Abstract

Near-infrared (NIR) imaging technology has been widely used for biomedical research and applications, since it can achieve deep penetration in biological tissues due to less absorption and scattering of NIR light. In our research, polymer nanoparticles with NIR fluorophores doped were synthesized. The morphology, absorption/emission features and chemical stability of the fluorescent nanoparticles were characterized, separately. NIR fluorescent nanoparticles were then utilized as bright optical probes for macro in vivo imaging of mice, including sentinel lymph node (SLN) mapping, as well as distribution and excretion monitoring of nanoparticles in animal body. Furthermore, we applied the NIR fluorescent nanoparticles in in vivo microscopic bioimaging via a confocal microscope. Under the 635 nm-CW excitation, the blood vessel architecture in the ear and the brain of mice, which were administered with nanoparticles, was visualized very clearly. The imaging depth of our one-photon microscopy, which was assisted with NIR fluorescent nanoprobes, can reach as deep as 500 μm. Our experiments show that NIR fluorescent nanoparticles have great potentials in various deep-tissue imaging applications.

© 2014 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Red emissive AIE nanodots with high two-photon absorption efficiency at 1040 nm for deep-tissue in vivo imaging

Yalun Wang, Rongrong Hu, Wang Xi, Fuhong Cai, Shaowei Wang, Zhenfeng Zhu, Rongpan Bai, and Jun Qian
Biomed. Opt. Express 6(10) 3783-3794 (2015)

Nanoparticles for highly efficient multiphoton fluorescence bioimaging

Laura Martinez Maestro, Emma Martín Rodriguez, Fiorenzo Vetrone, Rafik Naccache, Hector Loro Ramirez, Daniel Jaque, John A. Capobianco, and José García Solé
Opt. Express 18(23) 23544-23553 (2010)

In vivo fluorescent optical imaging of cytotoxic T lymphocyte migration using IRDye800CW near-infrared dye

Aaron E. Foster, Sunkuk Kwon, Shi Ke, An Lu, Karen Eldin, Eva Sevick-Muraca, and Cliona M. Rooney
Appl. Opt. 47(31) 5944-5952 (2008)

References

  • View by:
  • |
  • |
  • |

  1. J. R. Lakowicz, Principles of Fluorescence Spectroscopy (Springer, New York, 2006).
  2. S. W. Hell, “Far-field optical nanoscopy,” Science 316(5828), 1153–1158 (2007).
    [Crossref] [PubMed]
  3. M. G. L. Gustafsson, “Nonlinear structured-illumination microscopy: Wide-field fluorescence imaging with theoretically unlimited resolution,” Proc. Natl. Acad. Sci. U.S.A. 102(37), 13081–13086 (2005).
    [Crossref] [PubMed]
  4. M. J. Rust, M. Bates, and X. W. Zhuang, “Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM),” Nat. Methods 3(10), 793–796 (2006).
    [Crossref] [PubMed]
  5. E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Olenych, J. S. Bonifacino, M. W. Davidson, J. Lippincott-Schwartz, and H. F. Hess, “Imaging intracellular fluorescent proteins at nanometer resolution,” Science 313(5793), 1642–1645 (2006).
    [Crossref] [PubMed]
  6. D. Axelrod, “Total internal reflection fluorescence microscopy in cell biology,” Traffic 2(11), 764–774 (2001).
    [Crossref] [PubMed]
  7. R. Splinter and B. A. Hooper, An Introduction to Biomedical Optics (CRC Press, 2006).
  8. A. Yodh and B. Chance, “Spectroscopy and imaging with diffusing light,” Phys. Today 48(3), 34–40 (1995).
    [Crossref]
  9. R. Weissleder, “A clearer vision for in vivo imaging,” Nat. Biotechnol. 19(4), 316–317 (2001).
    [Crossref] [PubMed]
  10. E. M. Sevick-Muraca, J. P. Houston, and M. Gurfinkel, “Fluorescence-enhanced, near infrared diagnostic imaging with contrast agents,” Curr. Opin. Chem. Biol. 6(5), 642–650 (2002).
    [Crossref] [PubMed]
  11. W. B. Cai, D. W. Shin, K. Chen, O. Gheysens, Q. Z. Cao, S. X. Wang, S. S. Gambhir, and X. Y. Chen, “Peptide-labeled near-infrared quantum dots for imaging tumor vasculature in living subjects,” Nano Lett. 6(4), 669–676 (2006).
    [Crossref] [PubMed]
  12. K. T. Yong, I. Roy, H. Ding, E. J. Bergey, and P. N. Prasad, “Biocompatible Near-Infrared Quantum Dots as Ultrasensitive Probes for Long-Term in vivo Imaging Applications,” Small 5(17), 1997–2004 (2009).
    [Crossref] [PubMed]
  13. M. Nyk, R. Kumar, T. Y. Ohulchanskyy, E. J. Bergey, and P. N. Prasad, “High Contrast in Vitro and in Vivo Photoluminescence Bioimaging Using Near Infrared to Near Infrared Up-Conversion in Tm3+ and Yb3+ Doped Fluoride Nanophosphors,” Nano Lett. 8(11), 3834–3838 (2008).
    [Crossref] [PubMed]
  14. B. Dubertret, P. Skourides, D. J. Norris, V. Noireaux, A. H. Brivanlou, and A. Libchaber, “In vivo imaging of quantum dots encapsulated in phospholipid micelles,” Science 298(5599), 1759–1762 (2002).
    [Crossref] [PubMed]
  15. M. Dahan, S. Lévi, C. Luccardini, P. Rostaing, B. Riveau, and A. Triller, “Diffusion dynamics of glycine receptors revealed by single-quantum dot tracking,” Science 302(5644), 442–445 (2003).
    [Crossref] [PubMed]
  16. J. Lovrić, S. J. Cho, F. M. Winnik, and D. Maysinger, “Unmodified Cadmium Telluride Quantum Dots Induce Reactive Oxygen Species Formation Leading to Multiple Organelle Damage and Cell Death,” Chem. Biol. 12(11), 1227–1234 (2005).
    [Crossref] [PubMed]
  17. R. Hardman, “A toxicologic review of quantum dots: Toxicity depends on physicochemical and environmental factors,” Environ. Health Perspect. 114(2), 165–172 (2006).
    [Crossref] [PubMed]
  18. Y. P. Du, B. Xu, T. Fu, M. Cai, F. Li, Y. Zhang, and Q. B. Wang, “Near-Infrared Photoluminescent Ag2S Quantum Dots from a Single Source Precursor,” J. Am. Chem. Soc. 132(5), 1470–1471 (2010).
    [Crossref] [PubMed]
  19. X. Zhang, Y. Q. Gu, and H. Y. Chen, “Synthesis of biocompatible near infrared fluorescence Ag2S quantum dot and its application in bioimaging,” J. Innov. Opt. Health Sci. 7(03), 1350059 (2014).
    [Crossref]
  20. M. F. Foda, L. Huang, F. Shao, and H. Y. Han, “Biocompatible and highly luminescent near-infrared CuInS₂/ZnS quantum dots embedded silica beads for cancer cell imaging,” ACS Appl. Mater. Interfaces 6(3), 2011–2017 (2014).
    [Crossref] [PubMed]
  21. W. Feng, X. J. Zhu, and F. Y. Li, “Recent advances in the optimization and functionalization of upconversion nanomaterials for in vivo bioapplications,” NPG Asia Mater. 5(12), e75 (2013).
    [Crossref]
  22. J. Zhou, Z. Liu, and F. Y. Li, “Upconversion nanophosphors for small-animal imaging,” Chem. Soc. Rev. 41(3), 1323–1349 (2012).
    [Crossref] [PubMed]
  23. C. T. Xu, P. Svenmarker, H. C. Liu, X. Wu, M. E. Messing, L. R. Wallenberg, and S. Andersson-Engels, “High-Resolution Fluorescence Diffuse Optical Tomography Developed with Nonlinear Upconverting Nanoparticles,” ACS Nano 6(6), 4788–4795 (2012).
    [Crossref] [PubMed]
  24. F. Wang and X. G. Liu, “Recent advances in the chemistry of lanthanide-doped upconversion nanocrystals,” Chem. Soc. Rev. 38(4), 976–989 (2009).
    [Crossref] [PubMed]
  25. A. Poellinger, “Near-infrared imaging of breast cancer using optical contrast agents,” J. Biophotonics 5(11-12), 815–826 (2012).
    [Crossref] [PubMed]
  26. J. O. Escobedo, O. Rusin, S. Lim, and R. M. Strongin, “NIR Dyes for Bioimaging Applications,” Curr. Opin. Chem. Biol. 14(1), 64–70 (2010).
    [Crossref] [PubMed]
  27. R. Kumar, I. Roy, T. Y. Ohulchanskky, L. A. Vathy, E. J. Bergey, M. Sajjad, and P. N. Prasad, “In Vivo Biodistribution and Clearance Studies Using Multimodal Organically Modified Silica Nanoparticles,” ACS Nano 4(2), 699–708 (2010).
    [Crossref] [PubMed]
  28. F. Erogbogbo, K. T. Yong, I. Roy, G. X. Xu, P. N. Prasad, and M. T. Swihart, “Biocompatible luminescent silicon quantum dots for imaging of cancer cells,” ACS Nano 2(5), 873–878 (2008).
    [Crossref] [PubMed]
  29. K. T. Yong, R. Hu, I. Roy, H. Ding, L. A. Vathy, E. J. Bergey, M. Mizuma, A. Maitra, and P. N. Prasa, “Tumor Targeting and Imaging in Live Animals with Functionalized Semiconductor Quantum Rods,” ACS. Appl. Mater. Inter. 1(3), 710–719 (2009).
    [Crossref]
  30. Y. Lei, H. Tang, L. Yao, R. Yu, M. Feng, and B. Zou, “Applications of mesenchymal stem cells labeled with Tat peptide conjugated quantum dots to cell tracking in mouse body,” Bioconjug. Chem. 19(2), 421–427 (2008).
    [Crossref] [PubMed]
  31. R. Kumar, T. Y. Ohulchanskyy, I. Roy, S. K. Gupta, C. Borek, M. E. Thompson, and P. N. Prasad, “Near-Infrared Phosphorescent Polymeric Nanomicelles: Efficient Optical Probes for Tumor Imaging and Detection,” ACS Appl. Mater. Interfaces 1(7), 1474–1481 (2009).
    [Crossref] [PubMed]
  32. J. Qian, D. Wang, F. H. Cai, Q. Q. Zhan, Y. L. Wang, and S. L. He, “Photosensitizer encapsulated organically modified silica nanoparticles for direct two-photon photodynamic therapy and In Vivo functional imaging,” Biomaterials 33(19), 4851–4860 (2012).
    [Crossref] [PubMed]
  33. N. G. Horton, K. Wang, D. Kobat, C. G. Clark, F. W. Wise, C. B. Schaffer, and C. Xu, “In vivo three-photon microscopy of subcortical structures within an intact mouse brain,” Nat. Photonics 7(3), 205–209 (2013).
    [Crossref] [PubMed]
  34. D. Wang, J. Qian, S. L. He, J. S. Park, K. S. Lee, S. H. Han, and Y. Mu, “Aggregation-enhanced fluorescence in PEGylated phospholipid nanomicelles for in vivo imaging,” Biomaterials 32(25), 5880–5888 (2011).
    [Crossref] [PubMed]
  35. J. B. Birks, Photophysics of Aromatic Molecules (Wiley, London, 1970).
  36. R. Philip, A. Penzkofer, W. Bäumler, R. M. Szeimies, and C. Abels, “Absorption and fluorescence spectroscopic investigation of indocyanine green,” J. Photochem. Photobiol. Chem. 96(1–3), 137–148 (1996).
    [Crossref]
  37. S. Kim, Y. T. Lim, E. G. Soltesz, A. M. De Grand, J. Lee, A. Nakayama, J. A. Parker, T. Mihaljevic, R. G. Laurence, D. M. Dor, L. H. Cohn, M. G. Bawendi, and J. V. Frangioni, “Near-infrared fluorescent type II quantum dots for sentinel lymph node mapping,” Nat. Biotechnol. 22(1), 93–97 (2004).
    [Crossref] [PubMed]
  38. J. Qian, L. Jiang, F. H. Cai, D. Wang, and S. L. He, “Fluorescence-surface enhanced Raman scattering co-functionalized gold nanorods as near-infrared probes for purely optical in vivo imaging,” Biomaterials 32(6), 1601–1610 (2011).
    [Crossref] [PubMed]
  39. K. H. Song, C. Kim, K. Maslov, and L. V. Wang, “Noninvasive in vivo spectroscopic nanorod-contrast photoacoustic mapping of sentinel lymph nodes,” Eur. J. Radiol. 70(2), 227–231 (2009).
    [Crossref] [PubMed]

2014 (2)

X. Zhang, Y. Q. Gu, and H. Y. Chen, “Synthesis of biocompatible near infrared fluorescence Ag2S quantum dot and its application in bioimaging,” J. Innov. Opt. Health Sci. 7(03), 1350059 (2014).
[Crossref]

M. F. Foda, L. Huang, F. Shao, and H. Y. Han, “Biocompatible and highly luminescent near-infrared CuInS₂/ZnS quantum dots embedded silica beads for cancer cell imaging,” ACS Appl. Mater. Interfaces 6(3), 2011–2017 (2014).
[Crossref] [PubMed]

2013 (2)

W. Feng, X. J. Zhu, and F. Y. Li, “Recent advances in the optimization and functionalization of upconversion nanomaterials for in vivo bioapplications,” NPG Asia Mater. 5(12), e75 (2013).
[Crossref]

N. G. Horton, K. Wang, D. Kobat, C. G. Clark, F. W. Wise, C. B. Schaffer, and C. Xu, “In vivo three-photon microscopy of subcortical structures within an intact mouse brain,” Nat. Photonics 7(3), 205–209 (2013).
[Crossref] [PubMed]

2012 (4)

J. Qian, D. Wang, F. H. Cai, Q. Q. Zhan, Y. L. Wang, and S. L. He, “Photosensitizer encapsulated organically modified silica nanoparticles for direct two-photon photodynamic therapy and In Vivo functional imaging,” Biomaterials 33(19), 4851–4860 (2012).
[Crossref] [PubMed]

A. Poellinger, “Near-infrared imaging of breast cancer using optical contrast agents,” J. Biophotonics 5(11-12), 815–826 (2012).
[Crossref] [PubMed]

J. Zhou, Z. Liu, and F. Y. Li, “Upconversion nanophosphors for small-animal imaging,” Chem. Soc. Rev. 41(3), 1323–1349 (2012).
[Crossref] [PubMed]

C. T. Xu, P. Svenmarker, H. C. Liu, X. Wu, M. E. Messing, L. R. Wallenberg, and S. Andersson-Engels, “High-Resolution Fluorescence Diffuse Optical Tomography Developed with Nonlinear Upconverting Nanoparticles,” ACS Nano 6(6), 4788–4795 (2012).
[Crossref] [PubMed]

2011 (2)

J. Qian, L. Jiang, F. H. Cai, D. Wang, and S. L. He, “Fluorescence-surface enhanced Raman scattering co-functionalized gold nanorods as near-infrared probes for purely optical in vivo imaging,” Biomaterials 32(6), 1601–1610 (2011).
[Crossref] [PubMed]

D. Wang, J. Qian, S. L. He, J. S. Park, K. S. Lee, S. H. Han, and Y. Mu, “Aggregation-enhanced fluorescence in PEGylated phospholipid nanomicelles for in vivo imaging,” Biomaterials 32(25), 5880–5888 (2011).
[Crossref] [PubMed]

2010 (3)

Y. P. Du, B. Xu, T. Fu, M. Cai, F. Li, Y. Zhang, and Q. B. Wang, “Near-Infrared Photoluminescent Ag2S Quantum Dots from a Single Source Precursor,” J. Am. Chem. Soc. 132(5), 1470–1471 (2010).
[Crossref] [PubMed]

J. O. Escobedo, O. Rusin, S. Lim, and R. M. Strongin, “NIR Dyes for Bioimaging Applications,” Curr. Opin. Chem. Biol. 14(1), 64–70 (2010).
[Crossref] [PubMed]

R. Kumar, I. Roy, T. Y. Ohulchanskky, L. A. Vathy, E. J. Bergey, M. Sajjad, and P. N. Prasad, “In Vivo Biodistribution and Clearance Studies Using Multimodal Organically Modified Silica Nanoparticles,” ACS Nano 4(2), 699–708 (2010).
[Crossref] [PubMed]

2009 (5)

K. T. Yong, R. Hu, I. Roy, H. Ding, L. A. Vathy, E. J. Bergey, M. Mizuma, A. Maitra, and P. N. Prasa, “Tumor Targeting and Imaging in Live Animals with Functionalized Semiconductor Quantum Rods,” ACS. Appl. Mater. Inter. 1(3), 710–719 (2009).
[Crossref]

R. Kumar, T. Y. Ohulchanskyy, I. Roy, S. K. Gupta, C. Borek, M. E. Thompson, and P. N. Prasad, “Near-Infrared Phosphorescent Polymeric Nanomicelles: Efficient Optical Probes for Tumor Imaging and Detection,” ACS Appl. Mater. Interfaces 1(7), 1474–1481 (2009).
[Crossref] [PubMed]

K. H. Song, C. Kim, K. Maslov, and L. V. Wang, “Noninvasive in vivo spectroscopic nanorod-contrast photoacoustic mapping of sentinel lymph nodes,” Eur. J. Radiol. 70(2), 227–231 (2009).
[Crossref] [PubMed]

F. Wang and X. G. Liu, “Recent advances in the chemistry of lanthanide-doped upconversion nanocrystals,” Chem. Soc. Rev. 38(4), 976–989 (2009).
[Crossref] [PubMed]

K. T. Yong, I. Roy, H. Ding, E. J. Bergey, and P. N. Prasad, “Biocompatible Near-Infrared Quantum Dots as Ultrasensitive Probes for Long-Term in vivo Imaging Applications,” Small 5(17), 1997–2004 (2009).
[Crossref] [PubMed]

2008 (3)

M. Nyk, R. Kumar, T. Y. Ohulchanskyy, E. J. Bergey, and P. N. Prasad, “High Contrast in Vitro and in Vivo Photoluminescence Bioimaging Using Near Infrared to Near Infrared Up-Conversion in Tm3+ and Yb3+ Doped Fluoride Nanophosphors,” Nano Lett. 8(11), 3834–3838 (2008).
[Crossref] [PubMed]

Y. Lei, H. Tang, L. Yao, R. Yu, M. Feng, and B. Zou, “Applications of mesenchymal stem cells labeled with Tat peptide conjugated quantum dots to cell tracking in mouse body,” Bioconjug. Chem. 19(2), 421–427 (2008).
[Crossref] [PubMed]

F. Erogbogbo, K. T. Yong, I. Roy, G. X. Xu, P. N. Prasad, and M. T. Swihart, “Biocompatible luminescent silicon quantum dots for imaging of cancer cells,” ACS Nano 2(5), 873–878 (2008).
[Crossref] [PubMed]

2007 (1)

S. W. Hell, “Far-field optical nanoscopy,” Science 316(5828), 1153–1158 (2007).
[Crossref] [PubMed]

2006 (4)

M. J. Rust, M. Bates, and X. W. Zhuang, “Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM),” Nat. Methods 3(10), 793–796 (2006).
[Crossref] [PubMed]

E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Olenych, J. S. Bonifacino, M. W. Davidson, J. Lippincott-Schwartz, and H. F. Hess, “Imaging intracellular fluorescent proteins at nanometer resolution,” Science 313(5793), 1642–1645 (2006).
[Crossref] [PubMed]

W. B. Cai, D. W. Shin, K. Chen, O. Gheysens, Q. Z. Cao, S. X. Wang, S. S. Gambhir, and X. Y. Chen, “Peptide-labeled near-infrared quantum dots for imaging tumor vasculature in living subjects,” Nano Lett. 6(4), 669–676 (2006).
[Crossref] [PubMed]

R. Hardman, “A toxicologic review of quantum dots: Toxicity depends on physicochemical and environmental factors,” Environ. Health Perspect. 114(2), 165–172 (2006).
[Crossref] [PubMed]

2005 (2)

J. Lovrić, S. J. Cho, F. M. Winnik, and D. Maysinger, “Unmodified Cadmium Telluride Quantum Dots Induce Reactive Oxygen Species Formation Leading to Multiple Organelle Damage and Cell Death,” Chem. Biol. 12(11), 1227–1234 (2005).
[Crossref] [PubMed]

M. G. L. Gustafsson, “Nonlinear structured-illumination microscopy: Wide-field fluorescence imaging with theoretically unlimited resolution,” Proc. Natl. Acad. Sci. U.S.A. 102(37), 13081–13086 (2005).
[Crossref] [PubMed]

2004 (1)

S. Kim, Y. T. Lim, E. G. Soltesz, A. M. De Grand, J. Lee, A. Nakayama, J. A. Parker, T. Mihaljevic, R. G. Laurence, D. M. Dor, L. H. Cohn, M. G. Bawendi, and J. V. Frangioni, “Near-infrared fluorescent type II quantum dots for sentinel lymph node mapping,” Nat. Biotechnol. 22(1), 93–97 (2004).
[Crossref] [PubMed]

2003 (1)

M. Dahan, S. Lévi, C. Luccardini, P. Rostaing, B. Riveau, and A. Triller, “Diffusion dynamics of glycine receptors revealed by single-quantum dot tracking,” Science 302(5644), 442–445 (2003).
[Crossref] [PubMed]

2002 (2)

B. Dubertret, P. Skourides, D. J. Norris, V. Noireaux, A. H. Brivanlou, and A. Libchaber, “In vivo imaging of quantum dots encapsulated in phospholipid micelles,” Science 298(5599), 1759–1762 (2002).
[Crossref] [PubMed]

E. M. Sevick-Muraca, J. P. Houston, and M. Gurfinkel, “Fluorescence-enhanced, near infrared diagnostic imaging with contrast agents,” Curr. Opin. Chem. Biol. 6(5), 642–650 (2002).
[Crossref] [PubMed]

2001 (2)

R. Weissleder, “A clearer vision for in vivo imaging,” Nat. Biotechnol. 19(4), 316–317 (2001).
[Crossref] [PubMed]

D. Axelrod, “Total internal reflection fluorescence microscopy in cell biology,” Traffic 2(11), 764–774 (2001).
[Crossref] [PubMed]

1996 (1)

R. Philip, A. Penzkofer, W. Bäumler, R. M. Szeimies, and C. Abels, “Absorption and fluorescence spectroscopic investigation of indocyanine green,” J. Photochem. Photobiol. Chem. 96(1–3), 137–148 (1996).
[Crossref]

1995 (1)

A. Yodh and B. Chance, “Spectroscopy and imaging with diffusing light,” Phys. Today 48(3), 34–40 (1995).
[Crossref]

Abels, C.

R. Philip, A. Penzkofer, W. Bäumler, R. M. Szeimies, and C. Abels, “Absorption and fluorescence spectroscopic investigation of indocyanine green,” J. Photochem. Photobiol. Chem. 96(1–3), 137–148 (1996).
[Crossref]

Andersson-Engels, S.

C. T. Xu, P. Svenmarker, H. C. Liu, X. Wu, M. E. Messing, L. R. Wallenberg, and S. Andersson-Engels, “High-Resolution Fluorescence Diffuse Optical Tomography Developed with Nonlinear Upconverting Nanoparticles,” ACS Nano 6(6), 4788–4795 (2012).
[Crossref] [PubMed]

Axelrod, D.

D. Axelrod, “Total internal reflection fluorescence microscopy in cell biology,” Traffic 2(11), 764–774 (2001).
[Crossref] [PubMed]

Bates, M.

M. J. Rust, M. Bates, and X. W. Zhuang, “Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM),” Nat. Methods 3(10), 793–796 (2006).
[Crossref] [PubMed]

Bäumler, W.

R. Philip, A. Penzkofer, W. Bäumler, R. M. Szeimies, and C. Abels, “Absorption and fluorescence spectroscopic investigation of indocyanine green,” J. Photochem. Photobiol. Chem. 96(1–3), 137–148 (1996).
[Crossref]

Bawendi, M. G.

S. Kim, Y. T. Lim, E. G. Soltesz, A. M. De Grand, J. Lee, A. Nakayama, J. A. Parker, T. Mihaljevic, R. G. Laurence, D. M. Dor, L. H. Cohn, M. G. Bawendi, and J. V. Frangioni, “Near-infrared fluorescent type II quantum dots for sentinel lymph node mapping,” Nat. Biotechnol. 22(1), 93–97 (2004).
[Crossref] [PubMed]

Bergey, E. J.

R. Kumar, I. Roy, T. Y. Ohulchanskky, L. A. Vathy, E. J. Bergey, M. Sajjad, and P. N. Prasad, “In Vivo Biodistribution and Clearance Studies Using Multimodal Organically Modified Silica Nanoparticles,” ACS Nano 4(2), 699–708 (2010).
[Crossref] [PubMed]

K. T. Yong, R. Hu, I. Roy, H. Ding, L. A. Vathy, E. J. Bergey, M. Mizuma, A. Maitra, and P. N. Prasa, “Tumor Targeting and Imaging in Live Animals with Functionalized Semiconductor Quantum Rods,” ACS. Appl. Mater. Inter. 1(3), 710–719 (2009).
[Crossref]

K. T. Yong, I. Roy, H. Ding, E. J. Bergey, and P. N. Prasad, “Biocompatible Near-Infrared Quantum Dots as Ultrasensitive Probes for Long-Term in vivo Imaging Applications,” Small 5(17), 1997–2004 (2009).
[Crossref] [PubMed]

M. Nyk, R. Kumar, T. Y. Ohulchanskyy, E. J. Bergey, and P. N. Prasad, “High Contrast in Vitro and in Vivo Photoluminescence Bioimaging Using Near Infrared to Near Infrared Up-Conversion in Tm3+ and Yb3+ Doped Fluoride Nanophosphors,” Nano Lett. 8(11), 3834–3838 (2008).
[Crossref] [PubMed]

Betzig, E.

E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Olenych, J. S. Bonifacino, M. W. Davidson, J. Lippincott-Schwartz, and H. F. Hess, “Imaging intracellular fluorescent proteins at nanometer resolution,” Science 313(5793), 1642–1645 (2006).
[Crossref] [PubMed]

Bonifacino, J. S.

E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Olenych, J. S. Bonifacino, M. W. Davidson, J. Lippincott-Schwartz, and H. F. Hess, “Imaging intracellular fluorescent proteins at nanometer resolution,” Science 313(5793), 1642–1645 (2006).
[Crossref] [PubMed]

Borek, C.

R. Kumar, T. Y. Ohulchanskyy, I. Roy, S. K. Gupta, C. Borek, M. E. Thompson, and P. N. Prasad, “Near-Infrared Phosphorescent Polymeric Nanomicelles: Efficient Optical Probes for Tumor Imaging and Detection,” ACS Appl. Mater. Interfaces 1(7), 1474–1481 (2009).
[Crossref] [PubMed]

Brivanlou, A. H.

B. Dubertret, P. Skourides, D. J. Norris, V. Noireaux, A. H. Brivanlou, and A. Libchaber, “In vivo imaging of quantum dots encapsulated in phospholipid micelles,” Science 298(5599), 1759–1762 (2002).
[Crossref] [PubMed]

Cai, F. H.

J. Qian, D. Wang, F. H. Cai, Q. Q. Zhan, Y. L. Wang, and S. L. He, “Photosensitizer encapsulated organically modified silica nanoparticles for direct two-photon photodynamic therapy and In Vivo functional imaging,” Biomaterials 33(19), 4851–4860 (2012).
[Crossref] [PubMed]

J. Qian, L. Jiang, F. H. Cai, D. Wang, and S. L. He, “Fluorescence-surface enhanced Raman scattering co-functionalized gold nanorods as near-infrared probes for purely optical in vivo imaging,” Biomaterials 32(6), 1601–1610 (2011).
[Crossref] [PubMed]

Cai, M.

Y. P. Du, B. Xu, T. Fu, M. Cai, F. Li, Y. Zhang, and Q. B. Wang, “Near-Infrared Photoluminescent Ag2S Quantum Dots from a Single Source Precursor,” J. Am. Chem. Soc. 132(5), 1470–1471 (2010).
[Crossref] [PubMed]

Cai, W. B.

W. B. Cai, D. W. Shin, K. Chen, O. Gheysens, Q. Z. Cao, S. X. Wang, S. S. Gambhir, and X. Y. Chen, “Peptide-labeled near-infrared quantum dots for imaging tumor vasculature in living subjects,” Nano Lett. 6(4), 669–676 (2006).
[Crossref] [PubMed]

Cao, Q. Z.

W. B. Cai, D. W. Shin, K. Chen, O. Gheysens, Q. Z. Cao, S. X. Wang, S. S. Gambhir, and X. Y. Chen, “Peptide-labeled near-infrared quantum dots for imaging tumor vasculature in living subjects,” Nano Lett. 6(4), 669–676 (2006).
[Crossref] [PubMed]

Chance, B.

A. Yodh and B. Chance, “Spectroscopy and imaging with diffusing light,” Phys. Today 48(3), 34–40 (1995).
[Crossref]

Chen, H. Y.

X. Zhang, Y. Q. Gu, and H. Y. Chen, “Synthesis of biocompatible near infrared fluorescence Ag2S quantum dot and its application in bioimaging,” J. Innov. Opt. Health Sci. 7(03), 1350059 (2014).
[Crossref]

Chen, K.

W. B. Cai, D. W. Shin, K. Chen, O. Gheysens, Q. Z. Cao, S. X. Wang, S. S. Gambhir, and X. Y. Chen, “Peptide-labeled near-infrared quantum dots for imaging tumor vasculature in living subjects,” Nano Lett. 6(4), 669–676 (2006).
[Crossref] [PubMed]

Chen, X. Y.

W. B. Cai, D. W. Shin, K. Chen, O. Gheysens, Q. Z. Cao, S. X. Wang, S. S. Gambhir, and X. Y. Chen, “Peptide-labeled near-infrared quantum dots for imaging tumor vasculature in living subjects,” Nano Lett. 6(4), 669–676 (2006).
[Crossref] [PubMed]

Cho, S. J.

J. Lovrić, S. J. Cho, F. M. Winnik, and D. Maysinger, “Unmodified Cadmium Telluride Quantum Dots Induce Reactive Oxygen Species Formation Leading to Multiple Organelle Damage and Cell Death,” Chem. Biol. 12(11), 1227–1234 (2005).
[Crossref] [PubMed]

Clark, C. G.

N. G. Horton, K. Wang, D. Kobat, C. G. Clark, F. W. Wise, C. B. Schaffer, and C. Xu, “In vivo three-photon microscopy of subcortical structures within an intact mouse brain,” Nat. Photonics 7(3), 205–209 (2013).
[Crossref] [PubMed]

Cohn, L. H.

S. Kim, Y. T. Lim, E. G. Soltesz, A. M. De Grand, J. Lee, A. Nakayama, J. A. Parker, T. Mihaljevic, R. G. Laurence, D. M. Dor, L. H. Cohn, M. G. Bawendi, and J. V. Frangioni, “Near-infrared fluorescent type II quantum dots for sentinel lymph node mapping,” Nat. Biotechnol. 22(1), 93–97 (2004).
[Crossref] [PubMed]

Dahan, M.

M. Dahan, S. Lévi, C. Luccardini, P. Rostaing, B. Riveau, and A. Triller, “Diffusion dynamics of glycine receptors revealed by single-quantum dot tracking,” Science 302(5644), 442–445 (2003).
[Crossref] [PubMed]

Davidson, M. W.

E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Olenych, J. S. Bonifacino, M. W. Davidson, J. Lippincott-Schwartz, and H. F. Hess, “Imaging intracellular fluorescent proteins at nanometer resolution,” Science 313(5793), 1642–1645 (2006).
[Crossref] [PubMed]

De Grand, A. M.

S. Kim, Y. T. Lim, E. G. Soltesz, A. M. De Grand, J. Lee, A. Nakayama, J. A. Parker, T. Mihaljevic, R. G. Laurence, D. M. Dor, L. H. Cohn, M. G. Bawendi, and J. V. Frangioni, “Near-infrared fluorescent type II quantum dots for sentinel lymph node mapping,” Nat. Biotechnol. 22(1), 93–97 (2004).
[Crossref] [PubMed]

Ding, H.

K. T. Yong, I. Roy, H. Ding, E. J. Bergey, and P. N. Prasad, “Biocompatible Near-Infrared Quantum Dots as Ultrasensitive Probes for Long-Term in vivo Imaging Applications,” Small 5(17), 1997–2004 (2009).
[Crossref] [PubMed]

K. T. Yong, R. Hu, I. Roy, H. Ding, L. A. Vathy, E. J. Bergey, M. Mizuma, A. Maitra, and P. N. Prasa, “Tumor Targeting and Imaging in Live Animals with Functionalized Semiconductor Quantum Rods,” ACS. Appl. Mater. Inter. 1(3), 710–719 (2009).
[Crossref]

Dor, D. M.

S. Kim, Y. T. Lim, E. G. Soltesz, A. M. De Grand, J. Lee, A. Nakayama, J. A. Parker, T. Mihaljevic, R. G. Laurence, D. M. Dor, L. H. Cohn, M. G. Bawendi, and J. V. Frangioni, “Near-infrared fluorescent type II quantum dots for sentinel lymph node mapping,” Nat. Biotechnol. 22(1), 93–97 (2004).
[Crossref] [PubMed]

Du, Y. P.

Y. P. Du, B. Xu, T. Fu, M. Cai, F. Li, Y. Zhang, and Q. B. Wang, “Near-Infrared Photoluminescent Ag2S Quantum Dots from a Single Source Precursor,” J. Am. Chem. Soc. 132(5), 1470–1471 (2010).
[Crossref] [PubMed]

Dubertret, B.

B. Dubertret, P. Skourides, D. J. Norris, V. Noireaux, A. H. Brivanlou, and A. Libchaber, “In vivo imaging of quantum dots encapsulated in phospholipid micelles,” Science 298(5599), 1759–1762 (2002).
[Crossref] [PubMed]

Erogbogbo, F.

F. Erogbogbo, K. T. Yong, I. Roy, G. X. Xu, P. N. Prasad, and M. T. Swihart, “Biocompatible luminescent silicon quantum dots for imaging of cancer cells,” ACS Nano 2(5), 873–878 (2008).
[Crossref] [PubMed]

Escobedo, J. O.

J. O. Escobedo, O. Rusin, S. Lim, and R. M. Strongin, “NIR Dyes for Bioimaging Applications,” Curr. Opin. Chem. Biol. 14(1), 64–70 (2010).
[Crossref] [PubMed]

Feng, M.

Y. Lei, H. Tang, L. Yao, R. Yu, M. Feng, and B. Zou, “Applications of mesenchymal stem cells labeled with Tat peptide conjugated quantum dots to cell tracking in mouse body,” Bioconjug. Chem. 19(2), 421–427 (2008).
[Crossref] [PubMed]

Feng, W.

W. Feng, X. J. Zhu, and F. Y. Li, “Recent advances in the optimization and functionalization of upconversion nanomaterials for in vivo bioapplications,” NPG Asia Mater. 5(12), e75 (2013).
[Crossref]

Foda, M. F.

M. F. Foda, L. Huang, F. Shao, and H. Y. Han, “Biocompatible and highly luminescent near-infrared CuInS₂/ZnS quantum dots embedded silica beads for cancer cell imaging,” ACS Appl. Mater. Interfaces 6(3), 2011–2017 (2014).
[Crossref] [PubMed]

Frangioni, J. V.

S. Kim, Y. T. Lim, E. G. Soltesz, A. M. De Grand, J. Lee, A. Nakayama, J. A. Parker, T. Mihaljevic, R. G. Laurence, D. M. Dor, L. H. Cohn, M. G. Bawendi, and J. V. Frangioni, “Near-infrared fluorescent type II quantum dots for sentinel lymph node mapping,” Nat. Biotechnol. 22(1), 93–97 (2004).
[Crossref] [PubMed]

Fu, T.

Y. P. Du, B. Xu, T. Fu, M. Cai, F. Li, Y. Zhang, and Q. B. Wang, “Near-Infrared Photoluminescent Ag2S Quantum Dots from a Single Source Precursor,” J. Am. Chem. Soc. 132(5), 1470–1471 (2010).
[Crossref] [PubMed]

Gambhir, S. S.

W. B. Cai, D. W. Shin, K. Chen, O. Gheysens, Q. Z. Cao, S. X. Wang, S. S. Gambhir, and X. Y. Chen, “Peptide-labeled near-infrared quantum dots for imaging tumor vasculature in living subjects,” Nano Lett. 6(4), 669–676 (2006).
[Crossref] [PubMed]

Gheysens, O.

W. B. Cai, D. W. Shin, K. Chen, O. Gheysens, Q. Z. Cao, S. X. Wang, S. S. Gambhir, and X. Y. Chen, “Peptide-labeled near-infrared quantum dots for imaging tumor vasculature in living subjects,” Nano Lett. 6(4), 669–676 (2006).
[Crossref] [PubMed]

Gu, Y. Q.

X. Zhang, Y. Q. Gu, and H. Y. Chen, “Synthesis of biocompatible near infrared fluorescence Ag2S quantum dot and its application in bioimaging,” J. Innov. Opt. Health Sci. 7(03), 1350059 (2014).
[Crossref]

Gupta, S. K.

R. Kumar, T. Y. Ohulchanskyy, I. Roy, S. K. Gupta, C. Borek, M. E. Thompson, and P. N. Prasad, “Near-Infrared Phosphorescent Polymeric Nanomicelles: Efficient Optical Probes for Tumor Imaging and Detection,” ACS Appl. Mater. Interfaces 1(7), 1474–1481 (2009).
[Crossref] [PubMed]

Gurfinkel, M.

E. M. Sevick-Muraca, J. P. Houston, and M. Gurfinkel, “Fluorescence-enhanced, near infrared diagnostic imaging with contrast agents,” Curr. Opin. Chem. Biol. 6(5), 642–650 (2002).
[Crossref] [PubMed]

Gustafsson, M. G. L.

M. G. L. Gustafsson, “Nonlinear structured-illumination microscopy: Wide-field fluorescence imaging with theoretically unlimited resolution,” Proc. Natl. Acad. Sci. U.S.A. 102(37), 13081–13086 (2005).
[Crossref] [PubMed]

Han, H. Y.

M. F. Foda, L. Huang, F. Shao, and H. Y. Han, “Biocompatible and highly luminescent near-infrared CuInS₂/ZnS quantum dots embedded silica beads for cancer cell imaging,” ACS Appl. Mater. Interfaces 6(3), 2011–2017 (2014).
[Crossref] [PubMed]

Han, S. H.

D. Wang, J. Qian, S. L. He, J. S. Park, K. S. Lee, S. H. Han, and Y. Mu, “Aggregation-enhanced fluorescence in PEGylated phospholipid nanomicelles for in vivo imaging,” Biomaterials 32(25), 5880–5888 (2011).
[Crossref] [PubMed]

Hardman, R.

R. Hardman, “A toxicologic review of quantum dots: Toxicity depends on physicochemical and environmental factors,” Environ. Health Perspect. 114(2), 165–172 (2006).
[Crossref] [PubMed]

He, S. L.

J. Qian, D. Wang, F. H. Cai, Q. Q. Zhan, Y. L. Wang, and S. L. He, “Photosensitizer encapsulated organically modified silica nanoparticles for direct two-photon photodynamic therapy and In Vivo functional imaging,” Biomaterials 33(19), 4851–4860 (2012).
[Crossref] [PubMed]

D. Wang, J. Qian, S. L. He, J. S. Park, K. S. Lee, S. H. Han, and Y. Mu, “Aggregation-enhanced fluorescence in PEGylated phospholipid nanomicelles for in vivo imaging,” Biomaterials 32(25), 5880–5888 (2011).
[Crossref] [PubMed]

J. Qian, L. Jiang, F. H. Cai, D. Wang, and S. L. He, “Fluorescence-surface enhanced Raman scattering co-functionalized gold nanorods as near-infrared probes for purely optical in vivo imaging,” Biomaterials 32(6), 1601–1610 (2011).
[Crossref] [PubMed]

Hell, S. W.

S. W. Hell, “Far-field optical nanoscopy,” Science 316(5828), 1153–1158 (2007).
[Crossref] [PubMed]

Hess, H. F.

E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Olenych, J. S. Bonifacino, M. W. Davidson, J. Lippincott-Schwartz, and H. F. Hess, “Imaging intracellular fluorescent proteins at nanometer resolution,” Science 313(5793), 1642–1645 (2006).
[Crossref] [PubMed]

Horton, N. G.

N. G. Horton, K. Wang, D. Kobat, C. G. Clark, F. W. Wise, C. B. Schaffer, and C. Xu, “In vivo three-photon microscopy of subcortical structures within an intact mouse brain,” Nat. Photonics 7(3), 205–209 (2013).
[Crossref] [PubMed]

Houston, J. P.

E. M. Sevick-Muraca, J. P. Houston, and M. Gurfinkel, “Fluorescence-enhanced, near infrared diagnostic imaging with contrast agents,” Curr. Opin. Chem. Biol. 6(5), 642–650 (2002).
[Crossref] [PubMed]

Hu, R.

K. T. Yong, R. Hu, I. Roy, H. Ding, L. A. Vathy, E. J. Bergey, M. Mizuma, A. Maitra, and P. N. Prasa, “Tumor Targeting and Imaging in Live Animals with Functionalized Semiconductor Quantum Rods,” ACS. Appl. Mater. Inter. 1(3), 710–719 (2009).
[Crossref]

Huang, L.

M. F. Foda, L. Huang, F. Shao, and H. Y. Han, “Biocompatible and highly luminescent near-infrared CuInS₂/ZnS quantum dots embedded silica beads for cancer cell imaging,” ACS Appl. Mater. Interfaces 6(3), 2011–2017 (2014).
[Crossref] [PubMed]

Jiang, L.

J. Qian, L. Jiang, F. H. Cai, D. Wang, and S. L. He, “Fluorescence-surface enhanced Raman scattering co-functionalized gold nanorods as near-infrared probes for purely optical in vivo imaging,” Biomaterials 32(6), 1601–1610 (2011).
[Crossref] [PubMed]

Kim, C.

K. H. Song, C. Kim, K. Maslov, and L. V. Wang, “Noninvasive in vivo spectroscopic nanorod-contrast photoacoustic mapping of sentinel lymph nodes,” Eur. J. Radiol. 70(2), 227–231 (2009).
[Crossref] [PubMed]

Kim, S.

S. Kim, Y. T. Lim, E. G. Soltesz, A. M. De Grand, J. Lee, A. Nakayama, J. A. Parker, T. Mihaljevic, R. G. Laurence, D. M. Dor, L. H. Cohn, M. G. Bawendi, and J. V. Frangioni, “Near-infrared fluorescent type II quantum dots for sentinel lymph node mapping,” Nat. Biotechnol. 22(1), 93–97 (2004).
[Crossref] [PubMed]

Kobat, D.

N. G. Horton, K. Wang, D. Kobat, C. G. Clark, F. W. Wise, C. B. Schaffer, and C. Xu, “In vivo three-photon microscopy of subcortical structures within an intact mouse brain,” Nat. Photonics 7(3), 205–209 (2013).
[Crossref] [PubMed]

Kumar, R.

R. Kumar, I. Roy, T. Y. Ohulchanskky, L. A. Vathy, E. J. Bergey, M. Sajjad, and P. N. Prasad, “In Vivo Biodistribution and Clearance Studies Using Multimodal Organically Modified Silica Nanoparticles,” ACS Nano 4(2), 699–708 (2010).
[Crossref] [PubMed]

R. Kumar, T. Y. Ohulchanskyy, I. Roy, S. K. Gupta, C. Borek, M. E. Thompson, and P. N. Prasad, “Near-Infrared Phosphorescent Polymeric Nanomicelles: Efficient Optical Probes for Tumor Imaging and Detection,” ACS Appl. Mater. Interfaces 1(7), 1474–1481 (2009).
[Crossref] [PubMed]

M. Nyk, R. Kumar, T. Y. Ohulchanskyy, E. J. Bergey, and P. N. Prasad, “High Contrast in Vitro and in Vivo Photoluminescence Bioimaging Using Near Infrared to Near Infrared Up-Conversion in Tm3+ and Yb3+ Doped Fluoride Nanophosphors,” Nano Lett. 8(11), 3834–3838 (2008).
[Crossref] [PubMed]

Laurence, R. G.

S. Kim, Y. T. Lim, E. G. Soltesz, A. M. De Grand, J. Lee, A. Nakayama, J. A. Parker, T. Mihaljevic, R. G. Laurence, D. M. Dor, L. H. Cohn, M. G. Bawendi, and J. V. Frangioni, “Near-infrared fluorescent type II quantum dots for sentinel lymph node mapping,” Nat. Biotechnol. 22(1), 93–97 (2004).
[Crossref] [PubMed]

Lee, J.

S. Kim, Y. T. Lim, E. G. Soltesz, A. M. De Grand, J. Lee, A. Nakayama, J. A. Parker, T. Mihaljevic, R. G. Laurence, D. M. Dor, L. H. Cohn, M. G. Bawendi, and J. V. Frangioni, “Near-infrared fluorescent type II quantum dots for sentinel lymph node mapping,” Nat. Biotechnol. 22(1), 93–97 (2004).
[Crossref] [PubMed]

Lee, K. S.

D. Wang, J. Qian, S. L. He, J. S. Park, K. S. Lee, S. H. Han, and Y. Mu, “Aggregation-enhanced fluorescence in PEGylated phospholipid nanomicelles for in vivo imaging,” Biomaterials 32(25), 5880–5888 (2011).
[Crossref] [PubMed]

Lei, Y.

Y. Lei, H. Tang, L. Yao, R. Yu, M. Feng, and B. Zou, “Applications of mesenchymal stem cells labeled with Tat peptide conjugated quantum dots to cell tracking in mouse body,” Bioconjug. Chem. 19(2), 421–427 (2008).
[Crossref] [PubMed]

Lévi, S.

M. Dahan, S. Lévi, C. Luccardini, P. Rostaing, B. Riveau, and A. Triller, “Diffusion dynamics of glycine receptors revealed by single-quantum dot tracking,” Science 302(5644), 442–445 (2003).
[Crossref] [PubMed]

Li, F.

Y. P. Du, B. Xu, T. Fu, M. Cai, F. Li, Y. Zhang, and Q. B. Wang, “Near-Infrared Photoluminescent Ag2S Quantum Dots from a Single Source Precursor,” J. Am. Chem. Soc. 132(5), 1470–1471 (2010).
[Crossref] [PubMed]

Li, F. Y.

W. Feng, X. J. Zhu, and F. Y. Li, “Recent advances in the optimization and functionalization of upconversion nanomaterials for in vivo bioapplications,” NPG Asia Mater. 5(12), e75 (2013).
[Crossref]

J. Zhou, Z. Liu, and F. Y. Li, “Upconversion nanophosphors for small-animal imaging,” Chem. Soc. Rev. 41(3), 1323–1349 (2012).
[Crossref] [PubMed]

Libchaber, A.

B. Dubertret, P. Skourides, D. J. Norris, V. Noireaux, A. H. Brivanlou, and A. Libchaber, “In vivo imaging of quantum dots encapsulated in phospholipid micelles,” Science 298(5599), 1759–1762 (2002).
[Crossref] [PubMed]

Lim, S.

J. O. Escobedo, O. Rusin, S. Lim, and R. M. Strongin, “NIR Dyes for Bioimaging Applications,” Curr. Opin. Chem. Biol. 14(1), 64–70 (2010).
[Crossref] [PubMed]

Lim, Y. T.

S. Kim, Y. T. Lim, E. G. Soltesz, A. M. De Grand, J. Lee, A. Nakayama, J. A. Parker, T. Mihaljevic, R. G. Laurence, D. M. Dor, L. H. Cohn, M. G. Bawendi, and J. V. Frangioni, “Near-infrared fluorescent type II quantum dots for sentinel lymph node mapping,” Nat. Biotechnol. 22(1), 93–97 (2004).
[Crossref] [PubMed]

Lindwasser, O. W.

E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Olenych, J. S. Bonifacino, M. W. Davidson, J. Lippincott-Schwartz, and H. F. Hess, “Imaging intracellular fluorescent proteins at nanometer resolution,” Science 313(5793), 1642–1645 (2006).
[Crossref] [PubMed]

Lippincott-Schwartz, J.

E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Olenych, J. S. Bonifacino, M. W. Davidson, J. Lippincott-Schwartz, and H. F. Hess, “Imaging intracellular fluorescent proteins at nanometer resolution,” Science 313(5793), 1642–1645 (2006).
[Crossref] [PubMed]

Liu, H. C.

C. T. Xu, P. Svenmarker, H. C. Liu, X. Wu, M. E. Messing, L. R. Wallenberg, and S. Andersson-Engels, “High-Resolution Fluorescence Diffuse Optical Tomography Developed with Nonlinear Upconverting Nanoparticles,” ACS Nano 6(6), 4788–4795 (2012).
[Crossref] [PubMed]

Liu, X. G.

F. Wang and X. G. Liu, “Recent advances in the chemistry of lanthanide-doped upconversion nanocrystals,” Chem. Soc. Rev. 38(4), 976–989 (2009).
[Crossref] [PubMed]

Liu, Z.

J. Zhou, Z. Liu, and F. Y. Li, “Upconversion nanophosphors for small-animal imaging,” Chem. Soc. Rev. 41(3), 1323–1349 (2012).
[Crossref] [PubMed]

Lovric, J.

J. Lovrić, S. J. Cho, F. M. Winnik, and D. Maysinger, “Unmodified Cadmium Telluride Quantum Dots Induce Reactive Oxygen Species Formation Leading to Multiple Organelle Damage and Cell Death,” Chem. Biol. 12(11), 1227–1234 (2005).
[Crossref] [PubMed]

Luccardini, C.

M. Dahan, S. Lévi, C. Luccardini, P. Rostaing, B. Riveau, and A. Triller, “Diffusion dynamics of glycine receptors revealed by single-quantum dot tracking,” Science 302(5644), 442–445 (2003).
[Crossref] [PubMed]

Maitra, A.

K. T. Yong, R. Hu, I. Roy, H. Ding, L. A. Vathy, E. J. Bergey, M. Mizuma, A. Maitra, and P. N. Prasa, “Tumor Targeting and Imaging in Live Animals with Functionalized Semiconductor Quantum Rods,” ACS. Appl. Mater. Inter. 1(3), 710–719 (2009).
[Crossref]

Maslov, K.

K. H. Song, C. Kim, K. Maslov, and L. V. Wang, “Noninvasive in vivo spectroscopic nanorod-contrast photoacoustic mapping of sentinel lymph nodes,” Eur. J. Radiol. 70(2), 227–231 (2009).
[Crossref] [PubMed]

Maysinger, D.

J. Lovrić, S. J. Cho, F. M. Winnik, and D. Maysinger, “Unmodified Cadmium Telluride Quantum Dots Induce Reactive Oxygen Species Formation Leading to Multiple Organelle Damage and Cell Death,” Chem. Biol. 12(11), 1227–1234 (2005).
[Crossref] [PubMed]

Messing, M. E.

C. T. Xu, P. Svenmarker, H. C. Liu, X. Wu, M. E. Messing, L. R. Wallenberg, and S. Andersson-Engels, “High-Resolution Fluorescence Diffuse Optical Tomography Developed with Nonlinear Upconverting Nanoparticles,” ACS Nano 6(6), 4788–4795 (2012).
[Crossref] [PubMed]

Mihaljevic, T.

S. Kim, Y. T. Lim, E. G. Soltesz, A. M. De Grand, J. Lee, A. Nakayama, J. A. Parker, T. Mihaljevic, R. G. Laurence, D. M. Dor, L. H. Cohn, M. G. Bawendi, and J. V. Frangioni, “Near-infrared fluorescent type II quantum dots for sentinel lymph node mapping,” Nat. Biotechnol. 22(1), 93–97 (2004).
[Crossref] [PubMed]

Mizuma, M.

K. T. Yong, R. Hu, I. Roy, H. Ding, L. A. Vathy, E. J. Bergey, M. Mizuma, A. Maitra, and P. N. Prasa, “Tumor Targeting and Imaging in Live Animals with Functionalized Semiconductor Quantum Rods,” ACS. Appl. Mater. Inter. 1(3), 710–719 (2009).
[Crossref]

Mu, Y.

D. Wang, J. Qian, S. L. He, J. S. Park, K. S. Lee, S. H. Han, and Y. Mu, “Aggregation-enhanced fluorescence in PEGylated phospholipid nanomicelles for in vivo imaging,” Biomaterials 32(25), 5880–5888 (2011).
[Crossref] [PubMed]

Nakayama, A.

S. Kim, Y. T. Lim, E. G. Soltesz, A. M. De Grand, J. Lee, A. Nakayama, J. A. Parker, T. Mihaljevic, R. G. Laurence, D. M. Dor, L. H. Cohn, M. G. Bawendi, and J. V. Frangioni, “Near-infrared fluorescent type II quantum dots for sentinel lymph node mapping,” Nat. Biotechnol. 22(1), 93–97 (2004).
[Crossref] [PubMed]

Noireaux, V.

B. Dubertret, P. Skourides, D. J. Norris, V. Noireaux, A. H. Brivanlou, and A. Libchaber, “In vivo imaging of quantum dots encapsulated in phospholipid micelles,” Science 298(5599), 1759–1762 (2002).
[Crossref] [PubMed]

Norris, D. J.

B. Dubertret, P. Skourides, D. J. Norris, V. Noireaux, A. H. Brivanlou, and A. Libchaber, “In vivo imaging of quantum dots encapsulated in phospholipid micelles,” Science 298(5599), 1759–1762 (2002).
[Crossref] [PubMed]

Nyk, M.

M. Nyk, R. Kumar, T. Y. Ohulchanskyy, E. J. Bergey, and P. N. Prasad, “High Contrast in Vitro and in Vivo Photoluminescence Bioimaging Using Near Infrared to Near Infrared Up-Conversion in Tm3+ and Yb3+ Doped Fluoride Nanophosphors,” Nano Lett. 8(11), 3834–3838 (2008).
[Crossref] [PubMed]

Ohulchanskky, T. Y.

R. Kumar, I. Roy, T. Y. Ohulchanskky, L. A. Vathy, E. J. Bergey, M. Sajjad, and P. N. Prasad, “In Vivo Biodistribution and Clearance Studies Using Multimodal Organically Modified Silica Nanoparticles,” ACS Nano 4(2), 699–708 (2010).
[Crossref] [PubMed]

Ohulchanskyy, T. Y.

R. Kumar, T. Y. Ohulchanskyy, I. Roy, S. K. Gupta, C. Borek, M. E. Thompson, and P. N. Prasad, “Near-Infrared Phosphorescent Polymeric Nanomicelles: Efficient Optical Probes for Tumor Imaging and Detection,” ACS Appl. Mater. Interfaces 1(7), 1474–1481 (2009).
[Crossref] [PubMed]

M. Nyk, R. Kumar, T. Y. Ohulchanskyy, E. J. Bergey, and P. N. Prasad, “High Contrast in Vitro and in Vivo Photoluminescence Bioimaging Using Near Infrared to Near Infrared Up-Conversion in Tm3+ and Yb3+ Doped Fluoride Nanophosphors,” Nano Lett. 8(11), 3834–3838 (2008).
[Crossref] [PubMed]

Olenych, S.

E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Olenych, J. S. Bonifacino, M. W. Davidson, J. Lippincott-Schwartz, and H. F. Hess, “Imaging intracellular fluorescent proteins at nanometer resolution,” Science 313(5793), 1642–1645 (2006).
[Crossref] [PubMed]

Park, J. S.

D. Wang, J. Qian, S. L. He, J. S. Park, K. S. Lee, S. H. Han, and Y. Mu, “Aggregation-enhanced fluorescence in PEGylated phospholipid nanomicelles for in vivo imaging,” Biomaterials 32(25), 5880–5888 (2011).
[Crossref] [PubMed]

Parker, J. A.

S. Kim, Y. T. Lim, E. G. Soltesz, A. M. De Grand, J. Lee, A. Nakayama, J. A. Parker, T. Mihaljevic, R. G. Laurence, D. M. Dor, L. H. Cohn, M. G. Bawendi, and J. V. Frangioni, “Near-infrared fluorescent type II quantum dots for sentinel lymph node mapping,” Nat. Biotechnol. 22(1), 93–97 (2004).
[Crossref] [PubMed]

Patterson, G. H.

E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Olenych, J. S. Bonifacino, M. W. Davidson, J. Lippincott-Schwartz, and H. F. Hess, “Imaging intracellular fluorescent proteins at nanometer resolution,” Science 313(5793), 1642–1645 (2006).
[Crossref] [PubMed]

Penzkofer, A.

R. Philip, A. Penzkofer, W. Bäumler, R. M. Szeimies, and C. Abels, “Absorption and fluorescence spectroscopic investigation of indocyanine green,” J. Photochem. Photobiol. Chem. 96(1–3), 137–148 (1996).
[Crossref]

Philip, R.

R. Philip, A. Penzkofer, W. Bäumler, R. M. Szeimies, and C. Abels, “Absorption and fluorescence spectroscopic investigation of indocyanine green,” J. Photochem. Photobiol. Chem. 96(1–3), 137–148 (1996).
[Crossref]

Poellinger, A.

A. Poellinger, “Near-infrared imaging of breast cancer using optical contrast agents,” J. Biophotonics 5(11-12), 815–826 (2012).
[Crossref] [PubMed]

Prasa, P. N.

K. T. Yong, R. Hu, I. Roy, H. Ding, L. A. Vathy, E. J. Bergey, M. Mizuma, A. Maitra, and P. N. Prasa, “Tumor Targeting and Imaging in Live Animals with Functionalized Semiconductor Quantum Rods,” ACS. Appl. Mater. Inter. 1(3), 710–719 (2009).
[Crossref]

Prasad, P. N.

R. Kumar, I. Roy, T. Y. Ohulchanskky, L. A. Vathy, E. J. Bergey, M. Sajjad, and P. N. Prasad, “In Vivo Biodistribution and Clearance Studies Using Multimodal Organically Modified Silica Nanoparticles,” ACS Nano 4(2), 699–708 (2010).
[Crossref] [PubMed]

R. Kumar, T. Y. Ohulchanskyy, I. Roy, S. K. Gupta, C. Borek, M. E. Thompson, and P. N. Prasad, “Near-Infrared Phosphorescent Polymeric Nanomicelles: Efficient Optical Probes for Tumor Imaging and Detection,” ACS Appl. Mater. Interfaces 1(7), 1474–1481 (2009).
[Crossref] [PubMed]

K. T. Yong, I. Roy, H. Ding, E. J. Bergey, and P. N. Prasad, “Biocompatible Near-Infrared Quantum Dots as Ultrasensitive Probes for Long-Term in vivo Imaging Applications,” Small 5(17), 1997–2004 (2009).
[Crossref] [PubMed]

M. Nyk, R. Kumar, T. Y. Ohulchanskyy, E. J. Bergey, and P. N. Prasad, “High Contrast in Vitro and in Vivo Photoluminescence Bioimaging Using Near Infrared to Near Infrared Up-Conversion in Tm3+ and Yb3+ Doped Fluoride Nanophosphors,” Nano Lett. 8(11), 3834–3838 (2008).
[Crossref] [PubMed]

F. Erogbogbo, K. T. Yong, I. Roy, G. X. Xu, P. N. Prasad, and M. T. Swihart, “Biocompatible luminescent silicon quantum dots for imaging of cancer cells,” ACS Nano 2(5), 873–878 (2008).
[Crossref] [PubMed]

Qian, J.

J. Qian, D. Wang, F. H. Cai, Q. Q. Zhan, Y. L. Wang, and S. L. He, “Photosensitizer encapsulated organically modified silica nanoparticles for direct two-photon photodynamic therapy and In Vivo functional imaging,” Biomaterials 33(19), 4851–4860 (2012).
[Crossref] [PubMed]

D. Wang, J. Qian, S. L. He, J. S. Park, K. S. Lee, S. H. Han, and Y. Mu, “Aggregation-enhanced fluorescence in PEGylated phospholipid nanomicelles for in vivo imaging,” Biomaterials 32(25), 5880–5888 (2011).
[Crossref] [PubMed]

J. Qian, L. Jiang, F. H. Cai, D. Wang, and S. L. He, “Fluorescence-surface enhanced Raman scattering co-functionalized gold nanorods as near-infrared probes for purely optical in vivo imaging,” Biomaterials 32(6), 1601–1610 (2011).
[Crossref] [PubMed]

Riveau, B.

M. Dahan, S. Lévi, C. Luccardini, P. Rostaing, B. Riveau, and A. Triller, “Diffusion dynamics of glycine receptors revealed by single-quantum dot tracking,” Science 302(5644), 442–445 (2003).
[Crossref] [PubMed]

Rostaing, P.

M. Dahan, S. Lévi, C. Luccardini, P. Rostaing, B. Riveau, and A. Triller, “Diffusion dynamics of glycine receptors revealed by single-quantum dot tracking,” Science 302(5644), 442–445 (2003).
[Crossref] [PubMed]

Roy, I.

R. Kumar, I. Roy, T. Y. Ohulchanskky, L. A. Vathy, E. J. Bergey, M. Sajjad, and P. N. Prasad, “In Vivo Biodistribution and Clearance Studies Using Multimodal Organically Modified Silica Nanoparticles,” ACS Nano 4(2), 699–708 (2010).
[Crossref] [PubMed]

R. Kumar, T. Y. Ohulchanskyy, I. Roy, S. K. Gupta, C. Borek, M. E. Thompson, and P. N. Prasad, “Near-Infrared Phosphorescent Polymeric Nanomicelles: Efficient Optical Probes for Tumor Imaging and Detection,” ACS Appl. Mater. Interfaces 1(7), 1474–1481 (2009).
[Crossref] [PubMed]

K. T. Yong, R. Hu, I. Roy, H. Ding, L. A. Vathy, E. J. Bergey, M. Mizuma, A. Maitra, and P. N. Prasa, “Tumor Targeting and Imaging in Live Animals with Functionalized Semiconductor Quantum Rods,” ACS. Appl. Mater. Inter. 1(3), 710–719 (2009).
[Crossref]

K. T. Yong, I. Roy, H. Ding, E. J. Bergey, and P. N. Prasad, “Biocompatible Near-Infrared Quantum Dots as Ultrasensitive Probes for Long-Term in vivo Imaging Applications,” Small 5(17), 1997–2004 (2009).
[Crossref] [PubMed]

F. Erogbogbo, K. T. Yong, I. Roy, G. X. Xu, P. N. Prasad, and M. T. Swihart, “Biocompatible luminescent silicon quantum dots for imaging of cancer cells,” ACS Nano 2(5), 873–878 (2008).
[Crossref] [PubMed]

Rusin, O.

J. O. Escobedo, O. Rusin, S. Lim, and R. M. Strongin, “NIR Dyes for Bioimaging Applications,” Curr. Opin. Chem. Biol. 14(1), 64–70 (2010).
[Crossref] [PubMed]

Rust, M. J.

M. J. Rust, M. Bates, and X. W. Zhuang, “Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM),” Nat. Methods 3(10), 793–796 (2006).
[Crossref] [PubMed]

Sajjad, M.

R. Kumar, I. Roy, T. Y. Ohulchanskky, L. A. Vathy, E. J. Bergey, M. Sajjad, and P. N. Prasad, “In Vivo Biodistribution and Clearance Studies Using Multimodal Organically Modified Silica Nanoparticles,” ACS Nano 4(2), 699–708 (2010).
[Crossref] [PubMed]

Schaffer, C. B.

N. G. Horton, K. Wang, D. Kobat, C. G. Clark, F. W. Wise, C. B. Schaffer, and C. Xu, “In vivo three-photon microscopy of subcortical structures within an intact mouse brain,” Nat. Photonics 7(3), 205–209 (2013).
[Crossref] [PubMed]

Sevick-Muraca, E. M.

E. M. Sevick-Muraca, J. P. Houston, and M. Gurfinkel, “Fluorescence-enhanced, near infrared diagnostic imaging with contrast agents,” Curr. Opin. Chem. Biol. 6(5), 642–650 (2002).
[Crossref] [PubMed]

Shao, F.

M. F. Foda, L. Huang, F. Shao, and H. Y. Han, “Biocompatible and highly luminescent near-infrared CuInS₂/ZnS quantum dots embedded silica beads for cancer cell imaging,” ACS Appl. Mater. Interfaces 6(3), 2011–2017 (2014).
[Crossref] [PubMed]

Shin, D. W.

W. B. Cai, D. W. Shin, K. Chen, O. Gheysens, Q. Z. Cao, S. X. Wang, S. S. Gambhir, and X. Y. Chen, “Peptide-labeled near-infrared quantum dots for imaging tumor vasculature in living subjects,” Nano Lett. 6(4), 669–676 (2006).
[Crossref] [PubMed]

Skourides, P.

B. Dubertret, P. Skourides, D. J. Norris, V. Noireaux, A. H. Brivanlou, and A. Libchaber, “In vivo imaging of quantum dots encapsulated in phospholipid micelles,” Science 298(5599), 1759–1762 (2002).
[Crossref] [PubMed]

Soltesz, E. G.

S. Kim, Y. T. Lim, E. G. Soltesz, A. M. De Grand, J. Lee, A. Nakayama, J. A. Parker, T. Mihaljevic, R. G. Laurence, D. M. Dor, L. H. Cohn, M. G. Bawendi, and J. V. Frangioni, “Near-infrared fluorescent type II quantum dots for sentinel lymph node mapping,” Nat. Biotechnol. 22(1), 93–97 (2004).
[Crossref] [PubMed]

Song, K. H.

K. H. Song, C. Kim, K. Maslov, and L. V. Wang, “Noninvasive in vivo spectroscopic nanorod-contrast photoacoustic mapping of sentinel lymph nodes,” Eur. J. Radiol. 70(2), 227–231 (2009).
[Crossref] [PubMed]

Sougrat, R.

E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Olenych, J. S. Bonifacino, M. W. Davidson, J. Lippincott-Schwartz, and H. F. Hess, “Imaging intracellular fluorescent proteins at nanometer resolution,” Science 313(5793), 1642–1645 (2006).
[Crossref] [PubMed]

Strongin, R. M.

J. O. Escobedo, O. Rusin, S. Lim, and R. M. Strongin, “NIR Dyes for Bioimaging Applications,” Curr. Opin. Chem. Biol. 14(1), 64–70 (2010).
[Crossref] [PubMed]

Svenmarker, P.

C. T. Xu, P. Svenmarker, H. C. Liu, X. Wu, M. E. Messing, L. R. Wallenberg, and S. Andersson-Engels, “High-Resolution Fluorescence Diffuse Optical Tomography Developed with Nonlinear Upconverting Nanoparticles,” ACS Nano 6(6), 4788–4795 (2012).
[Crossref] [PubMed]

Swihart, M. T.

F. Erogbogbo, K. T. Yong, I. Roy, G. X. Xu, P. N. Prasad, and M. T. Swihart, “Biocompatible luminescent silicon quantum dots for imaging of cancer cells,” ACS Nano 2(5), 873–878 (2008).
[Crossref] [PubMed]

Szeimies, R. M.

R. Philip, A. Penzkofer, W. Bäumler, R. M. Szeimies, and C. Abels, “Absorption and fluorescence spectroscopic investigation of indocyanine green,” J. Photochem. Photobiol. Chem. 96(1–3), 137–148 (1996).
[Crossref]

Tang, H.

Y. Lei, H. Tang, L. Yao, R. Yu, M. Feng, and B. Zou, “Applications of mesenchymal stem cells labeled with Tat peptide conjugated quantum dots to cell tracking in mouse body,” Bioconjug. Chem. 19(2), 421–427 (2008).
[Crossref] [PubMed]

Thompson, M. E.

R. Kumar, T. Y. Ohulchanskyy, I. Roy, S. K. Gupta, C. Borek, M. E. Thompson, and P. N. Prasad, “Near-Infrared Phosphorescent Polymeric Nanomicelles: Efficient Optical Probes for Tumor Imaging and Detection,” ACS Appl. Mater. Interfaces 1(7), 1474–1481 (2009).
[Crossref] [PubMed]

Triller, A.

M. Dahan, S. Lévi, C. Luccardini, P. Rostaing, B. Riveau, and A. Triller, “Diffusion dynamics of glycine receptors revealed by single-quantum dot tracking,” Science 302(5644), 442–445 (2003).
[Crossref] [PubMed]

Vathy, L. A.

R. Kumar, I. Roy, T. Y. Ohulchanskky, L. A. Vathy, E. J. Bergey, M. Sajjad, and P. N. Prasad, “In Vivo Biodistribution and Clearance Studies Using Multimodal Organically Modified Silica Nanoparticles,” ACS Nano 4(2), 699–708 (2010).
[Crossref] [PubMed]

K. T. Yong, R. Hu, I. Roy, H. Ding, L. A. Vathy, E. J. Bergey, M. Mizuma, A. Maitra, and P. N. Prasa, “Tumor Targeting and Imaging in Live Animals with Functionalized Semiconductor Quantum Rods,” ACS. Appl. Mater. Inter. 1(3), 710–719 (2009).
[Crossref]

Wallenberg, L. R.

C. T. Xu, P. Svenmarker, H. C. Liu, X. Wu, M. E. Messing, L. R. Wallenberg, and S. Andersson-Engels, “High-Resolution Fluorescence Diffuse Optical Tomography Developed with Nonlinear Upconverting Nanoparticles,” ACS Nano 6(6), 4788–4795 (2012).
[Crossref] [PubMed]

Wang, D.

J. Qian, D. Wang, F. H. Cai, Q. Q. Zhan, Y. L. Wang, and S. L. He, “Photosensitizer encapsulated organically modified silica nanoparticles for direct two-photon photodynamic therapy and In Vivo functional imaging,” Biomaterials 33(19), 4851–4860 (2012).
[Crossref] [PubMed]

D. Wang, J. Qian, S. L. He, J. S. Park, K. S. Lee, S. H. Han, and Y. Mu, “Aggregation-enhanced fluorescence in PEGylated phospholipid nanomicelles for in vivo imaging,” Biomaterials 32(25), 5880–5888 (2011).
[Crossref] [PubMed]

J. Qian, L. Jiang, F. H. Cai, D. Wang, and S. L. He, “Fluorescence-surface enhanced Raman scattering co-functionalized gold nanorods as near-infrared probes for purely optical in vivo imaging,” Biomaterials 32(6), 1601–1610 (2011).
[Crossref] [PubMed]

Wang, F.

F. Wang and X. G. Liu, “Recent advances in the chemistry of lanthanide-doped upconversion nanocrystals,” Chem. Soc. Rev. 38(4), 976–989 (2009).
[Crossref] [PubMed]

Wang, K.

N. G. Horton, K. Wang, D. Kobat, C. G. Clark, F. W. Wise, C. B. Schaffer, and C. Xu, “In vivo three-photon microscopy of subcortical structures within an intact mouse brain,” Nat. Photonics 7(3), 205–209 (2013).
[Crossref] [PubMed]

Wang, L. V.

K. H. Song, C. Kim, K. Maslov, and L. V. Wang, “Noninvasive in vivo spectroscopic nanorod-contrast photoacoustic mapping of sentinel lymph nodes,” Eur. J. Radiol. 70(2), 227–231 (2009).
[Crossref] [PubMed]

Wang, Q. B.

Y. P. Du, B. Xu, T. Fu, M. Cai, F. Li, Y. Zhang, and Q. B. Wang, “Near-Infrared Photoluminescent Ag2S Quantum Dots from a Single Source Precursor,” J. Am. Chem. Soc. 132(5), 1470–1471 (2010).
[Crossref] [PubMed]

Wang, S. X.

W. B. Cai, D. W. Shin, K. Chen, O. Gheysens, Q. Z. Cao, S. X. Wang, S. S. Gambhir, and X. Y. Chen, “Peptide-labeled near-infrared quantum dots for imaging tumor vasculature in living subjects,” Nano Lett. 6(4), 669–676 (2006).
[Crossref] [PubMed]

Wang, Y. L.

J. Qian, D. Wang, F. H. Cai, Q. Q. Zhan, Y. L. Wang, and S. L. He, “Photosensitizer encapsulated organically modified silica nanoparticles for direct two-photon photodynamic therapy and In Vivo functional imaging,” Biomaterials 33(19), 4851–4860 (2012).
[Crossref] [PubMed]

Weissleder, R.

R. Weissleder, “A clearer vision for in vivo imaging,” Nat. Biotechnol. 19(4), 316–317 (2001).
[Crossref] [PubMed]

Winnik, F. M.

J. Lovrić, S. J. Cho, F. M. Winnik, and D. Maysinger, “Unmodified Cadmium Telluride Quantum Dots Induce Reactive Oxygen Species Formation Leading to Multiple Organelle Damage and Cell Death,” Chem. Biol. 12(11), 1227–1234 (2005).
[Crossref] [PubMed]

Wise, F. W.

N. G. Horton, K. Wang, D. Kobat, C. G. Clark, F. W. Wise, C. B. Schaffer, and C. Xu, “In vivo three-photon microscopy of subcortical structures within an intact mouse brain,” Nat. Photonics 7(3), 205–209 (2013).
[Crossref] [PubMed]

Wu, X.

C. T. Xu, P. Svenmarker, H. C. Liu, X. Wu, M. E. Messing, L. R. Wallenberg, and S. Andersson-Engels, “High-Resolution Fluorescence Diffuse Optical Tomography Developed with Nonlinear Upconverting Nanoparticles,” ACS Nano 6(6), 4788–4795 (2012).
[Crossref] [PubMed]

Xu, B.

Y. P. Du, B. Xu, T. Fu, M. Cai, F. Li, Y. Zhang, and Q. B. Wang, “Near-Infrared Photoluminescent Ag2S Quantum Dots from a Single Source Precursor,” J. Am. Chem. Soc. 132(5), 1470–1471 (2010).
[Crossref] [PubMed]

Xu, C.

N. G. Horton, K. Wang, D. Kobat, C. G. Clark, F. W. Wise, C. B. Schaffer, and C. Xu, “In vivo three-photon microscopy of subcortical structures within an intact mouse brain,” Nat. Photonics 7(3), 205–209 (2013).
[Crossref] [PubMed]

Xu, C. T.

C. T. Xu, P. Svenmarker, H. C. Liu, X. Wu, M. E. Messing, L. R. Wallenberg, and S. Andersson-Engels, “High-Resolution Fluorescence Diffuse Optical Tomography Developed with Nonlinear Upconverting Nanoparticles,” ACS Nano 6(6), 4788–4795 (2012).
[Crossref] [PubMed]

Xu, G. X.

F. Erogbogbo, K. T. Yong, I. Roy, G. X. Xu, P. N. Prasad, and M. T. Swihart, “Biocompatible luminescent silicon quantum dots for imaging of cancer cells,” ACS Nano 2(5), 873–878 (2008).
[Crossref] [PubMed]

Yao, L.

Y. Lei, H. Tang, L. Yao, R. Yu, M. Feng, and B. Zou, “Applications of mesenchymal stem cells labeled with Tat peptide conjugated quantum dots to cell tracking in mouse body,” Bioconjug. Chem. 19(2), 421–427 (2008).
[Crossref] [PubMed]

Yodh, A.

A. Yodh and B. Chance, “Spectroscopy and imaging with diffusing light,” Phys. Today 48(3), 34–40 (1995).
[Crossref]

Yong, K. T.

K. T. Yong, I. Roy, H. Ding, E. J. Bergey, and P. N. Prasad, “Biocompatible Near-Infrared Quantum Dots as Ultrasensitive Probes for Long-Term in vivo Imaging Applications,” Small 5(17), 1997–2004 (2009).
[Crossref] [PubMed]

K. T. Yong, R. Hu, I. Roy, H. Ding, L. A. Vathy, E. J. Bergey, M. Mizuma, A. Maitra, and P. N. Prasa, “Tumor Targeting and Imaging in Live Animals with Functionalized Semiconductor Quantum Rods,” ACS. Appl. Mater. Inter. 1(3), 710–719 (2009).
[Crossref]

F. Erogbogbo, K. T. Yong, I. Roy, G. X. Xu, P. N. Prasad, and M. T. Swihart, “Biocompatible luminescent silicon quantum dots for imaging of cancer cells,” ACS Nano 2(5), 873–878 (2008).
[Crossref] [PubMed]

Yu, R.

Y. Lei, H. Tang, L. Yao, R. Yu, M. Feng, and B. Zou, “Applications of mesenchymal stem cells labeled with Tat peptide conjugated quantum dots to cell tracking in mouse body,” Bioconjug. Chem. 19(2), 421–427 (2008).
[Crossref] [PubMed]

Zhan, Q. Q.

J. Qian, D. Wang, F. H. Cai, Q. Q. Zhan, Y. L. Wang, and S. L. He, “Photosensitizer encapsulated organically modified silica nanoparticles for direct two-photon photodynamic therapy and In Vivo functional imaging,” Biomaterials 33(19), 4851–4860 (2012).
[Crossref] [PubMed]

Zhang, X.

X. Zhang, Y. Q. Gu, and H. Y. Chen, “Synthesis of biocompatible near infrared fluorescence Ag2S quantum dot and its application in bioimaging,” J. Innov. Opt. Health Sci. 7(03), 1350059 (2014).
[Crossref]

Zhang, Y.

Y. P. Du, B. Xu, T. Fu, M. Cai, F. Li, Y. Zhang, and Q. B. Wang, “Near-Infrared Photoluminescent Ag2S Quantum Dots from a Single Source Precursor,” J. Am. Chem. Soc. 132(5), 1470–1471 (2010).
[Crossref] [PubMed]

Zhou, J.

J. Zhou, Z. Liu, and F. Y. Li, “Upconversion nanophosphors for small-animal imaging,” Chem. Soc. Rev. 41(3), 1323–1349 (2012).
[Crossref] [PubMed]

Zhu, X. J.

W. Feng, X. J. Zhu, and F. Y. Li, “Recent advances in the optimization and functionalization of upconversion nanomaterials for in vivo bioapplications,” NPG Asia Mater. 5(12), e75 (2013).
[Crossref]

Zhuang, X. W.

M. J. Rust, M. Bates, and X. W. Zhuang, “Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM),” Nat. Methods 3(10), 793–796 (2006).
[Crossref] [PubMed]

Zou, B.

Y. Lei, H. Tang, L. Yao, R. Yu, M. Feng, and B. Zou, “Applications of mesenchymal stem cells labeled with Tat peptide conjugated quantum dots to cell tracking in mouse body,” Bioconjug. Chem. 19(2), 421–427 (2008).
[Crossref] [PubMed]

ACS Appl. Mater. Interfaces (2)

M. F. Foda, L. Huang, F. Shao, and H. Y. Han, “Biocompatible and highly luminescent near-infrared CuInS₂/ZnS quantum dots embedded silica beads for cancer cell imaging,” ACS Appl. Mater. Interfaces 6(3), 2011–2017 (2014).
[Crossref] [PubMed]

R. Kumar, T. Y. Ohulchanskyy, I. Roy, S. K. Gupta, C. Borek, M. E. Thompson, and P. N. Prasad, “Near-Infrared Phosphorescent Polymeric Nanomicelles: Efficient Optical Probes for Tumor Imaging and Detection,” ACS Appl. Mater. Interfaces 1(7), 1474–1481 (2009).
[Crossref] [PubMed]

ACS Nano (3)

C. T. Xu, P. Svenmarker, H. C. Liu, X. Wu, M. E. Messing, L. R. Wallenberg, and S. Andersson-Engels, “High-Resolution Fluorescence Diffuse Optical Tomography Developed with Nonlinear Upconverting Nanoparticles,” ACS Nano 6(6), 4788–4795 (2012).
[Crossref] [PubMed]

R. Kumar, I. Roy, T. Y. Ohulchanskky, L. A. Vathy, E. J. Bergey, M. Sajjad, and P. N. Prasad, “In Vivo Biodistribution and Clearance Studies Using Multimodal Organically Modified Silica Nanoparticles,” ACS Nano 4(2), 699–708 (2010).
[Crossref] [PubMed]

F. Erogbogbo, K. T. Yong, I. Roy, G. X. Xu, P. N. Prasad, and M. T. Swihart, “Biocompatible luminescent silicon quantum dots for imaging of cancer cells,” ACS Nano 2(5), 873–878 (2008).
[Crossref] [PubMed]

ACS. Appl. Mater. Inter. (1)

K. T. Yong, R. Hu, I. Roy, H. Ding, L. A. Vathy, E. J. Bergey, M. Mizuma, A. Maitra, and P. N. Prasa, “Tumor Targeting and Imaging in Live Animals with Functionalized Semiconductor Quantum Rods,” ACS. Appl. Mater. Inter. 1(3), 710–719 (2009).
[Crossref]

Bioconjug. Chem. (1)

Y. Lei, H. Tang, L. Yao, R. Yu, M. Feng, and B. Zou, “Applications of mesenchymal stem cells labeled with Tat peptide conjugated quantum dots to cell tracking in mouse body,” Bioconjug. Chem. 19(2), 421–427 (2008).
[Crossref] [PubMed]

Biomaterials (3)

J. Qian, D. Wang, F. H. Cai, Q. Q. Zhan, Y. L. Wang, and S. L. He, “Photosensitizer encapsulated organically modified silica nanoparticles for direct two-photon photodynamic therapy and In Vivo functional imaging,” Biomaterials 33(19), 4851–4860 (2012).
[Crossref] [PubMed]

D. Wang, J. Qian, S. L. He, J. S. Park, K. S. Lee, S. H. Han, and Y. Mu, “Aggregation-enhanced fluorescence in PEGylated phospholipid nanomicelles for in vivo imaging,” Biomaterials 32(25), 5880–5888 (2011).
[Crossref] [PubMed]

J. Qian, L. Jiang, F. H. Cai, D. Wang, and S. L. He, “Fluorescence-surface enhanced Raman scattering co-functionalized gold nanorods as near-infrared probes for purely optical in vivo imaging,” Biomaterials 32(6), 1601–1610 (2011).
[Crossref] [PubMed]

Chem. Biol. (1)

J. Lovrić, S. J. Cho, F. M. Winnik, and D. Maysinger, “Unmodified Cadmium Telluride Quantum Dots Induce Reactive Oxygen Species Formation Leading to Multiple Organelle Damage and Cell Death,” Chem. Biol. 12(11), 1227–1234 (2005).
[Crossref] [PubMed]

Chem. Soc. Rev. (2)

F. Wang and X. G. Liu, “Recent advances in the chemistry of lanthanide-doped upconversion nanocrystals,” Chem. Soc. Rev. 38(4), 976–989 (2009).
[Crossref] [PubMed]

J. Zhou, Z. Liu, and F. Y. Li, “Upconversion nanophosphors for small-animal imaging,” Chem. Soc. Rev. 41(3), 1323–1349 (2012).
[Crossref] [PubMed]

Curr. Opin. Chem. Biol. (2)

E. M. Sevick-Muraca, J. P. Houston, and M. Gurfinkel, “Fluorescence-enhanced, near infrared diagnostic imaging with contrast agents,” Curr. Opin. Chem. Biol. 6(5), 642–650 (2002).
[Crossref] [PubMed]

J. O. Escobedo, O. Rusin, S. Lim, and R. M. Strongin, “NIR Dyes for Bioimaging Applications,” Curr. Opin. Chem. Biol. 14(1), 64–70 (2010).
[Crossref] [PubMed]

Environ. Health Perspect. (1)

R. Hardman, “A toxicologic review of quantum dots: Toxicity depends on physicochemical and environmental factors,” Environ. Health Perspect. 114(2), 165–172 (2006).
[Crossref] [PubMed]

Eur. J. Radiol. (1)

K. H. Song, C. Kim, K. Maslov, and L. V. Wang, “Noninvasive in vivo spectroscopic nanorod-contrast photoacoustic mapping of sentinel lymph nodes,” Eur. J. Radiol. 70(2), 227–231 (2009).
[Crossref] [PubMed]

J. Am. Chem. Soc. (1)

Y. P. Du, B. Xu, T. Fu, M. Cai, F. Li, Y. Zhang, and Q. B. Wang, “Near-Infrared Photoluminescent Ag2S Quantum Dots from a Single Source Precursor,” J. Am. Chem. Soc. 132(5), 1470–1471 (2010).
[Crossref] [PubMed]

J. Biophotonics (1)

A. Poellinger, “Near-infrared imaging of breast cancer using optical contrast agents,” J. Biophotonics 5(11-12), 815–826 (2012).
[Crossref] [PubMed]

J. Innov. Opt. Health Sci. (1)

X. Zhang, Y. Q. Gu, and H. Y. Chen, “Synthesis of biocompatible near infrared fluorescence Ag2S quantum dot and its application in bioimaging,” J. Innov. Opt. Health Sci. 7(03), 1350059 (2014).
[Crossref]

J. Photochem. Photobiol. Chem. (1)

R. Philip, A. Penzkofer, W. Bäumler, R. M. Szeimies, and C. Abels, “Absorption and fluorescence spectroscopic investigation of indocyanine green,” J. Photochem. Photobiol. Chem. 96(1–3), 137–148 (1996).
[Crossref]

Nano Lett. (2)

W. B. Cai, D. W. Shin, K. Chen, O. Gheysens, Q. Z. Cao, S. X. Wang, S. S. Gambhir, and X. Y. Chen, “Peptide-labeled near-infrared quantum dots for imaging tumor vasculature in living subjects,” Nano Lett. 6(4), 669–676 (2006).
[Crossref] [PubMed]

M. Nyk, R. Kumar, T. Y. Ohulchanskyy, E. J. Bergey, and P. N. Prasad, “High Contrast in Vitro and in Vivo Photoluminescence Bioimaging Using Near Infrared to Near Infrared Up-Conversion in Tm3+ and Yb3+ Doped Fluoride Nanophosphors,” Nano Lett. 8(11), 3834–3838 (2008).
[Crossref] [PubMed]

Nat. Biotechnol. (2)

S. Kim, Y. T. Lim, E. G. Soltesz, A. M. De Grand, J. Lee, A. Nakayama, J. A. Parker, T. Mihaljevic, R. G. Laurence, D. M. Dor, L. H. Cohn, M. G. Bawendi, and J. V. Frangioni, “Near-infrared fluorescent type II quantum dots for sentinel lymph node mapping,” Nat. Biotechnol. 22(1), 93–97 (2004).
[Crossref] [PubMed]

R. Weissleder, “A clearer vision for in vivo imaging,” Nat. Biotechnol. 19(4), 316–317 (2001).
[Crossref] [PubMed]

Nat. Methods (1)

M. J. Rust, M. Bates, and X. W. Zhuang, “Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM),” Nat. Methods 3(10), 793–796 (2006).
[Crossref] [PubMed]

Nat. Photonics (1)

N. G. Horton, K. Wang, D. Kobat, C. G. Clark, F. W. Wise, C. B. Schaffer, and C. Xu, “In vivo three-photon microscopy of subcortical structures within an intact mouse brain,” Nat. Photonics 7(3), 205–209 (2013).
[Crossref] [PubMed]

NPG Asia Mater. (1)

W. Feng, X. J. Zhu, and F. Y. Li, “Recent advances in the optimization and functionalization of upconversion nanomaterials for in vivo bioapplications,” NPG Asia Mater. 5(12), e75 (2013).
[Crossref]

Phys. Today (1)

A. Yodh and B. Chance, “Spectroscopy and imaging with diffusing light,” Phys. Today 48(3), 34–40 (1995).
[Crossref]

Proc. Natl. Acad. Sci. U.S.A. (1)

M. G. L. Gustafsson, “Nonlinear structured-illumination microscopy: Wide-field fluorescence imaging with theoretically unlimited resolution,” Proc. Natl. Acad. Sci. U.S.A. 102(37), 13081–13086 (2005).
[Crossref] [PubMed]

Science (4)

S. W. Hell, “Far-field optical nanoscopy,” Science 316(5828), 1153–1158 (2007).
[Crossref] [PubMed]

E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Olenych, J. S. Bonifacino, M. W. Davidson, J. Lippincott-Schwartz, and H. F. Hess, “Imaging intracellular fluorescent proteins at nanometer resolution,” Science 313(5793), 1642–1645 (2006).
[Crossref] [PubMed]

B. Dubertret, P. Skourides, D. J. Norris, V. Noireaux, A. H. Brivanlou, and A. Libchaber, “In vivo imaging of quantum dots encapsulated in phospholipid micelles,” Science 298(5599), 1759–1762 (2002).
[Crossref] [PubMed]

M. Dahan, S. Lévi, C. Luccardini, P. Rostaing, B. Riveau, and A. Triller, “Diffusion dynamics of glycine receptors revealed by single-quantum dot tracking,” Science 302(5644), 442–445 (2003).
[Crossref] [PubMed]

Small (1)

K. T. Yong, I. Roy, H. Ding, E. J. Bergey, and P. N. Prasad, “Biocompatible Near-Infrared Quantum Dots as Ultrasensitive Probes for Long-Term in vivo Imaging Applications,” Small 5(17), 1997–2004 (2009).
[Crossref] [PubMed]

Traffic (1)

D. Axelrod, “Total internal reflection fluorescence microscopy in cell biology,” Traffic 2(11), 764–774 (2001).
[Crossref] [PubMed]

Other (3)

R. Splinter and B. A. Hooper, An Introduction to Biomedical Optics (CRC Press, 2006).

J. R. Lakowicz, Principles of Fluorescence Spectroscopy (Springer, New York, 2006).

J. B. Birks, Photophysics of Aromatic Molecules (Wiley, London, 1970).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1 The scheme illustrating the synthesis procedures of IR-820 doped polymer nanoparticles.
Fig. 2
Fig. 2 (a) TEM image of IR-820 doped polymer nanoparticles. (b) Fluorescence imaging picture of the dried powder of (only)-IR820 and IR-820 doped polymer nanoparticles (excitation wavelength: 704 nm). (c) Normalized absorption spectra of IR-820 in ethanol solution and the aqueous solution of IR-820 doped polymer nanoparticles. (d) Absorption spectra of the IR-820 doped polymer nanoparticles in saline solution at various time points (0 h, 24 h and 48 h). (e) Normalized fluorescence spectra of IR-820 in ethanol solution and the aqueous solution of IR-820 doped polymer nanoparticles (excitation wavelength: 704 nm). The inset shows that NIR fluorescence imaging of IR-820 doped polymer nanoparticles in water, under 704 nm excitation. (f) Time trace of fluorescence intensity of IR-820 doped polymer nanoparticles, which was excited by 704 nm-light for half an hour.
Fig. 3
Fig. 3 (a) Viability of HeLa cells after incubation with IR-820 doped polymer nanoparticles for 24 h. (b) Histological examination of liver, kidney, spleen and heart stained with haematoxylin and eosin. Tissues were excised from BALB/c mice 24 h post the treatment with nothing, PBS and IR-820 doped polymer nanoparticles, respectively. Scale bar: 50 μm.
Fig. 4
Fig. 4 NIR fluorescence imaging of a nude mouse with IR-820 doped polymer nanoparticles intradermally injected into the left forepaw pad at various time points post-injection. (a)-(f) NIR fluorescence imaging (exposure time: 5000 ms) of the mouse: 5, 30, 60, 90, 120, and 150 mins after the injection of nanoparticles. (g) NIR fluorescence spectrum from SLN, (Inset) Magnified NIR imaging of SLN. (h) The normalized NIR signal intensity of nanoparticles in the SLN site of the mouse: before the injection, 5, 30, 60, 90, 120, and 150 mins after the injection of nanoparticles. The inset shows the NIR fluorescence imaging (exposure time: 5000 ms) of the mouse before the injection.
Fig. 5
Fig. 5 (a)-(f) NIR fluorescence imaging of a nude mouse intravenously injected with IR-820 doped polymer nanoparticles at various time points of post-injection (exposure time: 5000 ms). (g) NIR fluorescence spectra of the signal and background from mice.
Fig. 6
Fig. 6 Fluorescence microscopic images of tissue-equivalent phantom mixed with (a-d) and without (e-h) IR-820 doped polymer nanoparticles at some vertical depths: 0 μm, 300 μm, 600 μm, 900 μm. (i) A 3D reconstructive image showing the distribution of IR-820 doped polymer nanoparticles in the tissue-equivalent phantom.
Fig. 7
Fig. 7 Fluorescence microscopic images of blood vessels in the mouse ear at various vertical depths (a): 0 μm, (b): 20 μm, (c): 40 μm, (d): 50 μm, (e): 60 μm, (f): 80 μm, (g): 100 μm, and a 3D reconstructive image (h) showing the distribution of the IR-820 doped polymer nanoparticles in the blood vessels in the mouse ear. (Scale bar: 50 μm).
Fig. 8
Fig. 8 Fluorescence microscopic images of blood vessels in the mouse brain at various vertical depths (a): 0 μm, (b): 50 μm, (c): 100 μm, (d): 130 μm, (e): 150 μm, (f): 180 μm, (g): 200 μm, (h): 250 μm, (i): 300 μm, (j): 350 μm, (k): 400 μm (l): 500 μm) and 3D reconstructive images (m, n) showing the distribution of the IR-820 doped polymer nanoparticles in the blood vasculature in the mouse brain. (Scale bar: 50 μm).

Metrics