Abstract

The heart and its mechanical components, especially the heart valves and leaflets, are under enormous strain and undergo fatigue, which impinge upon cardiac output. The knowledge about changes of the dynamic behavior and the possibility of early stage diagnosis could lead to the development of new treatment strategies. Animal models are suited for the development and evaluation of new experimental approaches and therefor innovative imaging techniques are necessary. In this study, we present the time resolved visualization of healthy and calcified aortic valves in an ex vivo artificially stimulated heart model with 4D optical coherence tomography and high-speed video microscopy.

© 2014 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Characterization of eosinophilic esophagitis murine models using optical coherence tomography

Aneesh Alex, Mario Noti, Elia D. Tait Wojno, David Artis, and Chao Zhou
Biomed. Opt. Express 5(2) 609-620 (2014)

Three-dimensional visualization of opacifications in the murine crystalline lens by in vivo optical coherence tomography

Pablo Eugui, Danielle J. Harper, Stefan Kummer, Antonia Lichtenegger, Johanna Gesperger, Tanja Himmel, Marco Augustin, Conrad W. Merkle, Martin Glösmann, and Bernhard Baumann
Biomed. Opt. Express 11(4) 2085-2097 (2020)

Embryonic aortic arch hemodynamics are a functional biomarker for ethanol-induced congenital heart defects [Invited]

Lindsy M. Peterson, Shi Gu, Ganga Karunamuni, Michael W. Jenkins, Michiko Watanabe, and Andrew M. Rollins
Biomed. Opt. Express 8(3) 1823-1837 (2017)

References

  • View by:
  • |
  • |
  • |

  1. S. H. Sündermann, D. Reser, M. Czerny, and V. Falk, “[Indication and timing of heart valve surgery - summery of the European guidelines],” Praxis (Bern 1994) 103(8), 445–451 (2014).
    [PubMed]
  2. N. M. Rajamannan, F. J. Evans, E. Aikawa, K. J. Grande-Allen, L. L. Demer, D. D. Heistad, C. A. Simmons, K. S. Masters, P. Mathieu, K. D. O’Brien, F. J. Schoen, D. A. Towler, A. P. Yoganathan, and C. M. Otto, “Calcific aortic valve disease: not simply a degenerative process: A review and agenda for research from the National Heart and Lung and Blood Institute Aortic Stenosis Working Group. Executive summary: Calcific aortic valve disease-2011 update,” Circulation 124(16), 1783–1791 (2011).
    [Crossref] [PubMed]
  3. K. L. Sider, M. C. Blaser, and C. A. Simmons, “Animal models of calcific aortic valve disease,” Int. J. Inflam.  2011, 364310 (2011).
  4. A. Alexopoulos, A. Kaoukis, H. Papadaki, and V. Pyrgakis, “Pathophysiologic mechanisms of calcific aortic stenosis,” Ther. Adv. Cardiovasc. Dis. 6(2), 71–80 (2012).
    [Crossref] [PubMed]
  5. R. L. Osnabrugge, D. Mylotte, S. J. Head, N. M. Van Mieghem, V. T. Nkomo, C. M. LeReun, A. J. Bogers, N. Piazza, and A. P. Kappetein, “Aortic stenosis in the elderly: disease prevalence and number of candidates for transcatheter aortic valve replacement: a meta-analysis and modeling study,” J. Am. Coll. Cardiol. 62(11), 1002–1012 (2013).
    [Crossref] [PubMed]
  6. T. Pilgrim and P. Wenaweser, “Aortic valve replacement in elderly with severe calcific aortic stenosis,” Cardiovascular Medicine 13, 197–203 (2010).
  7. J. H. Chen, C. Y. Yip, E. D. Sone, and C. A. Simmons, “Identification and characterization of aortic valve mesenchymal progenitor cells with robust osteogenic calcification potential,” Am. J. Pathol. 174(3), 1109–1119 (2009).
    [Crossref] [PubMed]
  8. M. Cimini, K. A. Rogers, and D. R. Boughner, “Smoothelin-positive cells in human and porcine semilunar valves,” Histochem. Cell Biol. 120(4), 307–317 (2003).
    [Crossref] [PubMed]
  9. N. Latif, P. Sarathchandra, A. H. Chester, and M. H. Yacoub, “Expression of smooth muscle cell markers and co-activators in calcified aortic valves,” Eur. Heart J. (2014).
  10. R. H. Messier, B. L. Bass, H. M. Aly, J. L. Jones, P. W. Domkowski, R. B. Wallace, and R. A. Hopkins, “Dual structural and functional phenotypes of the porcine aortic valve interstitial population: characteristics of the leaflet myofibroblast,” J. Surg. Res. 57(1), 1–21 (1994).
    [Crossref] [PubMed]
  11. M. Pho, W. Lee, D. R. Watt, C. Laschinger, C. A. Simmons, and C. A. McCulloch, “Cofilin is a marker of myofibroblast differentiation in cells from porcine aortic cardiac valves,” Am. J. Physiol. Heart Circ. Physiol. 294(4), H1767–H1778 (2008).
    [Crossref] [PubMed]
  12. J. H. Chen and C. A. Simmons, “Cell-matrix interactions in the pathobiology of calcific aortic valve disease: critical roles for matricellular, matricrine, and matrix mechanics cues,” Circ. Res. 108(12), 1510–1524 (2011).
    [Crossref] [PubMed]
  13. J. A. Leopold, “Cellular mechanisms of aortic valve calcification,” Circ. Cardiovasc. Interv. 5(4), 605–614 (2012).
    [Crossref] [PubMed]
  14. K. Wyss, C. Y. Yip, Z. Mirzaei, X. Jin, J. H. Chen, and C. A. Simmons, “The elastic properties of valve interstitial cells undergoing pathological differentiation,” J. Biomech. 45(5), 882–887 (2012).
    [Crossref] [PubMed]
  15. R. B. Hinton and K. E. Yutzey, “Heart valve structure and function in development and disease,” Annu. Rev. Physiol. 73(1), 29–46 (2011).
    [Crossref] [PubMed]
  16. S. E. New and E. Aikawa, “Molecular imaging insights into early inflammatory stages of arterial and aortic valve calcification,” Circ. Res. 108(11), 1381–1391 (2011).
    [Crossref] [PubMed]
  17. E. Aikawa, P. Whittaker, M. Farber, K. Mendelson, R. F. Padera, M. Aikawa, and F. J. Schoen, “Human semilunar cardiac valve remodeling by activated cells from fetus to adult: implications for postnatal adaptation, pathology, and tissue engineering,” Circulation 113(10), 1344–1352 (2006).
    [Crossref] [PubMed]
  18. E. Aikawa, M. Nahrendorf, J. L. Figueiredo, F. K. Swirski, T. Shtatland, R. H. Kohler, F. A. Jaffer, M. Aikawa, and R. Weissleder, “Osteogenesis associates with inflammation in early-stage atherosclerosis evaluated by molecular imaging in vivo,” Circulation 116(24), 2841–2850 (2007).
    [Crossref] [PubMed]
  19. E. Aikawa, M. Nahrendorf, D. Sosnovik, V. M. Lok, F. A. Jaffer, M. Aikawa, and R. Weissleder, “Multimodality molecular imaging identifies proteolytic and osteogenic activities in early aortic valve disease,” Circulation 115(3), 377–386 (2007).
    [Crossref] [PubMed]
  20. R. B. Hinton, C. M. Alfieri, S. A. Witt, B. J. Glascock, P. R. Khoury, D. W. Benson, and K. E. Yutzey, “Mouse heart valve structure and function: echocardiographic and morphometric analyses from the fetus through the aged adult,” Am. J. Physiol. Heart Circ. Physiol. 294(6), H2480–H2488 (2008).
    [Crossref] [PubMed]
  21. S. Bhat, I. V. Larina, K. V. Larin, M. E. Dickinson, and M. Liebling, “4D reconstruction of the beating embryonic heart from two orthogonal sets of parallel optical coherence tomography slice-sequences,” IEEE Trans. Med. Imaging 32(3), 578–588 (2013).
    [Crossref] [PubMed]
  22. M. W. Jenkins, O. Q. Chughtai, A. N. Basavanhally, M. Watanabe, and A. M. Rollins, “In vivo gated 4D imaging of the embryonic heart using optical coherence tomography,” J. Biomed. Opt. 12(3), 030505 (2007).
    [Crossref] [PubMed]
  23. M. W. Jenkins, F. Rothenberg, D. Roy, V. P. Nikolski, Z. Hu, M. Watanabe, D. L. Wilson, I. R. Efimov, and A. M. Rollins, “4D embryonic cardiography using gated optical coherence tomography,” Opt. Express 14(2), 736–748 (2006).
    [Crossref] [PubMed]
  24. A. Mariampillai, B. A. Standish, N. R. Munce, C. Randall, G. Liu, J. Y. Jiang, A. E. Cable, I. A. Vitkin, and V. X. Yang, “Doppler optical cardiogram gated 2D color flow imaging at 1000 fps and 4D in vivo visualization of embryonic heart at 45 fps on a swept source OCT system,” Opt. Express 15(4), 1627–1638 (2007).
    [Crossref] [PubMed]
  25. C. Schnabel, M. Gaertner, L. Kirsten, S. Meissner, and E. Koch, “Total liquid ventilation: a new approach to improve 3D OCT image quality of alveolar structures in lung tissue,” Opt. Express 21(26), 31782–31788 (2013).
    [Crossref] [PubMed]
  26. S. Meissner, L. Knels, and E. Koch, “Improved three-dimensional Fourier domain optical coherence tomography by index matching in alveolar structures,” J. Biomed. Opt. 14(6), 064037 (2009).
    [Crossref] [PubMed]
  27. L. Kirsten, M. Gaertner, C. Schnabel, S. Meissner, and E. Koch, “Four-dimensional imaging of murine subpleural alveoli using high-speed optical coherence tomography,” J. Biophotonics 6(2), 148–152 (2013).
    [Crossref] [PubMed]

2014 (1)

S. H. Sündermann, D. Reser, M. Czerny, and V. Falk, “[Indication and timing of heart valve surgery - summery of the European guidelines],” Praxis (Bern 1994) 103(8), 445–451 (2014).
[PubMed]

2013 (4)

R. L. Osnabrugge, D. Mylotte, S. J. Head, N. M. Van Mieghem, V. T. Nkomo, C. M. LeReun, A. J. Bogers, N. Piazza, and A. P. Kappetein, “Aortic stenosis in the elderly: disease prevalence and number of candidates for transcatheter aortic valve replacement: a meta-analysis and modeling study,” J. Am. Coll. Cardiol. 62(11), 1002–1012 (2013).
[Crossref] [PubMed]

S. Bhat, I. V. Larina, K. V. Larin, M. E. Dickinson, and M. Liebling, “4D reconstruction of the beating embryonic heart from two orthogonal sets of parallel optical coherence tomography slice-sequences,” IEEE Trans. Med. Imaging 32(3), 578–588 (2013).
[Crossref] [PubMed]

C. Schnabel, M. Gaertner, L. Kirsten, S. Meissner, and E. Koch, “Total liquid ventilation: a new approach to improve 3D OCT image quality of alveolar structures in lung tissue,” Opt. Express 21(26), 31782–31788 (2013).
[Crossref] [PubMed]

L. Kirsten, M. Gaertner, C. Schnabel, S. Meissner, and E. Koch, “Four-dimensional imaging of murine subpleural alveoli using high-speed optical coherence tomography,” J. Biophotonics 6(2), 148–152 (2013).
[Crossref] [PubMed]

2012 (3)

A. Alexopoulos, A. Kaoukis, H. Papadaki, and V. Pyrgakis, “Pathophysiologic mechanisms of calcific aortic stenosis,” Ther. Adv. Cardiovasc. Dis. 6(2), 71–80 (2012).
[Crossref] [PubMed]

J. A. Leopold, “Cellular mechanisms of aortic valve calcification,” Circ. Cardiovasc. Interv. 5(4), 605–614 (2012).
[Crossref] [PubMed]

K. Wyss, C. Y. Yip, Z. Mirzaei, X. Jin, J. H. Chen, and C. A. Simmons, “The elastic properties of valve interstitial cells undergoing pathological differentiation,” J. Biomech. 45(5), 882–887 (2012).
[Crossref] [PubMed]

2011 (5)

R. B. Hinton and K. E. Yutzey, “Heart valve structure and function in development and disease,” Annu. Rev. Physiol. 73(1), 29–46 (2011).
[Crossref] [PubMed]

S. E. New and E. Aikawa, “Molecular imaging insights into early inflammatory stages of arterial and aortic valve calcification,” Circ. Res. 108(11), 1381–1391 (2011).
[Crossref] [PubMed]

J. H. Chen and C. A. Simmons, “Cell-matrix interactions in the pathobiology of calcific aortic valve disease: critical roles for matricellular, matricrine, and matrix mechanics cues,” Circ. Res. 108(12), 1510–1524 (2011).
[Crossref] [PubMed]

N. M. Rajamannan, F. J. Evans, E. Aikawa, K. J. Grande-Allen, L. L. Demer, D. D. Heistad, C. A. Simmons, K. S. Masters, P. Mathieu, K. D. O’Brien, F. J. Schoen, D. A. Towler, A. P. Yoganathan, and C. M. Otto, “Calcific aortic valve disease: not simply a degenerative process: A review and agenda for research from the National Heart and Lung and Blood Institute Aortic Stenosis Working Group. Executive summary: Calcific aortic valve disease-2011 update,” Circulation 124(16), 1783–1791 (2011).
[Crossref] [PubMed]

K. L. Sider, M. C. Blaser, and C. A. Simmons, “Animal models of calcific aortic valve disease,” Int. J. Inflam.  2011, 364310 (2011).

2010 (1)

T. Pilgrim and P. Wenaweser, “Aortic valve replacement in elderly with severe calcific aortic stenosis,” Cardiovascular Medicine 13, 197–203 (2010).

2009 (2)

J. H. Chen, C. Y. Yip, E. D. Sone, and C. A. Simmons, “Identification and characterization of aortic valve mesenchymal progenitor cells with robust osteogenic calcification potential,” Am. J. Pathol. 174(3), 1109–1119 (2009).
[Crossref] [PubMed]

S. Meissner, L. Knels, and E. Koch, “Improved three-dimensional Fourier domain optical coherence tomography by index matching in alveolar structures,” J. Biomed. Opt. 14(6), 064037 (2009).
[Crossref] [PubMed]

2008 (2)

M. Pho, W. Lee, D. R. Watt, C. Laschinger, C. A. Simmons, and C. A. McCulloch, “Cofilin is a marker of myofibroblast differentiation in cells from porcine aortic cardiac valves,” Am. J. Physiol. Heart Circ. Physiol. 294(4), H1767–H1778 (2008).
[Crossref] [PubMed]

R. B. Hinton, C. M. Alfieri, S. A. Witt, B. J. Glascock, P. R. Khoury, D. W. Benson, and K. E. Yutzey, “Mouse heart valve structure and function: echocardiographic and morphometric analyses from the fetus through the aged adult,” Am. J. Physiol. Heart Circ. Physiol. 294(6), H2480–H2488 (2008).
[Crossref] [PubMed]

2007 (4)

E. Aikawa, M. Nahrendorf, J. L. Figueiredo, F. K. Swirski, T. Shtatland, R. H. Kohler, F. A. Jaffer, M. Aikawa, and R. Weissleder, “Osteogenesis associates with inflammation in early-stage atherosclerosis evaluated by molecular imaging in vivo,” Circulation 116(24), 2841–2850 (2007).
[Crossref] [PubMed]

E. Aikawa, M. Nahrendorf, D. Sosnovik, V. M. Lok, F. A. Jaffer, M. Aikawa, and R. Weissleder, “Multimodality molecular imaging identifies proteolytic and osteogenic activities in early aortic valve disease,” Circulation 115(3), 377–386 (2007).
[Crossref] [PubMed]

M. W. Jenkins, O. Q. Chughtai, A. N. Basavanhally, M. Watanabe, and A. M. Rollins, “In vivo gated 4D imaging of the embryonic heart using optical coherence tomography,” J. Biomed. Opt. 12(3), 030505 (2007).
[Crossref] [PubMed]

A. Mariampillai, B. A. Standish, N. R. Munce, C. Randall, G. Liu, J. Y. Jiang, A. E. Cable, I. A. Vitkin, and V. X. Yang, “Doppler optical cardiogram gated 2D color flow imaging at 1000 fps and 4D in vivo visualization of embryonic heart at 45 fps on a swept source OCT system,” Opt. Express 15(4), 1627–1638 (2007).
[Crossref] [PubMed]

2006 (2)

M. W. Jenkins, F. Rothenberg, D. Roy, V. P. Nikolski, Z. Hu, M. Watanabe, D. L. Wilson, I. R. Efimov, and A. M. Rollins, “4D embryonic cardiography using gated optical coherence tomography,” Opt. Express 14(2), 736–748 (2006).
[Crossref] [PubMed]

E. Aikawa, P. Whittaker, M. Farber, K. Mendelson, R. F. Padera, M. Aikawa, and F. J. Schoen, “Human semilunar cardiac valve remodeling by activated cells from fetus to adult: implications for postnatal adaptation, pathology, and tissue engineering,” Circulation 113(10), 1344–1352 (2006).
[Crossref] [PubMed]

2003 (1)

M. Cimini, K. A. Rogers, and D. R. Boughner, “Smoothelin-positive cells in human and porcine semilunar valves,” Histochem. Cell Biol. 120(4), 307–317 (2003).
[Crossref] [PubMed]

1994 (1)

R. H. Messier, B. L. Bass, H. M. Aly, J. L. Jones, P. W. Domkowski, R. B. Wallace, and R. A. Hopkins, “Dual structural and functional phenotypes of the porcine aortic valve interstitial population: characteristics of the leaflet myofibroblast,” J. Surg. Res. 57(1), 1–21 (1994).
[Crossref] [PubMed]

Aikawa, E.

N. M. Rajamannan, F. J. Evans, E. Aikawa, K. J. Grande-Allen, L. L. Demer, D. D. Heistad, C. A. Simmons, K. S. Masters, P. Mathieu, K. D. O’Brien, F. J. Schoen, D. A. Towler, A. P. Yoganathan, and C. M. Otto, “Calcific aortic valve disease: not simply a degenerative process: A review and agenda for research from the National Heart and Lung and Blood Institute Aortic Stenosis Working Group. Executive summary: Calcific aortic valve disease-2011 update,” Circulation 124(16), 1783–1791 (2011).
[Crossref] [PubMed]

S. E. New and E. Aikawa, “Molecular imaging insights into early inflammatory stages of arterial and aortic valve calcification,” Circ. Res. 108(11), 1381–1391 (2011).
[Crossref] [PubMed]

E. Aikawa, M. Nahrendorf, J. L. Figueiredo, F. K. Swirski, T. Shtatland, R. H. Kohler, F. A. Jaffer, M. Aikawa, and R. Weissleder, “Osteogenesis associates with inflammation in early-stage atherosclerosis evaluated by molecular imaging in vivo,” Circulation 116(24), 2841–2850 (2007).
[Crossref] [PubMed]

E. Aikawa, M. Nahrendorf, D. Sosnovik, V. M. Lok, F. A. Jaffer, M. Aikawa, and R. Weissleder, “Multimodality molecular imaging identifies proteolytic and osteogenic activities in early aortic valve disease,” Circulation 115(3), 377–386 (2007).
[Crossref] [PubMed]

E. Aikawa, P. Whittaker, M. Farber, K. Mendelson, R. F. Padera, M. Aikawa, and F. J. Schoen, “Human semilunar cardiac valve remodeling by activated cells from fetus to adult: implications for postnatal adaptation, pathology, and tissue engineering,” Circulation 113(10), 1344–1352 (2006).
[Crossref] [PubMed]

Aikawa, M.

E. Aikawa, M. Nahrendorf, J. L. Figueiredo, F. K. Swirski, T. Shtatland, R. H. Kohler, F. A. Jaffer, M. Aikawa, and R. Weissleder, “Osteogenesis associates with inflammation in early-stage atherosclerosis evaluated by molecular imaging in vivo,” Circulation 116(24), 2841–2850 (2007).
[Crossref] [PubMed]

E. Aikawa, M. Nahrendorf, D. Sosnovik, V. M. Lok, F. A. Jaffer, M. Aikawa, and R. Weissleder, “Multimodality molecular imaging identifies proteolytic and osteogenic activities in early aortic valve disease,” Circulation 115(3), 377–386 (2007).
[Crossref] [PubMed]

E. Aikawa, P. Whittaker, M. Farber, K. Mendelson, R. F. Padera, M. Aikawa, and F. J. Schoen, “Human semilunar cardiac valve remodeling by activated cells from fetus to adult: implications for postnatal adaptation, pathology, and tissue engineering,” Circulation 113(10), 1344–1352 (2006).
[Crossref] [PubMed]

Alexopoulos, A.

A. Alexopoulos, A. Kaoukis, H. Papadaki, and V. Pyrgakis, “Pathophysiologic mechanisms of calcific aortic stenosis,” Ther. Adv. Cardiovasc. Dis. 6(2), 71–80 (2012).
[Crossref] [PubMed]

Alfieri, C. M.

R. B. Hinton, C. M. Alfieri, S. A. Witt, B. J. Glascock, P. R. Khoury, D. W. Benson, and K. E. Yutzey, “Mouse heart valve structure and function: echocardiographic and morphometric analyses from the fetus through the aged adult,” Am. J. Physiol. Heart Circ. Physiol. 294(6), H2480–H2488 (2008).
[Crossref] [PubMed]

Aly, H. M.

R. H. Messier, B. L. Bass, H. M. Aly, J. L. Jones, P. W. Domkowski, R. B. Wallace, and R. A. Hopkins, “Dual structural and functional phenotypes of the porcine aortic valve interstitial population: characteristics of the leaflet myofibroblast,” J. Surg. Res. 57(1), 1–21 (1994).
[Crossref] [PubMed]

Basavanhally, A. N.

M. W. Jenkins, O. Q. Chughtai, A. N. Basavanhally, M. Watanabe, and A. M. Rollins, “In vivo gated 4D imaging of the embryonic heart using optical coherence tomography,” J. Biomed. Opt. 12(3), 030505 (2007).
[Crossref] [PubMed]

Bass, B. L.

R. H. Messier, B. L. Bass, H. M. Aly, J. L. Jones, P. W. Domkowski, R. B. Wallace, and R. A. Hopkins, “Dual structural and functional phenotypes of the porcine aortic valve interstitial population: characteristics of the leaflet myofibroblast,” J. Surg. Res. 57(1), 1–21 (1994).
[Crossref] [PubMed]

Benson, D. W.

R. B. Hinton, C. M. Alfieri, S. A. Witt, B. J. Glascock, P. R. Khoury, D. W. Benson, and K. E. Yutzey, “Mouse heart valve structure and function: echocardiographic and morphometric analyses from the fetus through the aged adult,” Am. J. Physiol. Heart Circ. Physiol. 294(6), H2480–H2488 (2008).
[Crossref] [PubMed]

Bhat, S.

S. Bhat, I. V. Larina, K. V. Larin, M. E. Dickinson, and M. Liebling, “4D reconstruction of the beating embryonic heart from two orthogonal sets of parallel optical coherence tomography slice-sequences,” IEEE Trans. Med. Imaging 32(3), 578–588 (2013).
[Crossref] [PubMed]

Blaser, M. C.

K. L. Sider, M. C. Blaser, and C. A. Simmons, “Animal models of calcific aortic valve disease,” Int. J. Inflam.  2011, 364310 (2011).

Bogers, A. J.

R. L. Osnabrugge, D. Mylotte, S. J. Head, N. M. Van Mieghem, V. T. Nkomo, C. M. LeReun, A. J. Bogers, N. Piazza, and A. P. Kappetein, “Aortic stenosis in the elderly: disease prevalence and number of candidates for transcatheter aortic valve replacement: a meta-analysis and modeling study,” J. Am. Coll. Cardiol. 62(11), 1002–1012 (2013).
[Crossref] [PubMed]

Boughner, D. R.

M. Cimini, K. A. Rogers, and D. R. Boughner, “Smoothelin-positive cells in human and porcine semilunar valves,” Histochem. Cell Biol. 120(4), 307–317 (2003).
[Crossref] [PubMed]

Cable, A. E.

Chen, J. H.

K. Wyss, C. Y. Yip, Z. Mirzaei, X. Jin, J. H. Chen, and C. A. Simmons, “The elastic properties of valve interstitial cells undergoing pathological differentiation,” J. Biomech. 45(5), 882–887 (2012).
[Crossref] [PubMed]

J. H. Chen and C. A. Simmons, “Cell-matrix interactions in the pathobiology of calcific aortic valve disease: critical roles for matricellular, matricrine, and matrix mechanics cues,” Circ. Res. 108(12), 1510–1524 (2011).
[Crossref] [PubMed]

J. H. Chen, C. Y. Yip, E. D. Sone, and C. A. Simmons, “Identification and characterization of aortic valve mesenchymal progenitor cells with robust osteogenic calcification potential,” Am. J. Pathol. 174(3), 1109–1119 (2009).
[Crossref] [PubMed]

Chester, A. H.

N. Latif, P. Sarathchandra, A. H. Chester, and M. H. Yacoub, “Expression of smooth muscle cell markers and co-activators in calcified aortic valves,” Eur. Heart J. (2014).

Chughtai, O. Q.

M. W. Jenkins, O. Q. Chughtai, A. N. Basavanhally, M. Watanabe, and A. M. Rollins, “In vivo gated 4D imaging of the embryonic heart using optical coherence tomography,” J. Biomed. Opt. 12(3), 030505 (2007).
[Crossref] [PubMed]

Cimini, M.

M. Cimini, K. A. Rogers, and D. R. Boughner, “Smoothelin-positive cells in human and porcine semilunar valves,” Histochem. Cell Biol. 120(4), 307–317 (2003).
[Crossref] [PubMed]

Czerny, M.

S. H. Sündermann, D. Reser, M. Czerny, and V. Falk, “[Indication and timing of heart valve surgery - summery of the European guidelines],” Praxis (Bern 1994) 103(8), 445–451 (2014).
[PubMed]

Demer, L. L.

N. M. Rajamannan, F. J. Evans, E. Aikawa, K. J. Grande-Allen, L. L. Demer, D. D. Heistad, C. A. Simmons, K. S. Masters, P. Mathieu, K. D. O’Brien, F. J. Schoen, D. A. Towler, A. P. Yoganathan, and C. M. Otto, “Calcific aortic valve disease: not simply a degenerative process: A review and agenda for research from the National Heart and Lung and Blood Institute Aortic Stenosis Working Group. Executive summary: Calcific aortic valve disease-2011 update,” Circulation 124(16), 1783–1791 (2011).
[Crossref] [PubMed]

Dickinson, M. E.

S. Bhat, I. V. Larina, K. V. Larin, M. E. Dickinson, and M. Liebling, “4D reconstruction of the beating embryonic heart from two orthogonal sets of parallel optical coherence tomography slice-sequences,” IEEE Trans. Med. Imaging 32(3), 578–588 (2013).
[Crossref] [PubMed]

Domkowski, P. W.

R. H. Messier, B. L. Bass, H. M. Aly, J. L. Jones, P. W. Domkowski, R. B. Wallace, and R. A. Hopkins, “Dual structural and functional phenotypes of the porcine aortic valve interstitial population: characteristics of the leaflet myofibroblast,” J. Surg. Res. 57(1), 1–21 (1994).
[Crossref] [PubMed]

Efimov, I. R.

Evans, F. J.

N. M. Rajamannan, F. J. Evans, E. Aikawa, K. J. Grande-Allen, L. L. Demer, D. D. Heistad, C. A. Simmons, K. S. Masters, P. Mathieu, K. D. O’Brien, F. J. Schoen, D. A. Towler, A. P. Yoganathan, and C. M. Otto, “Calcific aortic valve disease: not simply a degenerative process: A review and agenda for research from the National Heart and Lung and Blood Institute Aortic Stenosis Working Group. Executive summary: Calcific aortic valve disease-2011 update,” Circulation 124(16), 1783–1791 (2011).
[Crossref] [PubMed]

Falk, V.

S. H. Sündermann, D. Reser, M. Czerny, and V. Falk, “[Indication and timing of heart valve surgery - summery of the European guidelines],” Praxis (Bern 1994) 103(8), 445–451 (2014).
[PubMed]

Farber, M.

E. Aikawa, P. Whittaker, M. Farber, K. Mendelson, R. F. Padera, M. Aikawa, and F. J. Schoen, “Human semilunar cardiac valve remodeling by activated cells from fetus to adult: implications for postnatal adaptation, pathology, and tissue engineering,” Circulation 113(10), 1344–1352 (2006).
[Crossref] [PubMed]

Figueiredo, J. L.

E. Aikawa, M. Nahrendorf, J. L. Figueiredo, F. K. Swirski, T. Shtatland, R. H. Kohler, F. A. Jaffer, M. Aikawa, and R. Weissleder, “Osteogenesis associates with inflammation in early-stage atherosclerosis evaluated by molecular imaging in vivo,” Circulation 116(24), 2841–2850 (2007).
[Crossref] [PubMed]

Gaertner, M.

C. Schnabel, M. Gaertner, L. Kirsten, S. Meissner, and E. Koch, “Total liquid ventilation: a new approach to improve 3D OCT image quality of alveolar structures in lung tissue,” Opt. Express 21(26), 31782–31788 (2013).
[Crossref] [PubMed]

L. Kirsten, M. Gaertner, C. Schnabel, S. Meissner, and E. Koch, “Four-dimensional imaging of murine subpleural alveoli using high-speed optical coherence tomography,” J. Biophotonics 6(2), 148–152 (2013).
[Crossref] [PubMed]

Glascock, B. J.

R. B. Hinton, C. M. Alfieri, S. A. Witt, B. J. Glascock, P. R. Khoury, D. W. Benson, and K. E. Yutzey, “Mouse heart valve structure and function: echocardiographic and morphometric analyses from the fetus through the aged adult,” Am. J. Physiol. Heart Circ. Physiol. 294(6), H2480–H2488 (2008).
[Crossref] [PubMed]

Grande-Allen, K. J.

N. M. Rajamannan, F. J. Evans, E. Aikawa, K. J. Grande-Allen, L. L. Demer, D. D. Heistad, C. A. Simmons, K. S. Masters, P. Mathieu, K. D. O’Brien, F. J. Schoen, D. A. Towler, A. P. Yoganathan, and C. M. Otto, “Calcific aortic valve disease: not simply a degenerative process: A review and agenda for research from the National Heart and Lung and Blood Institute Aortic Stenosis Working Group. Executive summary: Calcific aortic valve disease-2011 update,” Circulation 124(16), 1783–1791 (2011).
[Crossref] [PubMed]

Head, S. J.

R. L. Osnabrugge, D. Mylotte, S. J. Head, N. M. Van Mieghem, V. T. Nkomo, C. M. LeReun, A. J. Bogers, N. Piazza, and A. P. Kappetein, “Aortic stenosis in the elderly: disease prevalence and number of candidates for transcatheter aortic valve replacement: a meta-analysis and modeling study,” J. Am. Coll. Cardiol. 62(11), 1002–1012 (2013).
[Crossref] [PubMed]

Heistad, D. D.

N. M. Rajamannan, F. J. Evans, E. Aikawa, K. J. Grande-Allen, L. L. Demer, D. D. Heistad, C. A. Simmons, K. S. Masters, P. Mathieu, K. D. O’Brien, F. J. Schoen, D. A. Towler, A. P. Yoganathan, and C. M. Otto, “Calcific aortic valve disease: not simply a degenerative process: A review and agenda for research from the National Heart and Lung and Blood Institute Aortic Stenosis Working Group. Executive summary: Calcific aortic valve disease-2011 update,” Circulation 124(16), 1783–1791 (2011).
[Crossref] [PubMed]

Hinton, R. B.

R. B. Hinton and K. E. Yutzey, “Heart valve structure and function in development and disease,” Annu. Rev. Physiol. 73(1), 29–46 (2011).
[Crossref] [PubMed]

R. B. Hinton, C. M. Alfieri, S. A. Witt, B. J. Glascock, P. R. Khoury, D. W. Benson, and K. E. Yutzey, “Mouse heart valve structure and function: echocardiographic and morphometric analyses from the fetus through the aged adult,” Am. J. Physiol. Heart Circ. Physiol. 294(6), H2480–H2488 (2008).
[Crossref] [PubMed]

Hopkins, R. A.

R. H. Messier, B. L. Bass, H. M. Aly, J. L. Jones, P. W. Domkowski, R. B. Wallace, and R. A. Hopkins, “Dual structural and functional phenotypes of the porcine aortic valve interstitial population: characteristics of the leaflet myofibroblast,” J. Surg. Res. 57(1), 1–21 (1994).
[Crossref] [PubMed]

Hu, Z.

Jaffer, F. A.

E. Aikawa, M. Nahrendorf, D. Sosnovik, V. M. Lok, F. A. Jaffer, M. Aikawa, and R. Weissleder, “Multimodality molecular imaging identifies proteolytic and osteogenic activities in early aortic valve disease,” Circulation 115(3), 377–386 (2007).
[Crossref] [PubMed]

E. Aikawa, M. Nahrendorf, J. L. Figueiredo, F. K. Swirski, T. Shtatland, R. H. Kohler, F. A. Jaffer, M. Aikawa, and R. Weissleder, “Osteogenesis associates with inflammation in early-stage atherosclerosis evaluated by molecular imaging in vivo,” Circulation 116(24), 2841–2850 (2007).
[Crossref] [PubMed]

Jenkins, M. W.

M. W. Jenkins, O. Q. Chughtai, A. N. Basavanhally, M. Watanabe, and A. M. Rollins, “In vivo gated 4D imaging of the embryonic heart using optical coherence tomography,” J. Biomed. Opt. 12(3), 030505 (2007).
[Crossref] [PubMed]

M. W. Jenkins, F. Rothenberg, D. Roy, V. P. Nikolski, Z. Hu, M. Watanabe, D. L. Wilson, I. R. Efimov, and A. M. Rollins, “4D embryonic cardiography using gated optical coherence tomography,” Opt. Express 14(2), 736–748 (2006).
[Crossref] [PubMed]

Jiang, J. Y.

Jin, X.

K. Wyss, C. Y. Yip, Z. Mirzaei, X. Jin, J. H. Chen, and C. A. Simmons, “The elastic properties of valve interstitial cells undergoing pathological differentiation,” J. Biomech. 45(5), 882–887 (2012).
[Crossref] [PubMed]

Jones, J. L.

R. H. Messier, B. L. Bass, H. M. Aly, J. L. Jones, P. W. Domkowski, R. B. Wallace, and R. A. Hopkins, “Dual structural and functional phenotypes of the porcine aortic valve interstitial population: characteristics of the leaflet myofibroblast,” J. Surg. Res. 57(1), 1–21 (1994).
[Crossref] [PubMed]

Kaoukis, A.

A. Alexopoulos, A. Kaoukis, H. Papadaki, and V. Pyrgakis, “Pathophysiologic mechanisms of calcific aortic stenosis,” Ther. Adv. Cardiovasc. Dis. 6(2), 71–80 (2012).
[Crossref] [PubMed]

Kappetein, A. P.

R. L. Osnabrugge, D. Mylotte, S. J. Head, N. M. Van Mieghem, V. T. Nkomo, C. M. LeReun, A. J. Bogers, N. Piazza, and A. P. Kappetein, “Aortic stenosis in the elderly: disease prevalence and number of candidates for transcatheter aortic valve replacement: a meta-analysis and modeling study,” J. Am. Coll. Cardiol. 62(11), 1002–1012 (2013).
[Crossref] [PubMed]

Khoury, P. R.

R. B. Hinton, C. M. Alfieri, S. A. Witt, B. J. Glascock, P. R. Khoury, D. W. Benson, and K. E. Yutzey, “Mouse heart valve structure and function: echocardiographic and morphometric analyses from the fetus through the aged adult,” Am. J. Physiol. Heart Circ. Physiol. 294(6), H2480–H2488 (2008).
[Crossref] [PubMed]

Kirsten, L.

C. Schnabel, M. Gaertner, L. Kirsten, S. Meissner, and E. Koch, “Total liquid ventilation: a new approach to improve 3D OCT image quality of alveolar structures in lung tissue,” Opt. Express 21(26), 31782–31788 (2013).
[Crossref] [PubMed]

L. Kirsten, M. Gaertner, C. Schnabel, S. Meissner, and E. Koch, “Four-dimensional imaging of murine subpleural alveoli using high-speed optical coherence tomography,” J. Biophotonics 6(2), 148–152 (2013).
[Crossref] [PubMed]

Knels, L.

S. Meissner, L. Knels, and E. Koch, “Improved three-dimensional Fourier domain optical coherence tomography by index matching in alveolar structures,” J. Biomed. Opt. 14(6), 064037 (2009).
[Crossref] [PubMed]

Koch, E.

C. Schnabel, M. Gaertner, L. Kirsten, S. Meissner, and E. Koch, “Total liquid ventilation: a new approach to improve 3D OCT image quality of alveolar structures in lung tissue,” Opt. Express 21(26), 31782–31788 (2013).
[Crossref] [PubMed]

L. Kirsten, M. Gaertner, C. Schnabel, S. Meissner, and E. Koch, “Four-dimensional imaging of murine subpleural alveoli using high-speed optical coherence tomography,” J. Biophotonics 6(2), 148–152 (2013).
[Crossref] [PubMed]

S. Meissner, L. Knels, and E. Koch, “Improved three-dimensional Fourier domain optical coherence tomography by index matching in alveolar structures,” J. Biomed. Opt. 14(6), 064037 (2009).
[Crossref] [PubMed]

Kohler, R. H.

E. Aikawa, M. Nahrendorf, J. L. Figueiredo, F. K. Swirski, T. Shtatland, R. H. Kohler, F. A. Jaffer, M. Aikawa, and R. Weissleder, “Osteogenesis associates with inflammation in early-stage atherosclerosis evaluated by molecular imaging in vivo,” Circulation 116(24), 2841–2850 (2007).
[Crossref] [PubMed]

Larin, K. V.

S. Bhat, I. V. Larina, K. V. Larin, M. E. Dickinson, and M. Liebling, “4D reconstruction of the beating embryonic heart from two orthogonal sets of parallel optical coherence tomography slice-sequences,” IEEE Trans. Med. Imaging 32(3), 578–588 (2013).
[Crossref] [PubMed]

Larina, I. V.

S. Bhat, I. V. Larina, K. V. Larin, M. E. Dickinson, and M. Liebling, “4D reconstruction of the beating embryonic heart from two orthogonal sets of parallel optical coherence tomography slice-sequences,” IEEE Trans. Med. Imaging 32(3), 578–588 (2013).
[Crossref] [PubMed]

Laschinger, C.

M. Pho, W. Lee, D. R. Watt, C. Laschinger, C. A. Simmons, and C. A. McCulloch, “Cofilin is a marker of myofibroblast differentiation in cells from porcine aortic cardiac valves,” Am. J. Physiol. Heart Circ. Physiol. 294(4), H1767–H1778 (2008).
[Crossref] [PubMed]

Latif, N.

N. Latif, P. Sarathchandra, A. H. Chester, and M. H. Yacoub, “Expression of smooth muscle cell markers and co-activators in calcified aortic valves,” Eur. Heart J. (2014).

Lee, W.

M. Pho, W. Lee, D. R. Watt, C. Laschinger, C. A. Simmons, and C. A. McCulloch, “Cofilin is a marker of myofibroblast differentiation in cells from porcine aortic cardiac valves,” Am. J. Physiol. Heart Circ. Physiol. 294(4), H1767–H1778 (2008).
[Crossref] [PubMed]

Leopold, J. A.

J. A. Leopold, “Cellular mechanisms of aortic valve calcification,” Circ. Cardiovasc. Interv. 5(4), 605–614 (2012).
[Crossref] [PubMed]

LeReun, C. M.

R. L. Osnabrugge, D. Mylotte, S. J. Head, N. M. Van Mieghem, V. T. Nkomo, C. M. LeReun, A. J. Bogers, N. Piazza, and A. P. Kappetein, “Aortic stenosis in the elderly: disease prevalence and number of candidates for transcatheter aortic valve replacement: a meta-analysis and modeling study,” J. Am. Coll. Cardiol. 62(11), 1002–1012 (2013).
[Crossref] [PubMed]

Liebling, M.

S. Bhat, I. V. Larina, K. V. Larin, M. E. Dickinson, and M. Liebling, “4D reconstruction of the beating embryonic heart from two orthogonal sets of parallel optical coherence tomography slice-sequences,” IEEE Trans. Med. Imaging 32(3), 578–588 (2013).
[Crossref] [PubMed]

Liu, G.

Lok, V. M.

E. Aikawa, M. Nahrendorf, D. Sosnovik, V. M. Lok, F. A. Jaffer, M. Aikawa, and R. Weissleder, “Multimodality molecular imaging identifies proteolytic and osteogenic activities in early aortic valve disease,” Circulation 115(3), 377–386 (2007).
[Crossref] [PubMed]

Mariampillai, A.

Masters, K. S.

N. M. Rajamannan, F. J. Evans, E. Aikawa, K. J. Grande-Allen, L. L. Demer, D. D. Heistad, C. A. Simmons, K. S. Masters, P. Mathieu, K. D. O’Brien, F. J. Schoen, D. A. Towler, A. P. Yoganathan, and C. M. Otto, “Calcific aortic valve disease: not simply a degenerative process: A review and agenda for research from the National Heart and Lung and Blood Institute Aortic Stenosis Working Group. Executive summary: Calcific aortic valve disease-2011 update,” Circulation 124(16), 1783–1791 (2011).
[Crossref] [PubMed]

Mathieu, P.

N. M. Rajamannan, F. J. Evans, E. Aikawa, K. J. Grande-Allen, L. L. Demer, D. D. Heistad, C. A. Simmons, K. S. Masters, P. Mathieu, K. D. O’Brien, F. J. Schoen, D. A. Towler, A. P. Yoganathan, and C. M. Otto, “Calcific aortic valve disease: not simply a degenerative process: A review and agenda for research from the National Heart and Lung and Blood Institute Aortic Stenosis Working Group. Executive summary: Calcific aortic valve disease-2011 update,” Circulation 124(16), 1783–1791 (2011).
[Crossref] [PubMed]

McCulloch, C. A.

M. Pho, W. Lee, D. R. Watt, C. Laschinger, C. A. Simmons, and C. A. McCulloch, “Cofilin is a marker of myofibroblast differentiation in cells from porcine aortic cardiac valves,” Am. J. Physiol. Heart Circ. Physiol. 294(4), H1767–H1778 (2008).
[Crossref] [PubMed]

Meissner, S.

C. Schnabel, M. Gaertner, L. Kirsten, S. Meissner, and E. Koch, “Total liquid ventilation: a new approach to improve 3D OCT image quality of alveolar structures in lung tissue,” Opt. Express 21(26), 31782–31788 (2013).
[Crossref] [PubMed]

L. Kirsten, M. Gaertner, C. Schnabel, S. Meissner, and E. Koch, “Four-dimensional imaging of murine subpleural alveoli using high-speed optical coherence tomography,” J. Biophotonics 6(2), 148–152 (2013).
[Crossref] [PubMed]

S. Meissner, L. Knels, and E. Koch, “Improved three-dimensional Fourier domain optical coherence tomography by index matching in alveolar structures,” J. Biomed. Opt. 14(6), 064037 (2009).
[Crossref] [PubMed]

Mendelson, K.

E. Aikawa, P. Whittaker, M. Farber, K. Mendelson, R. F. Padera, M. Aikawa, and F. J. Schoen, “Human semilunar cardiac valve remodeling by activated cells from fetus to adult: implications for postnatal adaptation, pathology, and tissue engineering,” Circulation 113(10), 1344–1352 (2006).
[Crossref] [PubMed]

Messier, R. H.

R. H. Messier, B. L. Bass, H. M. Aly, J. L. Jones, P. W. Domkowski, R. B. Wallace, and R. A. Hopkins, “Dual structural and functional phenotypes of the porcine aortic valve interstitial population: characteristics of the leaflet myofibroblast,” J. Surg. Res. 57(1), 1–21 (1994).
[Crossref] [PubMed]

Mirzaei, Z.

K. Wyss, C. Y. Yip, Z. Mirzaei, X. Jin, J. H. Chen, and C. A. Simmons, “The elastic properties of valve interstitial cells undergoing pathological differentiation,” J. Biomech. 45(5), 882–887 (2012).
[Crossref] [PubMed]

Munce, N. R.

Mylotte, D.

R. L. Osnabrugge, D. Mylotte, S. J. Head, N. M. Van Mieghem, V. T. Nkomo, C. M. LeReun, A. J. Bogers, N. Piazza, and A. P. Kappetein, “Aortic stenosis in the elderly: disease prevalence and number of candidates for transcatheter aortic valve replacement: a meta-analysis and modeling study,” J. Am. Coll. Cardiol. 62(11), 1002–1012 (2013).
[Crossref] [PubMed]

Nahrendorf, M.

E. Aikawa, M. Nahrendorf, J. L. Figueiredo, F. K. Swirski, T. Shtatland, R. H. Kohler, F. A. Jaffer, M. Aikawa, and R. Weissleder, “Osteogenesis associates with inflammation in early-stage atherosclerosis evaluated by molecular imaging in vivo,” Circulation 116(24), 2841–2850 (2007).
[Crossref] [PubMed]

E. Aikawa, M. Nahrendorf, D. Sosnovik, V. M. Lok, F. A. Jaffer, M. Aikawa, and R. Weissleder, “Multimodality molecular imaging identifies proteolytic and osteogenic activities in early aortic valve disease,” Circulation 115(3), 377–386 (2007).
[Crossref] [PubMed]

New, S. E.

S. E. New and E. Aikawa, “Molecular imaging insights into early inflammatory stages of arterial and aortic valve calcification,” Circ. Res. 108(11), 1381–1391 (2011).
[Crossref] [PubMed]

Nikolski, V. P.

Nkomo, V. T.

R. L. Osnabrugge, D. Mylotte, S. J. Head, N. M. Van Mieghem, V. T. Nkomo, C. M. LeReun, A. J. Bogers, N. Piazza, and A. P. Kappetein, “Aortic stenosis in the elderly: disease prevalence and number of candidates for transcatheter aortic valve replacement: a meta-analysis and modeling study,” J. Am. Coll. Cardiol. 62(11), 1002–1012 (2013).
[Crossref] [PubMed]

O’Brien, K. D.

N. M. Rajamannan, F. J. Evans, E. Aikawa, K. J. Grande-Allen, L. L. Demer, D. D. Heistad, C. A. Simmons, K. S. Masters, P. Mathieu, K. D. O’Brien, F. J. Schoen, D. A. Towler, A. P. Yoganathan, and C. M. Otto, “Calcific aortic valve disease: not simply a degenerative process: A review and agenda for research from the National Heart and Lung and Blood Institute Aortic Stenosis Working Group. Executive summary: Calcific aortic valve disease-2011 update,” Circulation 124(16), 1783–1791 (2011).
[Crossref] [PubMed]

Osnabrugge, R. L.

R. L. Osnabrugge, D. Mylotte, S. J. Head, N. M. Van Mieghem, V. T. Nkomo, C. M. LeReun, A. J. Bogers, N. Piazza, and A. P. Kappetein, “Aortic stenosis in the elderly: disease prevalence and number of candidates for transcatheter aortic valve replacement: a meta-analysis and modeling study,” J. Am. Coll. Cardiol. 62(11), 1002–1012 (2013).
[Crossref] [PubMed]

Otto, C. M.

N. M. Rajamannan, F. J. Evans, E. Aikawa, K. J. Grande-Allen, L. L. Demer, D. D. Heistad, C. A. Simmons, K. S. Masters, P. Mathieu, K. D. O’Brien, F. J. Schoen, D. A. Towler, A. P. Yoganathan, and C. M. Otto, “Calcific aortic valve disease: not simply a degenerative process: A review and agenda for research from the National Heart and Lung and Blood Institute Aortic Stenosis Working Group. Executive summary: Calcific aortic valve disease-2011 update,” Circulation 124(16), 1783–1791 (2011).
[Crossref] [PubMed]

Padera, R. F.

E. Aikawa, P. Whittaker, M. Farber, K. Mendelson, R. F. Padera, M. Aikawa, and F. J. Schoen, “Human semilunar cardiac valve remodeling by activated cells from fetus to adult: implications for postnatal adaptation, pathology, and tissue engineering,” Circulation 113(10), 1344–1352 (2006).
[Crossref] [PubMed]

Papadaki, H.

A. Alexopoulos, A. Kaoukis, H. Papadaki, and V. Pyrgakis, “Pathophysiologic mechanisms of calcific aortic stenosis,” Ther. Adv. Cardiovasc. Dis. 6(2), 71–80 (2012).
[Crossref] [PubMed]

Pho, M.

M. Pho, W. Lee, D. R. Watt, C. Laschinger, C. A. Simmons, and C. A. McCulloch, “Cofilin is a marker of myofibroblast differentiation in cells from porcine aortic cardiac valves,” Am. J. Physiol. Heart Circ. Physiol. 294(4), H1767–H1778 (2008).
[Crossref] [PubMed]

Piazza, N.

R. L. Osnabrugge, D. Mylotte, S. J. Head, N. M. Van Mieghem, V. T. Nkomo, C. M. LeReun, A. J. Bogers, N. Piazza, and A. P. Kappetein, “Aortic stenosis in the elderly: disease prevalence and number of candidates for transcatheter aortic valve replacement: a meta-analysis and modeling study,” J. Am. Coll. Cardiol. 62(11), 1002–1012 (2013).
[Crossref] [PubMed]

Pilgrim, T.

T. Pilgrim and P. Wenaweser, “Aortic valve replacement in elderly with severe calcific aortic stenosis,” Cardiovascular Medicine 13, 197–203 (2010).

Pyrgakis, V.

A. Alexopoulos, A. Kaoukis, H. Papadaki, and V. Pyrgakis, “Pathophysiologic mechanisms of calcific aortic stenosis,” Ther. Adv. Cardiovasc. Dis. 6(2), 71–80 (2012).
[Crossref] [PubMed]

Rajamannan, N. M.

N. M. Rajamannan, F. J. Evans, E. Aikawa, K. J. Grande-Allen, L. L. Demer, D. D. Heistad, C. A. Simmons, K. S. Masters, P. Mathieu, K. D. O’Brien, F. J. Schoen, D. A. Towler, A. P. Yoganathan, and C. M. Otto, “Calcific aortic valve disease: not simply a degenerative process: A review and agenda for research from the National Heart and Lung and Blood Institute Aortic Stenosis Working Group. Executive summary: Calcific aortic valve disease-2011 update,” Circulation 124(16), 1783–1791 (2011).
[Crossref] [PubMed]

Randall, C.

Reser, D.

S. H. Sündermann, D. Reser, M. Czerny, and V. Falk, “[Indication and timing of heart valve surgery - summery of the European guidelines],” Praxis (Bern 1994) 103(8), 445–451 (2014).
[PubMed]

Rogers, K. A.

M. Cimini, K. A. Rogers, and D. R. Boughner, “Smoothelin-positive cells in human and porcine semilunar valves,” Histochem. Cell Biol. 120(4), 307–317 (2003).
[Crossref] [PubMed]

Rollins, A. M.

M. W. Jenkins, O. Q. Chughtai, A. N. Basavanhally, M. Watanabe, and A. M. Rollins, “In vivo gated 4D imaging of the embryonic heart using optical coherence tomography,” J. Biomed. Opt. 12(3), 030505 (2007).
[Crossref] [PubMed]

M. W. Jenkins, F. Rothenberg, D. Roy, V. P. Nikolski, Z. Hu, M. Watanabe, D. L. Wilson, I. R. Efimov, and A. M. Rollins, “4D embryonic cardiography using gated optical coherence tomography,” Opt. Express 14(2), 736–748 (2006).
[Crossref] [PubMed]

Rothenberg, F.

Roy, D.

Sarathchandra, P.

N. Latif, P. Sarathchandra, A. H. Chester, and M. H. Yacoub, “Expression of smooth muscle cell markers and co-activators in calcified aortic valves,” Eur. Heart J. (2014).

Schnabel, C.

C. Schnabel, M. Gaertner, L. Kirsten, S. Meissner, and E. Koch, “Total liquid ventilation: a new approach to improve 3D OCT image quality of alveolar structures in lung tissue,” Opt. Express 21(26), 31782–31788 (2013).
[Crossref] [PubMed]

L. Kirsten, M. Gaertner, C. Schnabel, S. Meissner, and E. Koch, “Four-dimensional imaging of murine subpleural alveoli using high-speed optical coherence tomography,” J. Biophotonics 6(2), 148–152 (2013).
[Crossref] [PubMed]

Schoen, F. J.

N. M. Rajamannan, F. J. Evans, E. Aikawa, K. J. Grande-Allen, L. L. Demer, D. D. Heistad, C. A. Simmons, K. S. Masters, P. Mathieu, K. D. O’Brien, F. J. Schoen, D. A. Towler, A. P. Yoganathan, and C. M. Otto, “Calcific aortic valve disease: not simply a degenerative process: A review and agenda for research from the National Heart and Lung and Blood Institute Aortic Stenosis Working Group. Executive summary: Calcific aortic valve disease-2011 update,” Circulation 124(16), 1783–1791 (2011).
[Crossref] [PubMed]

E. Aikawa, P. Whittaker, M. Farber, K. Mendelson, R. F. Padera, M. Aikawa, and F. J. Schoen, “Human semilunar cardiac valve remodeling by activated cells from fetus to adult: implications for postnatal adaptation, pathology, and tissue engineering,” Circulation 113(10), 1344–1352 (2006).
[Crossref] [PubMed]

Shtatland, T.

E. Aikawa, M. Nahrendorf, J. L. Figueiredo, F. K. Swirski, T. Shtatland, R. H. Kohler, F. A. Jaffer, M. Aikawa, and R. Weissleder, “Osteogenesis associates with inflammation in early-stage atherosclerosis evaluated by molecular imaging in vivo,” Circulation 116(24), 2841–2850 (2007).
[Crossref] [PubMed]

Sider, K. L.

K. L. Sider, M. C. Blaser, and C. A. Simmons, “Animal models of calcific aortic valve disease,” Int. J. Inflam.  2011, 364310 (2011).

Simmons, C. A.

K. Wyss, C. Y. Yip, Z. Mirzaei, X. Jin, J. H. Chen, and C. A. Simmons, “The elastic properties of valve interstitial cells undergoing pathological differentiation,” J. Biomech. 45(5), 882–887 (2012).
[Crossref] [PubMed]

J. H. Chen and C. A. Simmons, “Cell-matrix interactions in the pathobiology of calcific aortic valve disease: critical roles for matricellular, matricrine, and matrix mechanics cues,” Circ. Res. 108(12), 1510–1524 (2011).
[Crossref] [PubMed]

K. L. Sider, M. C. Blaser, and C. A. Simmons, “Animal models of calcific aortic valve disease,” Int. J. Inflam.  2011, 364310 (2011).

N. M. Rajamannan, F. J. Evans, E. Aikawa, K. J. Grande-Allen, L. L. Demer, D. D. Heistad, C. A. Simmons, K. S. Masters, P. Mathieu, K. D. O’Brien, F. J. Schoen, D. A. Towler, A. P. Yoganathan, and C. M. Otto, “Calcific aortic valve disease: not simply a degenerative process: A review and agenda for research from the National Heart and Lung and Blood Institute Aortic Stenosis Working Group. Executive summary: Calcific aortic valve disease-2011 update,” Circulation 124(16), 1783–1791 (2011).
[Crossref] [PubMed]

J. H. Chen, C. Y. Yip, E. D. Sone, and C. A. Simmons, “Identification and characterization of aortic valve mesenchymal progenitor cells with robust osteogenic calcification potential,” Am. J. Pathol. 174(3), 1109–1119 (2009).
[Crossref] [PubMed]

M. Pho, W. Lee, D. R. Watt, C. Laschinger, C. A. Simmons, and C. A. McCulloch, “Cofilin is a marker of myofibroblast differentiation in cells from porcine aortic cardiac valves,” Am. J. Physiol. Heart Circ. Physiol. 294(4), H1767–H1778 (2008).
[Crossref] [PubMed]

Sone, E. D.

J. H. Chen, C. Y. Yip, E. D. Sone, and C. A. Simmons, “Identification and characterization of aortic valve mesenchymal progenitor cells with robust osteogenic calcification potential,” Am. J. Pathol. 174(3), 1109–1119 (2009).
[Crossref] [PubMed]

Sosnovik, D.

E. Aikawa, M. Nahrendorf, D. Sosnovik, V. M. Lok, F. A. Jaffer, M. Aikawa, and R. Weissleder, “Multimodality molecular imaging identifies proteolytic and osteogenic activities in early aortic valve disease,” Circulation 115(3), 377–386 (2007).
[Crossref] [PubMed]

Standish, B. A.

Sündermann, S. H.

S. H. Sündermann, D. Reser, M. Czerny, and V. Falk, “[Indication and timing of heart valve surgery - summery of the European guidelines],” Praxis (Bern 1994) 103(8), 445–451 (2014).
[PubMed]

Swirski, F. K.

E. Aikawa, M. Nahrendorf, J. L. Figueiredo, F. K. Swirski, T. Shtatland, R. H. Kohler, F. A. Jaffer, M. Aikawa, and R. Weissleder, “Osteogenesis associates with inflammation in early-stage atherosclerosis evaluated by molecular imaging in vivo,” Circulation 116(24), 2841–2850 (2007).
[Crossref] [PubMed]

Towler, D. A.

N. M. Rajamannan, F. J. Evans, E. Aikawa, K. J. Grande-Allen, L. L. Demer, D. D. Heistad, C. A. Simmons, K. S. Masters, P. Mathieu, K. D. O’Brien, F. J. Schoen, D. A. Towler, A. P. Yoganathan, and C. M. Otto, “Calcific aortic valve disease: not simply a degenerative process: A review and agenda for research from the National Heart and Lung and Blood Institute Aortic Stenosis Working Group. Executive summary: Calcific aortic valve disease-2011 update,” Circulation 124(16), 1783–1791 (2011).
[Crossref] [PubMed]

Van Mieghem, N. M.

R. L. Osnabrugge, D. Mylotte, S. J. Head, N. M. Van Mieghem, V. T. Nkomo, C. M. LeReun, A. J. Bogers, N. Piazza, and A. P. Kappetein, “Aortic stenosis in the elderly: disease prevalence and number of candidates for transcatheter aortic valve replacement: a meta-analysis and modeling study,” J. Am. Coll. Cardiol. 62(11), 1002–1012 (2013).
[Crossref] [PubMed]

Vitkin, I. A.

Wallace, R. B.

R. H. Messier, B. L. Bass, H. M. Aly, J. L. Jones, P. W. Domkowski, R. B. Wallace, and R. A. Hopkins, “Dual structural and functional phenotypes of the porcine aortic valve interstitial population: characteristics of the leaflet myofibroblast,” J. Surg. Res. 57(1), 1–21 (1994).
[Crossref] [PubMed]

Watanabe, M.

M. W. Jenkins, O. Q. Chughtai, A. N. Basavanhally, M. Watanabe, and A. M. Rollins, “In vivo gated 4D imaging of the embryonic heart using optical coherence tomography,” J. Biomed. Opt. 12(3), 030505 (2007).
[Crossref] [PubMed]

M. W. Jenkins, F. Rothenberg, D. Roy, V. P. Nikolski, Z. Hu, M. Watanabe, D. L. Wilson, I. R. Efimov, and A. M. Rollins, “4D embryonic cardiography using gated optical coherence tomography,” Opt. Express 14(2), 736–748 (2006).
[Crossref] [PubMed]

Watt, D. R.

M. Pho, W. Lee, D. R. Watt, C. Laschinger, C. A. Simmons, and C. A. McCulloch, “Cofilin is a marker of myofibroblast differentiation in cells from porcine aortic cardiac valves,” Am. J. Physiol. Heart Circ. Physiol. 294(4), H1767–H1778 (2008).
[Crossref] [PubMed]

Weissleder, R.

E. Aikawa, M. Nahrendorf, J. L. Figueiredo, F. K. Swirski, T. Shtatland, R. H. Kohler, F. A. Jaffer, M. Aikawa, and R. Weissleder, “Osteogenesis associates with inflammation in early-stage atherosclerosis evaluated by molecular imaging in vivo,” Circulation 116(24), 2841–2850 (2007).
[Crossref] [PubMed]

E. Aikawa, M. Nahrendorf, D. Sosnovik, V. M. Lok, F. A. Jaffer, M. Aikawa, and R. Weissleder, “Multimodality molecular imaging identifies proteolytic and osteogenic activities in early aortic valve disease,” Circulation 115(3), 377–386 (2007).
[Crossref] [PubMed]

Wenaweser, P.

T. Pilgrim and P. Wenaweser, “Aortic valve replacement in elderly with severe calcific aortic stenosis,” Cardiovascular Medicine 13, 197–203 (2010).

Whittaker, P.

E. Aikawa, P. Whittaker, M. Farber, K. Mendelson, R. F. Padera, M. Aikawa, and F. J. Schoen, “Human semilunar cardiac valve remodeling by activated cells from fetus to adult: implications for postnatal adaptation, pathology, and tissue engineering,” Circulation 113(10), 1344–1352 (2006).
[Crossref] [PubMed]

Wilson, D. L.

Witt, S. A.

R. B. Hinton, C. M. Alfieri, S. A. Witt, B. J. Glascock, P. R. Khoury, D. W. Benson, and K. E. Yutzey, “Mouse heart valve structure and function: echocardiographic and morphometric analyses from the fetus through the aged adult,” Am. J. Physiol. Heart Circ. Physiol. 294(6), H2480–H2488 (2008).
[Crossref] [PubMed]

Wyss, K.

K. Wyss, C. Y. Yip, Z. Mirzaei, X. Jin, J. H. Chen, and C. A. Simmons, “The elastic properties of valve interstitial cells undergoing pathological differentiation,” J. Biomech. 45(5), 882–887 (2012).
[Crossref] [PubMed]

Yacoub, M. H.

N. Latif, P. Sarathchandra, A. H. Chester, and M. H. Yacoub, “Expression of smooth muscle cell markers and co-activators in calcified aortic valves,” Eur. Heart J. (2014).

Yang, V. X.

Yip, C. Y.

K. Wyss, C. Y. Yip, Z. Mirzaei, X. Jin, J. H. Chen, and C. A. Simmons, “The elastic properties of valve interstitial cells undergoing pathological differentiation,” J. Biomech. 45(5), 882–887 (2012).
[Crossref] [PubMed]

J. H. Chen, C. Y. Yip, E. D. Sone, and C. A. Simmons, “Identification and characterization of aortic valve mesenchymal progenitor cells with robust osteogenic calcification potential,” Am. J. Pathol. 174(3), 1109–1119 (2009).
[Crossref] [PubMed]

Yoganathan, A. P.

N. M. Rajamannan, F. J. Evans, E. Aikawa, K. J. Grande-Allen, L. L. Demer, D. D. Heistad, C. A. Simmons, K. S. Masters, P. Mathieu, K. D. O’Brien, F. J. Schoen, D. A. Towler, A. P. Yoganathan, and C. M. Otto, “Calcific aortic valve disease: not simply a degenerative process: A review and agenda for research from the National Heart and Lung and Blood Institute Aortic Stenosis Working Group. Executive summary: Calcific aortic valve disease-2011 update,” Circulation 124(16), 1783–1791 (2011).
[Crossref] [PubMed]

Yutzey, K. E.

R. B. Hinton and K. E. Yutzey, “Heart valve structure and function in development and disease,” Annu. Rev. Physiol. 73(1), 29–46 (2011).
[Crossref] [PubMed]

R. B. Hinton, C. M. Alfieri, S. A. Witt, B. J. Glascock, P. R. Khoury, D. W. Benson, and K. E. Yutzey, “Mouse heart valve structure and function: echocardiographic and morphometric analyses from the fetus through the aged adult,” Am. J. Physiol. Heart Circ. Physiol. 294(6), H2480–H2488 (2008).
[Crossref] [PubMed]

Am. J. Pathol. (1)

J. H. Chen, C. Y. Yip, E. D. Sone, and C. A. Simmons, “Identification and characterization of aortic valve mesenchymal progenitor cells with robust osteogenic calcification potential,” Am. J. Pathol. 174(3), 1109–1119 (2009).
[Crossref] [PubMed]

Am. J. Physiol. Heart Circ. Physiol. (2)

M. Pho, W. Lee, D. R. Watt, C. Laschinger, C. A. Simmons, and C. A. McCulloch, “Cofilin is a marker of myofibroblast differentiation in cells from porcine aortic cardiac valves,” Am. J. Physiol. Heart Circ. Physiol. 294(4), H1767–H1778 (2008).
[Crossref] [PubMed]

R. B. Hinton, C. M. Alfieri, S. A. Witt, B. J. Glascock, P. R. Khoury, D. W. Benson, and K. E. Yutzey, “Mouse heart valve structure and function: echocardiographic and morphometric analyses from the fetus through the aged adult,” Am. J. Physiol. Heart Circ. Physiol. 294(6), H2480–H2488 (2008).
[Crossref] [PubMed]

Annu. Rev. Physiol. (1)

R. B. Hinton and K. E. Yutzey, “Heart valve structure and function in development and disease,” Annu. Rev. Physiol. 73(1), 29–46 (2011).
[Crossref] [PubMed]

Cardiovascular Medicine (1)

T. Pilgrim and P. Wenaweser, “Aortic valve replacement in elderly with severe calcific aortic stenosis,” Cardiovascular Medicine 13, 197–203 (2010).

Circ. Cardiovasc. Interv. (1)

J. A. Leopold, “Cellular mechanisms of aortic valve calcification,” Circ. Cardiovasc. Interv. 5(4), 605–614 (2012).
[Crossref] [PubMed]

Circ. Res. (2)

J. H. Chen and C. A. Simmons, “Cell-matrix interactions in the pathobiology of calcific aortic valve disease: critical roles for matricellular, matricrine, and matrix mechanics cues,” Circ. Res. 108(12), 1510–1524 (2011).
[Crossref] [PubMed]

S. E. New and E. Aikawa, “Molecular imaging insights into early inflammatory stages of arterial and aortic valve calcification,” Circ. Res. 108(11), 1381–1391 (2011).
[Crossref] [PubMed]

Circulation (4)

E. Aikawa, P. Whittaker, M. Farber, K. Mendelson, R. F. Padera, M. Aikawa, and F. J. Schoen, “Human semilunar cardiac valve remodeling by activated cells from fetus to adult: implications for postnatal adaptation, pathology, and tissue engineering,” Circulation 113(10), 1344–1352 (2006).
[Crossref] [PubMed]

E. Aikawa, M. Nahrendorf, J. L. Figueiredo, F. K. Swirski, T. Shtatland, R. H. Kohler, F. A. Jaffer, M. Aikawa, and R. Weissleder, “Osteogenesis associates with inflammation in early-stage atherosclerosis evaluated by molecular imaging in vivo,” Circulation 116(24), 2841–2850 (2007).
[Crossref] [PubMed]

E. Aikawa, M. Nahrendorf, D. Sosnovik, V. M. Lok, F. A. Jaffer, M. Aikawa, and R. Weissleder, “Multimodality molecular imaging identifies proteolytic and osteogenic activities in early aortic valve disease,” Circulation 115(3), 377–386 (2007).
[Crossref] [PubMed]

N. M. Rajamannan, F. J. Evans, E. Aikawa, K. J. Grande-Allen, L. L. Demer, D. D. Heistad, C. A. Simmons, K. S. Masters, P. Mathieu, K. D. O’Brien, F. J. Schoen, D. A. Towler, A. P. Yoganathan, and C. M. Otto, “Calcific aortic valve disease: not simply a degenerative process: A review and agenda for research from the National Heart and Lung and Blood Institute Aortic Stenosis Working Group. Executive summary: Calcific aortic valve disease-2011 update,” Circulation 124(16), 1783–1791 (2011).
[Crossref] [PubMed]

Histochem. Cell Biol. (1)

M. Cimini, K. A. Rogers, and D. R. Boughner, “Smoothelin-positive cells in human and porcine semilunar valves,” Histochem. Cell Biol. 120(4), 307–317 (2003).
[Crossref] [PubMed]

IEEE Trans. Med. Imaging (1)

S. Bhat, I. V. Larina, K. V. Larin, M. E. Dickinson, and M. Liebling, “4D reconstruction of the beating embryonic heart from two orthogonal sets of parallel optical coherence tomography slice-sequences,” IEEE Trans. Med. Imaging 32(3), 578–588 (2013).
[Crossref] [PubMed]

Int. J. Inflam (1)

K. L. Sider, M. C. Blaser, and C. A. Simmons, “Animal models of calcific aortic valve disease,” Int. J. Inflam.  2011, 364310 (2011).

J. Am. Coll. Cardiol. (1)

R. L. Osnabrugge, D. Mylotte, S. J. Head, N. M. Van Mieghem, V. T. Nkomo, C. M. LeReun, A. J. Bogers, N. Piazza, and A. P. Kappetein, “Aortic stenosis in the elderly: disease prevalence and number of candidates for transcatheter aortic valve replacement: a meta-analysis and modeling study,” J. Am. Coll. Cardiol. 62(11), 1002–1012 (2013).
[Crossref] [PubMed]

J. Biomech. (1)

K. Wyss, C. Y. Yip, Z. Mirzaei, X. Jin, J. H. Chen, and C. A. Simmons, “The elastic properties of valve interstitial cells undergoing pathological differentiation,” J. Biomech. 45(5), 882–887 (2012).
[Crossref] [PubMed]

J. Biomed. Opt. (2)

M. W. Jenkins, O. Q. Chughtai, A. N. Basavanhally, M. Watanabe, and A. M. Rollins, “In vivo gated 4D imaging of the embryonic heart using optical coherence tomography,” J. Biomed. Opt. 12(3), 030505 (2007).
[Crossref] [PubMed]

S. Meissner, L. Knels, and E. Koch, “Improved three-dimensional Fourier domain optical coherence tomography by index matching in alveolar structures,” J. Biomed. Opt. 14(6), 064037 (2009).
[Crossref] [PubMed]

J. Biophotonics (1)

L. Kirsten, M. Gaertner, C. Schnabel, S. Meissner, and E. Koch, “Four-dimensional imaging of murine subpleural alveoli using high-speed optical coherence tomography,” J. Biophotonics 6(2), 148–152 (2013).
[Crossref] [PubMed]

J. Surg. Res. (1)

R. H. Messier, B. L. Bass, H. M. Aly, J. L. Jones, P. W. Domkowski, R. B. Wallace, and R. A. Hopkins, “Dual structural and functional phenotypes of the porcine aortic valve interstitial population: characteristics of the leaflet myofibroblast,” J. Surg. Res. 57(1), 1–21 (1994).
[Crossref] [PubMed]

Opt. Express (3)

Praxis (Bern 1994) (1)

S. H. Sündermann, D. Reser, M. Czerny, and V. Falk, “[Indication and timing of heart valve surgery - summery of the European guidelines],” Praxis (Bern 1994) 103(8), 445–451 (2014).
[PubMed]

Ther. Adv. Cardiovasc. Dis. (1)

A. Alexopoulos, A. Kaoukis, H. Papadaki, and V. Pyrgakis, “Pathophysiologic mechanisms of calcific aortic stenosis,” Ther. Adv. Cardiovasc. Dis. 6(2), 71–80 (2012).
[Crossref] [PubMed]

Other (1)

N. Latif, P. Sarathchandra, A. H. Chester, and M. H. Yacoub, “Expression of smooth muscle cell markers and co-activators in calcified aortic valves,” Eur. Heart J. (2014).

Supplementary Material (1)

» Media 1: AVI (3311 KB)     

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 Experimental setup for 4D visualization of aortic valves in mice. The setup consists of two independent pumps to perform the opening and closing of the aortic valve during artificial stimulation. The fluid bolus coming through the valve during each cycle is recirculated to a reservoir by a peristaltic pump. The scanner head enables the simultaneous acquisition of the aortic valve with 3D OCT and high-speed video microscopy. Components: vc... high-speed video camera; sh…OCT scanner head; c… heart chamber; p… peristaltic pump; r… reservoir; v… valve; s… syringe; d… linear drive
Fig. 2
Fig. 2 Visualization of a murine aortic valve with 2D video microscopy (I) and 3D OCT (IV) ex vivo. These images were acquired after preparation of the aortic valve without any stimulation. The structures of the valve are clearly visible in both imaging techniques. The OCT cross-sections (II and III) show two closed cusps of the aortic valve and also a mitral valve leaflet beneath. Due to the tissue structure of the aorta, penetration depth for OCT is remarkably limited (see the loss of structure information at the annulus in the cross-sections marked by the triangles), which is the reason why an imaging through the intact aorta vessel was not feasible with this setup. Remarkable landmarks: a1 a2… aortic wall residues; c1 c2… aortic cusps; cp… coaptation point; m… mitral leaflet. Scale bar is 500 µm.
Fig. 3
Fig. 3 The aortic valve of a female 17-week-old C57BL/6J mouse. The four images of each row are examples of the original series of 40 different OCT images of the dynamic measurement and show the closed, half opened, maximum opened and half closed state of the aortic valve during artificial stimulation with high-speed video microscopy (first row), enface OCT (second row) and OCT cross-sections (last row), respectively. Due to the long measurement time and the scanning algorithm, motion artifacts partly appear especially in the slope time of the sinusoidal stimulation pattern but nevertheless image quality is good enough to investigate dynamic behavior and properties of the valvular cusps. Orange arrow indicates the position of the cross-sections. Scale bar is 500 µm. (see first row in Media 1)
Fig. 4
Fig. 4 Example images of the valve dynamics of a 12-month-old female ApoE knockout mouse. It is clearly visible that the aorta tissue is thickened compared to Fig. 3 and the motility of the cusps is decreased. Especially the left cusp is so stiff that it doesn’t move during stimulation, which seriously restrains the hemodynamics of the blood flow. From the video images and OCT enface view the impression occurs that the valve opens just a very little area. But due to the 3D information provided by OCT, one can see that the cusps are folded and extend into the valves opening area (p). This is also based on the progressive calcification of the cusps annulus structure. Marks: a1, a2 … aortic wall residues; c1, c2 aortic cusps; p …plait of the right cusp. Orange arrow indicates the position of the cross-sections. Scale bar is 500 µm. (see second row in Media 1)
Fig. 5
Fig. 5 Measurement of the valve opening area. OCT enface projection was used to manually segment the opening area of the healthy and diseased valves from Fig. 3 and Fig. 4, respectively (indicated by yellow line). This was done for each 3D OCT image. To compare these measurements the residual aortic tissue was also segmented as the reference value (indicated by red line). The opening area is displayed as percentage of these reference values for both valves in the upper plot. The diseased tissue is stiffer and therefore the valve opens later after the pressure gradient is higher caused by our pump. Furthermore, the maximum opening area is much smaller compared to the healthy tissue. Acquisition time points of images A, B, C and D are marked in the upper plot. Scale bar is 500 µm.
Fig. 6
Fig. 6 Estimation of the axial shift between OCT B-scans due to motion artifacts. Due to the gating technique for OCT measurements, jitter between single B-scans occurs in the reconstructed 3D volume stack. This jitter can be seen in the slow scanning axis cross-sectional view. While the reconstruction works very well during phases of low tissue movement (a)), the fast acceleration of the cusps in addition to the measurement over several cycles yields little jitter and blurring effects (b)). The axial shift between B-scans was estimated from the images with 96 µm. Areas, which move slowly (marked with *) are less subjected to jitter than fast moving tissue (marked with #). Scale bar is 200 µm.

Metrics