Abstract

In this work, we investigated how bulk motion degraded the quality of optical coherence tomography (OCT) angiography that was obtained through calculating interframe signal variation, i.e., interframe signal variation based optical coherence angiography (isvOCA). We demonstrated theoretically and experimentally that the spatial average of isvOCA signal had an explicit functional dependency on bulk motion. Our result suggested that the bulk motion could lead to an increased background in angiography image. Based on our motion analysis, we proposed to reduce image artifact induced by transient bulk motion in isvOCA through adaptive thresholding. The motion artifact reduced angiography was demonstrated in a 1.3μm spectral domain OCT system. We implemented signal processing using graphic processing unit for real-time imaging and conducted in vivo microvasculature imaging on human skin. Our results clearly showed that the adaptive thresholding method was highly effective in the motion artifact removal for OCT angiography.

© 2014 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Regression-based algorithm for bulk motion subtraction in optical coherence tomography angiography

Acner Camino, Yali Jia, Gangjun Liu, Jie Wang, and David Huang
Biomed. Opt. Express 8(6) 3053-3066 (2017)

Combined multi-modal photoacoustic tomography, optical coherence tomography (OCT) and OCT angiography system with an articulated probe for in vivo human skin structure and vasculature imaging

Mengyang Liu, Zhe Chen, Behrooz Zabihian, Christoph Sinz, Edward Zhang, Paul C. Beard, Laurin Ginner, Erich Hoover, Micheal P. Minneman, Rainer A. Leitgeb, Harald Kittler, and Wolfgang Drexler
Biomed. Opt. Express 7(9) 3390-3402 (2016)

References

  • View by:
  • |
  • |
  • |

  1. Z. Chen, T. E. Milner, S. Srinivas, X. Wang, A. Malekafzali, M. J. C. van Gemert, and J. S. Nelson, “Noninvasive imaging of in vivo blood flow velocity using optical Doppler tomography,” Opt. Lett. 22(14), 1119–1121 (1997).
    [Crossref] [PubMed]
  2. Y. Zhao, Z. Chen, C. Saxer, S. Xiang, J. F. de Boer, and J. S. Nelson, “Phase-resolved optical coherence tomography and optical Doppler tomography for imaging blood flow in human skin with fast scanning speed and high velocity sensitivity,” Opt. Lett. 25(2), 114–116 (2000).
    [Crossref] [PubMed]
  3. J. A. Izatt, M. D. Kulkarni, S. Yazdanfar, J. K. Barton, and A. J. Welch, “In vivo bidirectional color Doppler flow imaging of picoliter blood volumes using optical coherence tomography,” Opt. Lett. 22(18), 1439–1441 (1997).
    [Crossref] [PubMed]
  4. S. Makita, Y. Hong, M. Yamanari, T. Yatagai, and Y. Yasuno, “Optical coherence angiography,” Opt. Express 14(17), 7821–7840 (2006).
    [Crossref] [PubMed]
  5. S. Makita, T. Fabritius, and Y. Yasuno, “Quantitative retinal-blood flow measurement with three-dimensional vessel geometry determination using ultrahigh-resolution Doppler optical coherence angiography,” Opt. Lett. 33(8), 836–838 (2008).
    [Crossref] [PubMed]
  6. R. K. Wang and L. An, “Doppler optical micro-angiography for volumetric imaging of vascular perfusion in vivo,” Opt. Express 17(11), 8926–8940 (2009).
    [Crossref] [PubMed]
  7. H. Ren, C. Du, and Y. Pan, “Cerebral blood flow imaged with ultrahigh-resolution optical coherence angiography and Doppler tomography,” Opt. Lett. 37(8), 1388–1390 (2012).
    [Crossref] [PubMed]
  8. Y. Huang, X. Liu, and J. U. Kang, “Real-time 3D and 4D Fourier domain Doppler optical coherence tomography based on dual graphics processing units,” Biomed. Opt. Express 3(9), 2162–2174 (2012).
    [Crossref] [PubMed]
  9. R. K. Wang, S. L. Jacques, Z. Ma, S. Hurst, S. R. Hanson, and A. Gruber, “Three dimensional optical angiography,” Opt. Express 15(7), 4083–4097 (2007).
    [Crossref] [PubMed]
  10. A. Mariampillai, B. A. Standish, E. H. Moriyama, M. Khurana, N. R. Munce, M. K. K. Leung, J. Jiang, A. Cable, B. C. Wilson, I. A. Vitkin, and V. X. D. Yang, “Speckle variance detection of microvasculature using swept-source optical coherence tomography,” Opt. Lett. 33(13), 1530–1532 (2008).
    [Crossref] [PubMed]
  11. L. An, J. Qin, and R. K. Wang, “Ultrahigh sensitive optical microangiography for in vivo imaging of microcirculations within human skin tissue beds,” Opt. Express 18(8), 8220–8228 (2010).
    [Crossref] [PubMed]
  12. X. Liu, K. Zhang, Y. Huang, and J. U. Kang, “Spectroscopic-speckle variance OCT for microvasculature detection and analysis,” Biomed. Opt. Express 2(11), 2995–3009 (2011).
    [Crossref] [PubMed]
  13. C. Blatter, J. Weingast, A. Alex, B. Grajciar, W. Wieser, W. Drexler, R. Huber, and R. A. Leitgeb, “In situ structural and microangiographic assessment of human skin lesions with high-speed OCT,” Biomed. Opt. Express 3(10), 2636–2646 (2012).
    [Crossref] [PubMed]
  14. M. Stücker, V. Baier, T. Reuther, K. Hoffmann, K. Kellam, and P. Altmeyer, “Capillary blood cell velocity in human skin capillaries located perpendicularly to the skin surface: measured by a new laser Doppler anemometer,” Microvasc. Res. 52(2), 188–192 (1996).
    [Crossref] [PubMed]
  15. V. X. Yang, M. L. Gordon, A. Mok, Y. Zhao, Z. Chen, R. S. Cobbold, B. C. Wilson, and I. A. Vitkin, “Improved phase-resolved optical Doppler tomography using Kasai velocity estimator and histogram segmentation,” Opt. Commun. 208(4–6), 209–214 (2002).
    [Crossref]
  16. J. Fingler, R. J. Zawadzki, J. S. Werner, D. Schwartz, and S. E. Fraser, “Volumetric microvascular imaging of human retina using optical coherence tomography with a novel motion contrast technique,” Opt. Express 17(24), 22190–22200 (2009).
    [Crossref] [PubMed]
  17. L. Yu and Z. Chen, “Doppler variance imaging for three-dimensional retina and choroid angiography,” J. Biomed. Opt. 15(1), 016029 (2010).
    [Crossref] [PubMed]
  18. I. Grulkowski, I. Gorczynska, M. Szkulmowski, D. Szlag, A. Szkulmowska, R. A. Leitgeb, A. Kowalczyk, and M. Wojtkowski, “Scanning protocols dedicated to smart velocity ranging in spectral OCT,” Opt. Express 17(26), 23736–23754 (2009).
    [Crossref] [PubMed]
  19. L. An, H. M. Subhush, D. J. Wilson, and R. K. Wang, “High-resolution wide-field imaging of retinal and choroidal blood perfusion with optical microangiography,” J. Biomed. Opt. 15(2), 026011 (2010).
    [Crossref] [PubMed]
  20. A. Mariampillai, M. K. K. Leung, M. Jarvi, B. A. Standish, K. Lee, B. C. Wilson, A. Vitkin, and V. X. D. Yang, “Optimized speckle variance OCT imaging of microvasculature,” Opt. Lett. 35(8), 1257–1259 (2010).
    [Crossref] [PubMed]
  21. G. Liu, W. Qi, L. Yu, and Z. Chen, “Real-time bulk-motion-correction free Doppler variance optical coherence tomography for choroidal capillary vasculature imaging,” Opt. Express 19(4), 3657–3666 (2011).
    [Crossref] [PubMed]
  22. G. Liu, W. Jia, V. Sun, B. Choi, and Z. Chen, “High-resolution imaging of microvasculature in human skin in-vivo with optical coherence tomography,” Opt. Express 20(7), 7694–7705 (2012).
    [Crossref] [PubMed]
  23. K. K. C. Lee, A. Mariampillai, J. X. Z. Yu, D. W. Cadotte, B. C. Wilson, B. A. Standish, and V. X. Yang, “Real-time speckle variance swept-source optical coherence tomography using a graphics processing unit,” Biomed. Opt. Express 3(7), 1557–1564 (2012).
    [Crossref] [PubMed]
  24. K. Zhang and J. U. Kang, “Real-time 4D signal processing and visualization using graphics processing unit on a regular nonlinear-k Fourier-domain OCT system,” Opt. Express 18(11), 11772–11784 (2010).
    [Crossref] [PubMed]
  25. J.-F. Chen, J. B. Fowlkes, P. L. Carson, and J. M. Rubin, “Determination of scan-plane motion using speckle decorrelation: theoretical considerations and initial test,” Int. J. Imaging Syst. Technol. 8(1), 38–44 (1997).
    [Crossref]
  26. P. C. Li, C. J. Cheng, and C. K. Yeh, “On velocity estimation using speckle decorrelation,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 48(4), 1084–1091 (2001).
    [Crossref] [PubMed]
  27. A. Ahmad, S. G. Adie, E. J. Chaney, U. Sharma, and S. A. Boppart, “Cross-correlation-based image acquisition technique for manually-scanned optical coherence tomography,” Opt. Express 17(10), 8125–8136 (2009).
    [Crossref] [PubMed]
  28. X. Liu, Y. Huang, and J. U. Kang, “Distortion-free freehand-scanning OCT implemented with real-time scanning speed variance correction,” Opt. Express 20(15), 16567–16583 (2012).
    [Crossref]
  29. X. Liu, Y. Huang, J. C. Ramella-Roman, S. A. Mathews, and J. U. Kang, “Quantitative transverse flow measurement using optical coherence tomography speckle decorrelation analysis,” Opt. Lett. 38(5), 805–807 (2013).
    [Crossref] [PubMed]
  30. A. F. Fercher, W. Drexler, C. K. Hitzenberger, and T. Lasser, “Optical coherence tomography - principles and applications,” Rep. Prog. Phys. 66(2), 239–303 (2003).
    [Crossref]
  31. M. Michalski, V. Briard, and F. Michel, “Optical parameters of milk fat globules for laser light scattering measurements,” Lait 81(6), 787–796 (2001).
    [Crossref]
  32. S. Sangiorgi, A. Manelli, T. Congiu, A. Bini, G. Pilato, M. Reguzzoni, and M. Raspanti, “Microvascularization of the human digit as studied by corrosion casting,” J. Anat. 204(2), 123–131 (2004).
    [Crossref] [PubMed]
  33. A. Einstein, “Investigations on the Theory of Brownian Movement,” Ann. Phys. 17, 549 (1905).
    [Crossref]
  34. J. M. Higgins, D. T. Eddington, S. N. Bhatia, and L. Mahadevan, “Statistical dynamics of flowing red blood cells by morphological image processing,” PLOS Comput. Biol. 5(2), e1000288 (2009).
    [Crossref] [PubMed]
  35. T. Li, S. Kheifets, D. Medellin, and M. G. Raizen, “Measurement of the instantaneous velocity of a Brownian particle,” Science 328(5986), 1673–1675 (2010).
    [Crossref] [PubMed]

2013 (1)

2012 (6)

2011 (2)

2010 (6)

L. An, J. Qin, and R. K. Wang, “Ultrahigh sensitive optical microangiography for in vivo imaging of microcirculations within human skin tissue beds,” Opt. Express 18(8), 8220–8228 (2010).
[Crossref] [PubMed]

A. Mariampillai, M. K. K. Leung, M. Jarvi, B. A. Standish, K. Lee, B. C. Wilson, A. Vitkin, and V. X. D. Yang, “Optimized speckle variance OCT imaging of microvasculature,” Opt. Lett. 35(8), 1257–1259 (2010).
[Crossref] [PubMed]

K. Zhang and J. U. Kang, “Real-time 4D signal processing and visualization using graphics processing unit on a regular nonlinear-k Fourier-domain OCT system,” Opt. Express 18(11), 11772–11784 (2010).
[Crossref] [PubMed]

L. Yu and Z. Chen, “Doppler variance imaging for three-dimensional retina and choroid angiography,” J. Biomed. Opt. 15(1), 016029 (2010).
[Crossref] [PubMed]

L. An, H. M. Subhush, D. J. Wilson, and R. K. Wang, “High-resolution wide-field imaging of retinal and choroidal blood perfusion with optical microangiography,” J. Biomed. Opt. 15(2), 026011 (2010).
[Crossref] [PubMed]

T. Li, S. Kheifets, D. Medellin, and M. G. Raizen, “Measurement of the instantaneous velocity of a Brownian particle,” Science 328(5986), 1673–1675 (2010).
[Crossref] [PubMed]

2009 (5)

2008 (2)

2007 (1)

2006 (1)

2004 (1)

S. Sangiorgi, A. Manelli, T. Congiu, A. Bini, G. Pilato, M. Reguzzoni, and M. Raspanti, “Microvascularization of the human digit as studied by corrosion casting,” J. Anat. 204(2), 123–131 (2004).
[Crossref] [PubMed]

2003 (1)

A. F. Fercher, W. Drexler, C. K. Hitzenberger, and T. Lasser, “Optical coherence tomography - principles and applications,” Rep. Prog. Phys. 66(2), 239–303 (2003).
[Crossref]

2002 (1)

V. X. Yang, M. L. Gordon, A. Mok, Y. Zhao, Z. Chen, R. S. Cobbold, B. C. Wilson, and I. A. Vitkin, “Improved phase-resolved optical Doppler tomography using Kasai velocity estimator and histogram segmentation,” Opt. Commun. 208(4–6), 209–214 (2002).
[Crossref]

2001 (2)

M. Michalski, V. Briard, and F. Michel, “Optical parameters of milk fat globules for laser light scattering measurements,” Lait 81(6), 787–796 (2001).
[Crossref]

P. C. Li, C. J. Cheng, and C. K. Yeh, “On velocity estimation using speckle decorrelation,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 48(4), 1084–1091 (2001).
[Crossref] [PubMed]

2000 (1)

1997 (3)

1996 (1)

M. Stücker, V. Baier, T. Reuther, K. Hoffmann, K. Kellam, and P. Altmeyer, “Capillary blood cell velocity in human skin capillaries located perpendicularly to the skin surface: measured by a new laser Doppler anemometer,” Microvasc. Res. 52(2), 188–192 (1996).
[Crossref] [PubMed]

1905 (1)

A. Einstein, “Investigations on the Theory of Brownian Movement,” Ann. Phys. 17, 549 (1905).
[Crossref]

Adie, S. G.

Ahmad, A.

Alex, A.

Altmeyer, P.

M. Stücker, V. Baier, T. Reuther, K. Hoffmann, K. Kellam, and P. Altmeyer, “Capillary blood cell velocity in human skin capillaries located perpendicularly to the skin surface: measured by a new laser Doppler anemometer,” Microvasc. Res. 52(2), 188–192 (1996).
[Crossref] [PubMed]

An, L.

Baier, V.

M. Stücker, V. Baier, T. Reuther, K. Hoffmann, K. Kellam, and P. Altmeyer, “Capillary blood cell velocity in human skin capillaries located perpendicularly to the skin surface: measured by a new laser Doppler anemometer,” Microvasc. Res. 52(2), 188–192 (1996).
[Crossref] [PubMed]

Barton, J. K.

Bhatia, S. N.

J. M. Higgins, D. T. Eddington, S. N. Bhatia, and L. Mahadevan, “Statistical dynamics of flowing red blood cells by morphological image processing,” PLOS Comput. Biol. 5(2), e1000288 (2009).
[Crossref] [PubMed]

Bini, A.

S. Sangiorgi, A. Manelli, T. Congiu, A. Bini, G. Pilato, M. Reguzzoni, and M. Raspanti, “Microvascularization of the human digit as studied by corrosion casting,” J. Anat. 204(2), 123–131 (2004).
[Crossref] [PubMed]

Blatter, C.

Boppart, S. A.

Briard, V.

M. Michalski, V. Briard, and F. Michel, “Optical parameters of milk fat globules for laser light scattering measurements,” Lait 81(6), 787–796 (2001).
[Crossref]

Cable, A.

Cadotte, D. W.

Carson, P. L.

J.-F. Chen, J. B. Fowlkes, P. L. Carson, and J. M. Rubin, “Determination of scan-plane motion using speckle decorrelation: theoretical considerations and initial test,” Int. J. Imaging Syst. Technol. 8(1), 38–44 (1997).
[Crossref]

Chaney, E. J.

Chen, J.-F.

J.-F. Chen, J. B. Fowlkes, P. L. Carson, and J. M. Rubin, “Determination of scan-plane motion using speckle decorrelation: theoretical considerations and initial test,” Int. J. Imaging Syst. Technol. 8(1), 38–44 (1997).
[Crossref]

Chen, Z.

Cheng, C. J.

P. C. Li, C. J. Cheng, and C. K. Yeh, “On velocity estimation using speckle decorrelation,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 48(4), 1084–1091 (2001).
[Crossref] [PubMed]

Choi, B.

Cobbold, R. S.

V. X. Yang, M. L. Gordon, A. Mok, Y. Zhao, Z. Chen, R. S. Cobbold, B. C. Wilson, and I. A. Vitkin, “Improved phase-resolved optical Doppler tomography using Kasai velocity estimator and histogram segmentation,” Opt. Commun. 208(4–6), 209–214 (2002).
[Crossref]

Congiu, T.

S. Sangiorgi, A. Manelli, T. Congiu, A. Bini, G. Pilato, M. Reguzzoni, and M. Raspanti, “Microvascularization of the human digit as studied by corrosion casting,” J. Anat. 204(2), 123–131 (2004).
[Crossref] [PubMed]

de Boer, J. F.

Drexler, W.

Du, C.

Eddington, D. T.

J. M. Higgins, D. T. Eddington, S. N. Bhatia, and L. Mahadevan, “Statistical dynamics of flowing red blood cells by morphological image processing,” PLOS Comput. Biol. 5(2), e1000288 (2009).
[Crossref] [PubMed]

Einstein, A.

A. Einstein, “Investigations on the Theory of Brownian Movement,” Ann. Phys. 17, 549 (1905).
[Crossref]

Fabritius, T.

Fercher, A. F.

A. F. Fercher, W. Drexler, C. K. Hitzenberger, and T. Lasser, “Optical coherence tomography - principles and applications,” Rep. Prog. Phys. 66(2), 239–303 (2003).
[Crossref]

Fingler, J.

Fowlkes, J. B.

J.-F. Chen, J. B. Fowlkes, P. L. Carson, and J. M. Rubin, “Determination of scan-plane motion using speckle decorrelation: theoretical considerations and initial test,” Int. J. Imaging Syst. Technol. 8(1), 38–44 (1997).
[Crossref]

Fraser, S. E.

Gorczynska, I.

Gordon, M. L.

V. X. Yang, M. L. Gordon, A. Mok, Y. Zhao, Z. Chen, R. S. Cobbold, B. C. Wilson, and I. A. Vitkin, “Improved phase-resolved optical Doppler tomography using Kasai velocity estimator and histogram segmentation,” Opt. Commun. 208(4–6), 209–214 (2002).
[Crossref]

Grajciar, B.

Gruber, A.

Grulkowski, I.

Hanson, S. R.

Higgins, J. M.

J. M. Higgins, D. T. Eddington, S. N. Bhatia, and L. Mahadevan, “Statistical dynamics of flowing red blood cells by morphological image processing,” PLOS Comput. Biol. 5(2), e1000288 (2009).
[Crossref] [PubMed]

Hitzenberger, C. K.

A. F. Fercher, W. Drexler, C. K. Hitzenberger, and T. Lasser, “Optical coherence tomography - principles and applications,” Rep. Prog. Phys. 66(2), 239–303 (2003).
[Crossref]

Hoffmann, K.

M. Stücker, V. Baier, T. Reuther, K. Hoffmann, K. Kellam, and P. Altmeyer, “Capillary blood cell velocity in human skin capillaries located perpendicularly to the skin surface: measured by a new laser Doppler anemometer,” Microvasc. Res. 52(2), 188–192 (1996).
[Crossref] [PubMed]

Hong, Y.

Huang, Y.

Huber, R.

Hurst, S.

Izatt, J. A.

Jacques, S. L.

Jarvi, M.

Jia, W.

Jiang, J.

Kang, J. U.

Kellam, K.

M. Stücker, V. Baier, T. Reuther, K. Hoffmann, K. Kellam, and P. Altmeyer, “Capillary blood cell velocity in human skin capillaries located perpendicularly to the skin surface: measured by a new laser Doppler anemometer,” Microvasc. Res. 52(2), 188–192 (1996).
[Crossref] [PubMed]

Kheifets, S.

T. Li, S. Kheifets, D. Medellin, and M. G. Raizen, “Measurement of the instantaneous velocity of a Brownian particle,” Science 328(5986), 1673–1675 (2010).
[Crossref] [PubMed]

Khurana, M.

Kowalczyk, A.

Kulkarni, M. D.

Lasser, T.

A. F. Fercher, W. Drexler, C. K. Hitzenberger, and T. Lasser, “Optical coherence tomography - principles and applications,” Rep. Prog. Phys. 66(2), 239–303 (2003).
[Crossref]

Lee, K.

Lee, K. K. C.

Leitgeb, R. A.

Leung, M. K. K.

Li, P. C.

P. C. Li, C. J. Cheng, and C. K. Yeh, “On velocity estimation using speckle decorrelation,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 48(4), 1084–1091 (2001).
[Crossref] [PubMed]

Li, T.

T. Li, S. Kheifets, D. Medellin, and M. G. Raizen, “Measurement of the instantaneous velocity of a Brownian particle,” Science 328(5986), 1673–1675 (2010).
[Crossref] [PubMed]

Liu, G.

Liu, X.

Ma, Z.

Mahadevan, L.

J. M. Higgins, D. T. Eddington, S. N. Bhatia, and L. Mahadevan, “Statistical dynamics of flowing red blood cells by morphological image processing,” PLOS Comput. Biol. 5(2), e1000288 (2009).
[Crossref] [PubMed]

Makita, S.

Malekafzali, A.

Manelli, A.

S. Sangiorgi, A. Manelli, T. Congiu, A. Bini, G. Pilato, M. Reguzzoni, and M. Raspanti, “Microvascularization of the human digit as studied by corrosion casting,” J. Anat. 204(2), 123–131 (2004).
[Crossref] [PubMed]

Mariampillai, A.

Mathews, S. A.

Medellin, D.

T. Li, S. Kheifets, D. Medellin, and M. G. Raizen, “Measurement of the instantaneous velocity of a Brownian particle,” Science 328(5986), 1673–1675 (2010).
[Crossref] [PubMed]

Michalski, M.

M. Michalski, V. Briard, and F. Michel, “Optical parameters of milk fat globules for laser light scattering measurements,” Lait 81(6), 787–796 (2001).
[Crossref]

Michel, F.

M. Michalski, V. Briard, and F. Michel, “Optical parameters of milk fat globules for laser light scattering measurements,” Lait 81(6), 787–796 (2001).
[Crossref]

Milner, T. E.

Mok, A.

V. X. Yang, M. L. Gordon, A. Mok, Y. Zhao, Z. Chen, R. S. Cobbold, B. C. Wilson, and I. A. Vitkin, “Improved phase-resolved optical Doppler tomography using Kasai velocity estimator and histogram segmentation,” Opt. Commun. 208(4–6), 209–214 (2002).
[Crossref]

Moriyama, E. H.

Munce, N. R.

Nelson, J. S.

Pan, Y.

Pilato, G.

S. Sangiorgi, A. Manelli, T. Congiu, A. Bini, G. Pilato, M. Reguzzoni, and M. Raspanti, “Microvascularization of the human digit as studied by corrosion casting,” J. Anat. 204(2), 123–131 (2004).
[Crossref] [PubMed]

Qi, W.

Qin, J.

Raizen, M. G.

T. Li, S. Kheifets, D. Medellin, and M. G. Raizen, “Measurement of the instantaneous velocity of a Brownian particle,” Science 328(5986), 1673–1675 (2010).
[Crossref] [PubMed]

Ramella-Roman, J. C.

Raspanti, M.

S. Sangiorgi, A. Manelli, T. Congiu, A. Bini, G. Pilato, M. Reguzzoni, and M. Raspanti, “Microvascularization of the human digit as studied by corrosion casting,” J. Anat. 204(2), 123–131 (2004).
[Crossref] [PubMed]

Reguzzoni, M.

S. Sangiorgi, A. Manelli, T. Congiu, A. Bini, G. Pilato, M. Reguzzoni, and M. Raspanti, “Microvascularization of the human digit as studied by corrosion casting,” J. Anat. 204(2), 123–131 (2004).
[Crossref] [PubMed]

Ren, H.

Reuther, T.

M. Stücker, V. Baier, T. Reuther, K. Hoffmann, K. Kellam, and P. Altmeyer, “Capillary blood cell velocity in human skin capillaries located perpendicularly to the skin surface: measured by a new laser Doppler anemometer,” Microvasc. Res. 52(2), 188–192 (1996).
[Crossref] [PubMed]

Rubin, J. M.

J.-F. Chen, J. B. Fowlkes, P. L. Carson, and J. M. Rubin, “Determination of scan-plane motion using speckle decorrelation: theoretical considerations and initial test,” Int. J. Imaging Syst. Technol. 8(1), 38–44 (1997).
[Crossref]

Sangiorgi, S.

S. Sangiorgi, A. Manelli, T. Congiu, A. Bini, G. Pilato, M. Reguzzoni, and M. Raspanti, “Microvascularization of the human digit as studied by corrosion casting,” J. Anat. 204(2), 123–131 (2004).
[Crossref] [PubMed]

Saxer, C.

Schwartz, D.

Sharma, U.

Srinivas, S.

Standish, B. A.

Stücker, M.

M. Stücker, V. Baier, T. Reuther, K. Hoffmann, K. Kellam, and P. Altmeyer, “Capillary blood cell velocity in human skin capillaries located perpendicularly to the skin surface: measured by a new laser Doppler anemometer,” Microvasc. Res. 52(2), 188–192 (1996).
[Crossref] [PubMed]

Subhush, H. M.

L. An, H. M. Subhush, D. J. Wilson, and R. K. Wang, “High-resolution wide-field imaging of retinal and choroidal blood perfusion with optical microangiography,” J. Biomed. Opt. 15(2), 026011 (2010).
[Crossref] [PubMed]

Sun, V.

Szkulmowska, A.

Szkulmowski, M.

Szlag, D.

van Gemert, M. J. C.

Vitkin, A.

Vitkin, I. A.

A. Mariampillai, B. A. Standish, E. H. Moriyama, M. Khurana, N. R. Munce, M. K. K. Leung, J. Jiang, A. Cable, B. C. Wilson, I. A. Vitkin, and V. X. D. Yang, “Speckle variance detection of microvasculature using swept-source optical coherence tomography,” Opt. Lett. 33(13), 1530–1532 (2008).
[Crossref] [PubMed]

V. X. Yang, M. L. Gordon, A. Mok, Y. Zhao, Z. Chen, R. S. Cobbold, B. C. Wilson, and I. A. Vitkin, “Improved phase-resolved optical Doppler tomography using Kasai velocity estimator and histogram segmentation,” Opt. Commun. 208(4–6), 209–214 (2002).
[Crossref]

Wang, R. K.

Wang, X.

Weingast, J.

Welch, A. J.

Werner, J. S.

Wieser, W.

Wilson, B. C.

Wilson, D. J.

L. An, H. M. Subhush, D. J. Wilson, and R. K. Wang, “High-resolution wide-field imaging of retinal and choroidal blood perfusion with optical microangiography,” J. Biomed. Opt. 15(2), 026011 (2010).
[Crossref] [PubMed]

Wojtkowski, M.

Xiang, S.

Yamanari, M.

Yang, V. X.

K. K. C. Lee, A. Mariampillai, J. X. Z. Yu, D. W. Cadotte, B. C. Wilson, B. A. Standish, and V. X. Yang, “Real-time speckle variance swept-source optical coherence tomography using a graphics processing unit,” Biomed. Opt. Express 3(7), 1557–1564 (2012).
[Crossref] [PubMed]

V. X. Yang, M. L. Gordon, A. Mok, Y. Zhao, Z. Chen, R. S. Cobbold, B. C. Wilson, and I. A. Vitkin, “Improved phase-resolved optical Doppler tomography using Kasai velocity estimator and histogram segmentation,” Opt. Commun. 208(4–6), 209–214 (2002).
[Crossref]

Yang, V. X. D.

Yasuno, Y.

Yatagai, T.

Yazdanfar, S.

Yeh, C. K.

P. C. Li, C. J. Cheng, and C. K. Yeh, “On velocity estimation using speckle decorrelation,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 48(4), 1084–1091 (2001).
[Crossref] [PubMed]

Yu, J. X. Z.

Yu, L.

Zawadzki, R. J.

Zhang, K.

Zhao, Y.

V. X. Yang, M. L. Gordon, A. Mok, Y. Zhao, Z. Chen, R. S. Cobbold, B. C. Wilson, and I. A. Vitkin, “Improved phase-resolved optical Doppler tomography using Kasai velocity estimator and histogram segmentation,” Opt. Commun. 208(4–6), 209–214 (2002).
[Crossref]

Y. Zhao, Z. Chen, C. Saxer, S. Xiang, J. F. de Boer, and J. S. Nelson, “Phase-resolved optical coherence tomography and optical Doppler tomography for imaging blood flow in human skin with fast scanning speed and high velocity sensitivity,” Opt. Lett. 25(2), 114–116 (2000).
[Crossref] [PubMed]

Ann. Phys. (1)

A. Einstein, “Investigations on the Theory of Brownian Movement,” Ann. Phys. 17, 549 (1905).
[Crossref]

Biomed. Opt. Express (4)

IEEE Trans. Ultrason. Ferroelectr. Freq. Control (1)

P. C. Li, C. J. Cheng, and C. K. Yeh, “On velocity estimation using speckle decorrelation,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 48(4), 1084–1091 (2001).
[Crossref] [PubMed]

Int. J. Imaging Syst. Technol. (1)

J.-F. Chen, J. B. Fowlkes, P. L. Carson, and J. M. Rubin, “Determination of scan-plane motion using speckle decorrelation: theoretical considerations and initial test,” Int. J. Imaging Syst. Technol. 8(1), 38–44 (1997).
[Crossref]

J. Anat. (1)

S. Sangiorgi, A. Manelli, T. Congiu, A. Bini, G. Pilato, M. Reguzzoni, and M. Raspanti, “Microvascularization of the human digit as studied by corrosion casting,” J. Anat. 204(2), 123–131 (2004).
[Crossref] [PubMed]

J. Biomed. Opt. (2)

L. Yu and Z. Chen, “Doppler variance imaging for three-dimensional retina and choroid angiography,” J. Biomed. Opt. 15(1), 016029 (2010).
[Crossref] [PubMed]

L. An, H. M. Subhush, D. J. Wilson, and R. K. Wang, “High-resolution wide-field imaging of retinal and choroidal blood perfusion with optical microangiography,” J. Biomed. Opt. 15(2), 026011 (2010).
[Crossref] [PubMed]

Lait (1)

M. Michalski, V. Briard, and F. Michel, “Optical parameters of milk fat globules for laser light scattering measurements,” Lait 81(6), 787–796 (2001).
[Crossref]

Microvasc. Res. (1)

M. Stücker, V. Baier, T. Reuther, K. Hoffmann, K. Kellam, and P. Altmeyer, “Capillary blood cell velocity in human skin capillaries located perpendicularly to the skin surface: measured by a new laser Doppler anemometer,” Microvasc. Res. 52(2), 188–192 (1996).
[Crossref] [PubMed]

Opt. Commun. (1)

V. X. Yang, M. L. Gordon, A. Mok, Y. Zhao, Z. Chen, R. S. Cobbold, B. C. Wilson, and I. A. Vitkin, “Improved phase-resolved optical Doppler tomography using Kasai velocity estimator and histogram segmentation,” Opt. Commun. 208(4–6), 209–214 (2002).
[Crossref]

Opt. Express (11)

S. Makita, Y. Hong, M. Yamanari, T. Yatagai, and Y. Yasuno, “Optical coherence angiography,” Opt. Express 14(17), 7821–7840 (2006).
[Crossref] [PubMed]

R. K. Wang, S. L. Jacques, Z. Ma, S. Hurst, S. R. Hanson, and A. Gruber, “Three dimensional optical angiography,” Opt. Express 15(7), 4083–4097 (2007).
[Crossref] [PubMed]

X. Liu, Y. Huang, and J. U. Kang, “Distortion-free freehand-scanning OCT implemented with real-time scanning speed variance correction,” Opt. Express 20(15), 16567–16583 (2012).
[Crossref]

G. Liu, W. Jia, V. Sun, B. Choi, and Z. Chen, “High-resolution imaging of microvasculature in human skin in-vivo with optical coherence tomography,” Opt. Express 20(7), 7694–7705 (2012).
[Crossref] [PubMed]

K. Zhang and J. U. Kang, “Real-time 4D signal processing and visualization using graphics processing unit on a regular nonlinear-k Fourier-domain OCT system,” Opt. Express 18(11), 11772–11784 (2010).
[Crossref] [PubMed]

G. Liu, W. Qi, L. Yu, and Z. Chen, “Real-time bulk-motion-correction free Doppler variance optical coherence tomography for choroidal capillary vasculature imaging,” Opt. Express 19(4), 3657–3666 (2011).
[Crossref] [PubMed]

A. Ahmad, S. G. Adie, E. J. Chaney, U. Sharma, and S. A. Boppart, “Cross-correlation-based image acquisition technique for manually-scanned optical coherence tomography,” Opt. Express 17(10), 8125–8136 (2009).
[Crossref] [PubMed]

R. K. Wang and L. An, “Doppler optical micro-angiography for volumetric imaging of vascular perfusion in vivo,” Opt. Express 17(11), 8926–8940 (2009).
[Crossref] [PubMed]

J. Fingler, R. J. Zawadzki, J. S. Werner, D. Schwartz, and S. E. Fraser, “Volumetric microvascular imaging of human retina using optical coherence tomography with a novel motion contrast technique,” Opt. Express 17(24), 22190–22200 (2009).
[Crossref] [PubMed]

I. Grulkowski, I. Gorczynska, M. Szkulmowski, D. Szlag, A. Szkulmowska, R. A. Leitgeb, A. Kowalczyk, and M. Wojtkowski, “Scanning protocols dedicated to smart velocity ranging in spectral OCT,” Opt. Express 17(26), 23736–23754 (2009).
[Crossref] [PubMed]

L. An, J. Qin, and R. K. Wang, “Ultrahigh sensitive optical microangiography for in vivo imaging of microcirculations within human skin tissue beds,” Opt. Express 18(8), 8220–8228 (2010).
[Crossref] [PubMed]

Opt. Lett. (8)

A. Mariampillai, M. K. K. Leung, M. Jarvi, B. A. Standish, K. Lee, B. C. Wilson, A. Vitkin, and V. X. D. Yang, “Optimized speckle variance OCT imaging of microvasculature,” Opt. Lett. 35(8), 1257–1259 (2010).
[Crossref] [PubMed]

H. Ren, C. Du, and Y. Pan, “Cerebral blood flow imaged with ultrahigh-resolution optical coherence angiography and Doppler tomography,” Opt. Lett. 37(8), 1388–1390 (2012).
[Crossref] [PubMed]

X. Liu, Y. Huang, J. C. Ramella-Roman, S. A. Mathews, and J. U. Kang, “Quantitative transverse flow measurement using optical coherence tomography speckle decorrelation analysis,” Opt. Lett. 38(5), 805–807 (2013).
[Crossref] [PubMed]

S. Makita, T. Fabritius, and Y. Yasuno, “Quantitative retinal-blood flow measurement with three-dimensional vessel geometry determination using ultrahigh-resolution Doppler optical coherence angiography,” Opt. Lett. 33(8), 836–838 (2008).
[Crossref] [PubMed]

A. Mariampillai, B. A. Standish, E. H. Moriyama, M. Khurana, N. R. Munce, M. K. K. Leung, J. Jiang, A. Cable, B. C. Wilson, I. A. Vitkin, and V. X. D. Yang, “Speckle variance detection of microvasculature using swept-source optical coherence tomography,” Opt. Lett. 33(13), 1530–1532 (2008).
[Crossref] [PubMed]

Y. Zhao, Z. Chen, C. Saxer, S. Xiang, J. F. de Boer, and J. S. Nelson, “Phase-resolved optical coherence tomography and optical Doppler tomography for imaging blood flow in human skin with fast scanning speed and high velocity sensitivity,” Opt. Lett. 25(2), 114–116 (2000).
[Crossref] [PubMed]

Z. Chen, T. E. Milner, S. Srinivas, X. Wang, A. Malekafzali, M. J. C. van Gemert, and J. S. Nelson, “Noninvasive imaging of in vivo blood flow velocity using optical Doppler tomography,” Opt. Lett. 22(14), 1119–1121 (1997).
[Crossref] [PubMed]

J. A. Izatt, M. D. Kulkarni, S. Yazdanfar, J. K. Barton, and A. J. Welch, “In vivo bidirectional color Doppler flow imaging of picoliter blood volumes using optical coherence tomography,” Opt. Lett. 22(18), 1439–1441 (1997).
[Crossref] [PubMed]

PLOS Comput. Biol. (1)

J. M. Higgins, D. T. Eddington, S. N. Bhatia, and L. Mahadevan, “Statistical dynamics of flowing red blood cells by morphological image processing,” PLOS Comput. Biol. 5(2), e1000288 (2009).
[Crossref] [PubMed]

Rep. Prog. Phys. (1)

A. F. Fercher, W. Drexler, C. K. Hitzenberger, and T. Lasser, “Optical coherence tomography - principles and applications,” Rep. Prog. Phys. 66(2), 239–303 (2003).
[Crossref]

Science (1)

T. Li, S. Kheifets, D. Medellin, and M. G. Raizen, “Measurement of the instantaneous velocity of a Brownian particle,” Science 328(5986), 1673–1675 (2010).
[Crossref] [PubMed]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1 Reconstruction of motion artifact reduced OCT angiography.
Fig. 2
Fig. 2 (a) Data processing flowchart of motion artifact reduced angiography; (b) Time expenditure of each processing step preformed on the GPU.
Fig. 3
Fig. 3 Measured spatial average of intensity variation (red circles with errorbar) and fitted curve (black).
Fig. 4
Fig. 4 Spatial average of motion image obtained with BM that has different magnitude and direction.
Fig. 5
Fig. 5 Structural (a) and flow (b) image of a phantom with a polyimide tube filled with bovine milk embedded in solid scattering medium
Fig. 6
Fig. 6 (a) υ ¯ solid increase as motion in both x and y directions; (b) υ ¯ liquid remains almost constant with bulk motion
Fig. 7
Fig. 7 Cross-sectional flow image obtained without adaptive thresholding when bulk motion was in x dimension (a) and y dimension (b); Cross-sectional flow image obtained with adaptive thresholding when bulk motion was in x dimension (c) and y dimension (d); contrast of flow image, with (green) and without (blue) adaptive thresholding at different magnitude of motion in x direction (e) and y direction (f); contrast enhancement through adaptive thresholding when motion was in x direction (g) and y direction (h).
Fig. 8
Fig. 8 (a) structural OCT image of human palm skin (E: epidermis; D: dermis); (b) cross-sectional angiography image that highlights blood vessel; (c) – (e) en face microvasculature image in small, medium and large depths; (f) microvasculature image that encodes signal depth with color.
Fig. 9
Fig. 9 isvOCA image obtained from human fingertip (a) and a small skin lesion (b).
Fig. 10
Fig. 10 Angiography image obtained (a) with small magnitude of BM without adaptive thresholding; (b) with small magnitude of BM with adaptive thresholding; (c) with large magnitude of BM without adaptive thresholding; (b) with large magnitude of BM with adaptive thresholding.

Equations (14)

Equations on this page are rendered with MathJax. Learn more.

v( x,y,z,t )= 1 I 0 2 [ I( x,y,z,t )I( x,y,z,tδt ) ] 2 ,
v( x,y,z,t ) = 1 I 0 2 I ( x,y,z,t ) 2 + 1 I 0 2 I ( x,y,z,tδt ) 2 2 I 0 2 I( x,y,z,t )I( x,y,z,tδt ) ,
I( x,y,z,t )I( x,y,z,tδt ) = I( xδx,yδy,zδz,tδt )I( x,y,z,tδt ) = I tδt ( xδx,yδy,zδz ) I tδt ( x,y,z ) ,
I tδt ( xδx,yδy,zδz ) I tδt ( x,y,z ) = I 0 2 + | S( xδx,yδy,zδz ) S * ( x,y,z ) | 2 ,
S( x,y,z )= x',y',z' a( xx',yy',zz' )h( x',y',z' )dx'dy'dz' ,
I tδt ( xδx,yδy,zδz ) I tδt ( x,y,z ) = I 0 2 + | x',y',z' x'',y'',z'' [ a( xδxx'',yδyy'',zδzz'' )a( xx',yy',zz' ) h( x'',y'',z'' )h*( x',y',z' ) ]dx'dy'dz'dx''dy''dz'' | 2 ,
a( xδxx'',yδyy'',zδzz'' )a( xx',yy',zz' ) = a 0 2 δ( δx+x''x' )δ( δy+y''y' )δ( δz+z''z' ),
I tδt ( xδx,yδy,zδz ) I tδt ( x,y,z ) = I 0 2 + | x',y',z' a 0 2 h( x'δx,y'δy,z'δz ) h * ( x',y',z' )dx'dy'dz' | 2 ,
h( x,y,z )=B ( 2/π ) 3/4 ω x ω y ω z e j k 0 z e ( x 2 ω x 2 + y 2 ω y 2 + z 2 ω z 2 ) ,
v( x,y,z,t ) = 2 ( a 0 2 B 2 ) 2 I 0 2 [ 1exp ( δ x 2 ω x 2 ) 2 exp ( δ y 2 ω y 2 ) 2 exp ( δ y 2 ω y 2 ) 2 ] =2 A 2 [ 1exp ( δ x 2 ω x 2 ) 2 exp ( δ y 2 ω y 2 ) 2 exp ( δ y 2 ω y 2 ) 2 ],
v ij,n = 1 I 0 2 ( I ij,n I ij,n1 ) 2 ,
v n ¯ = 1 N x N z i j v ij,n ,
v ^ ij,n ={ v ij,n v ¯ n ; if v ij,n > v ¯ n 0; if v ij,n < v ¯ n ,
s ij = 1 N1 n=2 N v ^ ij,n ,

Metrics