Abstract

Determining the physical penetration depth of nanoparticles (NPs) into tissues is a challenge that many researchers have been facing in recent years. This paper presents a new noninvasive method for detecting NPs in tissue using an optical iterative technique based on the Gerchberg-Saxton (G-S) algorithm. At the end of this algorithm the reduced scattering coefficient (µs'), of a given substance, can be estimated from the standard deviation (STD) of the retrieved phase of the remitted light. Presented in this paper are the results of a tissue simulation which indicate a linear ratio between the STD and the scattering components. A linear ratio was also observed in the tissue-like phantoms and in ex vivo experiments with and without NPs (Gold nanorods and nano Methylene Blue). The proposed technique is the first step towards determining the physical penetration depth of NPs.

© 2014 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Algorithm for in vivo detection of tissue type from multiple scattering light phase images

Inbar Yariv, Hamootal Duadi, Ruchira Chakraborty, and Dror Fixler
Biomed. Opt. Express 10(6) 2909-2917 (2019)

Photothermal detection of gold nanoparticles using phase-sensitive optical coherence tomography

Desmond C. Adler, Shu-Wei Huang, Robert Huber, and James G. Fujimoto
Opt. Express 16(7) 4376-4393 (2008)

References

  • View by:
  • |
  • |
  • |

  1. R. W. Gerchberg and W. O. Saxton, “A practical algorithm for the determination of phase image and diffraction plane pictures,” Optik (Stuttg.) 35, 237–246 (1972).
  2. W. F. Cheong, S. A. Prahl, and A. J. Welch, “A review of the optical properties of biological tissues,” IEEE J. Quantum Electron. 26(12), 2166–2185 (1990).
    [Crossref]
  3. T. Lister, P. A. Wright, and P. H. Chappell, “Optical properties of human skin,” J. Biomed. Opt. 17(9), 090901 (2012).
    [Crossref] [PubMed]
  4. S. A. Prahl, I. A. Vitkin, U. Bruggemann, B. C. Wilson, and R. R. Anderson, “Determination of optical properties of turbid media using pulsed photothermal radiometry,” Phys. Med. Biol. 37(6), 1203–1217 (1992).
    [Crossref] [PubMed]
  5. J. W. Pickering, S. A. Prahl, N. van Wieringen, J. F. Beek, H. J. Sterenborg, and M. J. van Gemert, “Double-integrating-sphere system for measuring the optical properties of tissue,” Appl. Opt. 32(4), 399–410 (1993).
    [Crossref] [PubMed]
  6. M. Johns, C. Giller, D. German, and H. Liu, “Determination of reduced scattering coefficient of biological tissue from a needle-like probe,” Opt. Express 13(13), 4828–4842 (2005).
    [Crossref] [PubMed]
  7. A. Kim and B. C. Wilson, “Measurement of ex vivo and in vivo tissue optical properties: methods and theories,” in Optical-Thermal Response of Laser-Irradiated Tissue (Springer, ed. 2011).
  8. H. Levy, D. Ringuette, and O. Levi, “Rapid monitoring of cerebral ischemia dynamics using laser-based optical imaging of blood oxygenation and flow,” Biomed. Opt. Express 3(4), 777–791 (2012).
    [Crossref] [PubMed]
  9. I. Sigal, R. Gad, A. M. Caravaca-Aguirre, Y. Atchia, D. B. Conkey, R. Piestun, and O. Levi, “Laser speckle contrast imaging with extended depth of field for in-vivo tissue imaging,” Biomed. Opt. Express 5(1), 123–135 (2014).
    [Crossref] [PubMed]
  10. J. R. Fienup, “Phase retrieval algorithms: a comparison,” Appl. Opt. 21(15), 2758–2769 (1982).
    [Crossref] [PubMed]
  11. Z. Zalevsky, D. Mendlovic, and R. G. Dorsch, “Gerchberg-Saxton algorithm applied in the fractional Fourier or the Fresnel domain,” Opt. Lett. 21(12), 842–844 (1996).
    [Crossref] [PubMed]
  12. D. Misell, “A method for the solution of the phase problem in electron microscopy,” J. Phys. D Appl. Phys. 6(1), L6 (1973).
    [Crossref]
  13. R. Gerchberg, “Super-resolution through error energy reduction,” J. Mod. Opt. 21, 709–720 (1974).
  14. D. Sazbon, Z. Zalevsky, and E. Rivlin, “Qualitative real-time range extraction for preplanned scene partitioning using laser beam coding,” Pattern Recognit. Lett. 26(11), 1772–1781 (2005).
    [Crossref]
  15. E. Grossman, R. Tzioni, A. Gur, E. Gur, and Z. Zalevsky, “Optical through-turbulence imaging configuration: experimental validation,” Opt. Lett. 35(4), 453–455 (2010).
    [Crossref] [PubMed]
  16. E. Gur and Z. Zalevsky, “Image deblurring through static or time-varying random perturbation medium,” J. Electron. Imaging 18, 033016 (2009).
  17. D. Mendlovic, Z. Zalevsky, and N. Konforti, “Computation considerations and fast algorithms for calculating the diffraction integral,” J. Mod. Opt. 44(2), 407–414 (1997).
    [Crossref]
  18. H. Duadi, D. Fixler, and R. Popovtzer, “Dependence of light scattering profile in tissue on blood vessel diameter and distribution: a computer simulation study,” J. Biomed. Opt. 18(11), 111408 (2013).
    [Crossref] [PubMed]
  19. H. Duadi, I. Feder, and D. Fixler, “Linear dependency of full scattering profile isobaric point on tissue diameter,” J. Biomed. Opt. 19(2), 026007 (2014).
    [Crossref] [PubMed]
  20. L. Wang, S. L. Jacques, and L. Zheng, “MCML--Monte Carlo modeling of light transport in multi-layered tissues,” Comput. Methods Programs Biomed. 47(2), 131–146 (1995).
    [Crossref] [PubMed]
  21. A. Welch, M. J. van Gemert, W. M. Star, and B. C. Wilson, “Definitions and overview of tissue optics,” in Optical-thermal response of laser-irradiated tissue (Springer, 1995), pp. 15–46.
  22. B. Nikoobakht and M. A. El-Sayed, “Preparation and Growth Mechanism of Gold Nanorods (NRs) Using Seed-Mediated Growth Method,” Chem. Mater. 15(10), 1957–1962 (2003).
    [Crossref]
  23. R. Ankri, H. Duadi, M. Motiei, and D. Fixler, “In-vivo Tumor detection using diffusion reflection measurements of targeted gold nanorods - a quantitative study,” J. Biophotonics 5(3), 263–273 (2012).
    [Crossref] [PubMed]
  24. R. Ankri, V. Peretz, M. Motiei, R. Popovtzer, and D. Fixler, “A new method for cancer detection based on diffusion reflection measurements of targeted gold nanorods,” Int. J. Nanomedicine 7, 449–455 (2012).
    [PubMed]
  25. D. Fixler and R. Ankri, “Subcutaneous gold nanorods detection with diffusion reflection measurement,” J. Biomed. Opt. 18(6), 061226 (2013).
    [Crossref] [PubMed]
  26. J. S. Dam, C. B. Pedersen, T. Dalgaard, P. E. Fabricius, P. Aruna, and S. Andersson-Engels, “Fiber-optic probe for noninvasive real-time determination of tissue optical properties at multiple wavelengths,” Appl. Opt. 40(7), 1155–1164 (2001).
    [Crossref] [PubMed]
  27. R. Cubeddu, A. Pifferi, P. Taroni, A. Torricelli, and G. Valentini, “A solid tissue phantom for photon migration studies,” Phys. Med. Biol. 42(10), 1971–1979 (1997).
    [Crossref] [PubMed]
  28. S. T. Flock, S. L. Jacques, B. C. Wilson, W. M. Star, and M. J. van Gemert, “Optical properties of Intralipid: a phantom medium for light propagation studies,” Lasers Surg. Med. 12(5), 510–519 (1992).
    [Crossref] [PubMed]
  29. S. L. Jacques, “Optical properties of biological tissues: a review,” Phys. Med. Biol. 58(11), R37–R61 (2013).
    [Crossref] [PubMed]
  30. J. S. Maier, S. A. Walker, S. Fantini, M. A. Franceschini, and E. Gratton, “Possible correlation between blood glucose concentration and the reduced scattering coefficient of tissues in the near infrared,” Opt. Lett. 19(24), 2062–2064 (1994).
    [Crossref] [PubMed]
  31. D. Fixler and Z. Zalevsky, “In vivo tumor detection using polarization and wavelength reflection characteristics of gold nanorods,” Nano Lett. 13(12), 6292–6296 (2013).
    [Crossref] [PubMed]
  32. R. Ankri, D. Leshem-Lev, D. Fixler, R. Popovtzer, M. Motiei, R. Kornowski, E. Hochhauser, and E. I. Lev, “Gold nanorods as absorption contrast agents for the noninvasive detection of arterial vascular disorders based on diffusion reflection measurements,” Nano Lett. 14(5), 2681–2687 (2014).
    [Crossref] [PubMed]

2014 (3)

I. Sigal, R. Gad, A. M. Caravaca-Aguirre, Y. Atchia, D. B. Conkey, R. Piestun, and O. Levi, “Laser speckle contrast imaging with extended depth of field for in-vivo tissue imaging,” Biomed. Opt. Express 5(1), 123–135 (2014).
[Crossref] [PubMed]

H. Duadi, I. Feder, and D. Fixler, “Linear dependency of full scattering profile isobaric point on tissue diameter,” J. Biomed. Opt. 19(2), 026007 (2014).
[Crossref] [PubMed]

R. Ankri, D. Leshem-Lev, D. Fixler, R. Popovtzer, M. Motiei, R. Kornowski, E. Hochhauser, and E. I. Lev, “Gold nanorods as absorption contrast agents for the noninvasive detection of arterial vascular disorders based on diffusion reflection measurements,” Nano Lett. 14(5), 2681–2687 (2014).
[Crossref] [PubMed]

2013 (4)

S. L. Jacques, “Optical properties of biological tissues: a review,” Phys. Med. Biol. 58(11), R37–R61 (2013).
[Crossref] [PubMed]

D. Fixler and Z. Zalevsky, “In vivo tumor detection using polarization and wavelength reflection characteristics of gold nanorods,” Nano Lett. 13(12), 6292–6296 (2013).
[Crossref] [PubMed]

D. Fixler and R. Ankri, “Subcutaneous gold nanorods detection with diffusion reflection measurement,” J. Biomed. Opt. 18(6), 061226 (2013).
[Crossref] [PubMed]

H. Duadi, D. Fixler, and R. Popovtzer, “Dependence of light scattering profile in tissue on blood vessel diameter and distribution: a computer simulation study,” J. Biomed. Opt. 18(11), 111408 (2013).
[Crossref] [PubMed]

2012 (4)

H. Levy, D. Ringuette, and O. Levi, “Rapid monitoring of cerebral ischemia dynamics using laser-based optical imaging of blood oxygenation and flow,” Biomed. Opt. Express 3(4), 777–791 (2012).
[Crossref] [PubMed]

T. Lister, P. A. Wright, and P. H. Chappell, “Optical properties of human skin,” J. Biomed. Opt. 17(9), 090901 (2012).
[Crossref] [PubMed]

R. Ankri, H. Duadi, M. Motiei, and D. Fixler, “In-vivo Tumor detection using diffusion reflection measurements of targeted gold nanorods - a quantitative study,” J. Biophotonics 5(3), 263–273 (2012).
[Crossref] [PubMed]

R. Ankri, V. Peretz, M. Motiei, R. Popovtzer, and D. Fixler, “A new method for cancer detection based on diffusion reflection measurements of targeted gold nanorods,” Int. J. Nanomedicine 7, 449–455 (2012).
[PubMed]

2010 (1)

2009 (1)

E. Gur and Z. Zalevsky, “Image deblurring through static or time-varying random perturbation medium,” J. Electron. Imaging 18, 033016 (2009).

2005 (2)

D. Sazbon, Z. Zalevsky, and E. Rivlin, “Qualitative real-time range extraction for preplanned scene partitioning using laser beam coding,” Pattern Recognit. Lett. 26(11), 1772–1781 (2005).
[Crossref]

M. Johns, C. Giller, D. German, and H. Liu, “Determination of reduced scattering coefficient of biological tissue from a needle-like probe,” Opt. Express 13(13), 4828–4842 (2005).
[Crossref] [PubMed]

2003 (1)

B. Nikoobakht and M. A. El-Sayed, “Preparation and Growth Mechanism of Gold Nanorods (NRs) Using Seed-Mediated Growth Method,” Chem. Mater. 15(10), 1957–1962 (2003).
[Crossref]

2001 (1)

1997 (2)

R. Cubeddu, A. Pifferi, P. Taroni, A. Torricelli, and G. Valentini, “A solid tissue phantom for photon migration studies,” Phys. Med. Biol. 42(10), 1971–1979 (1997).
[Crossref] [PubMed]

D. Mendlovic, Z. Zalevsky, and N. Konforti, “Computation considerations and fast algorithms for calculating the diffraction integral,” J. Mod. Opt. 44(2), 407–414 (1997).
[Crossref]

1996 (1)

1995 (1)

L. Wang, S. L. Jacques, and L. Zheng, “MCML--Monte Carlo modeling of light transport in multi-layered tissues,” Comput. Methods Programs Biomed. 47(2), 131–146 (1995).
[Crossref] [PubMed]

1994 (1)

1993 (1)

1992 (2)

S. A. Prahl, I. A. Vitkin, U. Bruggemann, B. C. Wilson, and R. R. Anderson, “Determination of optical properties of turbid media using pulsed photothermal radiometry,” Phys. Med. Biol. 37(6), 1203–1217 (1992).
[Crossref] [PubMed]

S. T. Flock, S. L. Jacques, B. C. Wilson, W. M. Star, and M. J. van Gemert, “Optical properties of Intralipid: a phantom medium for light propagation studies,” Lasers Surg. Med. 12(5), 510–519 (1992).
[Crossref] [PubMed]

1990 (1)

W. F. Cheong, S. A. Prahl, and A. J. Welch, “A review of the optical properties of biological tissues,” IEEE J. Quantum Electron. 26(12), 2166–2185 (1990).
[Crossref]

1982 (1)

1974 (1)

R. Gerchberg, “Super-resolution through error energy reduction,” J. Mod. Opt. 21, 709–720 (1974).

1973 (1)

D. Misell, “A method for the solution of the phase problem in electron microscopy,” J. Phys. D Appl. Phys. 6(1), L6 (1973).
[Crossref]

1972 (1)

R. W. Gerchberg and W. O. Saxton, “A practical algorithm for the determination of phase image and diffraction plane pictures,” Optik (Stuttg.) 35, 237–246 (1972).

Anderson, R. R.

S. A. Prahl, I. A. Vitkin, U. Bruggemann, B. C. Wilson, and R. R. Anderson, “Determination of optical properties of turbid media using pulsed photothermal radiometry,” Phys. Med. Biol. 37(6), 1203–1217 (1992).
[Crossref] [PubMed]

Andersson-Engels, S.

Ankri, R.

R. Ankri, D. Leshem-Lev, D. Fixler, R. Popovtzer, M. Motiei, R. Kornowski, E. Hochhauser, and E. I. Lev, “Gold nanorods as absorption contrast agents for the noninvasive detection of arterial vascular disorders based on diffusion reflection measurements,” Nano Lett. 14(5), 2681–2687 (2014).
[Crossref] [PubMed]

D. Fixler and R. Ankri, “Subcutaneous gold nanorods detection with diffusion reflection measurement,” J. Biomed. Opt. 18(6), 061226 (2013).
[Crossref] [PubMed]

R. Ankri, H. Duadi, M. Motiei, and D. Fixler, “In-vivo Tumor detection using diffusion reflection measurements of targeted gold nanorods - a quantitative study,” J. Biophotonics 5(3), 263–273 (2012).
[Crossref] [PubMed]

R. Ankri, V. Peretz, M. Motiei, R. Popovtzer, and D. Fixler, “A new method for cancer detection based on diffusion reflection measurements of targeted gold nanorods,” Int. J. Nanomedicine 7, 449–455 (2012).
[PubMed]

Aruna, P.

Atchia, Y.

Beek, J. F.

Bruggemann, U.

S. A. Prahl, I. A. Vitkin, U. Bruggemann, B. C. Wilson, and R. R. Anderson, “Determination of optical properties of turbid media using pulsed photothermal radiometry,” Phys. Med. Biol. 37(6), 1203–1217 (1992).
[Crossref] [PubMed]

Caravaca-Aguirre, A. M.

Chappell, P. H.

T. Lister, P. A. Wright, and P. H. Chappell, “Optical properties of human skin,” J. Biomed. Opt. 17(9), 090901 (2012).
[Crossref] [PubMed]

Cheong, W. F.

W. F. Cheong, S. A. Prahl, and A. J. Welch, “A review of the optical properties of biological tissues,” IEEE J. Quantum Electron. 26(12), 2166–2185 (1990).
[Crossref]

Conkey, D. B.

Cubeddu, R.

R. Cubeddu, A. Pifferi, P. Taroni, A. Torricelli, and G. Valentini, “A solid tissue phantom for photon migration studies,” Phys. Med. Biol. 42(10), 1971–1979 (1997).
[Crossref] [PubMed]

Dalgaard, T.

Dam, J. S.

Dorsch, R. G.

Duadi, H.

H. Duadi, I. Feder, and D. Fixler, “Linear dependency of full scattering profile isobaric point on tissue diameter,” J. Biomed. Opt. 19(2), 026007 (2014).
[Crossref] [PubMed]

H. Duadi, D. Fixler, and R. Popovtzer, “Dependence of light scattering profile in tissue on blood vessel diameter and distribution: a computer simulation study,” J. Biomed. Opt. 18(11), 111408 (2013).
[Crossref] [PubMed]

R. Ankri, H. Duadi, M. Motiei, and D. Fixler, “In-vivo Tumor detection using diffusion reflection measurements of targeted gold nanorods - a quantitative study,” J. Biophotonics 5(3), 263–273 (2012).
[Crossref] [PubMed]

El-Sayed, M. A.

B. Nikoobakht and M. A. El-Sayed, “Preparation and Growth Mechanism of Gold Nanorods (NRs) Using Seed-Mediated Growth Method,” Chem. Mater. 15(10), 1957–1962 (2003).
[Crossref]

Fabricius, P. E.

Fantini, S.

Feder, I.

H. Duadi, I. Feder, and D. Fixler, “Linear dependency of full scattering profile isobaric point on tissue diameter,” J. Biomed. Opt. 19(2), 026007 (2014).
[Crossref] [PubMed]

Fienup, J. R.

Fixler, D.

H. Duadi, I. Feder, and D. Fixler, “Linear dependency of full scattering profile isobaric point on tissue diameter,” J. Biomed. Opt. 19(2), 026007 (2014).
[Crossref] [PubMed]

R. Ankri, D. Leshem-Lev, D. Fixler, R. Popovtzer, M. Motiei, R. Kornowski, E. Hochhauser, and E. I. Lev, “Gold nanorods as absorption contrast agents for the noninvasive detection of arterial vascular disorders based on diffusion reflection measurements,” Nano Lett. 14(5), 2681–2687 (2014).
[Crossref] [PubMed]

D. Fixler and Z. Zalevsky, “In vivo tumor detection using polarization and wavelength reflection characteristics of gold nanorods,” Nano Lett. 13(12), 6292–6296 (2013).
[Crossref] [PubMed]

D. Fixler and R. Ankri, “Subcutaneous gold nanorods detection with diffusion reflection measurement,” J. Biomed. Opt. 18(6), 061226 (2013).
[Crossref] [PubMed]

H. Duadi, D. Fixler, and R. Popovtzer, “Dependence of light scattering profile in tissue on blood vessel diameter and distribution: a computer simulation study,” J. Biomed. Opt. 18(11), 111408 (2013).
[Crossref] [PubMed]

R. Ankri, H. Duadi, M. Motiei, and D. Fixler, “In-vivo Tumor detection using diffusion reflection measurements of targeted gold nanorods - a quantitative study,” J. Biophotonics 5(3), 263–273 (2012).
[Crossref] [PubMed]

R. Ankri, V. Peretz, M. Motiei, R. Popovtzer, and D. Fixler, “A new method for cancer detection based on diffusion reflection measurements of targeted gold nanorods,” Int. J. Nanomedicine 7, 449–455 (2012).
[PubMed]

Flock, S. T.

S. T. Flock, S. L. Jacques, B. C. Wilson, W. M. Star, and M. J. van Gemert, “Optical properties of Intralipid: a phantom medium for light propagation studies,” Lasers Surg. Med. 12(5), 510–519 (1992).
[Crossref] [PubMed]

Franceschini, M. A.

Gad, R.

Gerchberg, R.

R. Gerchberg, “Super-resolution through error energy reduction,” J. Mod. Opt. 21, 709–720 (1974).

Gerchberg, R. W.

R. W. Gerchberg and W. O. Saxton, “A practical algorithm for the determination of phase image and diffraction plane pictures,” Optik (Stuttg.) 35, 237–246 (1972).

German, D.

Giller, C.

Gratton, E.

Grossman, E.

Gur, A.

Gur, E.

E. Grossman, R. Tzioni, A. Gur, E. Gur, and Z. Zalevsky, “Optical through-turbulence imaging configuration: experimental validation,” Opt. Lett. 35(4), 453–455 (2010).
[Crossref] [PubMed]

E. Gur and Z. Zalevsky, “Image deblurring through static or time-varying random perturbation medium,” J. Electron. Imaging 18, 033016 (2009).

Hochhauser, E.

R. Ankri, D. Leshem-Lev, D. Fixler, R. Popovtzer, M. Motiei, R. Kornowski, E. Hochhauser, and E. I. Lev, “Gold nanorods as absorption contrast agents for the noninvasive detection of arterial vascular disorders based on diffusion reflection measurements,” Nano Lett. 14(5), 2681–2687 (2014).
[Crossref] [PubMed]

Jacques, S. L.

S. L. Jacques, “Optical properties of biological tissues: a review,” Phys. Med. Biol. 58(11), R37–R61 (2013).
[Crossref] [PubMed]

L. Wang, S. L. Jacques, and L. Zheng, “MCML--Monte Carlo modeling of light transport in multi-layered tissues,” Comput. Methods Programs Biomed. 47(2), 131–146 (1995).
[Crossref] [PubMed]

S. T. Flock, S. L. Jacques, B. C. Wilson, W. M. Star, and M. J. van Gemert, “Optical properties of Intralipid: a phantom medium for light propagation studies,” Lasers Surg. Med. 12(5), 510–519 (1992).
[Crossref] [PubMed]

Johns, M.

Konforti, N.

D. Mendlovic, Z. Zalevsky, and N. Konforti, “Computation considerations and fast algorithms for calculating the diffraction integral,” J. Mod. Opt. 44(2), 407–414 (1997).
[Crossref]

Kornowski, R.

R. Ankri, D. Leshem-Lev, D. Fixler, R. Popovtzer, M. Motiei, R. Kornowski, E. Hochhauser, and E. I. Lev, “Gold nanorods as absorption contrast agents for the noninvasive detection of arterial vascular disorders based on diffusion reflection measurements,” Nano Lett. 14(5), 2681–2687 (2014).
[Crossref] [PubMed]

Leshem-Lev, D.

R. Ankri, D. Leshem-Lev, D. Fixler, R. Popovtzer, M. Motiei, R. Kornowski, E. Hochhauser, and E. I. Lev, “Gold nanorods as absorption contrast agents for the noninvasive detection of arterial vascular disorders based on diffusion reflection measurements,” Nano Lett. 14(5), 2681–2687 (2014).
[Crossref] [PubMed]

Lev, E. I.

R. Ankri, D. Leshem-Lev, D. Fixler, R. Popovtzer, M. Motiei, R. Kornowski, E. Hochhauser, and E. I. Lev, “Gold nanorods as absorption contrast agents for the noninvasive detection of arterial vascular disorders based on diffusion reflection measurements,” Nano Lett. 14(5), 2681–2687 (2014).
[Crossref] [PubMed]

Levi, O.

Levy, H.

Lister, T.

T. Lister, P. A. Wright, and P. H. Chappell, “Optical properties of human skin,” J. Biomed. Opt. 17(9), 090901 (2012).
[Crossref] [PubMed]

Liu, H.

Maier, J. S.

Mendlovic, D.

D. Mendlovic, Z. Zalevsky, and N. Konforti, “Computation considerations and fast algorithms for calculating the diffraction integral,” J. Mod. Opt. 44(2), 407–414 (1997).
[Crossref]

Z. Zalevsky, D. Mendlovic, and R. G. Dorsch, “Gerchberg-Saxton algorithm applied in the fractional Fourier or the Fresnel domain,” Opt. Lett. 21(12), 842–844 (1996).
[Crossref] [PubMed]

Misell, D.

D. Misell, “A method for the solution of the phase problem in electron microscopy,” J. Phys. D Appl. Phys. 6(1), L6 (1973).
[Crossref]

Motiei, M.

R. Ankri, D. Leshem-Lev, D. Fixler, R. Popovtzer, M. Motiei, R. Kornowski, E. Hochhauser, and E. I. Lev, “Gold nanorods as absorption contrast agents for the noninvasive detection of arterial vascular disorders based on diffusion reflection measurements,” Nano Lett. 14(5), 2681–2687 (2014).
[Crossref] [PubMed]

R. Ankri, V. Peretz, M. Motiei, R. Popovtzer, and D. Fixler, “A new method for cancer detection based on diffusion reflection measurements of targeted gold nanorods,” Int. J. Nanomedicine 7, 449–455 (2012).
[PubMed]

R. Ankri, H. Duadi, M. Motiei, and D. Fixler, “In-vivo Tumor detection using diffusion reflection measurements of targeted gold nanorods - a quantitative study,” J. Biophotonics 5(3), 263–273 (2012).
[Crossref] [PubMed]

Nikoobakht, B.

B. Nikoobakht and M. A. El-Sayed, “Preparation and Growth Mechanism of Gold Nanorods (NRs) Using Seed-Mediated Growth Method,” Chem. Mater. 15(10), 1957–1962 (2003).
[Crossref]

Pedersen, C. B.

Peretz, V.

R. Ankri, V. Peretz, M. Motiei, R. Popovtzer, and D. Fixler, “A new method for cancer detection based on diffusion reflection measurements of targeted gold nanorods,” Int. J. Nanomedicine 7, 449–455 (2012).
[PubMed]

Pickering, J. W.

Piestun, R.

Pifferi, A.

R. Cubeddu, A. Pifferi, P. Taroni, A. Torricelli, and G. Valentini, “A solid tissue phantom for photon migration studies,” Phys. Med. Biol. 42(10), 1971–1979 (1997).
[Crossref] [PubMed]

Popovtzer, R.

R. Ankri, D. Leshem-Lev, D. Fixler, R. Popovtzer, M. Motiei, R. Kornowski, E. Hochhauser, and E. I. Lev, “Gold nanorods as absorption contrast agents for the noninvasive detection of arterial vascular disorders based on diffusion reflection measurements,” Nano Lett. 14(5), 2681–2687 (2014).
[Crossref] [PubMed]

H. Duadi, D. Fixler, and R. Popovtzer, “Dependence of light scattering profile in tissue on blood vessel diameter and distribution: a computer simulation study,” J. Biomed. Opt. 18(11), 111408 (2013).
[Crossref] [PubMed]

R. Ankri, V. Peretz, M. Motiei, R. Popovtzer, and D. Fixler, “A new method for cancer detection based on diffusion reflection measurements of targeted gold nanorods,” Int. J. Nanomedicine 7, 449–455 (2012).
[PubMed]

Prahl, S. A.

J. W. Pickering, S. A. Prahl, N. van Wieringen, J. F. Beek, H. J. Sterenborg, and M. J. van Gemert, “Double-integrating-sphere system for measuring the optical properties of tissue,” Appl. Opt. 32(4), 399–410 (1993).
[Crossref] [PubMed]

S. A. Prahl, I. A. Vitkin, U. Bruggemann, B. C. Wilson, and R. R. Anderson, “Determination of optical properties of turbid media using pulsed photothermal radiometry,” Phys. Med. Biol. 37(6), 1203–1217 (1992).
[Crossref] [PubMed]

W. F. Cheong, S. A. Prahl, and A. J. Welch, “A review of the optical properties of biological tissues,” IEEE J. Quantum Electron. 26(12), 2166–2185 (1990).
[Crossref]

Ringuette, D.

Rivlin, E.

D. Sazbon, Z. Zalevsky, and E. Rivlin, “Qualitative real-time range extraction for preplanned scene partitioning using laser beam coding,” Pattern Recognit. Lett. 26(11), 1772–1781 (2005).
[Crossref]

Saxton, W. O.

R. W. Gerchberg and W. O. Saxton, “A practical algorithm for the determination of phase image and diffraction plane pictures,” Optik (Stuttg.) 35, 237–246 (1972).

Sazbon, D.

D. Sazbon, Z. Zalevsky, and E. Rivlin, “Qualitative real-time range extraction for preplanned scene partitioning using laser beam coding,” Pattern Recognit. Lett. 26(11), 1772–1781 (2005).
[Crossref]

Sigal, I.

Star, W. M.

S. T. Flock, S. L. Jacques, B. C. Wilson, W. M. Star, and M. J. van Gemert, “Optical properties of Intralipid: a phantom medium for light propagation studies,” Lasers Surg. Med. 12(5), 510–519 (1992).
[Crossref] [PubMed]

Sterenborg, H. J.

Taroni, P.

R. Cubeddu, A. Pifferi, P. Taroni, A. Torricelli, and G. Valentini, “A solid tissue phantom for photon migration studies,” Phys. Med. Biol. 42(10), 1971–1979 (1997).
[Crossref] [PubMed]

Torricelli, A.

R. Cubeddu, A. Pifferi, P. Taroni, A. Torricelli, and G. Valentini, “A solid tissue phantom for photon migration studies,” Phys. Med. Biol. 42(10), 1971–1979 (1997).
[Crossref] [PubMed]

Tzioni, R.

Valentini, G.

R. Cubeddu, A. Pifferi, P. Taroni, A. Torricelli, and G. Valentini, “A solid tissue phantom for photon migration studies,” Phys. Med. Biol. 42(10), 1971–1979 (1997).
[Crossref] [PubMed]

van Gemert, M. J.

J. W. Pickering, S. A. Prahl, N. van Wieringen, J. F. Beek, H. J. Sterenborg, and M. J. van Gemert, “Double-integrating-sphere system for measuring the optical properties of tissue,” Appl. Opt. 32(4), 399–410 (1993).
[Crossref] [PubMed]

S. T. Flock, S. L. Jacques, B. C. Wilson, W. M. Star, and M. J. van Gemert, “Optical properties of Intralipid: a phantom medium for light propagation studies,” Lasers Surg. Med. 12(5), 510–519 (1992).
[Crossref] [PubMed]

van Wieringen, N.

Vitkin, I. A.

S. A. Prahl, I. A. Vitkin, U. Bruggemann, B. C. Wilson, and R. R. Anderson, “Determination of optical properties of turbid media using pulsed photothermal radiometry,” Phys. Med. Biol. 37(6), 1203–1217 (1992).
[Crossref] [PubMed]

Walker, S. A.

Wang, L.

L. Wang, S. L. Jacques, and L. Zheng, “MCML--Monte Carlo modeling of light transport in multi-layered tissues,” Comput. Methods Programs Biomed. 47(2), 131–146 (1995).
[Crossref] [PubMed]

Welch, A. J.

W. F. Cheong, S. A. Prahl, and A. J. Welch, “A review of the optical properties of biological tissues,” IEEE J. Quantum Electron. 26(12), 2166–2185 (1990).
[Crossref]

Wilson, B. C.

S. A. Prahl, I. A. Vitkin, U. Bruggemann, B. C. Wilson, and R. R. Anderson, “Determination of optical properties of turbid media using pulsed photothermal radiometry,” Phys. Med. Biol. 37(6), 1203–1217 (1992).
[Crossref] [PubMed]

S. T. Flock, S. L. Jacques, B. C. Wilson, W. M. Star, and M. J. van Gemert, “Optical properties of Intralipid: a phantom medium for light propagation studies,” Lasers Surg. Med. 12(5), 510–519 (1992).
[Crossref] [PubMed]

Wright, P. A.

T. Lister, P. A. Wright, and P. H. Chappell, “Optical properties of human skin,” J. Biomed. Opt. 17(9), 090901 (2012).
[Crossref] [PubMed]

Zalevsky, Z.

D. Fixler and Z. Zalevsky, “In vivo tumor detection using polarization and wavelength reflection characteristics of gold nanorods,” Nano Lett. 13(12), 6292–6296 (2013).
[Crossref] [PubMed]

E. Grossman, R. Tzioni, A. Gur, E. Gur, and Z. Zalevsky, “Optical through-turbulence imaging configuration: experimental validation,” Opt. Lett. 35(4), 453–455 (2010).
[Crossref] [PubMed]

E. Gur and Z. Zalevsky, “Image deblurring through static or time-varying random perturbation medium,” J. Electron. Imaging 18, 033016 (2009).

D. Sazbon, Z. Zalevsky, and E. Rivlin, “Qualitative real-time range extraction for preplanned scene partitioning using laser beam coding,” Pattern Recognit. Lett. 26(11), 1772–1781 (2005).
[Crossref]

D. Mendlovic, Z. Zalevsky, and N. Konforti, “Computation considerations and fast algorithms for calculating the diffraction integral,” J. Mod. Opt. 44(2), 407–414 (1997).
[Crossref]

Z. Zalevsky, D. Mendlovic, and R. G. Dorsch, “Gerchberg-Saxton algorithm applied in the fractional Fourier or the Fresnel domain,” Opt. Lett. 21(12), 842–844 (1996).
[Crossref] [PubMed]

Zheng, L.

L. Wang, S. L. Jacques, and L. Zheng, “MCML--Monte Carlo modeling of light transport in multi-layered tissues,” Comput. Methods Programs Biomed. 47(2), 131–146 (1995).
[Crossref] [PubMed]

Appl. Opt. (3)

Biomed. Opt. Express (2)

Chem. Mater. (1)

B. Nikoobakht and M. A. El-Sayed, “Preparation and Growth Mechanism of Gold Nanorods (NRs) Using Seed-Mediated Growth Method,” Chem. Mater. 15(10), 1957–1962 (2003).
[Crossref]

Comput. Methods Programs Biomed. (1)

L. Wang, S. L. Jacques, and L. Zheng, “MCML--Monte Carlo modeling of light transport in multi-layered tissues,” Comput. Methods Programs Biomed. 47(2), 131–146 (1995).
[Crossref] [PubMed]

IEEE J. Quantum Electron. (1)

W. F. Cheong, S. A. Prahl, and A. J. Welch, “A review of the optical properties of biological tissues,” IEEE J. Quantum Electron. 26(12), 2166–2185 (1990).
[Crossref]

Int. J. Nanomedicine (1)

R. Ankri, V. Peretz, M. Motiei, R. Popovtzer, and D. Fixler, “A new method for cancer detection based on diffusion reflection measurements of targeted gold nanorods,” Int. J. Nanomedicine 7, 449–455 (2012).
[PubMed]

J. Biomed. Opt. (4)

D. Fixler and R. Ankri, “Subcutaneous gold nanorods detection with diffusion reflection measurement,” J. Biomed. Opt. 18(6), 061226 (2013).
[Crossref] [PubMed]

T. Lister, P. A. Wright, and P. H. Chappell, “Optical properties of human skin,” J. Biomed. Opt. 17(9), 090901 (2012).
[Crossref] [PubMed]

H. Duadi, D. Fixler, and R. Popovtzer, “Dependence of light scattering profile in tissue on blood vessel diameter and distribution: a computer simulation study,” J. Biomed. Opt. 18(11), 111408 (2013).
[Crossref] [PubMed]

H. Duadi, I. Feder, and D. Fixler, “Linear dependency of full scattering profile isobaric point on tissue diameter,” J. Biomed. Opt. 19(2), 026007 (2014).
[Crossref] [PubMed]

J. Biophotonics (1)

R. Ankri, H. Duadi, M. Motiei, and D. Fixler, “In-vivo Tumor detection using diffusion reflection measurements of targeted gold nanorods - a quantitative study,” J. Biophotonics 5(3), 263–273 (2012).
[Crossref] [PubMed]

J. Electron. Imaging (1)

E. Gur and Z. Zalevsky, “Image deblurring through static or time-varying random perturbation medium,” J. Electron. Imaging 18, 033016 (2009).

J. Mod. Opt. (2)

D. Mendlovic, Z. Zalevsky, and N. Konforti, “Computation considerations and fast algorithms for calculating the diffraction integral,” J. Mod. Opt. 44(2), 407–414 (1997).
[Crossref]

R. Gerchberg, “Super-resolution through error energy reduction,” J. Mod. Opt. 21, 709–720 (1974).

J. Phys. D Appl. Phys. (1)

D. Misell, “A method for the solution of the phase problem in electron microscopy,” J. Phys. D Appl. Phys. 6(1), L6 (1973).
[Crossref]

Lasers Surg. Med. (1)

S. T. Flock, S. L. Jacques, B. C. Wilson, W. M. Star, and M. J. van Gemert, “Optical properties of Intralipid: a phantom medium for light propagation studies,” Lasers Surg. Med. 12(5), 510–519 (1992).
[Crossref] [PubMed]

Nano Lett. (2)

D. Fixler and Z. Zalevsky, “In vivo tumor detection using polarization and wavelength reflection characteristics of gold nanorods,” Nano Lett. 13(12), 6292–6296 (2013).
[Crossref] [PubMed]

R. Ankri, D. Leshem-Lev, D. Fixler, R. Popovtzer, M. Motiei, R. Kornowski, E. Hochhauser, and E. I. Lev, “Gold nanorods as absorption contrast agents for the noninvasive detection of arterial vascular disorders based on diffusion reflection measurements,” Nano Lett. 14(5), 2681–2687 (2014).
[Crossref] [PubMed]

Opt. Express (1)

Opt. Lett. (3)

Optik (Stuttg.) (1)

R. W. Gerchberg and W. O. Saxton, “A practical algorithm for the determination of phase image and diffraction plane pictures,” Optik (Stuttg.) 35, 237–246 (1972).

Pattern Recognit. Lett. (1)

D. Sazbon, Z. Zalevsky, and E. Rivlin, “Qualitative real-time range extraction for preplanned scene partitioning using laser beam coding,” Pattern Recognit. Lett. 26(11), 1772–1781 (2005).
[Crossref]

Phys. Med. Biol. (3)

S. A. Prahl, I. A. Vitkin, U. Bruggemann, B. C. Wilson, and R. R. Anderson, “Determination of optical properties of turbid media using pulsed photothermal radiometry,” Phys. Med. Biol. 37(6), 1203–1217 (1992).
[Crossref] [PubMed]

S. L. Jacques, “Optical properties of biological tissues: a review,” Phys. Med. Biol. 58(11), R37–R61 (2013).
[Crossref] [PubMed]

R. Cubeddu, A. Pifferi, P. Taroni, A. Torricelli, and G. Valentini, “A solid tissue phantom for photon migration studies,” Phys. Med. Biol. 42(10), 1971–1979 (1997).
[Crossref] [PubMed]

Other (2)

A. Welch, M. J. van Gemert, W. M. Star, and B. C. Wilson, “Definitions and overview of tissue optics,” in Optical-thermal response of laser-irradiated tissue (Springer, 1995), pp. 15–46.

A. Kim and B. C. Wilson, “Measurement of ex vivo and in vivo tissue optical properties: methods and theories,” in Optical-Thermal Response of Laser-Irradiated Tissue (Springer, ed. 2011).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1 (a) A diagram of N planes used for the algorithm. P1, P2,…PN represents the recorded image planes distanced from each other by d1, d2,… dN and D represent the total propagation distance (from P1 to PN). (b) A schematic sketch of the proposed iterative phase extraction algorithm, the N planes G-S. A1, A2,…AN are the amplitude of the recorded images at the N planes.
Fig. 2
Fig. 2 A schematic description of the algorithm for extracting µs'. After running T iterations of the algorithm shown in Fig. 1(b) the estimated phase φ ^ 1 is retrieved. When the phase’s STD is calculated given the tissue thickness, Z, the µs' can be extracted from a look up table (that was built as described in section 2.2).
Fig. 3
Fig. 3 The experimental setup for light intensity measurements and reduced scattering coefficient extraction. The distance between the laser and the sample, l1, is 6cm. The distance between the sample and the camera, l2, is 30cm. The camera records images at 7 planes along l3 = 1.524cm with equal intervals between them.
Fig. 4
Fig. 4 The STD obtained in the simulation, for (a) different µs' (g = 0.8) as a function of the optical length and (as presented in the legends) with g = 0.8. (b) Different g (µs = 5mm−1) as a function of the optical length (as presented in the legends).The simulation calibration was done for a system with- a tissue thickness of 0.7cm, l1 = 6cm, l2 = 30cm and 7 recorded intensity images with equal intervals between them (0.254cm).
Fig. 5
Fig. 5 A comparison between the simulation and the experiment results. The STD that was obtained in the simulation for different reduced scattering coefficients (red squares) and in the phantom experiments for different reduced scattering coefficients (green triangles). Three experiments were conducted for each sample with an error up to 2.4%.
Fig. 6
Fig. 6 The STD that was obtained for phantoms with different GNR concentrations. The experiments were done for phantoms with 1.4% IL concentration, an initial STD value of 0.23[a.u.] and different GNR concentrations of (1.5µM, 15µM, 30µM, 60µM, 75µM, 90µM) with an error of up to 2.98% for three repetitions.
Fig. 7
Fig. 7 The STD that was obtained for phantoms with different MB concentrations. The experiments were done for phantoms with 1% IL concentration, an initial STD value of 0.212[a.u.] (red square) and different MB concentrations (2µM, 4µM, 6µM, 8µM, 10µM, 12µM). Blue rhombuses represent MB solution and orange triangles MB ONPs. The error observed in these experiments with three repetitions was up to 1.95%.
Fig. 8
Fig. 8 The STD that was obtained for a 0.5mm thick chicken skin with different MB concentrations. The experiments were performed with different MB concentrations (0.01mM, 0.1mM, 1mM, 5mM, 10mM) and the initial STD value was 0.177[a.u.] (blue rhombus). Red squares represent MB solution and green triangles MB ONPs. The error observed in these experiments with three repetitions was up to 5%.

Tables (1)

Tables Icon

Table 1 Optical properties of the tissue-like phantoms.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

δ= 1 3 μ a 1 μ a + μ s ( 1g ) =  1 3 μ a 1 μ a + μ s '
p=1 e ( μ s dz)
T opt = N 2
μ s ' 1 3 μ a 1 z 2 μ a 1 3 μ a 1 z 2

Metrics