 075605 (2013).
[Crossref]

A. Nahas, M. Bauer, S. Roux, and A. C. Boccara, “3D static elastography at the micrometer scale using Full Field OCT,” Biomed. Opt. Express 4(10), 2138–2149 (2013).
[Crossref] [PubMed]

S. Song, Z. Huang, T. M. Nguyen, E. Y. Wong, B. Arnal, M. O’Donnell, and R. K. Wang, “Shear modulus imaging by direct visualization of propagating shear waves with phase-sensitive optical coherence tomography,” J. Biomed. Opt. 18(12), 121509 (2013).
[Crossref] [PubMed]

S. Song, Z. Huang, and R. K. Wang, “Tracking mechanical wave propagation within tissue using phase-sensitive optical coherence tomography: motion artifact and its compensation,” J. Biomed. Opt. 18(12), 121505 (2013).
[Crossref] [PubMed]

J. M. Dias and N. M. Ziebarth, “Anterior and posterior corneal stroma elasticity assessed using nanoindentation,” Exp. Eye Res. 115, 41–46 (2013).
[Crossref] [PubMed]

K. M. Kennedy, C. Ford, B. F. Kennedy, M. B. Bush, and D. D. Sampson, “Analysis of mechanical contrast in optical coherence elastography,” J. Biomed. Opt. 18(12), 121508 (2013).
[Crossref] [PubMed]

K. M. Kennedy, R. A. McLaughlin, B. F. Kennedy, A. Tien, B. Latham, C. M. Saunders, and D. D. Sampson, “Needle optical coherence elastography for the measurement of microscale mechanical contrast deep within human breast tissues,” J. Biomed. Opt. 18(12), 121510 (2013).
[Crossref] [PubMed]

G. Scarcelli, S. Kling, E. Quijano, R. Pineda, S. Marcos, and S. H. Yun, “Brillouin microscopy of collagen crosslinking: noncontact depth-dependent analysis of corneal elastic modulus,” Invest. Ophthalmol. Vis. Sci. 54(2), 1418–1425 (2013).
[Crossref] [PubMed]

2012 (10)

C. Li, G. Guan, X. Cheng, Z. Huang, and R. K. Wang, “Quantitative elastography provided by surface acoustic waves measured by phase-sensitive optical coherence tomography,” Opt. Lett. 37(4), 722–724 (2012).
[Crossref] [PubMed]

W. Qi, R. Chen, L. Chou, G. Liu, J. Zhang, Q. Zhou, and Z. Chen, “Phase-resolved acoustic radiation force optical coherence elastography,” J. Biomed. Opt. 17(11), 110505 (2012).
[Crossref] [PubMed]

T. M. Nguyen, J. F. Aubry, D. Touboul, M. Fink, J. L. Gennisson, J. Bercoff, and M. Tanter, “Monitoring of cornea elastic properties changes during UV-A/riboflavin-induced corneal collagen cross-linking using supersonic shear wave imaging: a pilot study,” Invest. Ophthalmol. Vis. Sci. 53(9), 5948–5954 (2012).
[Crossref] [PubMed]

G. Scarcelli and S. H. Yun, “In vivo Brillouin optical microscopy of the human eye,” Opt. Express 20(8), 9197–9202 (2012).
[Crossref] [PubMed]

G. Scarcelli, R. Pineda, and S. H. Yun, “Brillouin optical microscopy for corneal biomechanics,” Invest. Ophthalmol. Vis. Sci. 53(1), 185–190 (2012).
[Crossref] [PubMed]

S. Wang, J. Li, R. K. Manapuram, F. M. Menodiado, D. R. Ingram, M. D. Twa, A. J. Lazar, D. C. Lev, R. E. Pollock, and K. V. Larin, “Noncontact measurement of elasticity for the detection of soft-tissue tumors using phase-sensitive optical coherence tomography combined with a focused air-puff system,” Opt. Lett. 37(24), 5184–5186 (2012).
[Crossref] [PubMed]

C. Li, G. Guan, R. Reif, Z. Huang, and R. K. Wang, “Determining elastic properties of skin by measuring surface waves from an impulse mechanical stimulus using phase-sensitive optical coherence tomography,” J. R. Soc. Interface 9(70), 831–841 (2012).
[Crossref] [PubMed]

C. Dorronsoro, D. Pascual, P. Pérez-Merino, S. Kling, and S. Marcos, “Dynamic OCT measurement of corneal deformation by an air puff in normal and cross-linked corneas,” Biomed. Opt. Express 3(3), 473–487 (2012).
[Crossref] [PubMed]

C. Li, G. Guan, Z. Huang, M. Johnstone, and R. K. Wang, “Noncontact all-optical measurement of corneal elasticity,” Opt. Lett. 37(10), 1625–1627 (2012).
[Crossref] [PubMed]

R. K. Manapuram, S. R. Aglyamov, F. M. Monediado, M. Mashiatulla, J. Li, S. Y. Emelianov, and K. V. Larin, “In vivo estimation of elastic wave parameters using phase-stabilized swept source optical coherence elastography,” J. Biomed. Opt. 17(10), 100501 (2012).
[Crossref] [PubMed]

2011 (10)

M. R. Ford, W. J. Dupps, A. M. Rollins, A. S. Roy, and Z. Hu, “Method for optical coherence elastography of the cornea,” J. Biomed. Opt. 16(1), 016005 (2011).
[Crossref] [PubMed]

C. Li, Z. Huang, and R. K. Wang, “Elastic properties of soft tissue-mimicking phantoms assessed by combined use of laser ultrasonics and low coherence interferometry,” Opt. Express 19(11), 10153–10163 (2011).
[Crossref] [PubMed]

D. Alonso-Caneiro, K. Karnowski, B. J. Kaluzny, A. Kowalczyk, and M. Wojtkowski, “Assessment of corneal dynamics with high-speed swept source Optical Coherence Tomography combined with an air puff system,” Opt. Express 19(15), 14188–14199 (2011).
[Crossref] [PubMed]

I. Z. Nenadic, M. W. Urban, M. Bernal, and J. F. Greenleaf, “Phase velocities and attenuations of shear, Lamb, and Rayleigh waves in plate-like tissues submerged in a fluid (L),” J. Acoust. Soc. Am. 130(6), 3549–3552 (2011).
[Crossref] [PubMed]

T. M. Nguyen, M. Couade, J. Bercoff, and M. Tanter, “Assessment of viscous and elastic properties of sub-wavelength layered soft tissues using shear wave spectroscopy: theoretical framework and in vitro experimental validation,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 58(11), 2305–2315 (2011).
[Crossref] [PubMed]

I. Z. Nenadic, M. W. Urban, S. A. Mitchell, and J. F. Greenleaf, “Lamb wave dispersion ultrasound vibrometry (LDUV) method for quantifying mechanical properties of viscoelastic solids,” Phys. Med. Biol. 56(7), 2245–2264 (2011).
[Crossref] [PubMed]

C. Sun, B. Standish, and V. X. D. Yang, “Optical coherence elastography: current status and future applications,” J. Biomed. Opt. 16(4), 043001 (2011).
[Crossref] [PubMed]

B. F. Kennedy, X. Liang, S. G. Adie, D. K. Gerstmann, B. C. Quirk, S. A. Boppart, and D. D. Sampson, “In vivo three-dimensional optical coherence elastography,” Opt. Express 19(7), 6623–6634 (2011).
[Crossref] [PubMed]

S. Reiß, G. Burau, O. Stachs, R. Guthoff, and H. Stolz, “Spatially resolved Brillouin spectroscopy to determine the rheological properties of the eye lens,” Biomed. Opt. Express 2(8), 2144–2159 (2011).
[Crossref] [PubMed]

G. Scarcelli, P. Kim, and S. H. Yun, “In vivo measurement of age-related stiffening in the crystalline lens by Brillouin optical microscopy,” Biophys. J. 101(6), 1539–1545 (2011).
[Crossref] [PubMed]

2010 (4)

X. Liang, V. Crecea, and S. A. Boppart, “Dynamic Optical Coherence Elastography: a review,” J. Innov. Opt. Health Sci. 3(4), 221–233 (2010).
[Crossref] [PubMed]

S. G. Adie, X. Liang, B. F. Kennedy, R. John, D. D. Sampson, and S. A. Boppart, “Spectroscopic optical coherence elastography,” Opt. Express 18(25), 25519–25534 (2010).
[Crossref] [PubMed]

M. Couade, M. Pernot, C. Prada, E. Messas, J. Emmerich, P. Bruneval, A. Criton, M. Fink, and M. Tanter, “Quantitative Assessment of Arterial Wall Biomechanical Properties Using Shear Wave Imaging,” Ultrasound Med. Biol. 36(10), 1662–1676 (2010).
[Crossref] [PubMed]

X. Liang and S. A. Boppart, “Biomechanical properties of in vivo human skin from dynamic optical coherence elastography,” IEEE Trans. Biomed. Eng. 57(4), 953–959 (2010).
[Crossref] [PubMed]

2009 (4)

B. F. Kennedy, T. R. Hillman, R. A. McLaughlin, B. C. Quirk, and D. D. Sampson, “In vivo dynamic optical coherence elastography using a ring actuator,” Opt. Express 17(24), 21762–21772 (2009).
[Crossref] [PubMed]

S. Chen, M. W. Urban, C. Pislaru, R. Kinnick, Y. Zheng, A. Yao, and J. F. Greenleaf, “Shearwave dispersion ultrasound vibrometry (SDUV) for measuring tissue elasticity and viscosity,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 56(1), 55–62 (2009).
[Crossref] [PubMed]

I. Grulkowski, M. Gora, M. Szkulmowski, I. Gorczynska, D. Szlag, S. Marcos, A. Kowalczyk, and M. Wojtkowski, “Anterior segment imaging with Spectral OCT system using a high-speed CMOS camera,” Opt. Express 17(6), 4842–4858 (2009).
[Crossref] [PubMed]

M. Tanter, D. Touboul, J. L. Gennisson, J. Bercoff, and M. Fink, “High-resolution quantitative imaging of cornea elasticity using supersonic shear imaging,” IEEE Trans. Med. Imaging 28(12), 1881–1893 (2009).
[Crossref] [PubMed]

2008 (4)

G. Scarcelli and S. H. Yun, “Confocal Brillouin microscopy for three-dimensional mechanical imaging,” Nat. Photonics 2(1), 39–43 (2008).
[Crossref] [PubMed]

X. Liang, A. L. Oldenburg, V. Crecea, E. J. Chaney, and S. A. Boppart, “Optical micro-scale mapping of dynamic biomechanical tissue properties,” Opt. Express 16(15), 11052–11065 (2008).
[Crossref] [PubMed]

N. R. Munce, A. Mariampillai, B. A. Standish, M. Pop, K. J. Anderson, G. Y. Liu, T. Luk, B. K. Courtney, G. A. Wright, I. A. Vitkin, and V. X. Yang, “Electrostatic forward-viewing scanning probe for Doppler optical coherence tomography using a dissipative polymer catheter,” Opt. Lett. 33(7), 657–659 (2008).
[Crossref] [PubMed]

J. B. Randleman, D. G. Dawson, H. E. Grossniklaus, B. E. McCarey, and H. F. Edelhauser, “Depth-dependent cohesive tensile strength in human donor corneas: implications for refractive surgery,” J. Refract. Surg. 24(1), S85–S89 (2008).
[PubMed]

2007 (6)

M. Asejczyk-Widlicka, D. W. Sródka, H. Kasprzak, and B. K. Pierscionek, “Modelling the elastic properties of the anterior eye and their contribution to maintenance of image quality: the role of the limbus,” Eye (Lond.) 21(8), 1087–1094 (2007).
[Crossref] [PubMed]

V. Christopoulos, L. Kagemann, G. Wollstein, H. Ishikawa, M. L. Gabriele, M. Wojtkowski, V. Srinivasan, J. G. Fujimoto, J. S. Duker, D. K. Dhaliwal, and J. S. Schuman, “In vivo corneal high-speed, ultra high-resolution optical coherence tomography,” Arch. Ophthalmol. 125(8), 1027–1035 (2007).
[Crossref] [PubMed]

F. A. Duck, “Medical and non-medical protection standards for ultrasound and infrasound,” Prog. Biophys. Mol. Biol. 93(1-3), 176–191 (2007).
[Crossref] [PubMed]

A. Kotecha, “What biomechanical properties of the cornea are relevant for the clinician?” Surv. Ophthalmol. 52(6Suppl 2), S109–S114 (2007).
[Crossref] [PubMed]

J. S. Pepose, S. K. Feigenbaum, M. A. Qazi, J. P. Sanderson, and C. J. Roberts, “Changes in corneal biomechanics and intraocular pressure following LASIK using static, dynamic, and noncontact tonometry,” Am. J. Ophthalmol. 143(1), 39–47 (2007).
[Crossref] [PubMed]

S. Shah, M. Laiquzzaman, R. Bhojwani, S. Mantry, and I. Cunliffe, “Assessment of the Biomechanical Properties of the Cornea with the Ocular Response Analyzer in Normal and Keratoconic Eyes,” Invest. Ophthalmol. Vis. Sci. 48(7), 3026–3031 (2007).
[Crossref] [PubMed]

2006 (1)

2005 (1)

2002 (3)

R. Righetti, J. Ophir, and P. Ktonas, “Axial resolution in elastography,” Ultrasound Med. Biol. 28(1), 101–113 (2002).
[Crossref] [PubMed]

I. F. Comaish and M. A. Lawless, “Progressive post-LASIK keratectasia: Biomechanical instability or chronic disease process?” J. Cataract Refract. Surg. 28(12), 2206–2213 (2002).
[Crossref] [PubMed]

K. W. Hollman, S. Y. Emelianov, J. H. Neiss, G. Jotyan, G. J. Spooner, T. Juhasz, R. M. Kurtz, and M. O’Donnell, “Strain imaging of corneal tissue with an ultrasound elasticity microscope,” Cornea 21(1), 68–73 (2002).
[Crossref] [PubMed]

2001 (2)

G. P. Djotyan, R. M. Kurtz, D. C. Fernández, and T. Juhasz, “An Analytically Solvable Model for Biomechanical Response of the Cornea to Refractive Surgery,” J. Biomech. Eng. 123(5), 440–445 (2001).
[Crossref] [PubMed]

W. Drexler, U. Morgner, R. K. Ghanta, F. X. Kärtner, J. S. Schuman, and J. G. Fujimoto, “Ultrahigh-resolution ophthalmic optical coherence tomography,” Nat. Med. 7(4), 502–507 (2001).
[Crossref] [PubMed]

2000 (2)

M. J. Doughty and M. L. Zaman, “Human Corneal Thickness and Its Impact on Intraocular Pressure Measures: A Review and Meta-analysis Approach,” Surv. Ophthalmol. 44(5), 367–408 (2000).
[Crossref] [PubMed]

J. G. Fujimoto, C. Pitris, S. A. Boppart, and M. E. Brezinski, “Optical coherence tomography: an emerging technology for biomedical imaging and optical biopsy,” Neoplasia 2(1-2), 9–25 (2000).
[Crossref] [PubMed]

1998 (2)

E. Spoerl, M. Huhle, and T. Seiler, “Induction of cross-links in corneal tissue,” Exp. Eye Res. 66(1), 97–103 (1998).
[Crossref] [PubMed]

J. Schmitt, “OCT elastography: imaging microscopic deformation and strain of tissue,” Opt. Express 3(6), 199–211 (1998).
[Crossref] [PubMed]

1997 (1)

L. T. Nordan, “Keratoconus: diagnosis and treatment,” Int. Ophthalmol. Clin. 37(1), 51–63 (1997).
[Crossref] [PubMed]

1988 (1)

C. Edmund, “Corneal elasticity and ocular rigidity in normal and keratoconic eyes,” Acta Ophthalmol. (Copenh.) 66(2), 134–140 (1988).
[Crossref] [PubMed]

Adie, S. G.

Aglyamov, S.

S. Wang, K. V. Larin, L. Jiasong, S. Vantipalli, R. K. Manapuram, S. Aglyamov, S. Emelianov, and M. D. Twa, “A focused air-pulse system for optical-coherence-tomography-based measurements of tissue elasticity,” Laser Phys. Lett. 10(7), 075605 (2013).
[Crossref]

S. Wang, S. Aglyamov, A. Karpiouk, J. Li, S. Emelianov, F. Manns, and K. V. Larin, “Assessing the mechanical properties of tissue-mimicking phantoms at different depths as an approach to measure biomechanical gradient of crystalline lens,” Biomed. Opt. Express 4(12), 2769–2780 (2013).
[Crossref] [PubMed]

Aglyamov, S. R.

R. K. Manapuram, S. R. Aglyamov, F. M. Monediado, M. Mashiatulla, J. Li, S. Y. Emelianov, and K. V. Larin, “In vivo estimation of elastic wave parameters using phase-stabilized swept source optical coherence elastography,” J. Biomed. Opt. 17(10), 100501 (2012).
[Crossref] [PubMed]

Alonso-Caneiro, D.

Anderson, K. J.

Arnal, B.

S. Song, Z. Huang, T. M. Nguyen, E. Y. Wong, B. Arnal, M. O’Donnell, and R. K. Wang, “Shear modulus imaging by direct visualization of propagating shear waves with phase-sensitive optical coherence tomography,” J. Biomed. Opt. 18(12), 121509 (2013).
[Crossref] [PubMed]

Asejczyk-Widlicka, M.

M. Asejczyk-Widlicka, D. W. Sródka, H. Kasprzak, and B. K. Pierscionek, “Modelling the elastic properties of the anterior eye and their contribution to maintenance of image quality: the role of the limbus,” Eye (Lond.) 21(8), 1087–1094 (2007).
[Crossref] [PubMed]

Aubry, J. F.

T. M. Nguyen, J. F. Aubry, D. Touboul, M. Fink, J. L. Gennisson, J. Bercoff, and M. Tanter, “Monitoring of cornea elastic properties changes during UV-A/riboflavin-induced corneal collagen cross-linking using supersonic shear wave imaging: a pilot study,” Invest. Ophthalmol. Vis. Sci. 53(9), 5948–5954 (2012).
[Crossref] [PubMed]

Bauer, M.

Bercoff, J.

T. M. Nguyen, J. F. Aubry, D. Touboul, M. Fink, J. L. Gennisson, J. Bercoff, and M. Tanter, “Monitoring of cornea elastic properties changes during UV-A/riboflavin-induced corneal collagen cross-linking using supersonic shear wave imaging: a pilot study,” Invest. Ophthalmol. Vis. Sci. 53(9), 5948–5954 (2012).
[Crossref] [PubMed]

T. M. Nguyen, M. Couade, J. Bercoff, and M. Tanter, “Assessment of viscous and elastic properties of sub-wavelength layered soft tissues using shear wave spectroscopy: theoretical framework and in vitro experimental validation,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 58(11), 2305–2315 (2011).
[Crossref] [PubMed]

M. Tanter, D. Touboul, J. L. Gennisson, J. Bercoff, and M. Fink, “High-resolution quantitative imaging of cornea elasticity using supersonic shear imaging,” IEEE Trans. Med. Imaging 28(12), 1881–1893 (2009).
[Crossref] [PubMed]

Bernal, M.

I. Z. Nenadic, M. W. Urban, M. Bernal, and J. F. Greenleaf, “Phase velocities and attenuations of shear, Lamb, and Rayleigh waves in plate-like tissues submerged in a fluid (L),” J. Acoust. Soc. Am. 130(6), 3549–3552 (2011).
[Crossref] [PubMed]

Besner, S.

G. Scarcelli, S. Besner, R. Pineda, and S. H. Yun, “Biomechanical characterization of keratoconus corneas ex vivo with brillouin microscopy,” Invest. Ophthalmol. Vis. Sci. 55(7), 4490–4495 (2014).
[Crossref] [PubMed]

Bhojwani, R.

S. Shah, M. Laiquzzaman, R. Bhojwani, S. Mantry, and I. Cunliffe, “Assessment of the Biomechanical Properties of the Cornea with the Ocular Response Analyzer in Normal and Keratoconic Eyes,” Invest. Ophthalmol. Vis. Sci. 48(7), 3026–3031 (2007).
[Crossref] [PubMed]

Boccara, A. C.

Boppart, S. A.

B. F. Kennedy, X. Liang, S. G. Adie, D. K. Gerstmann, B. C. Quirk, S. A. Boppart, and D. D. Sampson, “In vivo three-dimensional optical coherence elastography,” Opt. Express 19(7), 6623–6634 (2011).
[Crossref] [PubMed]

S. G. Adie, X. Liang, B. F. Kennedy, R. John, D. D. Sampson, and S. A. Boppart, “Spectroscopic optical coherence elastography,” Opt. Express 18(25), 25519–25534 (2010).
[Crossref] [PubMed]

X. Liang, V. Crecea, and S. A. Boppart, “Dynamic Optical Coherence Elastography: a review,” J. Innov. Opt. Health Sci. 3(4), 221–233 (2010).
[Crossref] [PubMed]

X. Liang and S. A. Boppart, “Biomechanical properties of in vivo human skin from dynamic optical coherence elastography,” IEEE Trans. Biomed. Eng. 57(4), 953–959 (2010).
[Crossref] [PubMed]

X. Liang, A. L. Oldenburg, V. Crecea, E. J. Chaney, and S. A. Boppart, “Optical micro-scale mapping of dynamic biomechanical tissue properties,” Opt. Express 16(15), 11052–11065 (2008).
[Crossref] [PubMed]

J. G. Fujimoto, C. Pitris, S. A. Boppart, and M. E. Brezinski, “Optical coherence tomography: an emerging technology for biomedical imaging and optical biopsy,” Neoplasia 2(1-2), 9–25 (2000).
[Crossref] [PubMed]

Brezinski, M. E.

J. G. Fujimoto, C. Pitris, S. A. Boppart, and M. E. Brezinski, “Optical coherence tomography: an emerging technology for biomedical imaging and optical biopsy,” Neoplasia 2(1-2), 9–25 (2000).
[Crossref] [PubMed]

Bruneval, P.

M. Couade, M. Pernot, C. Prada, E. Messas, J. Emmerich, P. Bruneval, A. Criton, M. Fink, and M. Tanter, “Quantitative Assessment of Arterial Wall Biomechanical Properties Using Shear Wave Imaging,” Ultrasound Med. Biol. 36(10), 1662–1676 (2010).
[Crossref] [PubMed]

Burau, G.

Bush, M. B.

K. M. Kennedy, C. Ford, B. F. Kennedy, M. B. Bush, and D. D. Sampson, “Analysis of mechanical contrast in optical coherence elastography,” J. Biomed. Opt. 18(12), 121508 (2013).
[Crossref] [PubMed]

Chaney, E. J.

Chen, R.

W. Qi, R. Chen, L. Chou, G. Liu, J. Zhang, Q. Zhou, and Z. Chen, “Phase-resolved acoustic radiation force optical coherence elastography,” J. Biomed. Opt. 17(11), 110505 (2012).
[Crossref] [PubMed]

Chen, S.

S. Chen, M. W. Urban, C. Pislaru, R. Kinnick, Y. Zheng, A. Yao, and J. F. Greenleaf, “Shearwave dispersion ultrasound vibrometry (SDUV) for measuring tissue elasticity and viscosity,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 56(1), 55–62 (2009).
[Crossref] [PubMed]

Chen, Z.

W. Qi, R. Chen, L. Chou, G. Liu, J. Zhang, Q. Zhou, and Z. Chen, “Phase-resolved acoustic radiation force optical coherence elastography,” J. Biomed. Opt. 17(11), 110505 (2012).
[Crossref] [PubMed]

Cheng, X.

Choma, M. A.

Chou, L.

W. Qi, R. Chen, L. Chou, G. Liu, J. Zhang, Q. Zhou, and Z. Chen, “Phase-resolved acoustic radiation force optical coherence elastography,” J. Biomed. Opt. 17(11), 110505 (2012).
[Crossref] [PubMed]

Christopoulos, V.

V. Christopoulos, L. Kagemann, G. Wollstein, H. Ishikawa, M. L. Gabriele, M. Wojtkowski, V. Srinivasan, J. G. Fujimoto, J. S. Duker, D. K. Dhaliwal, and J. S. Schuman, “In vivo corneal high-speed, ultra high-resolution optical coherence tomography,” Arch. Ophthalmol. 125(8), 1027–1035 (2007).
[Crossref] [PubMed]

Comaish, I. F.

I. F. Comaish and M. A. Lawless, “Progressive post-LASIK keratectasia: Biomechanical instability or chronic disease process?” J. Cataract Refract. Surg. 28(12), 2206–2213 (2002).
[Crossref] [PubMed]

Conry, M.

Couade, M.

T. M. Nguyen, M. Couade, J. Bercoff, and M. Tanter, “Assessment of viscous and elastic properties of sub-wavelength layered soft tissues using shear wave spectroscopy: theoretical framework and in vitro experimental validation,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 58(11), 2305–2315 (2011).
[Crossref] [PubMed]

M. Couade, M. Pernot, C. Prada, E. Messas, J. Emmerich, P. Bruneval, A. Criton, M. Fink, and M. Tanter, “Quantitative Assessment of Arterial Wall Biomechanical Properties Using Shear Wave Imaging,” Ultrasound Med. Biol. 36(10), 1662–1676 (2010).
[Crossref] [PubMed]

Courtney, B. K.

Creazzo, T. L.

Crecea, V.

Criton, A.

M. Couade, M. Pernot, C. Prada, E. Messas, J. Emmerich, P. Bruneval, A. Criton, M. Fink, and M. Tanter, “Quantitative Assessment of Arterial Wall Biomechanical Properties Using Shear Wave Imaging,” Ultrasound Med. Biol. 36(10), 1662–1676 (2010).
[Crossref] [PubMed]

Cunliffe, I.

S. Shah, M. Laiquzzaman, R. Bhojwani, S. Mantry, and I. Cunliffe, “Assessment of the Biomechanical Properties of the Cornea with the Ocular Response Analyzer in Normal and Keratoconic Eyes,” Invest. Ophthalmol. Vis. Sci. 48(7), 3026–3031 (2007).
[Crossref] [PubMed]

Dawson, D. G.

J. B. Randleman, D. G. Dawson, H. E. Grossniklaus, B. E. McCarey, and H. F. Edelhauser, “Depth-dependent cohesive tensile strength in human donor corneas: implications for refractive surgery,” J. Refract. Surg. 24(1), S85–S89 (2008).
[PubMed]

Dhaliwal, D. K.

V. Christopoulos, L. Kagemann, G. Wollstein, H. Ishikawa, M. L. Gabriele, M. Wojtkowski, V. Srinivasan, J. G. Fujimoto, J. S. Duker, D. K. Dhaliwal, and J. S. Schuman, “In vivo corneal high-speed, ultra high-resolution optical coherence tomography,” Arch. Ophthalmol. 125(8), 1027–1035 (2007).
[Crossref] [PubMed]

Dias, J. M.

J. M. Dias and N. M. Ziebarth, “Anterior and posterior corneal stroma elasticity assessed using nanoindentation,” Exp. Eye Res. 115, 41–46 (2013).
[Crossref] [PubMed]

Djotyan, G. P.

G. P. Djotyan, R. M. Kurtz, D. C. Fernández, and T. Juhasz, “An Analytically Solvable Model for Biomechanical Response of the Cornea to Refractive Surgery,” J. Biomech. Eng. 123(5), 440–445 (2001).
[Crossref] [PubMed]

Dorronsoro, C.

Doughty, M. J.

M. J. Doughty and M. L. Zaman, “Human Corneal Thickness and Its Impact on Intraocular Pressure Measures: A Review and Meta-analysis Approach,” Surv. Ophthalmol. 44(5), 367–408 (2000).
[Crossref] [PubMed]

Drexler, W.

W. Drexler, U. Morgner, R. K. Ghanta, F. X. Kärtner, J. S. Schuman, and J. G. Fujimoto, “Ultrahigh-resolution ophthalmic optical coherence tomography,” Nat. Med. 7(4), 502–507 (2001).
[Crossref] [PubMed]

Duck, F. A.

F. A. Duck, “Medical and non-medical protection standards for ultrasound and infrasound,” Prog. Biophys. Mol. Biol. 93(1-3), 176–191 (2007).
[Crossref] [PubMed]

Duker, J. S.

V. Christopoulos, L. Kagemann, G. Wollstein, H. Ishikawa, M. L. Gabriele, M. Wojtkowski, V. Srinivasan, J. G. Fujimoto, J. S. Duker, D. K. Dhaliwal, and J. S. Schuman, “In vivo corneal high-speed, ultra high-resolution optical coherence tomography,” Arch. Ophthalmol. 125(8), 1027–1035 (2007).
[Crossref] [PubMed]

Dupps, W. J.

M. R. Ford, W. J. Dupps, A. M. Rollins, A. S. Roy, and Z. Hu, “Method for optical coherence elastography of the cornea,” J. Biomed. Opt. 16(1), 016005 (2011).
[Crossref] [PubMed]

Edelhauser, H. F.

J. B. Randleman, D. G. Dawson, H. E. Grossniklaus, B. E. McCarey, and H. F. Edelhauser, “Depth-dependent cohesive tensile strength in human donor corneas: implications for refractive surgery,” J. Refract. Surg. 24(1), S85–S89 (2008).
[PubMed]

Edmund, C.

C. Edmund, “Corneal elasticity and ocular rigidity in normal and keratoconic eyes,” Acta Ophthalmol. (Copenh.) 66(2), 134–140 (1988).
[Crossref] [PubMed]

Ellerbee, A. K.

Emelianov, S.

S. Wang, K. V. Larin, L. Jiasong, S. Vantipalli, R. K. Manapuram, S. Aglyamov, S. Emelianov, and M. D. Twa, “A focused air-pulse system for optical-coherence-tomography-based measurements of tissue elasticity,” Laser Phys. Lett. 10(7), 075605 (2013).
[Crossref]

S. Wang, S. Aglyamov, A. Karpiouk, J. Li, S. Emelianov, F. Manns, and K. V. Larin, “Assessing the mechanical properties of tissue-mimicking phantoms at different depths as an approach to measure biomechanical gradient of crystalline lens,” Biomed. Opt. Express 4(12), 2769–2780 (2013).
[Crossref] [PubMed]

Emelianov, S. Y.

R. K. Manapuram, S. R. Aglyamov, F. M. Monediado, M. Mashiatulla, J. Li, S. Y. Emelianov, and K. V. Larin, “In vivo estimation of elastic wave parameters using phase-stabilized swept source optical coherence elastography,” J. Biomed. Opt. 17(10), 100501 (2012).
[Crossref] [PubMed]

K. W. Hollman, S. Y. Emelianov, J. H. Neiss, G. Jotyan, G. J. Spooner, T. Juhasz, R. M. Kurtz, and M. O’Donnell, “Strain imaging of corneal tissue with an ultrasound elasticity microscope,” Cornea 21(1), 68–73 (2002).
[Crossref] [PubMed]

Emmerich, J.

M. Couade, M. Pernot, C. Prada, E. Messas, J. Emmerich, P. Bruneval, A. Criton, M. Fink, and M. Tanter, “Quantitative Assessment of Arterial Wall Biomechanical Properties Using Shear Wave Imaging,” Ultrasound Med. Biol. 36(10), 1662–1676 (2010).
[Crossref] [PubMed]

Feigenbaum, S. K.

J. S. Pepose, S. K. Feigenbaum, M. A. Qazi, J. P. Sanderson, and C. J. Roberts, “Changes in corneal biomechanics and intraocular pressure following LASIK using static, dynamic, and noncontact tonometry,” Am. J. Ophthalmol. 143(1), 39–47 (2007).
[Crossref] [PubMed]

Fernández, D. C.

G. P. Djotyan, R. M. Kurtz, D. C. Fernández, and T. Juhasz, “An Analytically Solvable Model for Biomechanical Response of the Cornea to Refractive Surgery,” J. Biomech. Eng. 123(5), 440–445 (2001).
[Crossref] [PubMed]

Fink, M.

T. M. Nguyen, J. F. Aubry, D. Touboul, M. Fink, J. L. Gennisson, J. Bercoff, and M. Tanter, “Monitoring of cornea elastic properties changes during UV-A/riboflavin-induced corneal collagen cross-linking using supersonic shear wave imaging: a pilot study,” Invest. Ophthalmol. Vis. Sci. 53(9), 5948–5954 (2012).
[Crossref] [PubMed]

M. Couade, M. Pernot, C. Prada, E. Messas, J. Emmerich, P. Bruneval, A. Criton, M. Fink, and M. Tanter, “Quantitative Assessment of Arterial Wall Biomechanical Properties Using Shear Wave Imaging,” Ultrasound Med. Biol. 36(10), 1662–1676 (2010).
[Crossref] [PubMed]

M. Tanter, D. Touboul, J. L. Gennisson, J. Bercoff, and M. Fink, “High-resolution quantitative imaging of cornea elasticity using supersonic shear imaging,” IEEE Trans. Med. Imaging 28(12), 1881–1893 (2009).
[Crossref] [PubMed]

Ford, C.

K. M. Kennedy, C. Ford, B. F. Kennedy, M. B. Bush, and D. D. Sampson, “Analysis of mechanical contrast in optical coherence elastography,” J. Biomed. Opt. 18(12), 121508 (2013).
[Crossref] [PubMed]

Ford, M. R.

M. R. Ford, W. J. Dupps, A. M. Rollins, A. S. Roy, and Z. Hu, “Method for optical coherence elastography of the cornea,” J. Biomed. Opt. 16(1), 016005 (2011).
[Crossref] [PubMed]

Fujimoto, J. G.

V. Christopoulos, L. Kagemann, G. Wollstein, H. Ishikawa, M. L. Gabriele, M. Wojtkowski, V. Srinivasan, J. G. Fujimoto, J. S. Duker, D. K. Dhaliwal, and J. S. Schuman, “In vivo corneal high-speed, ultra high-resolution optical coherence tomography,” Arch. Ophthalmol. 125(8), 1027–1035 (2007).
[Crossref] [PubMed]

W. Drexler, U. Morgner, R. K. Ghanta, F. X. Kärtner, J. S. Schuman, and J. G. Fujimoto, “Ultrahigh-resolution ophthalmic optical coherence tomography,” Nat. Med. 7(4), 502–507 (2001).
[Crossref] [PubMed]

J. G. Fujimoto, C. Pitris, S. A. Boppart, and M. E. Brezinski, “Optical coherence tomography: an emerging technology for biomedical imaging and optical biopsy,” Neoplasia 2(1-2), 9–25 (2000).
[Crossref] [PubMed]

Gabriele, M. L.

V. Christopoulos, L. Kagemann, G. Wollstein, H. Ishikawa, M. L. Gabriele, M. Wojtkowski, V. Srinivasan, J. G. Fujimoto, J. S. Duker, D. K. Dhaliwal, and J. S. Schuman, “In vivo corneal high-speed, ultra high-resolution optical coherence tomography,” Arch. Ophthalmol. 125(8), 1027–1035 (2007).
[Crossref] [PubMed]

Gennisson, J. L.

T. M. Nguyen, J. F. Aubry, D. Touboul, M. Fink, J. L. Gennisson, J. Bercoff, and M. Tanter, “Monitoring of cornea elastic properties changes during UV-A/riboflavin-induced corneal collagen cross-linking using supersonic shear wave imaging: a pilot study,” Invest. Ophthalmol. Vis. Sci. 53(9), 5948–5954 (2012).
[Crossref] [PubMed]

M. Tanter, D. Touboul, J. L. Gennisson, J. Bercoff, and M. Fink, “High-resolution quantitative imaging of cornea elasticity using supersonic shear imaging,” IEEE Trans. Med. Imaging 28(12), 1881–1893 (2009).
[Crossref] [PubMed]

Gennisson, J.-L.

D. Touboul, J.-L. Gennisson, T.-M. Nguyen, A. Robinet, C. J. Roberts, M. Tanter, and N. Grenier, “Supersonic Shear Wave Elastography for the In Vivo Evaluation of Transepithelial Corneal Collagen Cross-Linking,” Invest. Ophthalmol. Vis. Sci. 55(3), 1976–1984 (2014).
[Crossref] [PubMed]

Gerstmann, D. K.

Ghanta, R. K.

W. Drexler, U. Morgner, R. K. Ghanta, F. X. Kärtner, J. S. Schuman, and J. G. Fujimoto, “Ultrahigh-resolution ophthalmic optical coherence tomography,” Nat. Med. 7(4), 502–507 (2001).
[Crossref] [PubMed]

Gora, M.

Gorczynska, I.

Greenleaf, J. F.

I. Z. Nenadic, M. W. Urban, S. A. Mitchell, and J. F. Greenleaf, “Lamb wave dispersion ultrasound vibrometry (LDUV) method for quantifying mechanical properties of viscoelastic solids,” Phys. Med. Biol. 56(7), 2245–2264 (2011).
[Crossref] [PubMed]

I. Z. Nenadic, M. W. Urban, M. Bernal, and J. F. Greenleaf, “Phase velocities and attenuations of shear, Lamb, and Rayleigh waves in plate-like tissues submerged in a fluid (L),” J. Acoust. Soc. Am. 130(6), 3549–3552 (2011).
[Crossref] [PubMed]

S. Chen, M. W. Urban, C. Pislaru, R. Kinnick, Y. Zheng, A. Yao, and J. F. Greenleaf, “Shearwave dispersion ultrasound vibrometry (SDUV) for measuring tissue elasticity and viscosity,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 56(1), 55–62 (2009).
[Crossref] [PubMed]

Grenier, N.

D. Touboul, J.-L. Gennisson, T.-M. Nguyen, A. Robinet, C. J. Roberts, M. Tanter, and N. Grenier, “Supersonic Shear Wave Elastography for the In Vivo Evaluation of Transepithelial Corneal Collagen Cross-Linking,” Invest. Ophthalmol. Vis. Sci. 55(3), 1976–1984 (2014).
[Crossref] [PubMed]

Grossniklaus, H. E.

J. B. Randleman, D. G. Dawson, H. E. Grossniklaus, B. E. McCarey, and H. F. Edelhauser, “Depth-dependent cohesive tensile strength in human donor corneas: implications for refractive surgery,” J. Refract. Surg. 24(1), S85–S89 (2008).
[PubMed]

Grulkowski, I.

Gu, C.

Guan, G.

Guthoff, R.

Hammer, C. M.

J. Seifert, C. M. Hammer, J. Rheinlaender, S. Sel, M. Scholz, F. Paulsen, and T. E. Schäffer, “Distribution of Young’s modulus in porcine corneas after riboflavin/UVA-induced collagen cross-linking as measured by atomic force microscopy,” PLoS ONE 9(1), e88186 (2014).
[Crossref] [PubMed]

Hillman, T. R.

Hollman, K. W.

K. W. Hollman, S. Y. Emelianov, J. H. Neiss, G. Jotyan, G. J. Spooner, T. Juhasz, R. M. Kurtz, and M. O’Donnell, “Strain imaging of corneal tissue with an ultrasound elasticity microscope,” Cornea 21(1), 68–73 (2002).
[Crossref] [PubMed]

Hu, Z.

M. R. Ford, W. J. Dupps, A. M. Rollins, A. S. Roy, and Z. Hu, “Method for optical coherence elastography of the cornea,” J. Biomed. Opt. 16(1), 016005 (2011).
[Crossref] [PubMed]

Huang, Z.

S. Song, Z. Huang, T. M. Nguyen, E. Y. Wong, B. Arnal, M. O’Donnell, and R. K. Wang, “Shear modulus imaging by direct visualization of propagating shear waves with phase-sensitive optical coherence tomography,” J. Biomed. Opt. 18(12), 121509 (2013).
[Crossref] [PubMed]

S. Song, Z. Huang, and R. K. Wang, “Tracking mechanical wave propagation within tissue using phase-sensitive optical coherence tomography: motion artifact and its compensation,” J. Biomed. Opt. 18(12), 121505 (2013).
[Crossref] [PubMed]

C. Li, G. Guan, R. Reif, Z. Huang, and R. K. Wang, “Determining elastic properties of skin by measuring surface waves from an impulse mechanical stimulus using phase-sensitive optical coherence tomography,” J. R. Soc. Interface 9(70), 831–841 (2012).
[Crossref] [PubMed]

C. Li, G. Guan, Z. Huang, M. Johnstone, and R. K. Wang, “Noncontact all-optical measurement of corneal elasticity,” Opt. Lett. 37(10), 1625–1627 (2012).
[Crossref] [PubMed]

C. Li, G. Guan, X. Cheng, Z. Huang, and R. K. Wang, “Quantitative elastography provided by surface acoustic waves measured by phase-sensitive optical coherence tomography,” Opt. Lett. 37(4), 722–724 (2012).
[Crossref] [PubMed]

C. Li, Z. Huang, and R. K. Wang, “Elastic properties of soft tissue-mimicking phantoms assessed by combined use of laser ultrasonics and low coherence interferometry,” Opt. Express 19(11), 10153–10163 (2011).
[Crossref] [PubMed]

Huhle, M.

E. Spoerl, M. Huhle, and T. Seiler, “Induction of cross-links in corneal tissue,” Exp. Eye Res. 66(1), 97–103 (1998).
[Crossref] [PubMed]

Ingram, D. R.

Ishikawa, H.

V. Christopoulos, L. Kagemann, G. Wollstein, H. Ishikawa, M. L. Gabriele, M. Wojtkowski, V. Srinivasan, J. G. Fujimoto, J. S. Duker, D. K. Dhaliwal, and J. S. Schuman, “In vivo corneal high-speed, ultra high-resolution optical coherence tomography,” Arch. Ophthalmol. 125(8), 1027–1035 (2007).
[Crossref] [PubMed]

Izatt, J. A.

Jiasong, L.

S. Wang, K. V. Larin, L. Jiasong, S. Vantipalli, R. K. Manapuram, S. Aglyamov, S. Emelianov, and M. D. Twa, “A focused air-pulse system for optical-coherence-tomography-based measurements of tissue elasticity,” Laser Phys. Lett. 10(7), 075605 (2013).
[Crossref]

John, R.

Johnstone, M.

Jotyan, G.

K. W. Hollman, S. Y. Emelianov, J. H. Neiss, G. Jotyan, G. J. Spooner, T. Juhasz, R. M. Kurtz, and M. O’Donnell, “Strain imaging of corneal tissue with an ultrasound elasticity microscope,” Cornea 21(1), 68–73 (2002).
[Crossref] [PubMed]

Juhasz, T.

K. W. Hollman, S. Y. Emelianov, J. H. Neiss, G. Jotyan, G. J. Spooner, T. Juhasz, R. M. Kurtz, and M. O’Donnell, “Strain imaging of corneal tissue with an ultrasound elasticity microscope,” Cornea 21(1), 68–73 (2002).
[Crossref] [PubMed]

G. P. Djotyan, R. M. Kurtz, D. C. Fernández, and T. Juhasz, “An Analytically Solvable Model for Biomechanical Response of the Cornea to Refractive Surgery,” J. Biomech. Eng. 123(5), 440–445 (2001).
[Crossref] [PubMed]

Kagemann, L.

V. Christopoulos, L. Kagemann, G. Wollstein, H. Ishikawa, M. L. Gabriele, M. Wojtkowski, V. Srinivasan, J. G. Fujimoto, J. S. Duker, D. K. Dhaliwal, and J. S. Schuman, “In vivo corneal high-speed, ultra high-resolution optical coherence tomography,” Arch. Ophthalmol. 125(8), 1027–1035 (2007).
[Crossref] [PubMed]

Kaluzny, B. J.

Karnowski, K.

Karpiouk, A.

Kärtner, F. X.

W. Drexler, U. Morgner, R. K. Ghanta, F. X. Kärtner, J. S. Schuman, and J. G. Fujimoto, “Ultrahigh-resolution ophthalmic optical coherence tomography,” Nat. Med. 7(4), 502–507 (2001).
[Crossref] [PubMed]

Kasprzak, H.

M. Asejczyk-Widlicka, D. W. Sródka, H. Kasprzak, and B. K. Pierscionek, “Modelling the elastic properties of the anterior eye and their contribution to maintenance of image quality: the role of the limbus,” Eye (Lond.) 21(8), 1087–1094 (2007).
[Crossref] [PubMed]

Kennedy, B. F.

B. F. Kennedy, K. M. Kennedy, and D. D. Sampson, “A Review of Optical Coherence Elastography: Fundamentals, Techniques and Prospects,” IEEE J. Quantum Electron. 20, 1–17 (2014).

K. M. Kennedy, R. A. McLaughlin, B. F. Kennedy, A. Tien, B. Latham, C. M. Saunders, and D. D. Sampson, “Needle optical coherence elastography for the measurement of microscale mechanical contrast deep within human breast tissues,” J. Biomed. Opt. 18(12), 121510 (2013).
[Crossref] [PubMed]

K. M. Kennedy, C. Ford, B. F. Kennedy, M. B. Bush, and D. D. Sampson, “Analysis of mechanical contrast in optical coherence elastography,” J. Biomed. Opt. 18(12), 121508 (2013).
[Crossref] [PubMed]

B. F. Kennedy, X. Liang, S. G. Adie, D. K. Gerstmann, B. C. Quirk, S. A. Boppart, and D. D. Sampson, “In vivo three-dimensional optical coherence elastography,” Opt. Express 19(7), 6623–6634 (2011).
[Crossref] [PubMed]

S. G. Adie, X. Liang, B. F. Kennedy, R. John, D. D. Sampson, and S. A. Boppart, “Spectroscopic optical coherence elastography,” Opt. Express 18(25), 25519–25534 (2010).
[Crossref] [PubMed]

B. F. Kennedy, T. R. Hillman, R. A. McLaughlin, B. C. Quirk, and D. D. Sampson, “In vivo dynamic optical coherence elastography using a ring actuator,” Opt. Express 17(24), 21762–21772 (2009).
[Crossref] [PubMed]

Kennedy, K. M.

B. F. Kennedy, K. M. Kennedy, and D. D. Sampson, “A Review of Optical Coherence Elastography: Fundamentals, Techniques and Prospects,” IEEE J. Quantum Electron. 20, 1–17 (2014).

K. M. Kennedy, R. A. McLaughlin, B. F. Kennedy, A. Tien, B. Latham, C. M. Saunders, and D. D. Sampson, “Needle optical coherence elastography for the measurement of microscale mechanical contrast deep within human breast tissues,” J. Biomed. Opt. 18(12), 121510 (2013).
[Crossref] [PubMed]

K. M. Kennedy, C. Ford, B. F. Kennedy, M. B. Bush, and D. D. Sampson, “Analysis of mechanical contrast in optical coherence elastography,” J. Biomed. Opt. 18(12), 121508 (2013).
[Crossref] [PubMed]

Kim, P.

G. Scarcelli, P. Kim, and S. H. Yun, “In vivo measurement of age-related stiffening in the crystalline lens by Brillouin optical microscopy,” Biophys. J. 101(6), 1539–1545 (2011).
[Crossref] [PubMed]

Kinnick, R.

S. Chen, M. W. Urban, C. Pislaru, R. Kinnick, Y. Zheng, A. Yao, and J. F. Greenleaf, “Shearwave dispersion ultrasound vibrometry (SDUV) for measuring tissue elasticity and viscosity,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 56(1), 55–62 (2009).
[Crossref] [PubMed]

Kling, S.

G. Scarcelli, S. Kling, E. Quijano, R. Pineda, S. Marcos, and S. H. Yun, “Brillouin microscopy of collagen crosslinking: noncontact depth-dependent analysis of corneal elastic modulus,” Invest. Ophthalmol. Vis. Sci. 54(2), 1418–1425 (2013).
[Crossref] [PubMed]

C. Dorronsoro, D. Pascual, P. Pérez-Merino, S. Kling, and S. Marcos, “Dynamic OCT measurement of corneal deformation by an air puff in normal and cross-linked corneas,” Biomed. Opt. Express 3(3), 473–487 (2012).
[Crossref] [PubMed]

Kotecha, A.

A. Kotecha, “What biomechanical properties of the cornea are relevant for the clinician?” Surv. Ophthalmol. 52(6Suppl 2), S109–S114 (2007).
[Crossref] [PubMed]

Kourentzi, K.

S. Wang, T. Sherlock, B. Salazar, N. Sudheendran, R. K. Manapuram, K. Kourentzi, P. Ruchhoeft, R. C. Willson, and K. V. Larin, “Detection and Monitoring of Microparticles Under Skin by Optical Coherence Tomography as an Approach to Continuous Glucose Sensing Using Implanted Retroreflectors,” IEEE Sens. J. 13(11), 4534–4541 (2013).
[Crossref]

Kowalczyk, A.

Ktonas, P.

R. Righetti, J. Ophir, and P. Ktonas, “Axial resolution in elastography,” Ultrasound Med. Biol. 28(1), 101–113 (2002).
[Crossref] [PubMed]

Kurtz, R. M.

K. W. Hollman, S. Y. Emelianov, J. H. Neiss, G. Jotyan, G. J. Spooner, T. Juhasz, R. M. Kurtz, and M. O’Donnell, “Strain imaging of corneal tissue with an ultrasound elasticity microscope,” Cornea 21(1), 68–73 (2002).
[Crossref] [PubMed]

G. P. Djotyan, R. M. Kurtz, D. C. Fernández, and T. Juhasz, “An Analytically Solvable Model for Biomechanical Response of the Cornea to Refractive Surgery,” J. Biomech. Eng. 123(5), 440–445 (2001).
[Crossref] [PubMed]

Laiquzzaman, M.

S. Shah, M. Laiquzzaman, R. Bhojwani, S. Mantry, and I. Cunliffe, “Assessment of the Biomechanical Properties of the Cornea with the Ocular Response Analyzer in Normal and Keratoconic Eyes,” Invest. Ophthalmol. Vis. Sci. 48(7), 3026–3031 (2007).
[Crossref] [PubMed]

Larin, K. V.

S. Wang and K. V. Larin, “Shear wave imaging optical coherence tomography (SWI-OCT) for ocular tissue biomechanics,” Opt. Lett. 39(1), 41–44 (2014).
[Crossref] [PubMed]

S. Wang, S. Aglyamov, A. Karpiouk, J. Li, S. Emelianov, F. Manns, and K. V. Larin, “Assessing the mechanical properties of tissue-mimicking phantoms at different depths as an approach to measure biomechanical gradient of crystalline lens,” Biomed. Opt. Express 4(12), 2769–2780 (2013).
[Crossref] [PubMed]

S. Wang, T. Sherlock, B. Salazar, N. Sudheendran, R. K. Manapuram, K. Kourentzi, P. Ruchhoeft, R. C. Willson, and K. V. Larin, “Detection and Monitoring of Microparticles Under Skin by Optical Coherence Tomography as an Approach to Continuous Glucose Sensing Using Implanted Retroreflectors,” IEEE Sens. J. 13(11), 4534–4541 (2013).
[Crossref]

S. Wang, K. V. Larin, L. Jiasong, S. Vantipalli, R. K. Manapuram, S. Aglyamov, S. Emelianov, and M. D. Twa, “A focused air-pulse system for optical-coherence-tomography-based measurements of tissue elasticity,” Laser Phys. Lett. 10(7), 075605 (2013).
[Crossref]

R. K. Manapuram, S. R. Aglyamov, F. M. Monediado, M. Mashiatulla, J. Li, S. Y. Emelianov, and K. V. Larin, “In vivo estimation of elastic wave parameters using phase-stabilized swept source optical coherence elastography,” J. Biomed. Opt. 17(10), 100501 (2012).
[Crossref] [PubMed]

S. Wang, J. Li, R. K. Manapuram, F. M. Menodiado, D. R. Ingram, M. D. Twa, A. J. Lazar, D. C. Lev, R. E. Pollock, and K. V. Larin, “Noncontact measurement of elasticity for the detection of soft-tissue tumors using phase-sensitive optical coherence tomography combined with a focused air-puff system,” Opt. Lett. 37(24), 5184–5186 (2012).
[Crossref] [PubMed]

Latham, B.

K. M. Kennedy, R. A. McLaughlin, B. F. Kennedy, A. Tien, B. Latham, C. M. Saunders, and D. D. Sampson, “Needle optical coherence elastography for the measurement of microscale mechanical contrast deep within human breast tissues,” J. Biomed. Opt. 18(12), 121510 (2013).
[Crossref] [PubMed]

Lawless, M. A.

I. F. Comaish and M. A. Lawless, “Progressive post-LASIK keratectasia: Biomechanical instability or chronic disease process?” J. Cataract Refract. Surg. 28(12), 2206–2213 (2002).
[Crossref] [PubMed]

Lazar, A. J.

Lev, D. C.

Li, C.

Li, J.

Liang, X.

Liu, G.

W. Qi, R. Chen, L. Chou, G. Liu, J. Zhang, Q. Zhou, and Z. Chen, “Phase-resolved acoustic radiation force optical coherence elastography,” J. Biomed. Opt. 17(11), 110505 (2012).
[Crossref] [PubMed]

Liu, G. Y.

Luk, T.

Manapuram, R. K.

S. Wang, K. V. Larin, L. Jiasong, S. Vantipalli, R. K. Manapuram, S. Aglyamov, S. Emelianov, and M. D. Twa, “A focused air-pulse system for optical-coherence-tomography-based measurements of tissue elasticity,” Laser Phys. Lett. 10(7), 075605 (2013).
[Crossref]

S. Wang, T. Sherlock, B. Salazar, N. Sudheendran, R. K. Manapuram, K. Kourentzi, P. Ruchhoeft, R. C. Willson, and K. V. Larin, “Detection and Monitoring of Microparticles Under Skin by Optical Coherence Tomography as an Approach to Continuous Glucose Sensing Using Implanted Retroreflectors,” IEEE Sens. J. 13(11), 4534–4541 (2013).
[Crossref]

R. K. Manapuram, S. R. Aglyamov, F. M. Monediado, M. Mashiatulla, J. Li, S. Y. Emelianov, and K. V. Larin, “In vivo estimation of elastic wave parameters using phase-stabilized swept source optical coherence elastography,” J. Biomed. Opt. 17(10), 100501 (2012).
[Crossref] [PubMed]

S. Wang, J. Li, R. K. Manapuram, F. M. Menodiado, D. R. Ingram, M. D. Twa, A. J. Lazar, D. C. Lev, R. E. Pollock, and K. V. Larin, “Noncontact measurement of elasticity for the detection of soft-tissue tumors using phase-sensitive optical coherence tomography combined with a focused air-puff system,” Opt. Lett. 37(24), 5184–5186 (2012).
[Crossref] [PubMed]

Manns, F.

Mantry, S.

S. Shah, M. Laiquzzaman, R. Bhojwani, S. Mantry, and I. Cunliffe, “Assessment of the Biomechanical Properties of the Cornea with the Ocular Response Analyzer in Normal and Keratoconic Eyes,” Invest. Ophthalmol. Vis. Sci. 48(7), 3026–3031 (2007).
[Crossref] [PubMed]

Marcos, S.

Mariampillai, A.

Mashiatulla, M.

R. K. Manapuram, S. R. Aglyamov, F. M. Monediado, M. Mashiatulla, J. Li, S. Y. Emelianov, and K. V. Larin, “In vivo estimation of elastic wave parameters using phase-stabilized swept source optical coherence elastography,” J. Biomed. Opt. 17(10), 100501 (2012).
[Crossref] [PubMed]

McCarey, B. E.

J. B. Randleman, D. G. Dawson, H. E. Grossniklaus, B. E. McCarey, and H. F. Edelhauser, “Depth-dependent cohesive tensile strength in human donor corneas: implications for refractive surgery,” J. Refract. Surg. 24(1), S85–S89 (2008).
[PubMed]

McLaughlin, R. A.

K. M. Kennedy, R. A. McLaughlin, B. F. Kennedy, A. Tien, B. Latham, C. M. Saunders, and D. D. Sampson, “Needle optical coherence elastography for the measurement of microscale mechanical contrast deep within human breast tissues,” J. Biomed. Opt. 18(12), 121510 (2013).
[Crossref] [PubMed]

B. F. Kennedy, T. R. Hillman, R. A. McLaughlin, B. C. Quirk, and D. D. Sampson, “In vivo dynamic optical coherence elastography using a ring actuator,” Opt. Express 17(24), 21762–21772 (2009).
[Crossref] [PubMed]

Menodiado, F. M.

Messas, E.

M. Couade, M. Pernot, C. Prada, E. Messas, J. Emmerich, P. Bruneval, A. Criton, M. Fink, and M. Tanter, “Quantitative Assessment of Arterial Wall Biomechanical Properties Using Shear Wave Imaging,” Ultrasound Med. Biol. 36(10), 1662–1676 (2010).
[Crossref] [PubMed]

Mitchell, S. A.

I. Z. Nenadic, M. W. Urban, S. A. Mitchell, and J. F. Greenleaf, “Lamb wave dispersion ultrasound vibrometry (LDUV) method for quantifying mechanical properties of viscoelastic solids,” Phys. Med. Biol. 56(7), 2245–2264 (2011).
[Crossref] [PubMed]

Monediado, F. M.

R. K. Manapuram, S. R. Aglyamov, F. M. Monediado, M. Mashiatulla, J. Li, S. Y. Emelianov, and K. V. Larin, “In vivo estimation of elastic wave parameters using phase-stabilized swept source optical coherence elastography,” J. Biomed. Opt. 17(10), 100501 (2012).
[Crossref] [PubMed]

Morgner, U.

W. Drexler, U. Morgner, R. K. Ghanta, F. X. Kärtner, J. S. Schuman, and J. G. Fujimoto, “Ultrahigh-resolution ophthalmic optical coherence tomography,” Nat. Med. 7(4), 502–507 (2001).
[Crossref] [PubMed]

Munce, N. R.

Nahas, A.

Neiss, J. H.

K. W. Hollman, S. Y. Emelianov, J. H. Neiss, G. Jotyan, G. J. Spooner, T. Juhasz, R. M. Kurtz, and M. O’Donnell, “Strain imaging of corneal tissue with an ultrasound elasticity microscope,” Cornea 21(1), 68–73 (2002).
[Crossref] [PubMed]

Nenadic, I. Z.

I. Z. Nenadic, M. W. Urban, M. Bernal, and J. F. Greenleaf, “Phase velocities and attenuations of shear, Lamb, and Rayleigh waves in plate-like tissues submerged in a fluid (L),” J. Acoust. Soc. Am. 130(6), 3549–3552 (2011).
[Crossref] [PubMed]

I. Z. Nenadic, M. W. Urban, S. A. Mitchell, and J. F. Greenleaf, “Lamb wave dispersion ultrasound vibrometry (LDUV) method for quantifying mechanical properties of viscoelastic solids,” Phys. Med. Biol. 56(7), 2245–2264 (2011).
[Crossref] [PubMed]

Nguyen, T. M.

S. Song, Z. Huang, T. M. Nguyen, E. Y. Wong, B. Arnal, M. O’Donnell, and R. K. Wang, “Shear modulus imaging by direct visualization of propagating shear waves with phase-sensitive optical coherence tomography,” J. Biomed. Opt. 18(12), 121509 (2013).
[Crossref] [PubMed]

T. M. Nguyen, J. F. Aubry, D. Touboul, M. Fink, J. L. Gennisson, J. Bercoff, and M. Tanter, “Monitoring of cornea elastic properties changes during UV-A/riboflavin-induced corneal collagen cross-linking using supersonic shear wave imaging: a pilot study,” Invest. Ophthalmol. Vis. Sci. 53(9), 5948–5954 (2012).
[Crossref] [PubMed]

T. M. Nguyen, M. Couade, J. Bercoff, and M. Tanter, “Assessment of viscous and elastic properties of sub-wavelength layered soft tissues using shear wave spectroscopy: theoretical framework and in vitro experimental validation,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 58(11), 2305–2315 (2011).
[Crossref] [PubMed]

Nguyen, T.-M.

D. Touboul, J.-L. Gennisson, T.-M. Nguyen, A. Robinet, C. J. Roberts, M. Tanter, and N. Grenier, “Supersonic Shear Wave Elastography for the In Vivo Evaluation of Transepithelial Corneal Collagen Cross-Linking,” Invest. Ophthalmol. Vis. Sci. 55(3), 1976–1984 (2014).
[Crossref] [PubMed]

Nordan, L. T.

L. T. Nordan, “Keratoconus: diagnosis and treatment,” Int. Ophthalmol. Clin. 37(1), 51–63 (1997).
[Crossref] [PubMed]

O’Donnell, M.

S. Song, Z. Huang, T. M. Nguyen, E. Y. Wong, B. Arnal, M. O’Donnell, and R. K. Wang, “Shear modulus imaging by direct visualization of propagating shear waves with phase-sensitive optical coherence tomography,” J. Biomed. Opt. 18(12), 121509 (2013).
[Crossref] [PubMed]

K. W. Hollman, S. Y. Emelianov, J. H. Neiss, G. Jotyan, G. J. Spooner, T. Juhasz, R. M. Kurtz, and M. O’Donnell, “Strain imaging of corneal tissue with an ultrasound elasticity microscope,” Cornea 21(1), 68–73 (2002).
[Crossref] [PubMed]

Oldenburg, A. L.

Ophir, J.

R. Righetti, J. Ophir, and P. Ktonas, “Axial resolution in elastography,” Ultrasound Med. Biol. 28(1), 101–113 (2002).
[Crossref] [PubMed]

Pascual, D.

Paulsen, F.

J. Seifert, C. M. Hammer, J. Rheinlaender, S. Sel, M. Scholz, F. Paulsen, and T. E. Schäffer, “Distribution of Young’s modulus in porcine corneas after riboflavin/UVA-induced collagen cross-linking as measured by atomic force microscopy,” PLoS ONE 9(1), e88186 (2014).
[Crossref] [PubMed]

Pepose, J. S.

J. S. Pepose, S. K. Feigenbaum, M. A. Qazi, J. P. Sanderson, and C. J. Roberts, “Changes in corneal biomechanics and intraocular pressure following LASIK using static, dynamic, and noncontact tonometry,” Am. J. Ophthalmol. 143(1), 39–47 (2007).
[Crossref] [PubMed]

Pérez-Merino, P.

Pernot, M.

M. Couade, M. Pernot, C. Prada, E. Messas, J. Emmerich, P. Bruneval, A. Criton, M. Fink, and M. Tanter, “Quantitative Assessment of Arterial Wall Biomechanical Properties Using Shear Wave Imaging,” Ultrasound Med. Biol. 36(10), 1662–1676 (2010).
[Crossref] [PubMed]

Pierscionek, B. K.

M. Asejczyk-Widlicka, D. W. Sródka, H. Kasprzak, and B. K. Pierscionek, “Modelling the elastic properties of the anterior eye and their contribution to maintenance of image quality: the role of the limbus,” Eye (Lond.) 21(8), 1087–1094 (2007).
[Crossref] [PubMed]

Pineda, R.

G. Scarcelli, S. Besner, R. Pineda, and S. H. Yun, “Biomechanical characterization of keratoconus corneas ex vivo with brillouin microscopy,” Invest. Ophthalmol. Vis. Sci. 55(7), 4490–4495 (2014).
[Crossref] [PubMed]

G. Scarcelli, S. Kling, E. Quijano, R. Pineda, S. Marcos, and S. H. Yun, “Brillouin microscopy of collagen crosslinking: noncontact depth-dependent analysis of corneal elastic modulus,” Invest. Ophthalmol. Vis. Sci. 54(2), 1418–1425 (2013).
[Crossref] [PubMed]

G. Scarcelli, R. Pineda, and S. H. Yun, “Brillouin optical microscopy for corneal biomechanics,” Invest. Ophthalmol. Vis. Sci. 53(1), 185–190 (2012).
[Crossref] [PubMed]

Pislaru, C.

S. Chen, M. W. Urban, C. Pislaru, R. Kinnick, Y. Zheng, A. Yao, and J. F. Greenleaf, “Shearwave dispersion ultrasound vibrometry (SDUV) for measuring tissue elasticity and viscosity,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 56(1), 55–62 (2009).
[Crossref] [PubMed]

Pitris, C.

J. G. Fujimoto, C. Pitris, S. A. Boppart, and M. E. Brezinski, “Optical coherence tomography: an emerging technology for biomedical imaging and optical biopsy,” Neoplasia 2(1-2), 9–25 (2000).
[Crossref] [PubMed]

Pollock, R. E.

Pop, M.

Prada, C.

M. Couade, M. Pernot, C. Prada, E. Messas, J. Emmerich, P. Bruneval, A. Criton, M. Fink, and M. Tanter, “Quantitative Assessment of Arterial Wall Biomechanical Properties Using Shear Wave Imaging,” Ultrasound Med. Biol. 36(10), 1662–1676 (2010).
[Crossref] [PubMed]

Qazi, M. A.

J. S. Pepose, S. K. Feigenbaum, M. A. Qazi, J. P. Sanderson, and C. J. Roberts, “Changes in corneal biomechanics and intraocular pressure following LASIK using static, dynamic, and noncontact tonometry,” Am. J. Ophthalmol. 143(1), 39–47 (2007).
[Crossref] [PubMed]

Qi, W.

W. Qi, R. Chen, L. Chou, G. Liu, J. Zhang, Q. Zhou, and Z. Chen, “Phase-resolved acoustic radiation force optical coherence elastography,” J. Biomed. Opt. 17(11), 110505 (2012).
[Crossref] [PubMed]

Quijano, E.

G. Scarcelli, S. Kling, E. Quijano, R. Pineda, S. Marcos, and S. H. Yun, “Brillouin microscopy of collagen crosslinking: noncontact depth-dependent analysis of corneal elastic modulus,” Invest. Ophthalmol. Vis. Sci. 54(2), 1418–1425 (2013).
[Crossref] [PubMed]

Quirk, B. C.

Randleman, J. B.

J. B. Randleman, D. G. Dawson, H. E. Grossniklaus, B. E. McCarey, and H. F. Edelhauser, “Depth-dependent cohesive tensile strength in human donor corneas: implications for refractive surgery,” J. Refract. Surg. 24(1), S85–S89 (2008).
[PubMed]

Reif, R.

C. Li, G. Guan, R. Reif, Z. Huang, and R. K. Wang, “Determining elastic properties of skin by measuring surface waves from an impulse mechanical stimulus using phase-sensitive optical coherence tomography,” J. R. Soc. Interface 9(70), 831–841 (2012).
[Crossref] [PubMed]

Reiß, S.

Rheinlaender, J.

J. Seifert, C. M. Hammer, J. Rheinlaender, S. Sel, M. Scholz, F. Paulsen, and T. E. Schäffer, “Distribution of Young’s modulus in porcine corneas after riboflavin/UVA-induced collagen cross-linking as measured by atomic force microscopy,” PLoS ONE 9(1), e88186 (2014).
[Crossref] [PubMed]

Righetti, R.

R. Righetti, J. Ophir, and P. Ktonas, “Axial resolution in elastography,” Ultrasound Med. Biol. 28(1), 101–113 (2002).
[Crossref] [PubMed]

Roberts, C. J.

D. Touboul, J.-L. Gennisson, T.-M. Nguyen, A. Robinet, C. J. Roberts, M. Tanter, and N. Grenier, “Supersonic Shear Wave Elastography for the In Vivo Evaluation of Transepithelial Corneal Collagen Cross-Linking,” Invest. Ophthalmol. Vis. Sci. 55(3), 1976–1984 (2014).
[Crossref] [PubMed]

J. S. Pepose, S. K. Feigenbaum, M. A. Qazi, J. P. Sanderson, and C. J. Roberts, “Changes in corneal biomechanics and intraocular pressure following LASIK using static, dynamic, and noncontact tonometry,” Am. J. Ophthalmol. 143(1), 39–47 (2007).
[Crossref] [PubMed]

Robinet, A.

D. Touboul, J.-L. Gennisson, T.-M. Nguyen, A. Robinet, C. J. Roberts, M. Tanter, and N. Grenier, “Supersonic Shear Wave Elastography for the In Vivo Evaluation of Transepithelial Corneal Collagen Cross-Linking,” Invest. Ophthalmol. Vis. Sci. 55(3), 1976–1984 (2014).
[Crossref] [PubMed]

Rollins, A. M.

M. R. Ford, W. J. Dupps, A. M. Rollins, A. S. Roy, and Z. Hu, “Method for optical coherence elastography of the cornea,” J. Biomed. Opt. 16(1), 016005 (2011).
[Crossref] [PubMed]

Roux, S.

Roy, A. S.

M. R. Ford, W. J. Dupps, A. M. Rollins, A. S. Roy, and Z. Hu, “Method for optical coherence elastography of the cornea,” J. Biomed. Opt. 16(1), 016005 (2011).
[Crossref] [PubMed]

Ruchhoeft, P.

S. Wang, T. Sherlock, B. Salazar, N. Sudheendran, R. K. Manapuram, K. Kourentzi, P. Ruchhoeft, R. C. Willson, and K. V. Larin, “Detection and Monitoring of Microparticles Under Skin by Optical Coherence Tomography as an Approach to Continuous Glucose Sensing Using Implanted Retroreflectors,” IEEE Sens. J. 13(11), 4534–4541 (2013).
[Crossref]

Salazar, B.

S. Wang, T. Sherlock, B. Salazar, N. Sudheendran, R. K. Manapuram, K. Kourentzi, P. Ruchhoeft, R. C. Willson, and K. V. Larin, “Detection and Monitoring of Microparticles Under Skin by Optical Coherence Tomography as an Approach to Continuous Glucose Sensing Using Implanted Retroreflectors,” IEEE Sens. J. 13(11), 4534–4541 (2013).
[Crossref]

Sampson, D. D.

B. F. Kennedy, K. M. Kennedy, and D. D. Sampson, “A Review of Optical Coherence Elastography: Fundamentals, Techniques and Prospects,” IEEE J. Quantum Electron. 20, 1–17 (2014).

K. M. Kennedy, R. A. McLaughlin, B. F. Kennedy, A. Tien, B. Latham, C. M. Saunders, and D. D. Sampson, “Needle optical coherence elastography for the measurement of microscale mechanical contrast deep within human breast tissues,” J. Biomed. Opt. 18(12), 121510 (2013).
[Crossref] [PubMed]

K. M. Kennedy, C. Ford, B. F. Kennedy, M. B. Bush, and D. D. Sampson, “Analysis of mechanical contrast in optical coherence elastography,” J. Biomed. Opt. 18(12), 121508 (2013).
[Crossref] [PubMed]

B. F. Kennedy, X. Liang, S. G. Adie, D. K. Gerstmann, B. C. Quirk, S. A. Boppart, and D. D. Sampson, “In vivo three-dimensional optical coherence elastography,” Opt. Express 19(7), 6623–6634 (2011).
[Crossref] [PubMed]

S. G. Adie, X. Liang, B. F. Kennedy, R. John, D. D. Sampson, and S. A. Boppart, “Spectroscopic optical coherence elastography,” Opt. Express 18(25), 25519–25534 (2010).
[Crossref] [PubMed]

B. F. Kennedy, T. R. Hillman, R. A. McLaughlin, B. C. Quirk, and D. D. Sampson, “In vivo dynamic optical coherence elastography using a ring actuator,” Opt. Express 17(24), 21762–21772 (2009).
[Crossref] [PubMed]

Sanderson, J. P.

J. S. Pepose, S. K. Feigenbaum, M. A. Qazi, J. P. Sanderson, and C. J. Roberts, “Changes in corneal biomechanics and intraocular pressure following LASIK using static, dynamic, and noncontact tonometry,” Am. J. Ophthalmol. 143(1), 39–47 (2007).
[Crossref] [PubMed]

Saunders, C. M.

K. M. Kennedy, R. A. McLaughlin, B. F. Kennedy, A. Tien, B. Latham, C. M. Saunders, and D. D. Sampson, “Needle optical coherence elastography for the measurement of microscale mechanical contrast deep within human breast tissues,” J. Biomed. Opt. 18(12), 121510 (2013).
[Crossref] [PubMed]

Scarcelli, G.

G. Scarcelli, S. Besner, R. Pineda, and S. H. Yun, “Biomechanical characterization of keratoconus corneas ex vivo with brillouin microscopy,” Invest. Ophthalmol. Vis. Sci. 55(7), 4490–4495 (2014).
[Crossref] [PubMed]

G. Scarcelli, S. Kling, E. Quijano, R. Pineda, S. Marcos, and S. H. Yun, “Brillouin microscopy of collagen crosslinking: noncontact depth-dependent analysis of corneal elastic modulus,” Invest. Ophthalmol. Vis. Sci. 54(2), 1418–1425 (2013).
[Crossref] [PubMed]

G. Scarcelli, R. Pineda, and S. H. Yun, “Brillouin optical microscopy for corneal biomechanics,” Invest. Ophthalmol. Vis. Sci. 53(1), 185–190 (2012).
[Crossref] [PubMed]

G. Scarcelli and S. H. Yun, “In vivo Brillouin optical microscopy of the human eye,” Opt. Express 20(8), 9197–9202 (2012).
[Crossref] [PubMed]

G. Scarcelli, P. Kim, and S. H. Yun, “In vivo measurement of age-related stiffening in the crystalline lens by Brillouin optical microscopy,” Biophys. J. 101(6), 1539–1545 (2011).
[Crossref] [PubMed]

G. Scarcelli and S. H. Yun, “Confocal Brillouin microscopy for three-dimensional mechanical imaging,” Nat. Photonics 2(1), 39–43 (2008).
[Crossref] [PubMed]

Schäffer, T. E.

J. Seifert, C. M. Hammer, J. Rheinlaender, S. Sel, M. Scholz, F. Paulsen, and T. E. Schäffer, “Distribution of Young’s modulus in porcine corneas after riboflavin/UVA-induced collagen cross-linking as measured by atomic force microscopy,” PLoS ONE 9(1), e88186 (2014).
[Crossref] [PubMed]

Schmitt, J.

Scholz, M.

J. Seifert, C. M. Hammer, J. Rheinlaender, S. Sel, M. Scholz, F. Paulsen, and T. E. Schäffer, “Distribution of Young’s modulus in porcine corneas after riboflavin/UVA-induced collagen cross-linking as measured by atomic force microscopy,” PLoS ONE 9(1), e88186 (2014).
[Crossref] [PubMed]

Schuman, J. S.

V. Christopoulos, L. Kagemann, G. Wollstein, H. Ishikawa, M. L. Gabriele, M. Wojtkowski, V. Srinivasan, J. G. Fujimoto, J. S. Duker, D. K. Dhaliwal, and J. S. Schuman, “In vivo corneal high-speed, ultra high-resolution optical coherence tomography,” Arch. Ophthalmol. 125(8), 1027–1035 (2007).
[Crossref] [PubMed]

W. Drexler, U. Morgner, R. K. Ghanta, F. X. Kärtner, J. S. Schuman, and J. G. Fujimoto, “Ultrahigh-resolution ophthalmic optical coherence tomography,” Nat. Med. 7(4), 502–507 (2001).
[Crossref] [PubMed]

Seifert, J.

J. Seifert, C. M. Hammer, J. Rheinlaender, S. Sel, M. Scholz, F. Paulsen, and T. E. Schäffer, “Distribution of Young’s modulus in porcine corneas after riboflavin/UVA-induced collagen cross-linking as measured by atomic force microscopy,” PLoS ONE 9(1), e88186 (2014).
[Crossref] [PubMed]

Seiler, T.

E. Spoerl, M. Huhle, and T. Seiler, “Induction of cross-links in corneal tissue,” Exp. Eye Res. 66(1), 97–103 (1998).
[Crossref] [PubMed]

Sel, S.

J. Seifert, C. M. Hammer, J. Rheinlaender, S. Sel, M. Scholz, F. Paulsen, and T. E. Schäffer, “Distribution of Young’s modulus in porcine corneas after riboflavin/UVA-induced collagen cross-linking as measured by atomic force microscopy,” PLoS ONE 9(1), e88186 (2014).
[Crossref] [PubMed]

Shah, S.

S. Shah, M. Laiquzzaman, R. Bhojwani, S. Mantry, and I. Cunliffe, “Assessment of the Biomechanical Properties of the Cornea with the Ocular Response Analyzer in Normal and Keratoconic Eyes,” Invest. Ophthalmol. Vis. Sci. 48(7), 3026–3031 (2007).
[Crossref] [PubMed]

Sherlock, T.

S. Wang, T. Sherlock, B. Salazar, N. Sudheendran, R. K. Manapuram, K. Kourentzi, P. Ruchhoeft, R. C. Willson, and K. V. Larin, “Detection and Monitoring of Microparticles Under Skin by Optical Coherence Tomography as an Approach to Continuous Glucose Sensing Using Implanted Retroreflectors,” IEEE Sens. J. 13(11), 4534–4541 (2013).
[Crossref]

Song, S.

S. Song, Z. Huang, T. M. Nguyen, E. Y. Wong, B. Arnal, M. O’Donnell, and R. K. Wang, “Shear modulus imaging by direct visualization of propagating shear waves with phase-sensitive optical coherence tomography,” J. Biomed. Opt. 18(12), 121509 (2013).
[Crossref] [PubMed]

S. Song, Z. Huang, and R. K. Wang, “Tracking mechanical wave propagation within tissue using phase-sensitive optical coherence tomography: motion artifact and its compensation,” J. Biomed. Opt. 18(12), 121505 (2013).
[Crossref] [PubMed]

Spoerl, E.

E. Spoerl, M. Huhle, and T. Seiler, “Induction of cross-links in corneal tissue,” Exp. Eye Res. 66(1), 97–103 (1998).
[Crossref] [PubMed]

Spooner, G. J.

K. W. Hollman, S. Y. Emelianov, J. H. Neiss, G. Jotyan, G. J. Spooner, T. Juhasz, R. M. Kurtz, and M. O’Donnell, “Strain imaging of corneal tissue with an ultrasound elasticity microscope,” Cornea 21(1), 68–73 (2002).
[Crossref] [PubMed]

Srinivasan, V.

V. Christopoulos, L. Kagemann, G. Wollstein, H. Ishikawa, M. L. Gabriele, M. Wojtkowski, V. Srinivasan, J. G. Fujimoto, J. S. Duker, D. K. Dhaliwal, and J. S. Schuman, “In vivo corneal high-speed, ultra high-resolution optical coherence tomography,” Arch. Ophthalmol. 125(8), 1027–1035 (2007).
[Crossref] [PubMed]

Sródka, D. W.

M. Asejczyk-Widlicka, D. W. Sródka, H. Kasprzak, and B. K. Pierscionek, “Modelling the elastic properties of the anterior eye and their contribution to maintenance of image quality: the role of the limbus,” Eye (Lond.) 21(8), 1087–1094 (2007).
[Crossref] [PubMed]

Stachs, O.

Standish, B.

C. Sun, B. Standish, and V. X. D. Yang, “Optical coherence elastography: current status and future applications,” J. Biomed. Opt. 16(4), 043001 (2011).
[Crossref] [PubMed]

Standish, B. A.

Stolz, H.

Sudheendran, N.

S. Wang, T. Sherlock, B. Salazar, N. Sudheendran, R. K. Manapuram, K. Kourentzi, P. Ruchhoeft, R. C. Willson, and K. V. Larin, “Detection and Monitoring of Microparticles Under Skin by Optical Coherence Tomography as an Approach to Continuous Glucose Sensing Using Implanted Retroreflectors,” IEEE Sens. J. 13(11), 4534–4541 (2013).
[Crossref]

Sun, C.

C. Sun, B. Standish, and V. X. D. Yang, “Optical coherence elastography: current status and future applications,” J. Biomed. Opt. 16(4), 043001 (2011).
[Crossref] [PubMed]

Szkulmowski, M.

Szlag, D.

Tanter, M.

D. Touboul, J.-L. Gennisson, T.-M. Nguyen, A. Robinet, C. J. Roberts, M. Tanter, and N. Grenier, “Supersonic Shear Wave Elastography for the In Vivo Evaluation of Transepithelial Corneal Collagen Cross-Linking,” Invest. Ophthalmol. Vis. Sci. 55(3), 1976–1984 (2014).
[Crossref] [PubMed]

T. M. Nguyen, J. F. Aubry, D. Touboul, M. Fink, J. L. Gennisson, J. Bercoff, and M. Tanter, “Monitoring of cornea elastic properties changes during UV-A/riboflavin-induced corneal collagen cross-linking using supersonic shear wave imaging: a pilot study,” Invest. Ophthalmol. Vis. Sci. 53(9), 5948–5954 (2012).
[Crossref] [PubMed]

T. M. Nguyen, M. Couade, J. Bercoff, and M. Tanter, “Assessment of viscous and elastic properties of sub-wavelength layered soft tissues using shear wave spectroscopy: theoretical framework and in vitro experimental validation,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 58(11), 2305–2315 (2011).
[Crossref] [PubMed]

M. Couade, M. Pernot, C. Prada, E. Messas, J. Emmerich, P. Bruneval, A. Criton, M. Fink, and M. Tanter, “Quantitative Assessment of Arterial Wall Biomechanical Properties Using Shear Wave Imaging,” Ultrasound Med. Biol. 36(10), 1662–1676 (2010).
[Crossref] [PubMed]

M. Tanter, D. Touboul, J. L. Gennisson, J. Bercoff, and M. Fink, “High-resolution quantitative imaging of cornea elasticity using supersonic shear imaging,” IEEE Trans. Med. Imaging 28(12), 1881–1893 (2009).
[Crossref] [PubMed]

Tien, A.

K. M. Kennedy, R. A. McLaughlin, B. F. Kennedy, A. Tien, B. Latham, C. M. Saunders, and D. D. Sampson, “Needle optical coherence elastography for the measurement of microscale mechanical contrast deep within human breast tissues,” J. Biomed. Opt. 18(12), 121510 (2013).
[Crossref] [PubMed]

Touboul, D.

D. Touboul, J.-L. Gennisson, T.-M. Nguyen, A. Robinet, C. J. Roberts, M. Tanter, and N. Grenier, “Supersonic Shear Wave Elastography for the In Vivo Evaluation of Transepithelial Corneal Collagen Cross-Linking,” Invest. Ophthalmol. Vis. Sci. 55(3), 1976–1984 (2014).
[Crossref] [PubMed]

T. M. Nguyen, J. F. Aubry, D. Touboul, M. Fink, J. L. Gennisson, J. Bercoff, and M. Tanter, “Monitoring of cornea elastic properties changes during UV-A/riboflavin-induced corneal collagen cross-linking using supersonic shear wave imaging: a pilot study,” Invest. Ophthalmol. Vis. Sci. 53(9), 5948–5954 (2012).
[Crossref] [PubMed]

M. Tanter, D. Touboul, J. L. Gennisson, J. Bercoff, and M. Fink, “High-resolution quantitative imaging of cornea elasticity using supersonic shear imaging,” IEEE Trans. Med. Imaging 28(12), 1881–1893 (2009).
[Crossref] [PubMed]

Twa, M. D.

S. Wang, K. V. Larin, L. Jiasong, S. Vantipalli, R. K. Manapuram, S. Aglyamov, S. Emelianov, and M. D. Twa, “A focused air-pulse system for optical-coherence-tomography-based measurements of tissue elasticity,” Laser Phys. Lett. 10(7), 075605 (2013).
[Crossref]

S. Wang, J. Li, R. K. Manapuram, F. M. Menodiado, D. R. Ingram, M. D. Twa, A. J. Lazar, D. C. Lev, R. E. Pollock, and K. V. Larin, “Noncontact measurement of elasticity for the detection of soft-tissue tumors using phase-sensitive optical coherence tomography combined with a focused air-puff system,” Opt. Lett. 37(24), 5184–5186 (2012).
[Crossref] [PubMed]

Urban, M. W.

I. Z. Nenadic, M. W. Urban, S. A. Mitchell, and J. F. Greenleaf, “Lamb wave dispersion ultrasound vibrometry (LDUV) method for quantifying mechanical properties of viscoelastic solids,” Phys. Med. Biol. 56(7), 2245–2264 (2011).
[Crossref] [PubMed]

I. Z. Nenadic, M. W. Urban, M. Bernal, and J. F. Greenleaf, “Phase velocities and attenuations of shear, Lamb, and Rayleigh waves in plate-like tissues submerged in a fluid (L),” J. Acoust. Soc. Am. 130(6), 3549–3552 (2011).
[Crossref] [PubMed]

S. Chen, M. W. Urban, C. Pislaru, R. Kinnick, Y. Zheng, A. Yao, and J. F. Greenleaf, “Shearwave dispersion ultrasound vibrometry (SDUV) for measuring tissue elasticity and viscosity,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 56(1), 55–62 (2009).
[Crossref] [PubMed]

Vantipalli, S.

S. Wang, K. V. Larin, L. Jiasong, S. Vantipalli, R. K. Manapuram, S. Aglyamov, S. Emelianov, and M. D. Twa, “A focused air-pulse system for optical-coherence-tomography-based measurements of tissue elasticity,” Laser Phys. Lett. 10(7), 075605 (2013).
[Crossref]

Vitkin, I. A.

Wang, F.

Wang, R. K.

S. Song, Z. Huang, and R. K. Wang, “Tracking mechanical wave propagation within tissue using phase-sensitive optical coherence tomography: motion artifact and its compensation,” J. Biomed. Opt. 18(12), 121505 (2013).
[Crossref] [PubMed]

S. Song, Z. Huang, T. M. Nguyen, E. Y. Wong, B. Arnal, M. O’Donnell, and R. K. Wang, “Shear modulus imaging by direct visualization of propagating shear waves with phase-sensitive optical coherence tomography,” J. Biomed. Opt. 18(12), 121509 (2013).
[Crossref] [PubMed]

C. Li, G. Guan, R. Reif, Z. Huang, and R. K. Wang, “Determining elastic properties of skin by measuring surface waves from an impulse mechanical stimulus using phase-sensitive optical coherence tomography,” J. R. Soc. Interface 9(70), 831–841 (2012).
[Crossref] [PubMed]

C. Li, G. Guan, X. Cheng, Z. Huang, and R. K. Wang, “Quantitative elastography provided by surface acoustic waves measured by phase-sensitive optical coherence tomography,” Opt. Lett. 37(4), 722–724 (2012).
[Crossref] [PubMed]

C. Li, G. Guan, Z. Huang, M. Johnstone, and R. K. Wang, “Noncontact all-optical measurement of corneal elasticity,” Opt. Lett. 37(10), 1625–1627 (2012).
[Crossref] [PubMed]

C. Li, Z. Huang, and R. K. Wang, “Elastic properties of soft tissue-mimicking phantoms assessed by combined use of laser ultrasonics and low coherence interferometry,” Opt. Express 19(11), 10153–10163 (2011).
[Crossref] [PubMed]

Wang, S.

S. Wang and K. V. Larin, “Shear wave imaging optical coherence tomography (SWI-OCT) for ocular tissue biomechanics,” Opt. Lett. 39(1), 41–44 (2014).
[Crossref] [PubMed]

S. Wang, S. Aglyamov, A. Karpiouk, J. Li, S. Emelianov, F. Manns, and K. V. Larin, “Assessing the mechanical properties of tissue-mimicking phantoms at different depths as an approach to measure biomechanical gradient of crystalline lens,” Biomed. Opt. Express 4(12), 2769–2780 (2013).
[Crossref] [PubMed]

S. Wang, K. V. Larin, L. Jiasong, S. Vantipalli, R. K. Manapuram, S. Aglyamov, S. Emelianov, and M. D. Twa, “A focused air-pulse system for optical-coherence-tomography-based measurements of tissue elasticity,” Laser Phys. Lett. 10(7), 075605 (2013).
[Crossref]

S. Wang, T. Sherlock, B. Salazar, N. Sudheendran, R. K. Manapuram, K. Kourentzi, P. Ruchhoeft, R. C. Willson, and K. V. Larin, “Detection and Monitoring of Microparticles Under Skin by Optical Coherence Tomography as an Approach to Continuous Glucose Sensing Using Implanted Retroreflectors,” IEEE Sens. J. 13(11), 4534–4541 (2013).
[Crossref]

S. Wang, J. Li, R. K. Manapuram, F. M. Menodiado, D. R. Ingram, M. D. Twa, A. J. Lazar, D. C. Lev, R. E. Pollock, and K. V. Larin, “Noncontact measurement of elasticity for the detection of soft-tissue tumors using phase-sensitive optical coherence tomography combined with a focused air-puff system,” Opt. Lett. 37(24), 5184–5186 (2012).
[Crossref] [PubMed]

Willson, R. C.

S. Wang, T. Sherlock, B. Salazar, N. Sudheendran, R. K. Manapuram, K. Kourentzi, P. Ruchhoeft, R. C. Willson, and K. V. Larin, “Detection and Monitoring of Microparticles Under Skin by Optical Coherence Tomography as an Approach to Continuous Glucose Sensing Using Implanted Retroreflectors,” IEEE Sens. J. 13(11), 4534–4541 (2013).
[Crossref]

Wojtkowski, M.

Wollstein, G.

V. Christopoulos, L. Kagemann, G. Wollstein, H. Ishikawa, M. L. Gabriele, M. Wojtkowski, V. Srinivasan, J. G. Fujimoto, J. S. Duker, D. K. Dhaliwal, and J. S. Schuman, “In vivo corneal high-speed, ultra high-resolution optical coherence tomography,” Arch. Ophthalmol. 125(8), 1027–1035 (2007).
[Crossref] [PubMed]

Wong, E. Y.

S. Song, Z. Huang, T. M. Nguyen, E. Y. Wong, B. Arnal, M. O’Donnell, and R. K. Wang, “Shear modulus imaging by direct visualization of propagating shear waves with phase-sensitive optical coherence tomography,” J. Biomed. Opt. 18(12), 121509 (2013).
[Crossref] [PubMed]

Wright, G. A.

Wu, J.

Yang, C.

Yang, V. X.

Yang, V. X. D.

C. Sun, B. Standish, and V. X. D. Yang, “Optical coherence elastography: current status and future applications,” J. Biomed. Opt. 16(4), 043001 (2011).
[Crossref] [PubMed]

Yao, A.

S. Chen, M. W. Urban, C. Pislaru, R. Kinnick, Y. Zheng, A. Yao, and J. F. Greenleaf, “Shearwave dispersion ultrasound vibrometry (SDUV) for measuring tissue elasticity and viscosity,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 56(1), 55–62 (2009).
[Crossref] [PubMed]

Yaqoob, Z.

Yun, S. H.

G. Scarcelli, S. Besner, R. Pineda, and S. H. Yun, “Biomechanical characterization of keratoconus corneas ex vivo with brillouin microscopy,” Invest. Ophthalmol. Vis. Sci. 55(7), 4490–4495 (2014).
[Crossref] [PubMed]

G. Scarcelli, S. Kling, E. Quijano, R. Pineda, S. Marcos, and S. H. Yun, “Brillouin microscopy of collagen crosslinking: noncontact depth-dependent analysis of corneal elastic modulus,” Invest. Ophthalmol. Vis. Sci. 54(2), 1418–1425 (2013).
[Crossref] [PubMed]

G. Scarcelli, R. Pineda, and S. H. Yun, “Brillouin optical microscopy for corneal biomechanics,” Invest. Ophthalmol. Vis. Sci. 53(1), 185–190 (2012).
[Crossref] [PubMed]

G. Scarcelli and S. H. Yun, “In vivo Brillouin optical microscopy of the human eye,” Opt. Express 20(8), 9197–9202 (2012).
[Crossref] [PubMed]

G. Scarcelli, P. Kim, and S. H. Yun, “In vivo measurement of age-related stiffening in the crystalline lens by Brillouin optical microscopy,” Biophys. J. 101(6), 1539–1545 (2011).
[Crossref] [PubMed]

G. Scarcelli and S. H. Yun, “Confocal Brillouin microscopy for three-dimensional mechanical imaging,” Nat. Photonics 2(1), 39–43 (2008).
[Crossref] [PubMed]

Zaman, M. L.

M. J. Doughty and M. L. Zaman, “Human Corneal Thickness and Its Impact on Intraocular Pressure Measures: A Review and Meta-analysis Approach,” Surv. Ophthalmol. 44(5), 367–408 (2000).
[Crossref] [PubMed]

Zhang, J.

W. Qi, R. Chen, L. Chou, G. Liu, J. Zhang, Q. Zhou, and Z. Chen, “Phase-resolved acoustic radiation force optical coherence elastography,” J. Biomed. Opt. 17(11), 110505 (2012).
[Crossref] [PubMed]

Zheng, Y.

S. Chen, M. W. Urban, C. Pislaru, R. Kinnick, Y. Zheng, A. Yao, and J. F. Greenleaf, “Shearwave dispersion ultrasound vibrometry (SDUV) for measuring tissue elasticity and viscosity,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 56(1), 55–62 (2009).
[Crossref] [PubMed]

Zhou, Q.

W. Qi, R. Chen, L. Chou, G. Liu, J. Zhang, Q. Zhou, and Z. Chen, “Phase-resolved acoustic radiation force optical coherence elastography,” J. Biomed. Opt. 17(11), 110505 (2012).
[Crossref] [PubMed]

Ziebarth, N. M.

J. M. Dias and N. M. Ziebarth, “Anterior and posterior corneal stroma elasticity assessed using nanoindentation,” Exp. Eye Res. 115, 41–46 (2013).
[Crossref] [PubMed]

Acta Ophthalmol. (Copenh.) (1)

C. Edmund, “Corneal elasticity and ocular rigidity in normal and keratoconic eyes,” Acta Ophthalmol. (Copenh.) 66(2), 134–140 (1988).
[Crossref] [PubMed]

Am. J. Ophthalmol. (1)

J. S. Pepose, S. K. Feigenbaum, M. A. Qazi, J. P. Sanderson, and C. J. Roberts, “Changes in corneal biomechanics and intraocular pressure following LASIK using static, dynamic, and noncontact tonometry,” Am. J. Ophthalmol. 143(1), 39–47 (2007).
[Crossref] [PubMed]

Arch. Ophthalmol. (1)

V. Christopoulos, L. Kagemann, G. Wollstein, H. Ishikawa, M. L. Gabriele, M. Wojtkowski, V. Srinivasan, J. G. Fujimoto, J. S. Duker, D. K. Dhaliwal, and J. S. Schuman, “In vivo corneal high-speed, ultra high-resolution optical coherence tomography,” Arch. Ophthalmol. 125(8), 1027–1035 (2007).
[Crossref] [PubMed]

Biomed. Opt. Express (4)

Biophys. J. (1)

G. Scarcelli, P. Kim, and S. H. Yun, “In vivo measurement of age-related stiffening in the crystalline lens by Brillouin optical microscopy,” Biophys. J. 101(6), 1539–1545 (2011).
[Crossref] [PubMed]

Cornea (1)

K. W. Hollman, S. Y. Emelianov, J. H. Neiss, G. Jotyan, G. J. Spooner, T. Juhasz, R. M. Kurtz, and M. O’Donnell, “Strain imaging of corneal tissue with an ultrasound elasticity microscope,” Cornea 21(1), 68–73 (2002).
[Crossref] [PubMed]

Exp. Eye Res. (2)

E. Spoerl, M. Huhle, and T. Seiler, “Induction of cross-links in corneal tissue,” Exp. Eye Res. 66(1), 97–103 (1998).
[Crossref] [PubMed]

J. M. Dias and N. M. Ziebarth, “Anterior and posterior corneal stroma elasticity assessed using nanoindentation,” Exp. Eye Res. 115, 41–46 (2013).
[Crossref] [PubMed]

Eye (Lond.) (1)

M. Asejczyk-Widlicka, D. W. Sródka, H. Kasprzak, and B. K. Pierscionek, “Modelling the elastic properties of the anterior eye and their contribution to maintenance of image quality: the role of the limbus,” Eye (Lond.) 21(8), 1087–1094 (2007).
[Crossref] [PubMed]

IEEE J. Quantum Electron. (1)

B. F. Kennedy, K. M. Kennedy, and D. D. Sampson, “A Review of Optical Coherence Elastography: Fundamentals, Techniques and Prospects,” IEEE J. Quantum Electron. 20, 1–17 (2014).

IEEE Sens. J. (1)

S. Wang, T. Sherlock, B. Salazar, N. Sudheendran, R. K. Manapuram, K. Kourentzi, P. Ruchhoeft, R. C. Willson, and K. V. Larin, “Detection and Monitoring of Microparticles Under Skin by Optical Coherence Tomography as an Approach to Continuous Glucose Sensing Using Implanted Retroreflectors,” IEEE Sens. J. 13(11), 4534–4541 (2013).
[Crossref]

IEEE Trans. Biomed. Eng. (1)

X. Liang and S. A. Boppart, “Biomechanical properties of in vivo human skin from dynamic optical coherence elastography,” IEEE Trans. Biomed. Eng. 57(4), 953–959 (2010).
[Crossref] [PubMed]

IEEE Trans. Med. Imaging (1)

M. Tanter, D. Touboul, J. L. Gennisson, J. Bercoff, and M. Fink, “High-resolution quantitative imaging of cornea elasticity using supersonic shear imaging,” IEEE Trans. Med. Imaging 28(12), 1881–1893 (2009).
[Crossref] [PubMed]

IEEE Trans. Ultrason. Ferroelectr. Freq. Control (2)

T. M. Nguyen, M. Couade, J. Bercoff, and M. Tanter, “Assessment of viscous and elastic properties of sub-wavelength layered soft tissues using shear wave spectroscopy: theoretical framework and in vitro experimental validation,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 58(11), 2305–2315 (2011).
[Crossref] [PubMed]

S. Chen, M. W. Urban, C. Pislaru, R. Kinnick, Y. Zheng, A. Yao, and J. F. Greenleaf, “Shearwave dispersion ultrasound vibrometry (SDUV) for measuring tissue elasticity and viscosity,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 56(1), 55–62 (2009).
[Crossref] [PubMed]

Int. Ophthalmol. Clin. (1)

L. T. Nordan, “Keratoconus: diagnosis and treatment,” Int. Ophthalmol. Clin. 37(1), 51–63 (1997).
[Crossref] [PubMed]

Invest. Ophthalmol. Vis. Sci. (6)

G. Scarcelli, R. Pineda, and S. H. Yun, “Brillouin optical microscopy for corneal biomechanics,” Invest. Ophthalmol. Vis. Sci. 53(1), 185–190 (2012).
[Crossref] [PubMed]

G. Scarcelli, S. Kling, E. Quijano, R. Pineda, S. Marcos, and S. H. Yun, “Brillouin microscopy of collagen crosslinking: noncontact depth-dependent analysis of corneal elastic modulus,” Invest. Ophthalmol. Vis. Sci. 54(2), 1418–1425 (2013).
[Crossref] [PubMed]

G. Scarcelli, S. Besner, R. Pineda, and S. H. Yun, “Biomechanical characterization of keratoconus corneas ex vivo with brillouin microscopy,” Invest. Ophthalmol. Vis. Sci. 55(7), 4490–4495 (2014).
[Crossref] [PubMed]

T. M. Nguyen, J. F. Aubry, D. Touboul, M. Fink, J. L. Gennisson, J. Bercoff, and M. Tanter, “Monitoring of cornea elastic properties changes during UV-A/riboflavin-induced corneal collagen cross-linking using supersonic shear wave imaging: a pilot study,” Invest. Ophthalmol. Vis. Sci. 53(9), 5948–5954 (2012).
[Crossref] [PubMed]

D. Touboul, J.-L. Gennisson, T.-M. Nguyen, A. Robinet, C. J. Roberts, M. Tanter, and N. Grenier, “Supersonic Shear Wave Elastography for the In Vivo Evaluation of Transepithelial Corneal Collagen Cross-Linking,” Invest. Ophthalmol. Vis. Sci. 55(3), 1976–1984 (2014).
[Crossref] [PubMed]

S. Shah, M. Laiquzzaman, R. Bhojwani, S. Mantry, and I. Cunliffe, “Assessment of the Biomechanical Properties of the Cornea with the Ocular Response Analyzer in Normal and Keratoconic Eyes,” Invest. Ophthalmol. Vis. Sci. 48(7), 3026–3031 (2007).
[Crossref] [PubMed]

J. Acoust. Soc. Am. (1)

I. Z. Nenadic, M. W. Urban, M. Bernal, and J. F. Greenleaf, “Phase velocities and attenuations of shear, Lamb, and Rayleigh waves in plate-like tissues submerged in a fluid (L),” J. Acoust. Soc. Am. 130(6), 3549–3552 (2011).
[Crossref] [PubMed]

J. Biomech. Eng. (1)

G. P. Djotyan, R. M. Kurtz, D. C. Fernández, and T. Juhasz, “An Analytically Solvable Model for Biomechanical Response of the Cornea to Refractive Surgery,” J. Biomech. Eng. 123(5), 440–445 (2001).
[Crossref] [PubMed]

J. Biomed. Opt. (8)

C. Sun, B. Standish, and V. X. D. Yang, “Optical coherence elastography: current status and future applications,” J. Biomed. Opt. 16(4), 043001 (2011).
[Crossref] [PubMed]

W. Qi, R. Chen, L. Chou, G. Liu, J. Zhang, Q. Zhou, and Z. Chen, “Phase-resolved acoustic radiation force optical coherence elastography,” J. Biomed. Opt. 17(11), 110505 (2012).
[Crossref] [PubMed]

K. M. Kennedy, R. A. McLaughlin, B. F. Kennedy, A. Tien, B. Latham, C. M. Saunders, and D. D. Sampson, “Needle optical coherence elastography for the measurement of microscale mechanical contrast deep within human breast tissues,” J. Biomed. Opt. 18(12), 121510 (2013).
[Crossref] [PubMed]

K. M. Kennedy, C. Ford, B. F. Kennedy, M. B. Bush, and D. D. Sampson, “Analysis of mechanical contrast in optical coherence elastography,” J. Biomed. Opt. 18(12), 121508 (2013).
[Crossref] [PubMed]

S. Song, Z. Huang, T. M. Nguyen, E. Y. Wong, B. Arnal, M. O’Donnell, and R. K. Wang, “Shear modulus imaging by direct visualization of propagating shear waves with phase-sensitive optical coherence tomography,” J. Biomed. Opt. 18(12), 121509 (2013).
[Crossref] [PubMed]

M. R. Ford, W. J. Dupps, A. M. Rollins, A. S. Roy, and Z. Hu, “Method for optical coherence elastography of the cornea,” J. Biomed. Opt. 16(1), 016005 (2011).
[Crossref] [PubMed]

R. K. Manapuram, S. R. Aglyamov, F. M. Monediado, M. Mashiatulla, J. Li, S. Y. Emelianov, and K. V. Larin, “In vivo estimation of elastic wave parameters using phase-stabilized swept source optical coherence elastography,” J. Biomed. Opt. 17(10), 100501 (2012).
[Crossref] [PubMed]

S. Song, Z. Huang, and R. K. Wang, “Tracking mechanical wave propagation within tissue using phase-sensitive optical coherence tomography: motion artifact and its compensation,” J. Biomed. Opt. 18(12), 121505 (2013).
[Crossref] [PubMed]

J. Cataract Refract. Surg. (1)

I. F. Comaish and M. A. Lawless, “Progressive post-LASIK keratectasia: Biomechanical instability or chronic disease process?” J. Cataract Refract. Surg. 28(12), 2206–2213 (2002).
[Crossref] [PubMed]

J. Innov. Opt. Health Sci. (1)

X. Liang, V. Crecea, and S. A. Boppart, “Dynamic Optical Coherence Elastography: a review,” J. Innov. Opt. Health Sci. 3(4), 221–233 (2010).
[Crossref] [PubMed]

J. R. Soc. Interface (1)

C. Li, G. Guan, R. Reif, Z. Huang, and R. K. Wang, “Determining elastic properties of skin by measuring surface waves from an impulse mechanical stimulus using phase-sensitive optical coherence tomography,” J. R. Soc. Interface 9(70), 831–841 (2012).
[Crossref] [PubMed]

J. Refract. Surg. (1)

J. B. Randleman, D. G. Dawson, H. E. Grossniklaus, B. E. McCarey, and H. F. Edelhauser, “Depth-dependent cohesive tensile strength in human donor corneas: implications for refractive surgery,” J. Refract. Surg. 24(1), S85–S89 (2008).
[PubMed]

Laser Phys. Lett. (1)

S. Wang, K. V. Larin, L. Jiasong, S. Vantipalli, R. K. Manapuram, S. Aglyamov, S. Emelianov, and M. D. Twa, “A focused air-pulse system for optical-coherence-tomography-based measurements of tissue elasticity,” Laser Phys. Lett. 10(7), 075605 (2013).
[Crossref]

Nat. Med. (1)

W. Drexler, U. Morgner, R. K. Ghanta, F. X. Kärtner, J. S. Schuman, and J. G. Fujimoto, “Ultrahigh-resolution ophthalmic optical coherence tomography,” Nat. Med. 7(4), 502–507 (2001).
[Crossref] [PubMed]

Nat. Photonics (1)

G. Scarcelli and S. H. Yun, “Confocal Brillouin microscopy for three-dimensional mechanical imaging,” Nat. Photonics 2(1), 39–43 (2008).
[Crossref] [PubMed]

Neoplasia (1)

J. G. Fujimoto, C. Pitris, S. A. Boppart, and M. E. Brezinski, “Optical coherence tomography: an emerging technology for biomedical imaging and optical biopsy,” Neoplasia 2(1-2), 9–25 (2000).
[Crossref] [PubMed]

Opt. Express (9)

J. Schmitt, “OCT elastography: imaging microscopic deformation and strain of tissue,” Opt. Express 3(6), 199–211 (1998).
[Crossref] [PubMed]

G. Scarcelli and S. H. Yun, “In vivo Brillouin optical microscopy of the human eye,” Opt. Express 20(8), 9197–9202 (2012).
[Crossref] [PubMed]

D. Alonso-Caneiro, K. Karnowski, B. J. Kaluzny, A. Kowalczyk, and M. Wojtkowski, “Assessment of corneal dynamics with high-speed swept source Optical Coherence Tomography combined with an air puff system,” Opt. Express 19(15), 14188–14199 (2011).
[Crossref] [PubMed]

X. Liang, A. L. Oldenburg, V. Crecea, E. J. Chaney, and S. A. Boppart, “Optical micro-scale mapping of dynamic biomechanical tissue properties,” Opt. Express 16(15), 11052–11065 (2008).
[Crossref] [PubMed]

I. Grulkowski, M. Gora, M. Szkulmowski, I. Gorczynska, D. Szlag, S. Marcos, A. Kowalczyk, and M. Wojtkowski, “Anterior segment imaging with Spectral OCT system using a high-speed CMOS camera,” Opt. Express 17(6), 4842–4858 (2009).
[Crossref] [PubMed]

B. F. Kennedy, T. R. Hillman, R. A. McLaughlin, B. C. Quirk, and D. D. Sampson, “In vivo dynamic optical coherence elastography using a ring actuator,” Opt. Express 17(24), 21762–21772 (2009).
[Crossref] [PubMed]

S. G. Adie, X. Liang, B. F. Kennedy, R. John, D. D. Sampson, and S. A. Boppart, “Spectroscopic optical coherence elastography,” Opt. Express 18(25), 25519–25534 (2010).
[Crossref] [PubMed]

B. F. Kennedy, X. Liang, S. G. Adie, D. K. Gerstmann, B. C. Quirk, S. A. Boppart, and D. D. Sampson, “In vivo three-dimensional optical coherence elastography,” Opt. Express 19(7), 6623–6634 (2011).
[Crossref] [PubMed]

C. Li, Z. Huang, and R. K. Wang, “Elastic properties of soft tissue-mimicking phantoms assessed by combined use of laser ultrasonics and low coherence interferometry,” Opt. Express 19(11), 10153–10163 (2011).
[Crossref] [PubMed]

Opt. Lett. (7)

C. Li, G. Guan, X. Cheng, Z. Huang, and R. K. Wang, “Quantitative elastography provided by surface acoustic waves measured by phase-sensitive optical coherence tomography,” Opt. Lett. 37(4), 722–724 (2012).
[Crossref] [PubMed]

C. Li, G. Guan, Z. Huang, M. Johnstone, and R. K. Wang, “Noncontact all-optical measurement of corneal elasticity,” Opt. Lett. 37(10), 1625–1627 (2012).
[Crossref] [PubMed]

S. Wang, J. Li, R. K. Manapuram, F. M. Menodiado, D. R. Ingram, M. D. Twa, A. J. Lazar, D. C. Lev, R. E. Pollock, and K. V. Larin, “Noncontact measurement of elasticity for the detection of soft-tissue tumors using phase-sensitive optical coherence tomography combined with a focused air-puff system,” Opt. Lett. 37(24), 5184–5186 (2012).
[Crossref] [PubMed]

S. Wang and K. V. Larin, “Shear wave imaging optical coherence tomography (SWI-OCT) for ocular tissue biomechanics,” Opt. Lett. 39(1), 41–44 (2014).
[Crossref] [PubMed]

M. A. Choma, A. K. Ellerbee, C. Yang, T. L. Creazzo, and J. A. Izatt, “Spectral-domain phase microscopy,” Opt. Lett. 30(10), 1162–1164 (2005).
[Crossref] [PubMed]

J. Wu, M. Conry, C. Gu, F. Wang, Z. Yaqoob, and C. Yang, “Paired-angle-rotation scanning optical coherence tomography forward-imaging probe,” Opt. Lett. 31(9), 1265–1267 (2006).
[Crossref] [PubMed]

N. R. Munce, A. Mariampillai, B. A. Standish, M. Pop, K. J. Anderson, G. Y. Liu, T. Luk, B. K. Courtney, G. A. Wright, I. A. Vitkin, and V. X. Yang, “Electrostatic forward-viewing scanning probe for Doppler optical coherence tomography using a dissipative polymer catheter,” Opt. Lett. 33(7), 657–659 (2008).
[Crossref] [PubMed]

Phys. Med. Biol. (1)

I. Z. Nenadic, M. W. Urban, S. A. Mitchell, and J. F. Greenleaf, “Lamb wave dispersion ultrasound vibrometry (LDUV) method for quantifying mechanical properties of viscoelastic solids,” Phys. Med. Biol. 56(7), 2245–2264 (2011).
[Crossref] [PubMed]

PLoS ONE (1)

J. Seifert, C. M. Hammer, J. Rheinlaender, S. Sel, M. Scholz, F. Paulsen, and T. E. Schäffer, “Distribution of Young’s modulus in porcine corneas after riboflavin/UVA-induced collagen cross-linking as measured by atomic force microscopy,” PLoS ONE 9(1), e88186 (2014).
[Crossref] [PubMed]

Prog. Biophys. Mol. Biol. (1)

F. A. Duck, “Medical and non-medical protection standards for ultrasound and infrasound,” Prog. Biophys. Mol. Biol. 93(1-3), 176–191 (2007).
[Crossref] [PubMed]

Surv. Ophthalmol. (2)

A. Kotecha, “What biomechanical properties of the cornea are relevant for the clinician?” Surv. Ophthalmol. 52(6Suppl 2), S109–S114 (2007).
[Crossref] [PubMed]

M. J. Doughty and M. L. Zaman, “Human Corneal Thickness and Its Impact on Intraocular Pressure Measures: A Review and Meta-analysis Approach,” Surv. Ophthalmol. 44(5), 367–408 (2000).
[Crossref] [PubMed]

Ultrasound Med. Biol. (2)

R. Righetti, J. Ophir, and P. Ktonas, “Axial resolution in elastography,” Ultrasound Med. Biol. 28(1), 101–113 (2002).
[Crossref] [PubMed]

M. Couade, M. Pernot, C. Prada, E. Messas, J. Emmerich, P. Bruneval, A. Criton, M. Fink, and M. Tanter, “Quantitative Assessment of Arterial Wall Biomechanical Properties Using Shear Wave Imaging,” Ultrasound Med. Biol. 36(10), 1662–1676 (2010).
[Crossref] [PubMed]

Other (4)

H. Lamb, “On Waves in an Elastic Plate,” Proc. R. Soc. A 93, 114–128 (1917).
[Crossref]

D. Huang, “Optical coherence tomography,” in Harvard-MIT Division of Health Science and Technology(Massachusetts Institute of Technology, Boston, 1993).

M. Jedzierowska, R. Koprowski, and Z. Wróbel, “Overview of the Ocular Biomechanical Properties Measured by the Ocular Response Analyzer and the Corvis ST,” in Information Technologies in Biomedicine, Volume 4, E. Piętka, J. Kawa, and W. Wieclawek, eds. (Springer International Publishing, 2014), pp. 377–386.

L. E. Probst, Complex cases with LASIK: advanced techniques and complication management (SLACK, 2000).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1 Schematic of the SWI-OCT system that combines a focused air-puff device and spectral-domain OCT. The illustration of the air-puff loading and the OCT measurement is squared with dashed line. FOC–fiber optic coupler; FC–fiber connector; AL–achromatic lens; C–collimator; TG–transmission grating; M–mirror; A–aperture; GM–galvanometer-mirror; SL–scan lens.
Fig. 2
Fig. 2 (a) Typical selected corneal displacement profiles over time from five locations along the Lamb wave propagation on the surface of the cornea. (b) Corresponding amplitude spectra from the fast Fourier transform of the displacement profiles in (a). The 20 dB drop cut-off frequency is indicated with dashed line in the frequency domain.
Fig. 3
Fig. 3 Two-dimensional depth-resolved mapping of the phase of Lamb wave propagation for the typical selected frequencies of 195.3 Hz, 390.6 Hz and 585.9 Hz. The observed phase delays indicate the propagation of the Lamb wave from the center to the edges of the cornea. The transverse scale bars represent 1.0 mm and the axial ones correspond to 0.3 mm.
Fig. 4
Fig. 4 Illustration of the phase velocity quantification based on the (b)-(e) least square linear regression to the phase data plotted with respect to the wave propagation distance. The frequency component is ~390.6 Hz. The green curved lines in the (a) OCT corneal image indicate the propagation paths selected from four different depths inside the cornea.
Fig. 5
Fig. 5 (a) The Lamb wave phase velocity over depth showing the depthwise distribution of the corneal stiffness which is associated with the structural features of the cornea indicated with (b) a general OCT image. Region I: epithelium. Region II: anterior stroma. Region III: posterior stroma. Region IV: innermost region.
Fig. 6
Fig. 6 Two-dimensional depth-resolved micro-scale corneal elastography with the mapping of the Lamb wave phase velocity, showing different layers inside the cornea.
Fig. 7
Fig. 7 Averaged phase velocities for the four depthwise-distributed corneal layers (Sample #1) at different frequencies indicate that the depth-resolved corneal elastographic result is repeated for all major frequency components. (a) and (b) are continuous plots with respect to frequency.
Fig. 8
Fig. 8 Averaged phase velocities for the four depthwise-distributed corneal layers at three typical frequencies for the rabbit eyes sample #2 and sample #3.
Fig. 9
Fig. 9 Typical corneal Lamb wave dispersion curve within the low frequency range (<750 Hz) from one of the rabbit eye samples.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

d s (t)= λ p s (t) 4π n air ,
d c (t)= λ[ p c (t)+ ( n cornea n air ) n air p s (t)] 4π n cornea ,
λ L D = 2π φ ,
C(f)=2πf× D φ ,

Metrics