Abstract

Stimulation of the localized surface plasmon of metallic nanoparticles has been shown to be an effective mechanism to induce photothermal damage in biological tissues. However, few studies have focused on single cell or subcellular ablation. Our results show that, upon incubation, gold nanostars are internalized by neurons of acute mouse cerebellar brain slices, clustering inside or close to the nucleus. By stimulating the nanostars’ surface plasmon using a femtosecond laser, we show deformation of single nuclei and single cells. Given its precision and extremely localized effect, this is a promising technique for photothermal therapy in areas sensitive to collateral thermal damage such as the nervous system.

© 2014 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Photothermal therapy of single cancer cells mediated by naturally created gold nanorod clusters

Zhimin Chen, Haihua Fan, Jinxiang Li, Shaolong Tie, and Sheng Lan
Opt. Express 25(13) 15093-15107 (2017)

Femtosecond laser disruption of subcellular organelles in a living cell

Wataru Watanabe, Naomi Arakawa, Sachihiro Matsunaga, Tsunehito Higashi, Kiichi Fukui, Keisuke Isobe, and Kazuyoshi Itoh
Opt. Express 12(18) 4203-4213 (2004)

Photothermal lesions in soft tissue induced by optical fiber microheaters

Reinher Pimentel-Domínguez, Paola Moreno-Álvarez, Mathieu Hautefeuille, Anahí Chavarría, and Juan Hernández-Cordero
Biomed. Opt. Express 7(4) 1138-1148 (2016)

References

  • View by:
  • |
  • |
  • |

  1. M. Hu, J. Chen, Z.-Y. Li, L. Au, G. V. Hartland, X. Li, M. Marquez, and Y. Xia, “Gold nanostructures: engineering their plasmonic properties for biomedical applications,” Chem. Soc. Rev. 35(11), 1084–1094 (2006).
    [Crossref] [PubMed]
  2. M. A. El-Sayed, “Some interesting properties of metals confined in time and nanometer space of different shapes,” Acc. Chem. Res. 34(4), 257–264 (2001).
    [Crossref] [PubMed]
  3. B. Kang, M. A. Mackey, and M. A. El-Sayed, “Nuclear Targeting of Gold Nanoparticles in Cancer Cells Induces DNA Damage, Causing Cytokinesis Arrest and Apoptosis,” J. Am. Chem. Soc. 132(5), 1517–1519 (2010).
    [Crossref] [PubMed]
  4. M. E. Wieder, D. C. Hone, M. J. Cook, M. M. Handsley, J. Gavrilovic, and D. A. Russell, “Intracellular photodynamic therapy with photosensitizer-nanoparticle conjugates: cancer therapy using a ‘Trojan horse’,” Photochem. Photobiol. Sci. 5(8), 727–734 (2006).
    [Crossref] [PubMed]
  5. A. Albanese, P. S. Tang, and W. C. W. Chan, “The Effect of Nanoparticle Size, Shape, and Surface Chemistry on Biological Systems,” Annu. Rev. Biomed. Eng. 14(1), 1–16 (2012).
    [Crossref] [PubMed]
  6. L. Tong, Y. Zhao, T. B. Huff, M. N. Hansen, A. Wei, and J. X. Cheng, “Gold Nanorods Mediate Tumor Cell Death by Compromising Membrane Integrity,” Adv. Mater. 19(20), 3136–3141 (2007).
    [Crossref] [PubMed]
  7. W. Lu, C. Xiong, G. Zhang, Q. Huang, R. Zhang, J. Z. Zhang, and C. Li, “Targeted photothermal ablation of murine melanomas with melanocyte-stimulating hormone analog-conjugated hollow gold nanospheres,” Clin. Cancer Res. 15(3), 876–886 (2009).
    [Crossref] [PubMed]
  8. K. Jiang, D. A. Smith, and A. Pinchuk, “Size-Dependent Photothermal Conversion Efficiencies of Plasmonically Heated Gold Nanoparticles,” J. Phys. Chem. C 117(51), 27073–27080 (2013).
    [Crossref]
  9. X. H. Huang, P. K. Jain, I. H. El-Sayed, and M. A. El-Sayed, “Gold nanoparticles: interesting optical properties and recent applications in cancer diagnostics and therapy,” Nanomedicine (Lond) 2(5), 681–693 (2007).
    [Crossref] [PubMed]
  10. X. Huang, I. H. El-Sayed, W. Qian, and M. A. El-Sayed, “Cancer Cell Imaging and Photothermal Therapy in the Near-Infrared Region by Using Gold Nanorods,” J. Am. Chem. Soc. 128(6), 2115–2120 (2006).
    [Crossref] [PubMed]
  11. V. K. Pustovalov, “Theoretical study of heating of spherical nanoparticle in media by short laser pulses,” Chem. Phys. 308(1-2), 103–108 (2005).
    [Crossref]
  12. M. C. Daniel and D. Astruc, “Gold nanoparticles: Assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology,” Chem. Rev. 104(1), 293–346 (2004).
    [Crossref] [PubMed]
  13. X. H. Huang, I. H. El-Sayed, W. Qian, and M. A. El-Sayed, “Cancer cell imaging and photothermal therapy in the near-infrared region by using gold nanorods,” J. Am. Chem. Soc. 128(6), 2115–2120 (2006).
    [Crossref] [PubMed]
  14. C. Loo, A. Lowery, N. J. Halas, J. West, and R. Drezek, “Immunotargeted nanoshells for integrated cancer imaging and therapy,” Nano Lett. 5(4), 709–711 (2005).
    [Crossref] [PubMed]
  15. Z. Kereselidze, V. H. Romero, X. G. Peralta, and F. Santamaria, “Gold nanostar synthesis with a silver seed mediated growth method,” J. Vis. Exp. 59, 3570 (2012).
    [PubMed]
  16. K. C. Mendoza, V. D. McLane, S. Kim, and J. D. Griffin, “Invitro application of gold nanoprobes in live neurons for phenotypical classification, connectivity assessment, and electrophysiological recording,” Brain Res. 1325, 19–27 (2010).
    [Crossref] [PubMed]
  17. E. E. Connor, J. Mwamuka, A. Gole, C. J. Murphy, and M. D. Wyatt, “Gold nanoparticles are taken up by human cells but do not cause acute cytotoxicity,” Small 1(3), 325–327 (2005).
    [Crossref] [PubMed]
  18. Y. F. Huang, K. Sefah, S. Bamrungsap, H. T. Chang, and W. Tan, “Selective photothermal therapy for mixed cancer cells using aptamer-conjugated nanorods,” Langmuir 24(20), 11860–11865 (2008).
    [Crossref] [PubMed]
  19. L. C. Kennedy, L. R. Bickford, N. A. Lewinski, A. J. Coughlin, Y. Hu, E. S. Day, J. L. West, and R. A. Drezek, “A new era for cancer treatment: gold-nanoparticle-mediated thermal therapies,” Small 7(2), 169–183 (2011).
    [Crossref] [PubMed]
  20. F. Santamaria, S. Wils, E. De Schutter, and G. J. Augustine, “The diffusional properties of dendrites depend on the density of dendritic spines,” Eur. J. Neurosci. 34(4), 561–568 (2011).
    [Crossref] [PubMed]
  21. F. Santamaria, S. Wils, E. De Schutter, and G. J. Augustine, “Anomalous diffusion in Purkinje cell dendrites caused by spines,” Neuron 52(4), 635–648 (2006).
    [Crossref] [PubMed]
  22. E. Hutter, S. Boridy, S. Labrecque, M. Lalancette-Hébert, J. Kriz, F. M. Winnik, and D. Maysinger, “Microglial response to gold nanoparticles,” ACS Nano 4(5), 2595–2606 (2010).
    [Crossref] [PubMed]
  23. X. H. Huang, P. K. Jain, I. H. El-Sayed, and M. A. El-Sayed, “Plasmonic photothermal therapy (PPTT) using gold nanoparticles,” Lasers Med. Sci. 23(3), 217–228 (2008).
    [Crossref] [PubMed]
  24. D. Missiakas, J. M. Betton, A. Chaffotte, P. Minard, and J. M. Yon, “Kinetic studies of the refolding of yeast phosphoglycerate kinase: comparison with the isolated engineered domains,” Protein Sci. 1(11), 1485–1493 (1992).
    [Crossref] [PubMed]
  25. J. Ervin, E. Larios, S. Osváth, K. Schulten, and M. Gruebele, “What causes hyperfluorescence: folding intermediates or conformationally flexible native states?” Biophys. J. 83(1), 473–483 (2002).
    [Crossref] [PubMed]
  26. A. O. Govorov and H. H. Richardson, “Generating heat with metal nanoparticles,” Nano Today 2(1), 30–38 (2007).
    [Crossref]
  27. H. H. Richardson, M. T. Carlson, P. J. Tandler, P. Hernandez, and A. O. Govorov, “Experimental and Theoretical Studies of Light-to-Heat Conversion and Collective Heating Effects in Metal Nanoparticle Solutions,” Nano Lett. 9(3), 1139–1146 (2009).
    [Crossref] [PubMed]
  28. A. O. Govorov, W. Zhang, T. Skeini, H. Richardson, J. Lee, and N. A. Kotov, “Gold nanoparticle ensembles as heaters and actuators: melting and collective plasmon resonances,” Nanoscale Res. Lett. 1(1), 84–90 (2006).
    [Crossref]
  29. S. Link and M. A. El-Sayed, “Shape and size dependence of radiative, non-radiative and photothermal properties of gold nanocrystals,” Int. Rev. Phys. Chem. 19(3), 409–453 (2000).
    [Crossref]
  30. S. Link, C. Burda, B. Nikoobakht, and M. A. El-Sayed, “Laser-induced shape changes of colloidal gold nanorods using femtosecond and nanosecond laser pulses,” J. Phys. Chem. B 104(26), 6152–6163 (2000).
    [Crossref]
  31. K. Salinas, Z. Kereselidze, F. DeLuna, X. G. Peralta, and F. Santamaria, “Transient extracellular application of gold nanostars increases hippocampal neuronal activity,” J. Nanobiotechnology 12(1), 31 (2014).
    [Crossref] [PubMed]
  32. J. Chen, D. Wang, J. Xi, L. Au, A. Siekkinen, A. Warsen, Z.-Y. Li, H. Zhang, Y. Xia, and X. Li, “Immuno Gold Nanocages with Tailored Optical Properties for Targeted Photothermal Destruction of Cancer Cells,” Nano Lett. 7(5), 1318–1322 (2007).
    [Crossref] [PubMed]
  33. D. O. Lapotko, E. Lukianova, and A. A. Oraevsky, “Selective laser nano-thermolysis of human leukemia cells with microbubbles generated around clusters of gold nanoparticles,” Lasers Surg. Med. 38(6), 631–642 (2006).
    [Crossref] [PubMed]

2014 (1)

K. Salinas, Z. Kereselidze, F. DeLuna, X. G. Peralta, and F. Santamaria, “Transient extracellular application of gold nanostars increases hippocampal neuronal activity,” J. Nanobiotechnology 12(1), 31 (2014).
[Crossref] [PubMed]

2013 (1)

K. Jiang, D. A. Smith, and A. Pinchuk, “Size-Dependent Photothermal Conversion Efficiencies of Plasmonically Heated Gold Nanoparticles,” J. Phys. Chem. C 117(51), 27073–27080 (2013).
[Crossref]

2012 (2)

A. Albanese, P. S. Tang, and W. C. W. Chan, “The Effect of Nanoparticle Size, Shape, and Surface Chemistry on Biological Systems,” Annu. Rev. Biomed. Eng. 14(1), 1–16 (2012).
[Crossref] [PubMed]

Z. Kereselidze, V. H. Romero, X. G. Peralta, and F. Santamaria, “Gold nanostar synthesis with a silver seed mediated growth method,” J. Vis. Exp. 59, 3570 (2012).
[PubMed]

2011 (2)

L. C. Kennedy, L. R. Bickford, N. A. Lewinski, A. J. Coughlin, Y. Hu, E. S. Day, J. L. West, and R. A. Drezek, “A new era for cancer treatment: gold-nanoparticle-mediated thermal therapies,” Small 7(2), 169–183 (2011).
[Crossref] [PubMed]

F. Santamaria, S. Wils, E. De Schutter, and G. J. Augustine, “The diffusional properties of dendrites depend on the density of dendritic spines,” Eur. J. Neurosci. 34(4), 561–568 (2011).
[Crossref] [PubMed]

2010 (3)

E. Hutter, S. Boridy, S. Labrecque, M. Lalancette-Hébert, J. Kriz, F. M. Winnik, and D. Maysinger, “Microglial response to gold nanoparticles,” ACS Nano 4(5), 2595–2606 (2010).
[Crossref] [PubMed]

K. C. Mendoza, V. D. McLane, S. Kim, and J. D. Griffin, “Invitro application of gold nanoprobes in live neurons for phenotypical classification, connectivity assessment, and electrophysiological recording,” Brain Res. 1325, 19–27 (2010).
[Crossref] [PubMed]

B. Kang, M. A. Mackey, and M. A. El-Sayed, “Nuclear Targeting of Gold Nanoparticles in Cancer Cells Induces DNA Damage, Causing Cytokinesis Arrest and Apoptosis,” J. Am. Chem. Soc. 132(5), 1517–1519 (2010).
[Crossref] [PubMed]

2009 (2)

W. Lu, C. Xiong, G. Zhang, Q. Huang, R. Zhang, J. Z. Zhang, and C. Li, “Targeted photothermal ablation of murine melanomas with melanocyte-stimulating hormone analog-conjugated hollow gold nanospheres,” Clin. Cancer Res. 15(3), 876–886 (2009).
[Crossref] [PubMed]

H. H. Richardson, M. T. Carlson, P. J. Tandler, P. Hernandez, and A. O. Govorov, “Experimental and Theoretical Studies of Light-to-Heat Conversion and Collective Heating Effects in Metal Nanoparticle Solutions,” Nano Lett. 9(3), 1139–1146 (2009).
[Crossref] [PubMed]

2008 (2)

X. H. Huang, P. K. Jain, I. H. El-Sayed, and M. A. El-Sayed, “Plasmonic photothermal therapy (PPTT) using gold nanoparticles,” Lasers Med. Sci. 23(3), 217–228 (2008).
[Crossref] [PubMed]

Y. F. Huang, K. Sefah, S. Bamrungsap, H. T. Chang, and W. Tan, “Selective photothermal therapy for mixed cancer cells using aptamer-conjugated nanorods,” Langmuir 24(20), 11860–11865 (2008).
[Crossref] [PubMed]

2007 (4)

L. Tong, Y. Zhao, T. B. Huff, M. N. Hansen, A. Wei, and J. X. Cheng, “Gold Nanorods Mediate Tumor Cell Death by Compromising Membrane Integrity,” Adv. Mater. 19(20), 3136–3141 (2007).
[Crossref] [PubMed]

X. H. Huang, P. K. Jain, I. H. El-Sayed, and M. A. El-Sayed, “Gold nanoparticles: interesting optical properties and recent applications in cancer diagnostics and therapy,” Nanomedicine (Lond) 2(5), 681–693 (2007).
[Crossref] [PubMed]

J. Chen, D. Wang, J. Xi, L. Au, A. Siekkinen, A. Warsen, Z.-Y. Li, H. Zhang, Y. Xia, and X. Li, “Immuno Gold Nanocages with Tailored Optical Properties for Targeted Photothermal Destruction of Cancer Cells,” Nano Lett. 7(5), 1318–1322 (2007).
[Crossref] [PubMed]

A. O. Govorov and H. H. Richardson, “Generating heat with metal nanoparticles,” Nano Today 2(1), 30–38 (2007).
[Crossref]

2006 (7)

D. O. Lapotko, E. Lukianova, and A. A. Oraevsky, “Selective laser nano-thermolysis of human leukemia cells with microbubbles generated around clusters of gold nanoparticles,” Lasers Surg. Med. 38(6), 631–642 (2006).
[Crossref] [PubMed]

F. Santamaria, S. Wils, E. De Schutter, and G. J. Augustine, “Anomalous diffusion in Purkinje cell dendrites caused by spines,” Neuron 52(4), 635–648 (2006).
[Crossref] [PubMed]

A. O. Govorov, W. Zhang, T. Skeini, H. Richardson, J. Lee, and N. A. Kotov, “Gold nanoparticle ensembles as heaters and actuators: melting and collective plasmon resonances,” Nanoscale Res. Lett. 1(1), 84–90 (2006).
[Crossref]

X. Huang, I. H. El-Sayed, W. Qian, and M. A. El-Sayed, “Cancer Cell Imaging and Photothermal Therapy in the Near-Infrared Region by Using Gold Nanorods,” J. Am. Chem. Soc. 128(6), 2115–2120 (2006).
[Crossref] [PubMed]

M. E. Wieder, D. C. Hone, M. J. Cook, M. M. Handsley, J. Gavrilovic, and D. A. Russell, “Intracellular photodynamic therapy with photosensitizer-nanoparticle conjugates: cancer therapy using a ‘Trojan horse’,” Photochem. Photobiol. Sci. 5(8), 727–734 (2006).
[Crossref] [PubMed]

M. Hu, J. Chen, Z.-Y. Li, L. Au, G. V. Hartland, X. Li, M. Marquez, and Y. Xia, “Gold nanostructures: engineering their plasmonic properties for biomedical applications,” Chem. Soc. Rev. 35(11), 1084–1094 (2006).
[Crossref] [PubMed]

X. H. Huang, I. H. El-Sayed, W. Qian, and M. A. El-Sayed, “Cancer cell imaging and photothermal therapy in the near-infrared region by using gold nanorods,” J. Am. Chem. Soc. 128(6), 2115–2120 (2006).
[Crossref] [PubMed]

2005 (3)

C. Loo, A. Lowery, N. J. Halas, J. West, and R. Drezek, “Immunotargeted nanoshells for integrated cancer imaging and therapy,” Nano Lett. 5(4), 709–711 (2005).
[Crossref] [PubMed]

E. E. Connor, J. Mwamuka, A. Gole, C. J. Murphy, and M. D. Wyatt, “Gold nanoparticles are taken up by human cells but do not cause acute cytotoxicity,” Small 1(3), 325–327 (2005).
[Crossref] [PubMed]

V. K. Pustovalov, “Theoretical study of heating of spherical nanoparticle in media by short laser pulses,” Chem. Phys. 308(1-2), 103–108 (2005).
[Crossref]

2004 (1)

M. C. Daniel and D. Astruc, “Gold nanoparticles: Assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology,” Chem. Rev. 104(1), 293–346 (2004).
[Crossref] [PubMed]

2002 (1)

J. Ervin, E. Larios, S. Osváth, K. Schulten, and M. Gruebele, “What causes hyperfluorescence: folding intermediates or conformationally flexible native states?” Biophys. J. 83(1), 473–483 (2002).
[Crossref] [PubMed]

2001 (1)

M. A. El-Sayed, “Some interesting properties of metals confined in time and nanometer space of different shapes,” Acc. Chem. Res. 34(4), 257–264 (2001).
[Crossref] [PubMed]

2000 (2)

S. Link and M. A. El-Sayed, “Shape and size dependence of radiative, non-radiative and photothermal properties of gold nanocrystals,” Int. Rev. Phys. Chem. 19(3), 409–453 (2000).
[Crossref]

S. Link, C. Burda, B. Nikoobakht, and M. A. El-Sayed, “Laser-induced shape changes of colloidal gold nanorods using femtosecond and nanosecond laser pulses,” J. Phys. Chem. B 104(26), 6152–6163 (2000).
[Crossref]

1992 (1)

D. Missiakas, J. M. Betton, A. Chaffotte, P. Minard, and J. M. Yon, “Kinetic studies of the refolding of yeast phosphoglycerate kinase: comparison with the isolated engineered domains,” Protein Sci. 1(11), 1485–1493 (1992).
[Crossref] [PubMed]

Albanese, A.

A. Albanese, P. S. Tang, and W. C. W. Chan, “The Effect of Nanoparticle Size, Shape, and Surface Chemistry on Biological Systems,” Annu. Rev. Biomed. Eng. 14(1), 1–16 (2012).
[Crossref] [PubMed]

Astruc, D.

M. C. Daniel and D. Astruc, “Gold nanoparticles: Assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology,” Chem. Rev. 104(1), 293–346 (2004).
[Crossref] [PubMed]

Au, L.

J. Chen, D. Wang, J. Xi, L. Au, A. Siekkinen, A. Warsen, Z.-Y. Li, H. Zhang, Y. Xia, and X. Li, “Immuno Gold Nanocages with Tailored Optical Properties for Targeted Photothermal Destruction of Cancer Cells,” Nano Lett. 7(5), 1318–1322 (2007).
[Crossref] [PubMed]

M. Hu, J. Chen, Z.-Y. Li, L. Au, G. V. Hartland, X. Li, M. Marquez, and Y. Xia, “Gold nanostructures: engineering their plasmonic properties for biomedical applications,” Chem. Soc. Rev. 35(11), 1084–1094 (2006).
[Crossref] [PubMed]

Augustine, G. J.

F. Santamaria, S. Wils, E. De Schutter, and G. J. Augustine, “The diffusional properties of dendrites depend on the density of dendritic spines,” Eur. J. Neurosci. 34(4), 561–568 (2011).
[Crossref] [PubMed]

F. Santamaria, S. Wils, E. De Schutter, and G. J. Augustine, “Anomalous diffusion in Purkinje cell dendrites caused by spines,” Neuron 52(4), 635–648 (2006).
[Crossref] [PubMed]

Bamrungsap, S.

Y. F. Huang, K. Sefah, S. Bamrungsap, H. T. Chang, and W. Tan, “Selective photothermal therapy for mixed cancer cells using aptamer-conjugated nanorods,” Langmuir 24(20), 11860–11865 (2008).
[Crossref] [PubMed]

Betton, J. M.

D. Missiakas, J. M. Betton, A. Chaffotte, P. Minard, and J. M. Yon, “Kinetic studies of the refolding of yeast phosphoglycerate kinase: comparison with the isolated engineered domains,” Protein Sci. 1(11), 1485–1493 (1992).
[Crossref] [PubMed]

Bickford, L. R.

L. C. Kennedy, L. R. Bickford, N. A. Lewinski, A. J. Coughlin, Y. Hu, E. S. Day, J. L. West, and R. A. Drezek, “A new era for cancer treatment: gold-nanoparticle-mediated thermal therapies,” Small 7(2), 169–183 (2011).
[Crossref] [PubMed]

Boridy, S.

E. Hutter, S. Boridy, S. Labrecque, M. Lalancette-Hébert, J. Kriz, F. M. Winnik, and D. Maysinger, “Microglial response to gold nanoparticles,” ACS Nano 4(5), 2595–2606 (2010).
[Crossref] [PubMed]

Burda, C.

S. Link, C. Burda, B. Nikoobakht, and M. A. El-Sayed, “Laser-induced shape changes of colloidal gold nanorods using femtosecond and nanosecond laser pulses,” J. Phys. Chem. B 104(26), 6152–6163 (2000).
[Crossref]

Carlson, M. T.

H. H. Richardson, M. T. Carlson, P. J. Tandler, P. Hernandez, and A. O. Govorov, “Experimental and Theoretical Studies of Light-to-Heat Conversion and Collective Heating Effects in Metal Nanoparticle Solutions,” Nano Lett. 9(3), 1139–1146 (2009).
[Crossref] [PubMed]

Chaffotte, A.

D. Missiakas, J. M. Betton, A. Chaffotte, P. Minard, and J. M. Yon, “Kinetic studies of the refolding of yeast phosphoglycerate kinase: comparison with the isolated engineered domains,” Protein Sci. 1(11), 1485–1493 (1992).
[Crossref] [PubMed]

Chan, W. C. W.

A. Albanese, P. S. Tang, and W. C. W. Chan, “The Effect of Nanoparticle Size, Shape, and Surface Chemistry on Biological Systems,” Annu. Rev. Biomed. Eng. 14(1), 1–16 (2012).
[Crossref] [PubMed]

Chang, H. T.

Y. F. Huang, K. Sefah, S. Bamrungsap, H. T. Chang, and W. Tan, “Selective photothermal therapy for mixed cancer cells using aptamer-conjugated nanorods,” Langmuir 24(20), 11860–11865 (2008).
[Crossref] [PubMed]

Chen, J.

J. Chen, D. Wang, J. Xi, L. Au, A. Siekkinen, A. Warsen, Z.-Y. Li, H. Zhang, Y. Xia, and X. Li, “Immuno Gold Nanocages with Tailored Optical Properties for Targeted Photothermal Destruction of Cancer Cells,” Nano Lett. 7(5), 1318–1322 (2007).
[Crossref] [PubMed]

M. Hu, J. Chen, Z.-Y. Li, L. Au, G. V. Hartland, X. Li, M. Marquez, and Y. Xia, “Gold nanostructures: engineering their plasmonic properties for biomedical applications,” Chem. Soc. Rev. 35(11), 1084–1094 (2006).
[Crossref] [PubMed]

Cheng, J. X.

L. Tong, Y. Zhao, T. B. Huff, M. N. Hansen, A. Wei, and J. X. Cheng, “Gold Nanorods Mediate Tumor Cell Death by Compromising Membrane Integrity,” Adv. Mater. 19(20), 3136–3141 (2007).
[Crossref] [PubMed]

Connor, E. E.

E. E. Connor, J. Mwamuka, A. Gole, C. J. Murphy, and M. D. Wyatt, “Gold nanoparticles are taken up by human cells but do not cause acute cytotoxicity,” Small 1(3), 325–327 (2005).
[Crossref] [PubMed]

Cook, M. J.

M. E. Wieder, D. C. Hone, M. J. Cook, M. M. Handsley, J. Gavrilovic, and D. A. Russell, “Intracellular photodynamic therapy with photosensitizer-nanoparticle conjugates: cancer therapy using a ‘Trojan horse’,” Photochem. Photobiol. Sci. 5(8), 727–734 (2006).
[Crossref] [PubMed]

Coughlin, A. J.

L. C. Kennedy, L. R. Bickford, N. A. Lewinski, A. J. Coughlin, Y. Hu, E. S. Day, J. L. West, and R. A. Drezek, “A new era for cancer treatment: gold-nanoparticle-mediated thermal therapies,” Small 7(2), 169–183 (2011).
[Crossref] [PubMed]

Daniel, M. C.

M. C. Daniel and D. Astruc, “Gold nanoparticles: Assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology,” Chem. Rev. 104(1), 293–346 (2004).
[Crossref] [PubMed]

Day, E. S.

L. C. Kennedy, L. R. Bickford, N. A. Lewinski, A. J. Coughlin, Y. Hu, E. S. Day, J. L. West, and R. A. Drezek, “A new era for cancer treatment: gold-nanoparticle-mediated thermal therapies,” Small 7(2), 169–183 (2011).
[Crossref] [PubMed]

De Schutter, E.

F. Santamaria, S. Wils, E. De Schutter, and G. J. Augustine, “The diffusional properties of dendrites depend on the density of dendritic spines,” Eur. J. Neurosci. 34(4), 561–568 (2011).
[Crossref] [PubMed]

F. Santamaria, S. Wils, E. De Schutter, and G. J. Augustine, “Anomalous diffusion in Purkinje cell dendrites caused by spines,” Neuron 52(4), 635–648 (2006).
[Crossref] [PubMed]

DeLuna, F.

K. Salinas, Z. Kereselidze, F. DeLuna, X. G. Peralta, and F. Santamaria, “Transient extracellular application of gold nanostars increases hippocampal neuronal activity,” J. Nanobiotechnology 12(1), 31 (2014).
[Crossref] [PubMed]

Drezek, R.

C. Loo, A. Lowery, N. J. Halas, J. West, and R. Drezek, “Immunotargeted nanoshells for integrated cancer imaging and therapy,” Nano Lett. 5(4), 709–711 (2005).
[Crossref] [PubMed]

Drezek, R. A.

L. C. Kennedy, L. R. Bickford, N. A. Lewinski, A. J. Coughlin, Y. Hu, E. S. Day, J. L. West, and R. A. Drezek, “A new era for cancer treatment: gold-nanoparticle-mediated thermal therapies,” Small 7(2), 169–183 (2011).
[Crossref] [PubMed]

El-Sayed, I. H.

X. H. Huang, P. K. Jain, I. H. El-Sayed, and M. A. El-Sayed, “Plasmonic photothermal therapy (PPTT) using gold nanoparticles,” Lasers Med. Sci. 23(3), 217–228 (2008).
[Crossref] [PubMed]

X. H. Huang, P. K. Jain, I. H. El-Sayed, and M. A. El-Sayed, “Gold nanoparticles: interesting optical properties and recent applications in cancer diagnostics and therapy,” Nanomedicine (Lond) 2(5), 681–693 (2007).
[Crossref] [PubMed]

X. Huang, I. H. El-Sayed, W. Qian, and M. A. El-Sayed, “Cancer Cell Imaging and Photothermal Therapy in the Near-Infrared Region by Using Gold Nanorods,” J. Am. Chem. Soc. 128(6), 2115–2120 (2006).
[Crossref] [PubMed]

X. H. Huang, I. H. El-Sayed, W. Qian, and M. A. El-Sayed, “Cancer cell imaging and photothermal therapy in the near-infrared region by using gold nanorods,” J. Am. Chem. Soc. 128(6), 2115–2120 (2006).
[Crossref] [PubMed]

El-Sayed, M. A.

B. Kang, M. A. Mackey, and M. A. El-Sayed, “Nuclear Targeting of Gold Nanoparticles in Cancer Cells Induces DNA Damage, Causing Cytokinesis Arrest and Apoptosis,” J. Am. Chem. Soc. 132(5), 1517–1519 (2010).
[Crossref] [PubMed]

X. H. Huang, P. K. Jain, I. H. El-Sayed, and M. A. El-Sayed, “Plasmonic photothermal therapy (PPTT) using gold nanoparticles,” Lasers Med. Sci. 23(3), 217–228 (2008).
[Crossref] [PubMed]

X. H. Huang, P. K. Jain, I. H. El-Sayed, and M. A. El-Sayed, “Gold nanoparticles: interesting optical properties and recent applications in cancer diagnostics and therapy,” Nanomedicine (Lond) 2(5), 681–693 (2007).
[Crossref] [PubMed]

X. H. Huang, I. H. El-Sayed, W. Qian, and M. A. El-Sayed, “Cancer cell imaging and photothermal therapy in the near-infrared region by using gold nanorods,” J. Am. Chem. Soc. 128(6), 2115–2120 (2006).
[Crossref] [PubMed]

X. Huang, I. H. El-Sayed, W. Qian, and M. A. El-Sayed, “Cancer Cell Imaging and Photothermal Therapy in the Near-Infrared Region by Using Gold Nanorods,” J. Am. Chem. Soc. 128(6), 2115–2120 (2006).
[Crossref] [PubMed]

M. A. El-Sayed, “Some interesting properties of metals confined in time and nanometer space of different shapes,” Acc. Chem. Res. 34(4), 257–264 (2001).
[Crossref] [PubMed]

S. Link and M. A. El-Sayed, “Shape and size dependence of radiative, non-radiative and photothermal properties of gold nanocrystals,” Int. Rev. Phys. Chem. 19(3), 409–453 (2000).
[Crossref]

S. Link, C. Burda, B. Nikoobakht, and M. A. El-Sayed, “Laser-induced shape changes of colloidal gold nanorods using femtosecond and nanosecond laser pulses,” J. Phys. Chem. B 104(26), 6152–6163 (2000).
[Crossref]

Ervin, J.

J. Ervin, E. Larios, S. Osváth, K. Schulten, and M. Gruebele, “What causes hyperfluorescence: folding intermediates or conformationally flexible native states?” Biophys. J. 83(1), 473–483 (2002).
[Crossref] [PubMed]

Gavrilovic, J.

M. E. Wieder, D. C. Hone, M. J. Cook, M. M. Handsley, J. Gavrilovic, and D. A. Russell, “Intracellular photodynamic therapy with photosensitizer-nanoparticle conjugates: cancer therapy using a ‘Trojan horse’,” Photochem. Photobiol. Sci. 5(8), 727–734 (2006).
[Crossref] [PubMed]

Gole, A.

E. E. Connor, J. Mwamuka, A. Gole, C. J. Murphy, and M. D. Wyatt, “Gold nanoparticles are taken up by human cells but do not cause acute cytotoxicity,” Small 1(3), 325–327 (2005).
[Crossref] [PubMed]

Govorov, A. O.

H. H. Richardson, M. T. Carlson, P. J. Tandler, P. Hernandez, and A. O. Govorov, “Experimental and Theoretical Studies of Light-to-Heat Conversion and Collective Heating Effects in Metal Nanoparticle Solutions,” Nano Lett. 9(3), 1139–1146 (2009).
[Crossref] [PubMed]

A. O. Govorov and H. H. Richardson, “Generating heat with metal nanoparticles,” Nano Today 2(1), 30–38 (2007).
[Crossref]

A. O. Govorov, W. Zhang, T. Skeini, H. Richardson, J. Lee, and N. A. Kotov, “Gold nanoparticle ensembles as heaters and actuators: melting and collective plasmon resonances,” Nanoscale Res. Lett. 1(1), 84–90 (2006).
[Crossref]

Griffin, J. D.

K. C. Mendoza, V. D. McLane, S. Kim, and J. D. Griffin, “Invitro application of gold nanoprobes in live neurons for phenotypical classification, connectivity assessment, and electrophysiological recording,” Brain Res. 1325, 19–27 (2010).
[Crossref] [PubMed]

Gruebele, M.

J. Ervin, E. Larios, S. Osváth, K. Schulten, and M. Gruebele, “What causes hyperfluorescence: folding intermediates or conformationally flexible native states?” Biophys. J. 83(1), 473–483 (2002).
[Crossref] [PubMed]

Halas, N. J.

C. Loo, A. Lowery, N. J. Halas, J. West, and R. Drezek, “Immunotargeted nanoshells for integrated cancer imaging and therapy,” Nano Lett. 5(4), 709–711 (2005).
[Crossref] [PubMed]

Handsley, M. M.

M. E. Wieder, D. C. Hone, M. J. Cook, M. M. Handsley, J. Gavrilovic, and D. A. Russell, “Intracellular photodynamic therapy with photosensitizer-nanoparticle conjugates: cancer therapy using a ‘Trojan horse’,” Photochem. Photobiol. Sci. 5(8), 727–734 (2006).
[Crossref] [PubMed]

Hansen, M. N.

L. Tong, Y. Zhao, T. B. Huff, M. N. Hansen, A. Wei, and J. X. Cheng, “Gold Nanorods Mediate Tumor Cell Death by Compromising Membrane Integrity,” Adv. Mater. 19(20), 3136–3141 (2007).
[Crossref] [PubMed]

Hartland, G. V.

M. Hu, J. Chen, Z.-Y. Li, L. Au, G. V. Hartland, X. Li, M. Marquez, and Y. Xia, “Gold nanostructures: engineering their plasmonic properties for biomedical applications,” Chem. Soc. Rev. 35(11), 1084–1094 (2006).
[Crossref] [PubMed]

Hernandez, P.

H. H. Richardson, M. T. Carlson, P. J. Tandler, P. Hernandez, and A. O. Govorov, “Experimental and Theoretical Studies of Light-to-Heat Conversion and Collective Heating Effects in Metal Nanoparticle Solutions,” Nano Lett. 9(3), 1139–1146 (2009).
[Crossref] [PubMed]

Hone, D. C.

M. E. Wieder, D. C. Hone, M. J. Cook, M. M. Handsley, J. Gavrilovic, and D. A. Russell, “Intracellular photodynamic therapy with photosensitizer-nanoparticle conjugates: cancer therapy using a ‘Trojan horse’,” Photochem. Photobiol. Sci. 5(8), 727–734 (2006).
[Crossref] [PubMed]

Hu, M.

M. Hu, J. Chen, Z.-Y. Li, L. Au, G. V. Hartland, X. Li, M. Marquez, and Y. Xia, “Gold nanostructures: engineering their plasmonic properties for biomedical applications,” Chem. Soc. Rev. 35(11), 1084–1094 (2006).
[Crossref] [PubMed]

Hu, Y.

L. C. Kennedy, L. R. Bickford, N. A. Lewinski, A. J. Coughlin, Y. Hu, E. S. Day, J. L. West, and R. A. Drezek, “A new era for cancer treatment: gold-nanoparticle-mediated thermal therapies,” Small 7(2), 169–183 (2011).
[Crossref] [PubMed]

Huang, Q.

W. Lu, C. Xiong, G. Zhang, Q. Huang, R. Zhang, J. Z. Zhang, and C. Li, “Targeted photothermal ablation of murine melanomas with melanocyte-stimulating hormone analog-conjugated hollow gold nanospheres,” Clin. Cancer Res. 15(3), 876–886 (2009).
[Crossref] [PubMed]

Huang, X.

X. Huang, I. H. El-Sayed, W. Qian, and M. A. El-Sayed, “Cancer Cell Imaging and Photothermal Therapy in the Near-Infrared Region by Using Gold Nanorods,” J. Am. Chem. Soc. 128(6), 2115–2120 (2006).
[Crossref] [PubMed]

Huang, X. H.

X. H. Huang, P. K. Jain, I. H. El-Sayed, and M. A. El-Sayed, “Plasmonic photothermal therapy (PPTT) using gold nanoparticles,” Lasers Med. Sci. 23(3), 217–228 (2008).
[Crossref] [PubMed]

X. H. Huang, P. K. Jain, I. H. El-Sayed, and M. A. El-Sayed, “Gold nanoparticles: interesting optical properties and recent applications in cancer diagnostics and therapy,” Nanomedicine (Lond) 2(5), 681–693 (2007).
[Crossref] [PubMed]

X. H. Huang, I. H. El-Sayed, W. Qian, and M. A. El-Sayed, “Cancer cell imaging and photothermal therapy in the near-infrared region by using gold nanorods,” J. Am. Chem. Soc. 128(6), 2115–2120 (2006).
[Crossref] [PubMed]

Huang, Y. F.

Y. F. Huang, K. Sefah, S. Bamrungsap, H. T. Chang, and W. Tan, “Selective photothermal therapy for mixed cancer cells using aptamer-conjugated nanorods,” Langmuir 24(20), 11860–11865 (2008).
[Crossref] [PubMed]

Huff, T. B.

L. Tong, Y. Zhao, T. B. Huff, M. N. Hansen, A. Wei, and J. X. Cheng, “Gold Nanorods Mediate Tumor Cell Death by Compromising Membrane Integrity,” Adv. Mater. 19(20), 3136–3141 (2007).
[Crossref] [PubMed]

Hutter, E.

E. Hutter, S. Boridy, S. Labrecque, M. Lalancette-Hébert, J. Kriz, F. M. Winnik, and D. Maysinger, “Microglial response to gold nanoparticles,” ACS Nano 4(5), 2595–2606 (2010).
[Crossref] [PubMed]

Jain, P. K.

X. H. Huang, P. K. Jain, I. H. El-Sayed, and M. A. El-Sayed, “Plasmonic photothermal therapy (PPTT) using gold nanoparticles,” Lasers Med. Sci. 23(3), 217–228 (2008).
[Crossref] [PubMed]

X. H. Huang, P. K. Jain, I. H. El-Sayed, and M. A. El-Sayed, “Gold nanoparticles: interesting optical properties and recent applications in cancer diagnostics and therapy,” Nanomedicine (Lond) 2(5), 681–693 (2007).
[Crossref] [PubMed]

Jiang, K.

K. Jiang, D. A. Smith, and A. Pinchuk, “Size-Dependent Photothermal Conversion Efficiencies of Plasmonically Heated Gold Nanoparticles,” J. Phys. Chem. C 117(51), 27073–27080 (2013).
[Crossref]

Kang, B.

B. Kang, M. A. Mackey, and M. A. El-Sayed, “Nuclear Targeting of Gold Nanoparticles in Cancer Cells Induces DNA Damage, Causing Cytokinesis Arrest and Apoptosis,” J. Am. Chem. Soc. 132(5), 1517–1519 (2010).
[Crossref] [PubMed]

Kennedy, L. C.

L. C. Kennedy, L. R. Bickford, N. A. Lewinski, A. J. Coughlin, Y. Hu, E. S. Day, J. L. West, and R. A. Drezek, “A new era for cancer treatment: gold-nanoparticle-mediated thermal therapies,” Small 7(2), 169–183 (2011).
[Crossref] [PubMed]

Kereselidze, Z.

K. Salinas, Z. Kereselidze, F. DeLuna, X. G. Peralta, and F. Santamaria, “Transient extracellular application of gold nanostars increases hippocampal neuronal activity,” J. Nanobiotechnology 12(1), 31 (2014).
[Crossref] [PubMed]

Z. Kereselidze, V. H. Romero, X. G. Peralta, and F. Santamaria, “Gold nanostar synthesis with a silver seed mediated growth method,” J. Vis. Exp. 59, 3570 (2012).
[PubMed]

Kim, S.

K. C. Mendoza, V. D. McLane, S. Kim, and J. D. Griffin, “Invitro application of gold nanoprobes in live neurons for phenotypical classification, connectivity assessment, and electrophysiological recording,” Brain Res. 1325, 19–27 (2010).
[Crossref] [PubMed]

Kotov, N. A.

A. O. Govorov, W. Zhang, T. Skeini, H. Richardson, J. Lee, and N. A. Kotov, “Gold nanoparticle ensembles as heaters and actuators: melting and collective plasmon resonances,” Nanoscale Res. Lett. 1(1), 84–90 (2006).
[Crossref]

Kriz, J.

E. Hutter, S. Boridy, S. Labrecque, M. Lalancette-Hébert, J. Kriz, F. M. Winnik, and D. Maysinger, “Microglial response to gold nanoparticles,” ACS Nano 4(5), 2595–2606 (2010).
[Crossref] [PubMed]

Labrecque, S.

E. Hutter, S. Boridy, S. Labrecque, M. Lalancette-Hébert, J. Kriz, F. M. Winnik, and D. Maysinger, “Microglial response to gold nanoparticles,” ACS Nano 4(5), 2595–2606 (2010).
[Crossref] [PubMed]

Lalancette-Hébert, M.

E. Hutter, S. Boridy, S. Labrecque, M. Lalancette-Hébert, J. Kriz, F. M. Winnik, and D. Maysinger, “Microglial response to gold nanoparticles,” ACS Nano 4(5), 2595–2606 (2010).
[Crossref] [PubMed]

Lapotko, D. O.

D. O. Lapotko, E. Lukianova, and A. A. Oraevsky, “Selective laser nano-thermolysis of human leukemia cells with microbubbles generated around clusters of gold nanoparticles,” Lasers Surg. Med. 38(6), 631–642 (2006).
[Crossref] [PubMed]

Larios, E.

J. Ervin, E. Larios, S. Osváth, K. Schulten, and M. Gruebele, “What causes hyperfluorescence: folding intermediates or conformationally flexible native states?” Biophys. J. 83(1), 473–483 (2002).
[Crossref] [PubMed]

Lee, J.

A. O. Govorov, W. Zhang, T. Skeini, H. Richardson, J. Lee, and N. A. Kotov, “Gold nanoparticle ensembles as heaters and actuators: melting and collective plasmon resonances,” Nanoscale Res. Lett. 1(1), 84–90 (2006).
[Crossref]

Lewinski, N. A.

L. C. Kennedy, L. R. Bickford, N. A. Lewinski, A. J. Coughlin, Y. Hu, E. S. Day, J. L. West, and R. A. Drezek, “A new era for cancer treatment: gold-nanoparticle-mediated thermal therapies,” Small 7(2), 169–183 (2011).
[Crossref] [PubMed]

Li, C.

W. Lu, C. Xiong, G. Zhang, Q. Huang, R. Zhang, J. Z. Zhang, and C. Li, “Targeted photothermal ablation of murine melanomas with melanocyte-stimulating hormone analog-conjugated hollow gold nanospheres,” Clin. Cancer Res. 15(3), 876–886 (2009).
[Crossref] [PubMed]

Li, X.

J. Chen, D. Wang, J. Xi, L. Au, A. Siekkinen, A. Warsen, Z.-Y. Li, H. Zhang, Y. Xia, and X. Li, “Immuno Gold Nanocages with Tailored Optical Properties for Targeted Photothermal Destruction of Cancer Cells,” Nano Lett. 7(5), 1318–1322 (2007).
[Crossref] [PubMed]

M. Hu, J. Chen, Z.-Y. Li, L. Au, G. V. Hartland, X. Li, M. Marquez, and Y. Xia, “Gold nanostructures: engineering their plasmonic properties for biomedical applications,” Chem. Soc. Rev. 35(11), 1084–1094 (2006).
[Crossref] [PubMed]

Li, Z.-Y.

J. Chen, D. Wang, J. Xi, L. Au, A. Siekkinen, A. Warsen, Z.-Y. Li, H. Zhang, Y. Xia, and X. Li, “Immuno Gold Nanocages with Tailored Optical Properties for Targeted Photothermal Destruction of Cancer Cells,” Nano Lett. 7(5), 1318–1322 (2007).
[Crossref] [PubMed]

M. Hu, J. Chen, Z.-Y. Li, L. Au, G. V. Hartland, X. Li, M. Marquez, and Y. Xia, “Gold nanostructures: engineering their plasmonic properties for biomedical applications,” Chem. Soc. Rev. 35(11), 1084–1094 (2006).
[Crossref] [PubMed]

Link, S.

S. Link, C. Burda, B. Nikoobakht, and M. A. El-Sayed, “Laser-induced shape changes of colloidal gold nanorods using femtosecond and nanosecond laser pulses,” J. Phys. Chem. B 104(26), 6152–6163 (2000).
[Crossref]

S. Link and M. A. El-Sayed, “Shape and size dependence of radiative, non-radiative and photothermal properties of gold nanocrystals,” Int. Rev. Phys. Chem. 19(3), 409–453 (2000).
[Crossref]

Loo, C.

C. Loo, A. Lowery, N. J. Halas, J. West, and R. Drezek, “Immunotargeted nanoshells for integrated cancer imaging and therapy,” Nano Lett. 5(4), 709–711 (2005).
[Crossref] [PubMed]

Lowery, A.

C. Loo, A. Lowery, N. J. Halas, J. West, and R. Drezek, “Immunotargeted nanoshells for integrated cancer imaging and therapy,” Nano Lett. 5(4), 709–711 (2005).
[Crossref] [PubMed]

Lu, W.

W. Lu, C. Xiong, G. Zhang, Q. Huang, R. Zhang, J. Z. Zhang, and C. Li, “Targeted photothermal ablation of murine melanomas with melanocyte-stimulating hormone analog-conjugated hollow gold nanospheres,” Clin. Cancer Res. 15(3), 876–886 (2009).
[Crossref] [PubMed]

Lukianova, E.

D. O. Lapotko, E. Lukianova, and A. A. Oraevsky, “Selective laser nano-thermolysis of human leukemia cells with microbubbles generated around clusters of gold nanoparticles,” Lasers Surg. Med. 38(6), 631–642 (2006).
[Crossref] [PubMed]

Mackey, M. A.

B. Kang, M. A. Mackey, and M. A. El-Sayed, “Nuclear Targeting of Gold Nanoparticles in Cancer Cells Induces DNA Damage, Causing Cytokinesis Arrest and Apoptosis,” J. Am. Chem. Soc. 132(5), 1517–1519 (2010).
[Crossref] [PubMed]

Marquez, M.

M. Hu, J. Chen, Z.-Y. Li, L. Au, G. V. Hartland, X. Li, M. Marquez, and Y. Xia, “Gold nanostructures: engineering their plasmonic properties for biomedical applications,” Chem. Soc. Rev. 35(11), 1084–1094 (2006).
[Crossref] [PubMed]

Maysinger, D.

E. Hutter, S. Boridy, S. Labrecque, M. Lalancette-Hébert, J. Kriz, F. M. Winnik, and D. Maysinger, “Microglial response to gold nanoparticles,” ACS Nano 4(5), 2595–2606 (2010).
[Crossref] [PubMed]

McLane, V. D.

K. C. Mendoza, V. D. McLane, S. Kim, and J. D. Griffin, “Invitro application of gold nanoprobes in live neurons for phenotypical classification, connectivity assessment, and electrophysiological recording,” Brain Res. 1325, 19–27 (2010).
[Crossref] [PubMed]

Mendoza, K. C.

K. C. Mendoza, V. D. McLane, S. Kim, and J. D. Griffin, “Invitro application of gold nanoprobes in live neurons for phenotypical classification, connectivity assessment, and electrophysiological recording,” Brain Res. 1325, 19–27 (2010).
[Crossref] [PubMed]

Minard, P.

D. Missiakas, J. M. Betton, A. Chaffotte, P. Minard, and J. M. Yon, “Kinetic studies of the refolding of yeast phosphoglycerate kinase: comparison with the isolated engineered domains,” Protein Sci. 1(11), 1485–1493 (1992).
[Crossref] [PubMed]

Missiakas, D.

D. Missiakas, J. M. Betton, A. Chaffotte, P. Minard, and J. M. Yon, “Kinetic studies of the refolding of yeast phosphoglycerate kinase: comparison with the isolated engineered domains,” Protein Sci. 1(11), 1485–1493 (1992).
[Crossref] [PubMed]

Murphy, C. J.

E. E. Connor, J. Mwamuka, A. Gole, C. J. Murphy, and M. D. Wyatt, “Gold nanoparticles are taken up by human cells but do not cause acute cytotoxicity,” Small 1(3), 325–327 (2005).
[Crossref] [PubMed]

Mwamuka, J.

E. E. Connor, J. Mwamuka, A. Gole, C. J. Murphy, and M. D. Wyatt, “Gold nanoparticles are taken up by human cells but do not cause acute cytotoxicity,” Small 1(3), 325–327 (2005).
[Crossref] [PubMed]

Nikoobakht, B.

S. Link, C. Burda, B. Nikoobakht, and M. A. El-Sayed, “Laser-induced shape changes of colloidal gold nanorods using femtosecond and nanosecond laser pulses,” J. Phys. Chem. B 104(26), 6152–6163 (2000).
[Crossref]

Oraevsky, A. A.

D. O. Lapotko, E. Lukianova, and A. A. Oraevsky, “Selective laser nano-thermolysis of human leukemia cells with microbubbles generated around clusters of gold nanoparticles,” Lasers Surg. Med. 38(6), 631–642 (2006).
[Crossref] [PubMed]

Osváth, S.

J. Ervin, E. Larios, S. Osváth, K. Schulten, and M. Gruebele, “What causes hyperfluorescence: folding intermediates or conformationally flexible native states?” Biophys. J. 83(1), 473–483 (2002).
[Crossref] [PubMed]

Peralta, X. G.

K. Salinas, Z. Kereselidze, F. DeLuna, X. G. Peralta, and F. Santamaria, “Transient extracellular application of gold nanostars increases hippocampal neuronal activity,” J. Nanobiotechnology 12(1), 31 (2014).
[Crossref] [PubMed]

Z. Kereselidze, V. H. Romero, X. G. Peralta, and F. Santamaria, “Gold nanostar synthesis with a silver seed mediated growth method,” J. Vis. Exp. 59, 3570 (2012).
[PubMed]

Pinchuk, A.

K. Jiang, D. A. Smith, and A. Pinchuk, “Size-Dependent Photothermal Conversion Efficiencies of Plasmonically Heated Gold Nanoparticles,” J. Phys. Chem. C 117(51), 27073–27080 (2013).
[Crossref]

Pustovalov, V. K.

V. K. Pustovalov, “Theoretical study of heating of spherical nanoparticle in media by short laser pulses,” Chem. Phys. 308(1-2), 103–108 (2005).
[Crossref]

Qian, W.

X. H. Huang, I. H. El-Sayed, W. Qian, and M. A. El-Sayed, “Cancer cell imaging and photothermal therapy in the near-infrared region by using gold nanorods,” J. Am. Chem. Soc. 128(6), 2115–2120 (2006).
[Crossref] [PubMed]

X. Huang, I. H. El-Sayed, W. Qian, and M. A. El-Sayed, “Cancer Cell Imaging and Photothermal Therapy in the Near-Infrared Region by Using Gold Nanorods,” J. Am. Chem. Soc. 128(6), 2115–2120 (2006).
[Crossref] [PubMed]

Richardson, H.

A. O. Govorov, W. Zhang, T. Skeini, H. Richardson, J. Lee, and N. A. Kotov, “Gold nanoparticle ensembles as heaters and actuators: melting and collective plasmon resonances,” Nanoscale Res. Lett. 1(1), 84–90 (2006).
[Crossref]

Richardson, H. H.

H. H. Richardson, M. T. Carlson, P. J. Tandler, P. Hernandez, and A. O. Govorov, “Experimental and Theoretical Studies of Light-to-Heat Conversion and Collective Heating Effects in Metal Nanoparticle Solutions,” Nano Lett. 9(3), 1139–1146 (2009).
[Crossref] [PubMed]

A. O. Govorov and H. H. Richardson, “Generating heat with metal nanoparticles,” Nano Today 2(1), 30–38 (2007).
[Crossref]

Romero, V. H.

Z. Kereselidze, V. H. Romero, X. G. Peralta, and F. Santamaria, “Gold nanostar synthesis with a silver seed mediated growth method,” J. Vis. Exp. 59, 3570 (2012).
[PubMed]

Russell, D. A.

M. E. Wieder, D. C. Hone, M. J. Cook, M. M. Handsley, J. Gavrilovic, and D. A. Russell, “Intracellular photodynamic therapy with photosensitizer-nanoparticle conjugates: cancer therapy using a ‘Trojan horse’,” Photochem. Photobiol. Sci. 5(8), 727–734 (2006).
[Crossref] [PubMed]

Salinas, K.

K. Salinas, Z. Kereselidze, F. DeLuna, X. G. Peralta, and F. Santamaria, “Transient extracellular application of gold nanostars increases hippocampal neuronal activity,” J. Nanobiotechnology 12(1), 31 (2014).
[Crossref] [PubMed]

Santamaria, F.

K. Salinas, Z. Kereselidze, F. DeLuna, X. G. Peralta, and F. Santamaria, “Transient extracellular application of gold nanostars increases hippocampal neuronal activity,” J. Nanobiotechnology 12(1), 31 (2014).
[Crossref] [PubMed]

Z. Kereselidze, V. H. Romero, X. G. Peralta, and F. Santamaria, “Gold nanostar synthesis with a silver seed mediated growth method,” J. Vis. Exp. 59, 3570 (2012).
[PubMed]

F. Santamaria, S. Wils, E. De Schutter, and G. J. Augustine, “The diffusional properties of dendrites depend on the density of dendritic spines,” Eur. J. Neurosci. 34(4), 561–568 (2011).
[Crossref] [PubMed]

F. Santamaria, S. Wils, E. De Schutter, and G. J. Augustine, “Anomalous diffusion in Purkinje cell dendrites caused by spines,” Neuron 52(4), 635–648 (2006).
[Crossref] [PubMed]

Schulten, K.

J. Ervin, E. Larios, S. Osváth, K. Schulten, and M. Gruebele, “What causes hyperfluorescence: folding intermediates or conformationally flexible native states?” Biophys. J. 83(1), 473–483 (2002).
[Crossref] [PubMed]

Sefah, K.

Y. F. Huang, K. Sefah, S. Bamrungsap, H. T. Chang, and W. Tan, “Selective photothermal therapy for mixed cancer cells using aptamer-conjugated nanorods,” Langmuir 24(20), 11860–11865 (2008).
[Crossref] [PubMed]

Siekkinen, A.

J. Chen, D. Wang, J. Xi, L. Au, A. Siekkinen, A. Warsen, Z.-Y. Li, H. Zhang, Y. Xia, and X. Li, “Immuno Gold Nanocages with Tailored Optical Properties for Targeted Photothermal Destruction of Cancer Cells,” Nano Lett. 7(5), 1318–1322 (2007).
[Crossref] [PubMed]

Skeini, T.

A. O. Govorov, W. Zhang, T. Skeini, H. Richardson, J. Lee, and N. A. Kotov, “Gold nanoparticle ensembles as heaters and actuators: melting and collective plasmon resonances,” Nanoscale Res. Lett. 1(1), 84–90 (2006).
[Crossref]

Smith, D. A.

K. Jiang, D. A. Smith, and A. Pinchuk, “Size-Dependent Photothermal Conversion Efficiencies of Plasmonically Heated Gold Nanoparticles,” J. Phys. Chem. C 117(51), 27073–27080 (2013).
[Crossref]

Tan, W.

Y. F. Huang, K. Sefah, S. Bamrungsap, H. T. Chang, and W. Tan, “Selective photothermal therapy for mixed cancer cells using aptamer-conjugated nanorods,” Langmuir 24(20), 11860–11865 (2008).
[Crossref] [PubMed]

Tandler, P. J.

H. H. Richardson, M. T. Carlson, P. J. Tandler, P. Hernandez, and A. O. Govorov, “Experimental and Theoretical Studies of Light-to-Heat Conversion and Collective Heating Effects in Metal Nanoparticle Solutions,” Nano Lett. 9(3), 1139–1146 (2009).
[Crossref] [PubMed]

Tang, P. S.

A. Albanese, P. S. Tang, and W. C. W. Chan, “The Effect of Nanoparticle Size, Shape, and Surface Chemistry on Biological Systems,” Annu. Rev. Biomed. Eng. 14(1), 1–16 (2012).
[Crossref] [PubMed]

Tong, L.

L. Tong, Y. Zhao, T. B. Huff, M. N. Hansen, A. Wei, and J. X. Cheng, “Gold Nanorods Mediate Tumor Cell Death by Compromising Membrane Integrity,” Adv. Mater. 19(20), 3136–3141 (2007).
[Crossref] [PubMed]

Wang, D.

J. Chen, D. Wang, J. Xi, L. Au, A. Siekkinen, A. Warsen, Z.-Y. Li, H. Zhang, Y. Xia, and X. Li, “Immuno Gold Nanocages with Tailored Optical Properties for Targeted Photothermal Destruction of Cancer Cells,” Nano Lett. 7(5), 1318–1322 (2007).
[Crossref] [PubMed]

Warsen, A.

J. Chen, D. Wang, J. Xi, L. Au, A. Siekkinen, A. Warsen, Z.-Y. Li, H. Zhang, Y. Xia, and X. Li, “Immuno Gold Nanocages with Tailored Optical Properties for Targeted Photothermal Destruction of Cancer Cells,” Nano Lett. 7(5), 1318–1322 (2007).
[Crossref] [PubMed]

Wei, A.

L. Tong, Y. Zhao, T. B. Huff, M. N. Hansen, A. Wei, and J. X. Cheng, “Gold Nanorods Mediate Tumor Cell Death by Compromising Membrane Integrity,” Adv. Mater. 19(20), 3136–3141 (2007).
[Crossref] [PubMed]

West, J.

C. Loo, A. Lowery, N. J. Halas, J. West, and R. Drezek, “Immunotargeted nanoshells for integrated cancer imaging and therapy,” Nano Lett. 5(4), 709–711 (2005).
[Crossref] [PubMed]

West, J. L.

L. C. Kennedy, L. R. Bickford, N. A. Lewinski, A. J. Coughlin, Y. Hu, E. S. Day, J. L. West, and R. A. Drezek, “A new era for cancer treatment: gold-nanoparticle-mediated thermal therapies,” Small 7(2), 169–183 (2011).
[Crossref] [PubMed]

Wieder, M. E.

M. E. Wieder, D. C. Hone, M. J. Cook, M. M. Handsley, J. Gavrilovic, and D. A. Russell, “Intracellular photodynamic therapy with photosensitizer-nanoparticle conjugates: cancer therapy using a ‘Trojan horse’,” Photochem. Photobiol. Sci. 5(8), 727–734 (2006).
[Crossref] [PubMed]

Wils, S.

F. Santamaria, S. Wils, E. De Schutter, and G. J. Augustine, “The diffusional properties of dendrites depend on the density of dendritic spines,” Eur. J. Neurosci. 34(4), 561–568 (2011).
[Crossref] [PubMed]

F. Santamaria, S. Wils, E. De Schutter, and G. J. Augustine, “Anomalous diffusion in Purkinje cell dendrites caused by spines,” Neuron 52(4), 635–648 (2006).
[Crossref] [PubMed]

Winnik, F. M.

E. Hutter, S. Boridy, S. Labrecque, M. Lalancette-Hébert, J. Kriz, F. M. Winnik, and D. Maysinger, “Microglial response to gold nanoparticles,” ACS Nano 4(5), 2595–2606 (2010).
[Crossref] [PubMed]

Wyatt, M. D.

E. E. Connor, J. Mwamuka, A. Gole, C. J. Murphy, and M. D. Wyatt, “Gold nanoparticles are taken up by human cells but do not cause acute cytotoxicity,” Small 1(3), 325–327 (2005).
[Crossref] [PubMed]

Xi, J.

J. Chen, D. Wang, J. Xi, L. Au, A. Siekkinen, A. Warsen, Z.-Y. Li, H. Zhang, Y. Xia, and X. Li, “Immuno Gold Nanocages with Tailored Optical Properties for Targeted Photothermal Destruction of Cancer Cells,” Nano Lett. 7(5), 1318–1322 (2007).
[Crossref] [PubMed]

Xia, Y.

J. Chen, D. Wang, J. Xi, L. Au, A. Siekkinen, A. Warsen, Z.-Y. Li, H. Zhang, Y. Xia, and X. Li, “Immuno Gold Nanocages with Tailored Optical Properties for Targeted Photothermal Destruction of Cancer Cells,” Nano Lett. 7(5), 1318–1322 (2007).
[Crossref] [PubMed]

M. Hu, J. Chen, Z.-Y. Li, L. Au, G. V. Hartland, X. Li, M. Marquez, and Y. Xia, “Gold nanostructures: engineering their plasmonic properties for biomedical applications,” Chem. Soc. Rev. 35(11), 1084–1094 (2006).
[Crossref] [PubMed]

Xiong, C.

W. Lu, C. Xiong, G. Zhang, Q. Huang, R. Zhang, J. Z. Zhang, and C. Li, “Targeted photothermal ablation of murine melanomas with melanocyte-stimulating hormone analog-conjugated hollow gold nanospheres,” Clin. Cancer Res. 15(3), 876–886 (2009).
[Crossref] [PubMed]

Yon, J. M.

D. Missiakas, J. M. Betton, A. Chaffotte, P. Minard, and J. M. Yon, “Kinetic studies of the refolding of yeast phosphoglycerate kinase: comparison with the isolated engineered domains,” Protein Sci. 1(11), 1485–1493 (1992).
[Crossref] [PubMed]

Zhang, G.

W. Lu, C. Xiong, G. Zhang, Q. Huang, R. Zhang, J. Z. Zhang, and C. Li, “Targeted photothermal ablation of murine melanomas with melanocyte-stimulating hormone analog-conjugated hollow gold nanospheres,” Clin. Cancer Res. 15(3), 876–886 (2009).
[Crossref] [PubMed]

Zhang, H.

J. Chen, D. Wang, J. Xi, L. Au, A. Siekkinen, A. Warsen, Z.-Y. Li, H. Zhang, Y. Xia, and X. Li, “Immuno Gold Nanocages with Tailored Optical Properties for Targeted Photothermal Destruction of Cancer Cells,” Nano Lett. 7(5), 1318–1322 (2007).
[Crossref] [PubMed]

Zhang, J. Z.

W. Lu, C. Xiong, G. Zhang, Q. Huang, R. Zhang, J. Z. Zhang, and C. Li, “Targeted photothermal ablation of murine melanomas with melanocyte-stimulating hormone analog-conjugated hollow gold nanospheres,” Clin. Cancer Res. 15(3), 876–886 (2009).
[Crossref] [PubMed]

Zhang, R.

W. Lu, C. Xiong, G. Zhang, Q. Huang, R. Zhang, J. Z. Zhang, and C. Li, “Targeted photothermal ablation of murine melanomas with melanocyte-stimulating hormone analog-conjugated hollow gold nanospheres,” Clin. Cancer Res. 15(3), 876–886 (2009).
[Crossref] [PubMed]

Zhang, W.

A. O. Govorov, W. Zhang, T. Skeini, H. Richardson, J. Lee, and N. A. Kotov, “Gold nanoparticle ensembles as heaters and actuators: melting and collective plasmon resonances,” Nanoscale Res. Lett. 1(1), 84–90 (2006).
[Crossref]

Zhao, Y.

L. Tong, Y. Zhao, T. B. Huff, M. N. Hansen, A. Wei, and J. X. Cheng, “Gold Nanorods Mediate Tumor Cell Death by Compromising Membrane Integrity,” Adv. Mater. 19(20), 3136–3141 (2007).
[Crossref] [PubMed]

Acc. Chem. Res. (1)

M. A. El-Sayed, “Some interesting properties of metals confined in time and nanometer space of different shapes,” Acc. Chem. Res. 34(4), 257–264 (2001).
[Crossref] [PubMed]

ACS Nano (1)

E. Hutter, S. Boridy, S. Labrecque, M. Lalancette-Hébert, J. Kriz, F. M. Winnik, and D. Maysinger, “Microglial response to gold nanoparticles,” ACS Nano 4(5), 2595–2606 (2010).
[Crossref] [PubMed]

Adv. Mater. (1)

L. Tong, Y. Zhao, T. B. Huff, M. N. Hansen, A. Wei, and J. X. Cheng, “Gold Nanorods Mediate Tumor Cell Death by Compromising Membrane Integrity,” Adv. Mater. 19(20), 3136–3141 (2007).
[Crossref] [PubMed]

Annu. Rev. Biomed. Eng. (1)

A. Albanese, P. S. Tang, and W. C. W. Chan, “The Effect of Nanoparticle Size, Shape, and Surface Chemistry on Biological Systems,” Annu. Rev. Biomed. Eng. 14(1), 1–16 (2012).
[Crossref] [PubMed]

Biophys. J. (1)

J. Ervin, E. Larios, S. Osváth, K. Schulten, and M. Gruebele, “What causes hyperfluorescence: folding intermediates or conformationally flexible native states?” Biophys. J. 83(1), 473–483 (2002).
[Crossref] [PubMed]

Brain Res. (1)

K. C. Mendoza, V. D. McLane, S. Kim, and J. D. Griffin, “Invitro application of gold nanoprobes in live neurons for phenotypical classification, connectivity assessment, and electrophysiological recording,” Brain Res. 1325, 19–27 (2010).
[Crossref] [PubMed]

Chem. Phys. (1)

V. K. Pustovalov, “Theoretical study of heating of spherical nanoparticle in media by short laser pulses,” Chem. Phys. 308(1-2), 103–108 (2005).
[Crossref]

Chem. Rev. (1)

M. C. Daniel and D. Astruc, “Gold nanoparticles: Assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology,” Chem. Rev. 104(1), 293–346 (2004).
[Crossref] [PubMed]

Chem. Soc. Rev. (1)

M. Hu, J. Chen, Z.-Y. Li, L. Au, G. V. Hartland, X. Li, M. Marquez, and Y. Xia, “Gold nanostructures: engineering their plasmonic properties for biomedical applications,” Chem. Soc. Rev. 35(11), 1084–1094 (2006).
[Crossref] [PubMed]

Clin. Cancer Res. (1)

W. Lu, C. Xiong, G. Zhang, Q. Huang, R. Zhang, J. Z. Zhang, and C. Li, “Targeted photothermal ablation of murine melanomas with melanocyte-stimulating hormone analog-conjugated hollow gold nanospheres,” Clin. Cancer Res. 15(3), 876–886 (2009).
[Crossref] [PubMed]

Eur. J. Neurosci. (1)

F. Santamaria, S. Wils, E. De Schutter, and G. J. Augustine, “The diffusional properties of dendrites depend on the density of dendritic spines,” Eur. J. Neurosci. 34(4), 561–568 (2011).
[Crossref] [PubMed]

Int. Rev. Phys. Chem. (1)

S. Link and M. A. El-Sayed, “Shape and size dependence of radiative, non-radiative and photothermal properties of gold nanocrystals,” Int. Rev. Phys. Chem. 19(3), 409–453 (2000).
[Crossref]

J. Am. Chem. Soc. (3)

B. Kang, M. A. Mackey, and M. A. El-Sayed, “Nuclear Targeting of Gold Nanoparticles in Cancer Cells Induces DNA Damage, Causing Cytokinesis Arrest and Apoptosis,” J. Am. Chem. Soc. 132(5), 1517–1519 (2010).
[Crossref] [PubMed]

X. H. Huang, I. H. El-Sayed, W. Qian, and M. A. El-Sayed, “Cancer cell imaging and photothermal therapy in the near-infrared region by using gold nanorods,” J. Am. Chem. Soc. 128(6), 2115–2120 (2006).
[Crossref] [PubMed]

X. Huang, I. H. El-Sayed, W. Qian, and M. A. El-Sayed, “Cancer Cell Imaging and Photothermal Therapy in the Near-Infrared Region by Using Gold Nanorods,” J. Am. Chem. Soc. 128(6), 2115–2120 (2006).
[Crossref] [PubMed]

J. Nanobiotechnology (1)

K. Salinas, Z. Kereselidze, F. DeLuna, X. G. Peralta, and F. Santamaria, “Transient extracellular application of gold nanostars increases hippocampal neuronal activity,” J. Nanobiotechnology 12(1), 31 (2014).
[Crossref] [PubMed]

J. Phys. Chem. B (1)

S. Link, C. Burda, B. Nikoobakht, and M. A. El-Sayed, “Laser-induced shape changes of colloidal gold nanorods using femtosecond and nanosecond laser pulses,” J. Phys. Chem. B 104(26), 6152–6163 (2000).
[Crossref]

J. Phys. Chem. C (1)

K. Jiang, D. A. Smith, and A. Pinchuk, “Size-Dependent Photothermal Conversion Efficiencies of Plasmonically Heated Gold Nanoparticles,” J. Phys. Chem. C 117(51), 27073–27080 (2013).
[Crossref]

J. Vis. Exp. (1)

Z. Kereselidze, V. H. Romero, X. G. Peralta, and F. Santamaria, “Gold nanostar synthesis with a silver seed mediated growth method,” J. Vis. Exp. 59, 3570 (2012).
[PubMed]

Langmuir (1)

Y. F. Huang, K. Sefah, S. Bamrungsap, H. T. Chang, and W. Tan, “Selective photothermal therapy for mixed cancer cells using aptamer-conjugated nanorods,” Langmuir 24(20), 11860–11865 (2008).
[Crossref] [PubMed]

Lasers Med. Sci. (1)

X. H. Huang, P. K. Jain, I. H. El-Sayed, and M. A. El-Sayed, “Plasmonic photothermal therapy (PPTT) using gold nanoparticles,” Lasers Med. Sci. 23(3), 217–228 (2008).
[Crossref] [PubMed]

Lasers Surg. Med. (1)

D. O. Lapotko, E. Lukianova, and A. A. Oraevsky, “Selective laser nano-thermolysis of human leukemia cells with microbubbles generated around clusters of gold nanoparticles,” Lasers Surg. Med. 38(6), 631–642 (2006).
[Crossref] [PubMed]

Nano Lett. (3)

J. Chen, D. Wang, J. Xi, L. Au, A. Siekkinen, A. Warsen, Z.-Y. Li, H. Zhang, Y. Xia, and X. Li, “Immuno Gold Nanocages with Tailored Optical Properties for Targeted Photothermal Destruction of Cancer Cells,” Nano Lett. 7(5), 1318–1322 (2007).
[Crossref] [PubMed]

H. H. Richardson, M. T. Carlson, P. J. Tandler, P. Hernandez, and A. O. Govorov, “Experimental and Theoretical Studies of Light-to-Heat Conversion and Collective Heating Effects in Metal Nanoparticle Solutions,” Nano Lett. 9(3), 1139–1146 (2009).
[Crossref] [PubMed]

C. Loo, A. Lowery, N. J. Halas, J. West, and R. Drezek, “Immunotargeted nanoshells for integrated cancer imaging and therapy,” Nano Lett. 5(4), 709–711 (2005).
[Crossref] [PubMed]

Nano Today (1)

A. O. Govorov and H. H. Richardson, “Generating heat with metal nanoparticles,” Nano Today 2(1), 30–38 (2007).
[Crossref]

Nanomedicine (Lond) (1)

X. H. Huang, P. K. Jain, I. H. El-Sayed, and M. A. El-Sayed, “Gold nanoparticles: interesting optical properties and recent applications in cancer diagnostics and therapy,” Nanomedicine (Lond) 2(5), 681–693 (2007).
[Crossref] [PubMed]

Nanoscale Res. Lett. (1)

A. O. Govorov, W. Zhang, T. Skeini, H. Richardson, J. Lee, and N. A. Kotov, “Gold nanoparticle ensembles as heaters and actuators: melting and collective plasmon resonances,” Nanoscale Res. Lett. 1(1), 84–90 (2006).
[Crossref]

Neuron (1)

F. Santamaria, S. Wils, E. De Schutter, and G. J. Augustine, “Anomalous diffusion in Purkinje cell dendrites caused by spines,” Neuron 52(4), 635–648 (2006).
[Crossref] [PubMed]

Photochem. Photobiol. Sci. (1)

M. E. Wieder, D. C. Hone, M. J. Cook, M. M. Handsley, J. Gavrilovic, and D. A. Russell, “Intracellular photodynamic therapy with photosensitizer-nanoparticle conjugates: cancer therapy using a ‘Trojan horse’,” Photochem. Photobiol. Sci. 5(8), 727–734 (2006).
[Crossref] [PubMed]

Protein Sci. (1)

D. Missiakas, J. M. Betton, A. Chaffotte, P. Minard, and J. M. Yon, “Kinetic studies of the refolding of yeast phosphoglycerate kinase: comparison with the isolated engineered domains,” Protein Sci. 1(11), 1485–1493 (1992).
[Crossref] [PubMed]

Small (2)

L. C. Kennedy, L. R. Bickford, N. A. Lewinski, A. J. Coughlin, Y. Hu, E. S. Day, J. L. West, and R. A. Drezek, “A new era for cancer treatment: gold-nanoparticle-mediated thermal therapies,” Small 7(2), 169–183 (2011).
[Crossref] [PubMed]

E. E. Connor, J. Mwamuka, A. Gole, C. J. Murphy, and M. D. Wyatt, “Gold nanoparticles are taken up by human cells but do not cause acute cytotoxicity,” Small 1(3), 325–327 (2005).
[Crossref] [PubMed]

Supplementary Material (2)

» Media 1: AVI (15336 KB)     
» Media 2: AVI (27850 KB)     

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 Characterization of gold nanostars. (a-c) Scanning electron microscope images of gold nanostars. (d) Spectra of silver-seed (dashed) and gold nanostars (solid).
Fig. 2
Fig. 2 Gold nanostars are located inside and around nuclei of fixed cerebellar neurons. (a-c) Volumetric reconstruction of the molecular layer of a cerebellar slice incubated with gold nanostars. (a) Reconstruction of the nucleus of 10 molecular layer neurons stained with DAPI. Images obtained from the channel filtered between 435 to 485 nm. (b) Identification of nanoparticle clusters (red dots) close to the nuclei. Image obtained by merging volumetric data from the two channels. (c) Same data as in (b) with the transparency of the reconstructed surfaces set to 50% showing the presence of nanoparticles inside the nuclei.
Fig. 3
Fig. 3 Quantification of the nanoparticle clusters in fixed cerebellar slices. (a-c) clusters of nanoparticles were identified within nuclei located in the same imaging plane. (a) Luminescence from nanoparticle clusters obtained from the channel filtered between 584 to 630 nm. (b) Images of DAPI stained nuclei obtained from the channel filtered between 435 to 485 nm. (c) Merged image from the two channels. (d) Intensity profile of a cluster of nanoparticles and Gaussian fit. (e) Half-width-at-half-maximum obtained from the fits. Open circles were obtained from fits to different images and the rhomboid represents the mean ± SEM.
Fig. 4
Fig. 4 Stimulation of the surface plasmon resonance at 720 nm causes loss of fluorescence and deformation of the nucleus in fixed tissues. (a) DAPI stained nucleus. (b) Luminescence showing a cluster of nanoparticles. (c) Merged images from the two channels. (d-e) Increasing the laser power from 0.88 to 1.55 mW produces a loss of fluorescence of a section of the nucleus (Media 1).
Fig. 5
Fig. 5 Photoassisted morphological deformation of a single fixed cell containing gold nanostars. (a) Image of 8 nuclei in which only one cell contains nanoparticles, indicated by the arrow. (b-d) Temporal sequence collected after increasing the imaging laser power from 0.80 to 1.9 mW with an imaging wavelength of 752 nm.
Fig. 6
Fig. 6 Expansion of neuronal nuclei after excitation of the surface plasmon of gold nanostars. (a) Radius of the area of decreased fluorescence around the nanoparticle as a function of time for 5 different cells. (b) Normalized radius as a function of time for the same experiments shown in (a). (c) Maximum radius of expansion achieved with different relative changes in laser power.
Fig. 7
Fig. 7 Single cell ablation in live cells. The sequence of images shows a Purkinje cell containing nanoparticles imaged (a) before an (b-d) after increasing the laser power (from 1.37 to 4.06 mW). The thermal expansion remained contained within the cell body (Media 2). The line in (a) locates the cell boundary.

Metrics