Abstract

Single-view x-ray luminescence computed tomography (XLCT) imaging has short data collection time that allows non-invasively and fast resolving the three-dimensional (3-D) distribution of x-ray-excitable nanophosphors within small animal in vivo. However, the single-view reconstruction suffers from a severe ill-posed problem because only one angle data is used in the reconstruction. To alleviate the ill-posedness, in this paper, we propose a wavelet-based reconstruction approach, which is achieved by applying a wavelet transformation to the acquired singe-view measurements. To evaluate the performance of the proposed method, in vivo experiment was performed based on a cone beam XLCT imaging system. The experimental results demonstrate that the proposed method cannot only use the full set of measurements produced by CCD, but also accelerate image reconstruction while preserving the spatial resolution of the reconstruction. Hence, it is suitable for dynamic XLCT imaging study.

© 2014 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Sparse view cone beam X-ray luminescence tomography based on truncated singular value decomposition

Peng Gao, Junyan Rong, Huangsheng Pu, Tianshuai Liu, Wenli Zhang, Xiaofeng Zhang, and Hongbing Lu
Opt. Express 26(18) 23233-23250 (2018)

Resolving adjacent nanophosphors of different concentrations by excitation-based cone-beam X-ray luminescence tomography

Peng Gao, Huangsheng Pu, Junyan Rong, Wenli Zhang, Tianshuai Liu, Wenlei Liu, Yuanke Zhang, and Hongbing Lu
Biomed. Opt. Express 8(9) 3952-3965 (2017)

Spectral-resolved cone-beam X-ray luminescence computed tomography with principle component analysis

Huangsheng Pu, Peng Gao, Junyan Rong, Wenli Zhang, Tianshuai Liu, and Hongbing Lu
Biomed. Opt. Express 9(6) 2844-2858 (2018)

References

  • View by:
  • |
  • |
  • |

  1. G. Pratx, C. M. Carpenter, C. Sun, and L. Xing, “X-ray luminescence computed tomography via selective excitation: a feasibility study,” IEEE Trans. Med. Imaging 29(12), 1992–1999 (2010).
    [Crossref] [PubMed]
  2. G. Pratx, C. M. Carpenter, C. Sun, R. P. Rao, and L. Xing, “Tomographic molecular imaging of x-ray-excitable nanoparticles,” Opt. Lett. 35(20), 3345–3347 (2010).
    [Crossref] [PubMed]
  3. C. Li, K. Di, J. Bec, and S. R. Cherry, “X-ray luminescence optical tomography imaging: experimental studies,” Opt. Lett. 38(13), 2339–2341 (2013).
    [Crossref] [PubMed]
  4. D. Chen, S. Zhu, H. Yi, X. Zhang, D. Chen, J. Liang, and J. Tian, “Cone beam x-ray luminescence computed tomography: A feasibility study,” Med. Phys. 40(3), 031111 (2013).
    [Crossref] [PubMed]
  5. W. Cong, H. Shen, and G. Wang, “Spectrally resolving and scattering-compensated x-ray luminescence/fluorescence computed tomography,” J. Biomed. Opt. 16(6), 066014 (2011).
    [Crossref] [PubMed]
  6. X. Liu, Q. Liao, and H. Wang, “In vivo x-ray luminescence tomographic imaging with single-view data,” Opt. Lett. 38(22), 4530–4533 (2013).
    [Crossref] [PubMed]
  7. V. Ntziachristos, J. Ripoll, L. V. Wang, and R. Weissleder, “Looking and listening to light: the evolution of whole-body photonic imaging,” Nat. Biotechnol. 23(3), 313–320 (2005).
    [Crossref] [PubMed]
  8. X. Liu, B. Zhang, J. Luo, and J. Bai, “4-D reconstruction for dynamic fluorescence diffuse optical tomography,” IEEE Trans. Med. Imaging 31(11), 2120–2132 (2012).
    [Crossref] [PubMed]
  9. G. Wang, W. Cong, K. Durairaj, X. Qian, H. Shen, P. Sinn, E. Hoffman, G. McLennan, and M. Henry, “In vivo mouse studies with bioluminescence tomography,” Opt. Express 14(17), 7801–7809 (2006).
    [Crossref] [PubMed]
  10. Y. Lv, J. Tian, W. Cong, G. Wang, J. Luo, W. Yang, and H. Li, “A multilevel adaptive finite element algorithm for bioluminescence tomography,” Opt. Express 14(18), 8211–8223 (2006).
    [Crossref] [PubMed]
  11. M. Nichkova, D. Dosev, R. Perron, S. J. Gee, B. D. Hammock, and I. M. Kennedy, “Eu3+-doped Gd2O3 nanoparticles as reporters for optical detection and visualization of antibodies patterned by microcontact printing,” Anal. Bioanal. Chem. 384(3), 631–637 (2006).
    [Crossref] [PubMed]
  12. A. M. Pires, M. F. Santos, M. R. Davolos, and E. B. Stucchi, “The effect of Eu3+ ion doping concentration in Gd2O3 fine spherical particles,” J. Alloy. Comp. 344(1-2), 276–279 (2002).
    [Crossref]
  13. R. Bazzi, M. A. Flores-Gonzalez, C. Louis, K. Lebbou, C. Dujardin, A. Brenier, W. Zhang, O. Tillement, E. Bernstein, and P. Perriatc, “Synthesis and luminescent properties of sub-5-nm lanthanide oxides nanoparticles,” J. Lumin. 102–103, 445–450 (2003).
    [Crossref]
  14. T. J. Rudge, V. Y. Soloviev, and S. R. Arridge, “Fast image reconstruction in fluorescence optical tomography using data compression,” Opt. Lett. 35(5), 763–765 (2010).
    [Crossref] [PubMed]
  15. N. Ducros, C. D’andrea, G. Valentini, T. Rudge, S. Arridge, and A. Bassi, “Full-wavelet approach for fluorescence diffuse optical tomography with structured illumination,” Opt. Lett. 35(21), 3676–3678 (2010).
    [Crossref] [PubMed]
  16. M. Schweiger, S. R. Arridge, M. Hiraoka, and D. T. Delpy, “The finite element method for the propagation of light in scattering media: Boundary and source conditions,” Med. Phys. 22(11), 1779–1792 (1995).
    [Crossref] [PubMed]
  17. E. J. Candès and M. B. Wakin, “An introduction to compressive sampling,” IEEE Signal Process. Mag. 25(2), 21–30 (2008).
    [Crossref]
  18. A. Jin, B. Yazici, A. Ale, and V. Ntziachristos, “Preconditioning of the fluorescence diffuse optical tomography sensing matrix based on compressive sensing,” Opt. Lett. 37(20), 4326–4328 (2012).
    [Crossref] [PubMed]
  19. K. Schnass and P. Vandergheynst, “Dictionary preconditioning for greedy algorithms,” IEEE Trans. Signal Process. 56(5), 1994–2002 (2008).
    [Crossref]
  20. T. Blumensath and M. E. Davies, “Gradient pursuits,” IEEE Trans. Signal Process. 56(6), 2370–2382 (2008).
    [Crossref]
  21. D. Needell and J. Tropp, “CoSaMP: Iterative signal recovery from incomplete and inaccurate samples,” Appl. Comput. Harmon. Anal. 26(3), 301–321 (2009).
    [Crossref]
  22. D. L. Donoho, Y. Tsaig, I. Drori, and J. L. Starck, “Sparse solution of underdetermined linear equations by Stagewise Orthogonal Matching Pursuit (StOMP),” IEEE Trans. Inf. Theory 58(2), 1094–1121 (2012).
    [Crossref]
  23. D. Hyde, R. Schulz, D. Brooks, E. Miller, and V. Ntziachristos, “Performance dependence of hybrid x-ray computed tomography/fluorescence molecular tomography on the optical forward problem,” J. Opt. Soc. Am. A 26(4), 919–923 (2009).
    [Crossref] [PubMed]
  24. L. A. Feldkamp, L. C. Davis, and J. W. Kress, “Practical cone-beam algorithm,” J. Opt. Soc. Am. A 1(6), 612–619 (1984).
    [Crossref]
  25. N. Ducros, A. Bassi, G. Valentini, G. Canti, S. Arridge, and C. D’Andrea, “Fluorescence molecular tomography of an animal model using structured light rotating view acquisition,” J. Biomed. Opt. 18(2), 020503 (2013).
    [Crossref] [PubMed]
  26. H. Wang, D. B. Stout, and A. F. Chatziioannou, “Estimation of mouse organ locations through registration of a statistical mouse atlas with micro-CT images,” IEEE Trans. Med. Imaging 31(1), 88–102 (2012).
    [Crossref] [PubMed]

2013 (4)

D. Chen, S. Zhu, H. Yi, X. Zhang, D. Chen, J. Liang, and J. Tian, “Cone beam x-ray luminescence computed tomography: A feasibility study,” Med. Phys. 40(3), 031111 (2013).
[Crossref] [PubMed]

N. Ducros, A. Bassi, G. Valentini, G. Canti, S. Arridge, and C. D’Andrea, “Fluorescence molecular tomography of an animal model using structured light rotating view acquisition,” J. Biomed. Opt. 18(2), 020503 (2013).
[Crossref] [PubMed]

C. Li, K. Di, J. Bec, and S. R. Cherry, “X-ray luminescence optical tomography imaging: experimental studies,” Opt. Lett. 38(13), 2339–2341 (2013).
[Crossref] [PubMed]

X. Liu, Q. Liao, and H. Wang, “In vivo x-ray luminescence tomographic imaging with single-view data,” Opt. Lett. 38(22), 4530–4533 (2013).
[Crossref] [PubMed]

2012 (4)

A. Jin, B. Yazici, A. Ale, and V. Ntziachristos, “Preconditioning of the fluorescence diffuse optical tomography sensing matrix based on compressive sensing,” Opt. Lett. 37(20), 4326–4328 (2012).
[Crossref] [PubMed]

H. Wang, D. B. Stout, and A. F. Chatziioannou, “Estimation of mouse organ locations through registration of a statistical mouse atlas with micro-CT images,” IEEE Trans. Med. Imaging 31(1), 88–102 (2012).
[Crossref] [PubMed]

D. L. Donoho, Y. Tsaig, I. Drori, and J. L. Starck, “Sparse solution of underdetermined linear equations by Stagewise Orthogonal Matching Pursuit (StOMP),” IEEE Trans. Inf. Theory 58(2), 1094–1121 (2012).
[Crossref]

X. Liu, B. Zhang, J. Luo, and J. Bai, “4-D reconstruction for dynamic fluorescence diffuse optical tomography,” IEEE Trans. Med. Imaging 31(11), 2120–2132 (2012).
[Crossref] [PubMed]

2011 (1)

W. Cong, H. Shen, and G. Wang, “Spectrally resolving and scattering-compensated x-ray luminescence/fluorescence computed tomography,” J. Biomed. Opt. 16(6), 066014 (2011).
[Crossref] [PubMed]

2010 (4)

2009 (2)

2008 (3)

E. J. Candès and M. B. Wakin, “An introduction to compressive sampling,” IEEE Signal Process. Mag. 25(2), 21–30 (2008).
[Crossref]

K. Schnass and P. Vandergheynst, “Dictionary preconditioning for greedy algorithms,” IEEE Trans. Signal Process. 56(5), 1994–2002 (2008).
[Crossref]

T. Blumensath and M. E. Davies, “Gradient pursuits,” IEEE Trans. Signal Process. 56(6), 2370–2382 (2008).
[Crossref]

2006 (3)

2005 (1)

V. Ntziachristos, J. Ripoll, L. V. Wang, and R. Weissleder, “Looking and listening to light: the evolution of whole-body photonic imaging,” Nat. Biotechnol. 23(3), 313–320 (2005).
[Crossref] [PubMed]

2003 (1)

R. Bazzi, M. A. Flores-Gonzalez, C. Louis, K. Lebbou, C. Dujardin, A. Brenier, W. Zhang, O. Tillement, E. Bernstein, and P. Perriatc, “Synthesis and luminescent properties of sub-5-nm lanthanide oxides nanoparticles,” J. Lumin. 102–103, 445–450 (2003).
[Crossref]

2002 (1)

A. M. Pires, M. F. Santos, M. R. Davolos, and E. B. Stucchi, “The effect of Eu3+ ion doping concentration in Gd2O3 fine spherical particles,” J. Alloy. Comp. 344(1-2), 276–279 (2002).
[Crossref]

1995 (1)

M. Schweiger, S. R. Arridge, M. Hiraoka, and D. T. Delpy, “The finite element method for the propagation of light in scattering media: Boundary and source conditions,” Med. Phys. 22(11), 1779–1792 (1995).
[Crossref] [PubMed]

1984 (1)

Ale, A.

Arridge, S.

N. Ducros, A. Bassi, G. Valentini, G. Canti, S. Arridge, and C. D’Andrea, “Fluorescence molecular tomography of an animal model using structured light rotating view acquisition,” J. Biomed. Opt. 18(2), 020503 (2013).
[Crossref] [PubMed]

N. Ducros, C. D’andrea, G. Valentini, T. Rudge, S. Arridge, and A. Bassi, “Full-wavelet approach for fluorescence diffuse optical tomography with structured illumination,” Opt. Lett. 35(21), 3676–3678 (2010).
[Crossref] [PubMed]

Arridge, S. R.

T. J. Rudge, V. Y. Soloviev, and S. R. Arridge, “Fast image reconstruction in fluorescence optical tomography using data compression,” Opt. Lett. 35(5), 763–765 (2010).
[Crossref] [PubMed]

M. Schweiger, S. R. Arridge, M. Hiraoka, and D. T. Delpy, “The finite element method for the propagation of light in scattering media: Boundary and source conditions,” Med. Phys. 22(11), 1779–1792 (1995).
[Crossref] [PubMed]

Bai, J.

X. Liu, B. Zhang, J. Luo, and J. Bai, “4-D reconstruction for dynamic fluorescence diffuse optical tomography,” IEEE Trans. Med. Imaging 31(11), 2120–2132 (2012).
[Crossref] [PubMed]

Bassi, A.

N. Ducros, A. Bassi, G. Valentini, G. Canti, S. Arridge, and C. D’Andrea, “Fluorescence molecular tomography of an animal model using structured light rotating view acquisition,” J. Biomed. Opt. 18(2), 020503 (2013).
[Crossref] [PubMed]

N. Ducros, C. D’andrea, G. Valentini, T. Rudge, S. Arridge, and A. Bassi, “Full-wavelet approach for fluorescence diffuse optical tomography with structured illumination,” Opt. Lett. 35(21), 3676–3678 (2010).
[Crossref] [PubMed]

Bazzi, R.

R. Bazzi, M. A. Flores-Gonzalez, C. Louis, K. Lebbou, C. Dujardin, A. Brenier, W. Zhang, O. Tillement, E. Bernstein, and P. Perriatc, “Synthesis and luminescent properties of sub-5-nm lanthanide oxides nanoparticles,” J. Lumin. 102–103, 445–450 (2003).
[Crossref]

Bec, J.

Bernstein, E.

R. Bazzi, M. A. Flores-Gonzalez, C. Louis, K. Lebbou, C. Dujardin, A. Brenier, W. Zhang, O. Tillement, E. Bernstein, and P. Perriatc, “Synthesis and luminescent properties of sub-5-nm lanthanide oxides nanoparticles,” J. Lumin. 102–103, 445–450 (2003).
[Crossref]

Blumensath, T.

T. Blumensath and M. E. Davies, “Gradient pursuits,” IEEE Trans. Signal Process. 56(6), 2370–2382 (2008).
[Crossref]

Brenier, A.

R. Bazzi, M. A. Flores-Gonzalez, C. Louis, K. Lebbou, C. Dujardin, A. Brenier, W. Zhang, O. Tillement, E. Bernstein, and P. Perriatc, “Synthesis and luminescent properties of sub-5-nm lanthanide oxides nanoparticles,” J. Lumin. 102–103, 445–450 (2003).
[Crossref]

Brooks, D.

Candès, E. J.

E. J. Candès and M. B. Wakin, “An introduction to compressive sampling,” IEEE Signal Process. Mag. 25(2), 21–30 (2008).
[Crossref]

Canti, G.

N. Ducros, A. Bassi, G. Valentini, G. Canti, S. Arridge, and C. D’Andrea, “Fluorescence molecular tomography of an animal model using structured light rotating view acquisition,” J. Biomed. Opt. 18(2), 020503 (2013).
[Crossref] [PubMed]

Carpenter, C. M.

G. Pratx, C. M. Carpenter, C. Sun, and L. Xing, “X-ray luminescence computed tomography via selective excitation: a feasibility study,” IEEE Trans. Med. Imaging 29(12), 1992–1999 (2010).
[Crossref] [PubMed]

G. Pratx, C. M. Carpenter, C. Sun, R. P. Rao, and L. Xing, “Tomographic molecular imaging of x-ray-excitable nanoparticles,” Opt. Lett. 35(20), 3345–3347 (2010).
[Crossref] [PubMed]

Chatziioannou, A. F.

H. Wang, D. B. Stout, and A. F. Chatziioannou, “Estimation of mouse organ locations through registration of a statistical mouse atlas with micro-CT images,” IEEE Trans. Med. Imaging 31(1), 88–102 (2012).
[Crossref] [PubMed]

Chen, D.

D. Chen, S. Zhu, H. Yi, X. Zhang, D. Chen, J. Liang, and J. Tian, “Cone beam x-ray luminescence computed tomography: A feasibility study,” Med. Phys. 40(3), 031111 (2013).
[Crossref] [PubMed]

D. Chen, S. Zhu, H. Yi, X. Zhang, D. Chen, J. Liang, and J. Tian, “Cone beam x-ray luminescence computed tomography: A feasibility study,” Med. Phys. 40(3), 031111 (2013).
[Crossref] [PubMed]

Cherry, S. R.

Cong, W.

D’Andrea, C.

N. Ducros, A. Bassi, G. Valentini, G. Canti, S. Arridge, and C. D’Andrea, “Fluorescence molecular tomography of an animal model using structured light rotating view acquisition,” J. Biomed. Opt. 18(2), 020503 (2013).
[Crossref] [PubMed]

N. Ducros, C. D’andrea, G. Valentini, T. Rudge, S. Arridge, and A. Bassi, “Full-wavelet approach for fluorescence diffuse optical tomography with structured illumination,” Opt. Lett. 35(21), 3676–3678 (2010).
[Crossref] [PubMed]

Davies, M. E.

T. Blumensath and M. E. Davies, “Gradient pursuits,” IEEE Trans. Signal Process. 56(6), 2370–2382 (2008).
[Crossref]

Davis, L. C.

Davolos, M. R.

A. M. Pires, M. F. Santos, M. R. Davolos, and E. B. Stucchi, “The effect of Eu3+ ion doping concentration in Gd2O3 fine spherical particles,” J. Alloy. Comp. 344(1-2), 276–279 (2002).
[Crossref]

Delpy, D. T.

M. Schweiger, S. R. Arridge, M. Hiraoka, and D. T. Delpy, “The finite element method for the propagation of light in scattering media: Boundary and source conditions,” Med. Phys. 22(11), 1779–1792 (1995).
[Crossref] [PubMed]

Di, K.

Donoho, D. L.

D. L. Donoho, Y. Tsaig, I. Drori, and J. L. Starck, “Sparse solution of underdetermined linear equations by Stagewise Orthogonal Matching Pursuit (StOMP),” IEEE Trans. Inf. Theory 58(2), 1094–1121 (2012).
[Crossref]

Dosev, D.

M. Nichkova, D. Dosev, R. Perron, S. J. Gee, B. D. Hammock, and I. M. Kennedy, “Eu3+-doped Gd2O3 nanoparticles as reporters for optical detection and visualization of antibodies patterned by microcontact printing,” Anal. Bioanal. Chem. 384(3), 631–637 (2006).
[Crossref] [PubMed]

Drori, I.

D. L. Donoho, Y. Tsaig, I. Drori, and J. L. Starck, “Sparse solution of underdetermined linear equations by Stagewise Orthogonal Matching Pursuit (StOMP),” IEEE Trans. Inf. Theory 58(2), 1094–1121 (2012).
[Crossref]

Ducros, N.

N. Ducros, A. Bassi, G. Valentini, G. Canti, S. Arridge, and C. D’Andrea, “Fluorescence molecular tomography of an animal model using structured light rotating view acquisition,” J. Biomed. Opt. 18(2), 020503 (2013).
[Crossref] [PubMed]

N. Ducros, C. D’andrea, G. Valentini, T. Rudge, S. Arridge, and A. Bassi, “Full-wavelet approach for fluorescence diffuse optical tomography with structured illumination,” Opt. Lett. 35(21), 3676–3678 (2010).
[Crossref] [PubMed]

Dujardin, C.

R. Bazzi, M. A. Flores-Gonzalez, C. Louis, K. Lebbou, C. Dujardin, A. Brenier, W. Zhang, O. Tillement, E. Bernstein, and P. Perriatc, “Synthesis and luminescent properties of sub-5-nm lanthanide oxides nanoparticles,” J. Lumin. 102–103, 445–450 (2003).
[Crossref]

Durairaj, K.

Feldkamp, L. A.

Flores-Gonzalez, M. A.

R. Bazzi, M. A. Flores-Gonzalez, C. Louis, K. Lebbou, C. Dujardin, A. Brenier, W. Zhang, O. Tillement, E. Bernstein, and P. Perriatc, “Synthesis and luminescent properties of sub-5-nm lanthanide oxides nanoparticles,” J. Lumin. 102–103, 445–450 (2003).
[Crossref]

Gee, S. J.

M. Nichkova, D. Dosev, R. Perron, S. J. Gee, B. D. Hammock, and I. M. Kennedy, “Eu3+-doped Gd2O3 nanoparticles as reporters for optical detection and visualization of antibodies patterned by microcontact printing,” Anal. Bioanal. Chem. 384(3), 631–637 (2006).
[Crossref] [PubMed]

Hammock, B. D.

M. Nichkova, D. Dosev, R. Perron, S. J. Gee, B. D. Hammock, and I. M. Kennedy, “Eu3+-doped Gd2O3 nanoparticles as reporters for optical detection and visualization of antibodies patterned by microcontact printing,” Anal. Bioanal. Chem. 384(3), 631–637 (2006).
[Crossref] [PubMed]

Henry, M.

Hiraoka, M.

M. Schweiger, S. R. Arridge, M. Hiraoka, and D. T. Delpy, “The finite element method for the propagation of light in scattering media: Boundary and source conditions,” Med. Phys. 22(11), 1779–1792 (1995).
[Crossref] [PubMed]

Hoffman, E.

Hyde, D.

Jin, A.

Kennedy, I. M.

M. Nichkova, D. Dosev, R. Perron, S. J. Gee, B. D. Hammock, and I. M. Kennedy, “Eu3+-doped Gd2O3 nanoparticles as reporters for optical detection and visualization of antibodies patterned by microcontact printing,” Anal. Bioanal. Chem. 384(3), 631–637 (2006).
[Crossref] [PubMed]

Kress, J. W.

Lebbou, K.

R. Bazzi, M. A. Flores-Gonzalez, C. Louis, K. Lebbou, C. Dujardin, A. Brenier, W. Zhang, O. Tillement, E. Bernstein, and P. Perriatc, “Synthesis and luminescent properties of sub-5-nm lanthanide oxides nanoparticles,” J. Lumin. 102–103, 445–450 (2003).
[Crossref]

Li, C.

Li, H.

Liang, J.

D. Chen, S. Zhu, H. Yi, X. Zhang, D. Chen, J. Liang, and J. Tian, “Cone beam x-ray luminescence computed tomography: A feasibility study,” Med. Phys. 40(3), 031111 (2013).
[Crossref] [PubMed]

Liao, Q.

Liu, X.

X. Liu, Q. Liao, and H. Wang, “In vivo x-ray luminescence tomographic imaging with single-view data,” Opt. Lett. 38(22), 4530–4533 (2013).
[Crossref] [PubMed]

X. Liu, B. Zhang, J. Luo, and J. Bai, “4-D reconstruction for dynamic fluorescence diffuse optical tomography,” IEEE Trans. Med. Imaging 31(11), 2120–2132 (2012).
[Crossref] [PubMed]

Louis, C.

R. Bazzi, M. A. Flores-Gonzalez, C. Louis, K. Lebbou, C. Dujardin, A. Brenier, W. Zhang, O. Tillement, E. Bernstein, and P. Perriatc, “Synthesis and luminescent properties of sub-5-nm lanthanide oxides nanoparticles,” J. Lumin. 102–103, 445–450 (2003).
[Crossref]

Luo, J.

X. Liu, B. Zhang, J. Luo, and J. Bai, “4-D reconstruction for dynamic fluorescence diffuse optical tomography,” IEEE Trans. Med. Imaging 31(11), 2120–2132 (2012).
[Crossref] [PubMed]

Y. Lv, J. Tian, W. Cong, G. Wang, J. Luo, W. Yang, and H. Li, “A multilevel adaptive finite element algorithm for bioluminescence tomography,” Opt. Express 14(18), 8211–8223 (2006).
[Crossref] [PubMed]

Lv, Y.

McLennan, G.

Miller, E.

Needell, D.

D. Needell and J. Tropp, “CoSaMP: Iterative signal recovery from incomplete and inaccurate samples,” Appl. Comput. Harmon. Anal. 26(3), 301–321 (2009).
[Crossref]

Nichkova, M.

M. Nichkova, D. Dosev, R. Perron, S. J. Gee, B. D. Hammock, and I. M. Kennedy, “Eu3+-doped Gd2O3 nanoparticles as reporters for optical detection and visualization of antibodies patterned by microcontact printing,” Anal. Bioanal. Chem. 384(3), 631–637 (2006).
[Crossref] [PubMed]

Ntziachristos, V.

Perriatc, P.

R. Bazzi, M. A. Flores-Gonzalez, C. Louis, K. Lebbou, C. Dujardin, A. Brenier, W. Zhang, O. Tillement, E. Bernstein, and P. Perriatc, “Synthesis and luminescent properties of sub-5-nm lanthanide oxides nanoparticles,” J. Lumin. 102–103, 445–450 (2003).
[Crossref]

Perron, R.

M. Nichkova, D. Dosev, R. Perron, S. J. Gee, B. D. Hammock, and I. M. Kennedy, “Eu3+-doped Gd2O3 nanoparticles as reporters for optical detection and visualization of antibodies patterned by microcontact printing,” Anal. Bioanal. Chem. 384(3), 631–637 (2006).
[Crossref] [PubMed]

Pires, A. M.

A. M. Pires, M. F. Santos, M. R. Davolos, and E. B. Stucchi, “The effect of Eu3+ ion doping concentration in Gd2O3 fine spherical particles,” J. Alloy. Comp. 344(1-2), 276–279 (2002).
[Crossref]

Pratx, G.

G. Pratx, C. M. Carpenter, C. Sun, and L. Xing, “X-ray luminescence computed tomography via selective excitation: a feasibility study,” IEEE Trans. Med. Imaging 29(12), 1992–1999 (2010).
[Crossref] [PubMed]

G. Pratx, C. M. Carpenter, C. Sun, R. P. Rao, and L. Xing, “Tomographic molecular imaging of x-ray-excitable nanoparticles,” Opt. Lett. 35(20), 3345–3347 (2010).
[Crossref] [PubMed]

Qian, X.

Rao, R. P.

Ripoll, J.

V. Ntziachristos, J. Ripoll, L. V. Wang, and R. Weissleder, “Looking and listening to light: the evolution of whole-body photonic imaging,” Nat. Biotechnol. 23(3), 313–320 (2005).
[Crossref] [PubMed]

Rudge, T.

Rudge, T. J.

Santos, M. F.

A. M. Pires, M. F. Santos, M. R. Davolos, and E. B. Stucchi, “The effect of Eu3+ ion doping concentration in Gd2O3 fine spherical particles,” J. Alloy. Comp. 344(1-2), 276–279 (2002).
[Crossref]

Schnass, K.

K. Schnass and P. Vandergheynst, “Dictionary preconditioning for greedy algorithms,” IEEE Trans. Signal Process. 56(5), 1994–2002 (2008).
[Crossref]

Schulz, R.

Schweiger, M.

M. Schweiger, S. R. Arridge, M. Hiraoka, and D. T. Delpy, “The finite element method for the propagation of light in scattering media: Boundary and source conditions,” Med. Phys. 22(11), 1779–1792 (1995).
[Crossref] [PubMed]

Shen, H.

W. Cong, H. Shen, and G. Wang, “Spectrally resolving and scattering-compensated x-ray luminescence/fluorescence computed tomography,” J. Biomed. Opt. 16(6), 066014 (2011).
[Crossref] [PubMed]

G. Wang, W. Cong, K. Durairaj, X. Qian, H. Shen, P. Sinn, E. Hoffman, G. McLennan, and M. Henry, “In vivo mouse studies with bioluminescence tomography,” Opt. Express 14(17), 7801–7809 (2006).
[Crossref] [PubMed]

Sinn, P.

Soloviev, V. Y.

Starck, J. L.

D. L. Donoho, Y. Tsaig, I. Drori, and J. L. Starck, “Sparse solution of underdetermined linear equations by Stagewise Orthogonal Matching Pursuit (StOMP),” IEEE Trans. Inf. Theory 58(2), 1094–1121 (2012).
[Crossref]

Stout, D. B.

H. Wang, D. B. Stout, and A. F. Chatziioannou, “Estimation of mouse organ locations through registration of a statistical mouse atlas with micro-CT images,” IEEE Trans. Med. Imaging 31(1), 88–102 (2012).
[Crossref] [PubMed]

Stucchi, E. B.

A. M. Pires, M. F. Santos, M. R. Davolos, and E. B. Stucchi, “The effect of Eu3+ ion doping concentration in Gd2O3 fine spherical particles,” J. Alloy. Comp. 344(1-2), 276–279 (2002).
[Crossref]

Sun, C.

G. Pratx, C. M. Carpenter, C. Sun, and L. Xing, “X-ray luminescence computed tomography via selective excitation: a feasibility study,” IEEE Trans. Med. Imaging 29(12), 1992–1999 (2010).
[Crossref] [PubMed]

G. Pratx, C. M. Carpenter, C. Sun, R. P. Rao, and L. Xing, “Tomographic molecular imaging of x-ray-excitable nanoparticles,” Opt. Lett. 35(20), 3345–3347 (2010).
[Crossref] [PubMed]

Tian, J.

D. Chen, S. Zhu, H. Yi, X. Zhang, D. Chen, J. Liang, and J. Tian, “Cone beam x-ray luminescence computed tomography: A feasibility study,” Med. Phys. 40(3), 031111 (2013).
[Crossref] [PubMed]

Y. Lv, J. Tian, W. Cong, G. Wang, J. Luo, W. Yang, and H. Li, “A multilevel adaptive finite element algorithm for bioluminescence tomography,” Opt. Express 14(18), 8211–8223 (2006).
[Crossref] [PubMed]

Tillement, O.

R. Bazzi, M. A. Flores-Gonzalez, C. Louis, K. Lebbou, C. Dujardin, A. Brenier, W. Zhang, O. Tillement, E. Bernstein, and P. Perriatc, “Synthesis and luminescent properties of sub-5-nm lanthanide oxides nanoparticles,” J. Lumin. 102–103, 445–450 (2003).
[Crossref]

Tropp, J.

D. Needell and J. Tropp, “CoSaMP: Iterative signal recovery from incomplete and inaccurate samples,” Appl. Comput. Harmon. Anal. 26(3), 301–321 (2009).
[Crossref]

Tsaig, Y.

D. L. Donoho, Y. Tsaig, I. Drori, and J. L. Starck, “Sparse solution of underdetermined linear equations by Stagewise Orthogonal Matching Pursuit (StOMP),” IEEE Trans. Inf. Theory 58(2), 1094–1121 (2012).
[Crossref]

Valentini, G.

N. Ducros, A. Bassi, G. Valentini, G. Canti, S. Arridge, and C. D’Andrea, “Fluorescence molecular tomography of an animal model using structured light rotating view acquisition,” J. Biomed. Opt. 18(2), 020503 (2013).
[Crossref] [PubMed]

N. Ducros, C. D’andrea, G. Valentini, T. Rudge, S. Arridge, and A. Bassi, “Full-wavelet approach for fluorescence diffuse optical tomography with structured illumination,” Opt. Lett. 35(21), 3676–3678 (2010).
[Crossref] [PubMed]

Vandergheynst, P.

K. Schnass and P. Vandergheynst, “Dictionary preconditioning for greedy algorithms,” IEEE Trans. Signal Process. 56(5), 1994–2002 (2008).
[Crossref]

Wakin, M. B.

E. J. Candès and M. B. Wakin, “An introduction to compressive sampling,” IEEE Signal Process. Mag. 25(2), 21–30 (2008).
[Crossref]

Wang, G.

Wang, H.

X. Liu, Q. Liao, and H. Wang, “In vivo x-ray luminescence tomographic imaging with single-view data,” Opt. Lett. 38(22), 4530–4533 (2013).
[Crossref] [PubMed]

H. Wang, D. B. Stout, and A. F. Chatziioannou, “Estimation of mouse organ locations through registration of a statistical mouse atlas with micro-CT images,” IEEE Trans. Med. Imaging 31(1), 88–102 (2012).
[Crossref] [PubMed]

Wang, L. V.

V. Ntziachristos, J. Ripoll, L. V. Wang, and R. Weissleder, “Looking and listening to light: the evolution of whole-body photonic imaging,” Nat. Biotechnol. 23(3), 313–320 (2005).
[Crossref] [PubMed]

Weissleder, R.

V. Ntziachristos, J. Ripoll, L. V. Wang, and R. Weissleder, “Looking and listening to light: the evolution of whole-body photonic imaging,” Nat. Biotechnol. 23(3), 313–320 (2005).
[Crossref] [PubMed]

Xing, L.

G. Pratx, C. M. Carpenter, C. Sun, and L. Xing, “X-ray luminescence computed tomography via selective excitation: a feasibility study,” IEEE Trans. Med. Imaging 29(12), 1992–1999 (2010).
[Crossref] [PubMed]

G. Pratx, C. M. Carpenter, C. Sun, R. P. Rao, and L. Xing, “Tomographic molecular imaging of x-ray-excitable nanoparticles,” Opt. Lett. 35(20), 3345–3347 (2010).
[Crossref] [PubMed]

Yang, W.

Yazici, B.

Yi, H.

D. Chen, S. Zhu, H. Yi, X. Zhang, D. Chen, J. Liang, and J. Tian, “Cone beam x-ray luminescence computed tomography: A feasibility study,” Med. Phys. 40(3), 031111 (2013).
[Crossref] [PubMed]

Zhang, B.

X. Liu, B. Zhang, J. Luo, and J. Bai, “4-D reconstruction for dynamic fluorescence diffuse optical tomography,” IEEE Trans. Med. Imaging 31(11), 2120–2132 (2012).
[Crossref] [PubMed]

Zhang, W.

R. Bazzi, M. A. Flores-Gonzalez, C. Louis, K. Lebbou, C. Dujardin, A. Brenier, W. Zhang, O. Tillement, E. Bernstein, and P. Perriatc, “Synthesis and luminescent properties of sub-5-nm lanthanide oxides nanoparticles,” J. Lumin. 102–103, 445–450 (2003).
[Crossref]

Zhang, X.

D. Chen, S. Zhu, H. Yi, X. Zhang, D. Chen, J. Liang, and J. Tian, “Cone beam x-ray luminescence computed tomography: A feasibility study,” Med. Phys. 40(3), 031111 (2013).
[Crossref] [PubMed]

Zhu, S.

D. Chen, S. Zhu, H. Yi, X. Zhang, D. Chen, J. Liang, and J. Tian, “Cone beam x-ray luminescence computed tomography: A feasibility study,” Med. Phys. 40(3), 031111 (2013).
[Crossref] [PubMed]

Anal. Bioanal. Chem. (1)

M. Nichkova, D. Dosev, R. Perron, S. J. Gee, B. D. Hammock, and I. M. Kennedy, “Eu3+-doped Gd2O3 nanoparticles as reporters for optical detection and visualization of antibodies patterned by microcontact printing,” Anal. Bioanal. Chem. 384(3), 631–637 (2006).
[Crossref] [PubMed]

Appl. Comput. Harmon. Anal. (1)

D. Needell and J. Tropp, “CoSaMP: Iterative signal recovery from incomplete and inaccurate samples,” Appl. Comput. Harmon. Anal. 26(3), 301–321 (2009).
[Crossref]

IEEE Signal Process. Mag. (1)

E. J. Candès and M. B. Wakin, “An introduction to compressive sampling,” IEEE Signal Process. Mag. 25(2), 21–30 (2008).
[Crossref]

IEEE Trans. Inf. Theory (1)

D. L. Donoho, Y. Tsaig, I. Drori, and J. L. Starck, “Sparse solution of underdetermined linear equations by Stagewise Orthogonal Matching Pursuit (StOMP),” IEEE Trans. Inf. Theory 58(2), 1094–1121 (2012).
[Crossref]

IEEE Trans. Med. Imaging (3)

H. Wang, D. B. Stout, and A. F. Chatziioannou, “Estimation of mouse organ locations through registration of a statistical mouse atlas with micro-CT images,” IEEE Trans. Med. Imaging 31(1), 88–102 (2012).
[Crossref] [PubMed]

G. Pratx, C. M. Carpenter, C. Sun, and L. Xing, “X-ray luminescence computed tomography via selective excitation: a feasibility study,” IEEE Trans. Med. Imaging 29(12), 1992–1999 (2010).
[Crossref] [PubMed]

X. Liu, B. Zhang, J. Luo, and J. Bai, “4-D reconstruction for dynamic fluorescence diffuse optical tomography,” IEEE Trans. Med. Imaging 31(11), 2120–2132 (2012).
[Crossref] [PubMed]

IEEE Trans. Signal Process. (2)

K. Schnass and P. Vandergheynst, “Dictionary preconditioning for greedy algorithms,” IEEE Trans. Signal Process. 56(5), 1994–2002 (2008).
[Crossref]

T. Blumensath and M. E. Davies, “Gradient pursuits,” IEEE Trans. Signal Process. 56(6), 2370–2382 (2008).
[Crossref]

J. Alloy. Comp. (1)

A. M. Pires, M. F. Santos, M. R. Davolos, and E. B. Stucchi, “The effect of Eu3+ ion doping concentration in Gd2O3 fine spherical particles,” J. Alloy. Comp. 344(1-2), 276–279 (2002).
[Crossref]

J. Biomed. Opt. (2)

W. Cong, H. Shen, and G. Wang, “Spectrally resolving and scattering-compensated x-ray luminescence/fluorescence computed tomography,” J. Biomed. Opt. 16(6), 066014 (2011).
[Crossref] [PubMed]

N. Ducros, A. Bassi, G. Valentini, G. Canti, S. Arridge, and C. D’Andrea, “Fluorescence molecular tomography of an animal model using structured light rotating view acquisition,” J. Biomed. Opt. 18(2), 020503 (2013).
[Crossref] [PubMed]

J. Lumin. (1)

R. Bazzi, M. A. Flores-Gonzalez, C. Louis, K. Lebbou, C. Dujardin, A. Brenier, W. Zhang, O. Tillement, E. Bernstein, and P. Perriatc, “Synthesis and luminescent properties of sub-5-nm lanthanide oxides nanoparticles,” J. Lumin. 102–103, 445–450 (2003).
[Crossref]

J. Opt. Soc. Am. A (2)

Med. Phys. (2)

M. Schweiger, S. R. Arridge, M. Hiraoka, and D. T. Delpy, “The finite element method for the propagation of light in scattering media: Boundary and source conditions,” Med. Phys. 22(11), 1779–1792 (1995).
[Crossref] [PubMed]

D. Chen, S. Zhu, H. Yi, X. Zhang, D. Chen, J. Liang, and J. Tian, “Cone beam x-ray luminescence computed tomography: A feasibility study,” Med. Phys. 40(3), 031111 (2013).
[Crossref] [PubMed]

Nat. Biotechnol. (1)

V. Ntziachristos, J. Ripoll, L. V. Wang, and R. Weissleder, “Looking and listening to light: the evolution of whole-body photonic imaging,” Nat. Biotechnol. 23(3), 313–320 (2005).
[Crossref] [PubMed]

Opt. Express (2)

Opt. Lett. (6)

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 The custom-made cone beam XLCT imaging system.
Fig. 2
Fig. 2 Scheme of the acquisition and reconstruction procedures of the proposed method. Note that in the XLCT reconstruction, only single-view data need to be acquired and then used to perform 3-D XLCT imaging. In the experiments, the single-view luminescence image was acquired by a cone beam XLCT (CB-XLCT) imaging system. For XLCT imaging, the free-space propagation mapping from the boundary detector ( r d ) of the imaged object (mouse) to the EMCCD was considered as an orthographic projection. Here, the retained detector pattern d k was generated based on the corresponding column of compressed wavelet transformation matrix H K # . The photon density vector φ k was obtained by solving the diffusion Eq. (2), where the detector pattern d k was used as source terms Ξ(r) in the diffusion equation.
Fig. 3
Fig. 3 Pictogram of how wavelet transformation is used in the proposed method. (a) The acquired luminescence image, which was obtained by using a cone beam x-ray source as irradiation and a highly sensitive EMCCD camera as detection. The hot spots produced by secondary x-rays had been removed from the acquired image. (b) The compressed image, which was obtained by applying Battle-Lemarié wavelet transformation to original image and then retaining only K=256 wavelet components. The results show that there are only small differences between the original and compressed images. (c) and (d) The retained wavelet basis vector (detector pattern).
Fig. 4
Fig. 4 The in vivo XLCT reconstruction results for illustrating the performance of the proposed method. In the experiment, a transparent tube filled with the NIR-emitting nanophosphor (Gd2O3:Eu3+) was implanted into the body of the mouse. (a) The reconstructed XCT tomographic image. (b) The reconstructed XLCT tomographic image. These XLCT tomographic images were obtained by the use of the proposed wavelet-based reconstruction method with K=256 wavelet components retained. In addition, only single-view data [see Fig. 3(a)] was used in the XLCT reconstruction. The green curve in (b) depict the mouse boundary obtained by back-projecting the 72 white light images. This method is similar to that described in [25]. (c) The fusion image of the XLCT and XCT images. (d) and (e) The 3-D visualization results of the reconstructed XLCT tomographic images from two views. The black circles in (d) and (e) indicate the positions of investigated slice.
Fig. 5
Fig. 5 Comparison of the reconstruction results in the in vivo experiment, obtained by the conventional method (i.e., using the non-reduced weight matrix) and the proposed method (i.e., using the reduced weight matrix) with different components retained. The 1st column shows the reconstruction results obtained by the conventional method. In the conventional reconstruction, the weight matrix was generated from 11215 measurements based on Eq. (4). The 2nd-8th columns show the reconstruction results obtained by the proposed wavelet-based method with 16, 32, 64, 128, 256, 512, and 1024 components retained, respectively. The top row shows the reconstructed 2-D XLCT tomographic images. The bottom row shows the corresponding the 3-D visualization results. The reconstructed images in 1st and 2nd rows are normalized by the maximum of the reconstructed results and then displayed on the same color scale, respectively.

Tables (1)

Tables Icon

Table 1 The comparison of the computational time cost of the proposed method and the conventional method.

Equations (12)

Equations on this page are rendered with MathJax. Learn more.

X(r)=ηξ(r)ρ(r)
{ [D(r)Φ(r)]+ μ a (r)Φ(r)=Ξ(r) rΩ 2γD(r) Φ(r) n +Φ(r)=0 rΩ
Q( r d )=Θ rV ξ(r)ηρ(r) Φ(r)dr
Γ=Wρ
Γ ˜ =HΓ=( H M H N )Γ
Γ # = H K # Γ ˜
w k = (ξ φ k ) T
Γ # = W # ρ.
Γ # = W # ρ
Γ pre # = W pre # ρ
= (Λ Λ T +λI) 1/2 U T
min ρ ρ 0 s.t. Γ pre # = W pre # ρ

Metrics