Abstract

The maintenance of urinary bladder elasticity is essential to its functions, including the storage and voiding phases of the micturition cycle. The bladder stiffness can be changed by various pathophysiological conditions. Quantitative measurement of bladder elasticity is an essential step toward understanding various urinary bladder disease processes and improving patient care. As a nondestructive, and noncontact method, laser-induced surface acoustic waves (SAWs) can accurately characterize the elastic properties of different layers of organs such as the urinary bladder. This initial investigation evaluates the feasibility of a noncontact, all-optical method of generating and measuring the elasticity of the urinary bladder. Quantitative elasticity measurements of ex vivo porcine urinary bladder were made using the laser-induced SAW technique. A pulsed laser was used to excite SAWs that propagated on the bladder wall surface. A dedicated phase-sensitive optical coherence tomography (PhS-OCT) system remotely recorded the SAWs, from which the elasticity properties of different layers of the bladder were estimated. During the experiments, series of measurements were performed under five precisely controlled bladder volumes using water to estimate changes in the elasticity in relation to various urinary bladder contents. The results, validated by optical coherence elastography, show that the laser-induced SAW technique combined with PhS-OCT can be a feasible method of quantitative estimation of biomechanical properties.

© 2014 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Laser induced surface acoustic wave combined with phase sensitive optical coherence tomography for superficial tissue characterization: a solution for practical application

Chunhui Li, Guangying Guan, Fan Zhang, Ghulam Nabi, Ruikang K. Wang, and Zhihong Huang
Biomed. Opt. Express 5(5) 1403-1418 (2014)

Noncontact quantitative biomechanical characterization of cardiac muscle using shear wave imaging optical coherence tomography

Shang Wang, Andrew L. Lopez, Yuka Morikawa, Ge Tao, Jiasong Li, Irina V. Larina, James F. Martin, and Kirill V. Larin
Biomed. Opt. Express 5(7) 1980-1992 (2014)

Assessment of local structural disorders of the bladder wall in partial bladder outlet obstruction using polarized light imaging

Sanaz Alali, Karen J. Aitken, Annette Schröder, Adam Gribble, Darius J. Bagli, and I. Alex Vitkin
Biomed. Opt. Express 5(2) 621-629 (2014)

References

  • View by:
  • |
  • |
  • |

  1. E. H. Landau, V. R. Jayanthi, B. M. Churchill, E. Shapiro, R. F. Gilmour, A. E. Khoury, E. J. Macarak, G. A. McLorie, R. E. Steckler, and B. A. Kogan, “Loss of elasticity in dysfunctional bladders: urodynamic and histochemical correlation,” J. Urol. 152(2 Pt 2), 702–705 (1994).
    [PubMed]
  2. K. M. Azadzoi, T. Tarcan, R. Kozlowski, R. J. Krane, and M. B. Siroky, “Overactivity and structural changes in the chronically ischemic bladder,” J. Urol. 162(5), 1768–1778 (1999).
    [Crossref] [PubMed]
  3. T. Watanabe, S. Omata, J. Z. Lee, and C. E. Constantinou, “Comparative analysis of bladder wall compliance based on cystometry and biosensor measurements during the micturition cycle of the rat,” Neurourol. Urodyn. 16(6), 567–581 (1997).
    [Crossref] [PubMed]
  4. A. Elbadawi, S. V. Yalla, and N. M. Resnick, “Structural basis of geriatric voiding dysfunction. IV. Bladder outlet obstruction,” J. Urol. 150(5 Pt 2), 1681–1695 (1993).
    [PubMed]
  5. L. M. Liao and W. Schaefer, “Cross-sectional and longitudinal studies on interaction between bladder compliance and outflow obstruction in men with benign prostatic hyperplasia,” Asian J. Androl. 9(1), 51–56 (2007).
    [Crossref] [PubMed]
  6. S. Madersbacher, A. Pycha, C. H. Klingler, C. Mian, B. Djavan, T. Stulnig, and M. Marberger, “Interrelationships of bladder compliance with age, detrusor instability, and obstruction in elderly men with lower urinary tract symptoms,” Neurourol. Urodyn. 18(1), 3–13 (1999).
    [Crossref] [PubMed]
  7. S. Korossis, F. Bolland, E. Ingham, J. Fisher, J. Kearney, and J. Southgate, “Review: tissue engineering of the urinary bladder: considering structure-function relationships and the role of mechanotransduction,” Tissue Eng. 12(4), 635–644 (2006).
    [Crossref] [PubMed]
  8. I. Z. Nenadic, B. Qiang, M. W. Urban, L. H. de Araujo Vasconcelo, A. Nabavizadeh, A. Alizad, J. F. Greenleaf, and M. Fatemi, “Ultrasound bladder vibrometry method for measuring viscoelasticity of the bladder wall,” Phys. Med. Biol. 58(8), 2675–2695 (2013).
    [Crossref] [PubMed]
  9. H. L. Cheng, Y. Loai, and W. A. Farhat, “Monitoring tissue development in acellular matrix-based regeneration for bladder tissue engineering: multiexponential diffusion and T2* for improved specificity,” NMR Biomed. 25(3), 418–426 (2012).
    [Crossref] [PubMed]
  10. K. Sabanathan, H. M. Duffin, and C. M. Castleden, “Urinary tract infection after cystometry,” Age Ageing 14(5), 291–295 (1985).
    [Crossref] [PubMed]
  11. N. N. Bhatia and A. Bergman, “Cystometry: unstable bladder and urinary tract infection,” Br. J. Urol. 58(2), 134–137 (1986).
    [Crossref] [PubMed]
  12. A. P. Sarvazyan, O. V. Rudenko, S. D. Swanson, J. B. Fowlkes, and S. Y. Emelianov, “Shear wave elasticity imaging: A new ultrasonic technology of medical diagnostics,” Ultrasound Med. Biol. 24(9), 1419–1435 (1998).
    [Crossref] [PubMed]
  13. T. Rago, F. Santini, M. Scutari, A. Pinchera, and P. Vitti, “Elastography: new developments in ultrasound for predicting malignancy in thyroid nodules,” J. Clin. Endocrinol. Metab. 92(8), 2917–2922 (2007).
    [Crossref] [PubMed]
  14. H. Rivaz, E. M. Boctor, M. A. Choti, and G. D. Hager, “Real-time regularized ultrasound elastography,” IEEE Trans. Med. Imaging 30(4), 928–945 (2011).
    [Crossref] [PubMed]
  15. A. Evans, P. Whelehan, K. Thomson, D. McLean, K. Brauer, C. Purdie, L. Jordan, L. Baker, and A. Thompson, “Quantitative shear wave ultrasound elastography: initial experience in solid breast masses,” Breast Cancer Res. 12(6), R104 (2010).
    [Crossref] [PubMed]
  16. R. Cao, Z. Huang, T. Varghese, and G. Nabi, “Tissue mimicking materials for the detection of prostate cancer using shear wave elastography: A validation study,” Med. Phys. 40(2), 022903 (2013).
    [Crossref] [PubMed]
  17. S. K. Venkatesh, M. Yin, J. F. Glockner, N. Takahashi, P. A. Araoz, J. A. Talwalkar, and R. L. Ehman, “MR elastography of liver tumors: preliminary results,” AJR Am. J. Roentgenol. 190(6), 1534–1540 (2008).
    [Crossref] [PubMed]
  18. A. L. McKnight, J. L. Kugel, P. J. Rossman, A. Manduca, L. C. Hartmann, and R. L. Ehman, “MR elastography of breast cancer: preliminary results,” AJR Am. J. Roentgenol. 178(6), 1411–1417 (2002).
    [Crossref] [PubMed]
  19. T. Elgeti, M. Beling, B. Hamm, J. Braun, and I. Sack, “Cardiac magnetic resonance elastography: toward the diagnosis of abnormal myocardial relaxation,” Invest. Radiol. 45(12), 782–787 (2010).
    [Crossref] [PubMed]
  20. T. Elgeti, M. Laule, N. Kaufels, J. Schnorr, B. Hamm, A. Samani, J. Braun, and I. Sack, “Cardiac MR elastography: comparison with left ventricular pressure measurement,” J. Cardiovasc. Magn. Reson. 11(1), 44 (2009).
    [Crossref] [PubMed]
  21. H. Ying, L. Da, J. Luo, L. Li-Xia, X. Yu, X. Li-Mei, and R. Wei-Dong, “Quantitative assessment of bladder neck compliance by using transvaginal real-time elastography of women, Ultrasound,” Med. Biol. 39(10), 1727–1734 (2013).
  22. N. A. Vorontsova, V. E. Gazhonova, S. O. Churkina, E. B. Savinova, I. A. Ponomorenko, and A. V. Zubarev, “Sonoelastography in Patients with Endometriosis of Different Location”, ECR, Vienna, Austria (2012).
  23. D. Schneider and T. A. Schwarz, “Photoacoustic method for characterising thin films,” Surf. Coat. Tech. 91(1–2), 136–146 (1997).
    [Crossref]
  24. H. S. Wang, S. Fleming, S. Law, and T. Huang, “Selection of Appropriate Laser Parameters for Launching Surface Acoustic Waves on Tooth Enamel for Non-Destructive Hardness Measurement”, in Proceedings of IEEE Australian Conference of Optical Fibre Technology/Australian Optical Society (ACOFT/AOS) (2006).
  25. Q. J. Huang, Y. Cheng, X. J. Liu, X. D. Xu, and S. Y. Zhang, “Study of the elastic constants in a La0.6Sr0.4MnO3 film by means of laser-generated ultrasonic wave method,” Ultrasonics 44(Suppl 1), e1223–e1227 (2006).
    [Crossref] [PubMed]
  26. F. Reverdy and B. Audoin, “Ultrasonic measurement of elastic constant of anisotropic materials with laser source and laser receiver focused on the same interface,” J. Appl. Phys. 90(9), 4829–4835 (2001).
    [Crossref]
  27. P. Ridgway, R. Russo, E. Lafond, T. Jackson, and X. Zhang, “A Sensor for Laser Ultrasonic Measurement of Elastic Properties During Manufacture”, in Proceedings of 16th WCNDT 2004 - World Conference on NDT (2004).
  28. S. Wang, J. Li, R. K. Manapuram, F. M. Menodiado, D. R. Ingram, M. D. Twa, A. J. Lazar, D. C. Lev, R. E. Pollock, and K. V. Larin, “Noncontact measurement of elasticity for the detection of soft-tissue tumors using phase-sensitive optical coherence tomography combined with a focused air-puff system,” Opt. Lett. 37(24), 5184–5186 (2012).
    [Crossref] [PubMed]
  29. K. D. Mohan and A. L. Oldenburg, “Elastography of soft materials and tissues by holographic imaging of surface acoustic waves,” Opt. Express 20(17), 18887–18897 (2012).
    [Crossref] [PubMed]
  30. H. C. Wang, S. Fleming, Y. C. Lee, S. Law, M. Swain, and J. Xue, “Laser ultrasonic surface wave dispersion technique for non-destructive evaluation of human dental enamel,” Opt. Express 17(18), 15592–15607 (2009).
    [Crossref] [PubMed]
  31. H. C. Wang, S. Fleming, and Y. C. Lee, “Simple, all-optical, noncontact, depth-selective, narrowband surface acoustic wave measurement system for evaluating the Rayleigh velocity of small samples or areas,” Appl. Opt. 48(8), 1444–1451 (2009).
    [Crossref] [PubMed]
  32. C. Li, G. Guan, X. Cheng, Z. Huang, and R. K. Wang, “Quantitative elastography provided by surface acoustic waves measured by phase-sensitive optical coherence tomography,” Opt. Lett. 37(4), 722–724 (2012).
    [Crossref] [PubMed]
  33. C. Li, G. Guan, R. Reif, Z. Huang, and R. K. Wang, “Determining elastic properties of skin by measuring surface waves from an impulse mechanical stimulus using phase-sensitive optical coherence tomography,” J. R. Soc. Interface 9(70), 831–841 (2011).
    [PubMed]
  34. C. Li, Z. Huang, and R. K. Wang, “Elastic properties of soft tissue-mimicking phantoms assessed by combined use of laser ultrasonics and low coherence interferometry,” Opt. Express 19(11), 10153–10163 (2011).
    [Crossref] [PubMed]
  35. C. Li, G. Guan, S. Li, Z. Huang, and R. K. Wang, “Evaluating elastic properties of heterogeneous soft tissue by surface acoustic waves detected by phase-sensitive optical coherence tomography,” J. Biomed. Opt. 17(5), 057002 (2012).
    [Crossref] [PubMed]
  36. C. Li, S. Song, G. Guan, R. K. Wang, and Z. Huang, “Frequency dependence of laser ultrasonic SAW phase velocities measurements,” Ultrasonics 53(1), 191–195 (2013).
    [Crossref] [PubMed]
  37. C. Li, G. Guan, Z. Huang, M. Johnstone, and R. K. Wang, “Noncontact all-optical measurement of corneal elasticity,” Opt. Lett. 37(10), 1625–1627 (2012).
    [Crossref] [PubMed]
  38. C. S. Scruby and L. E. Drain, Laser Ultrasonics: Techniques and Applications, 1990.
  39. D. Schneider, B. Schultrich, H. J. Scheibe, H. Ziegele, and M. Griepentrog, “A laser-acoustic method for testing and classifying hard surface layers,” Thin Solid Films 332(1–2), 157–163 (1998).
    [Crossref]
  40. C. Glorieux, W. Gao, S. E. Kruger, K. Van de Rostyne, W. Lauriks, and J. Thoen, “Surface acoustic wave depth profiling of elastically inhomogeneous materials,” J. Appl. Phys. 88(7), 4394–4400 (2000).
    [Crossref]
  41. J. A. Rogers, A. A. Maznev, M. J. Banet, and K. A. Nelson, “Optical generation and characterization of acoustic waves in thin films: fundamentals and applications,” Annu. Rev. Mater. Sci. 30(1), 117–157 (2000).
    [Crossref]
  42. About the bladder, http://www.cuh.org.uk/addenbrookes-hospital/services/bladder-cancer/about-bladder-cancer/about-bladder .
  43. D. H. Hurley and J. B. Spicer, “Line source representation for laser-generated ultrasound in an elastic transversely isotropic half-space,” J. Acoust. Soc. Am. 116(5), 2914–2922 (2004).
    [Crossref]
  44. P. A. Doyle and C. M. Scala, “Near-field ultrasonic Rayleigh waves from a laser line source,” Ultrasonics 34(1), 1–8 (1996).
    [Crossref]
  45. S. Kenderian, B. B. Djordjevic, and R. E. Green., “Point and line source laser generation of ultrasound for inspection of internal and surface flaws in rail and structural materials,” Res. Nondestruct. Eval. 13(4), 189–200 (2001).
    [Crossref]
  46. B. F. Kennedy, X. Liang, S. G. Adie, D. K. Gerstmann, B. C. Quirk, S. A. Boppart, and D. D. Sampson, “In vivo three-dimensional optical coherence elastography,” Opt. Express 19(7), 6623–6634 (2011).
    [Crossref] [PubMed]
  47. B. F. Kennedy, T. R. Hillman, R. A. McLaughlin, B. C. Quirk, and D. D. Sampson, “In vivo dynamic optical coherence elastography using a ring actuator,” Opt. Express 17(24), 21762–21772 (2009).
    [Crossref] [PubMed]
  48. G. Guan, C. Li, Y. Ling, Y. Yang, J. B. Vorstius, R. P. Keatch, R. K. Wang, and Z. H. Huang, “Quantitative evaluation of degenerated tendon model using combined optical coherence elastography and acoustic radiation force method,” J. Biomed. Opt. 18(11), 111417 (2013).
    [Crossref] [PubMed]
  49. B. F. Kennedy, M. Wojtkowski, M. Szkulmowski, K. M. Kennedy, K. Karnowski, and D. D. Sampson, “Improved measurement of vibration amplitude in dynamic optical coherence elastography,” Biomed. Opt. Express 3(12), 3138–3152 (2012).
  50. X. Zhang and J. F. Greenleaf, “Theoretical and experimental studies on group velocity for estimating the elasticity of arteries”, IEEE International Ultrasonics Symposium Proceedings, 2453–2455 (2009).
    [Crossref]
  51. A. G. Every and W. Sachse, “Determination of the elastic constants of anisotropic solids from acoustic-wave group-velocity measurements,” Phys. Rev. B Condens. Matter 42(13), 8196–8205 (1990).
    [Crossref] [PubMed]
  52. Y. Zhou, T. W. Murray, and S. Krishnaswamy, “Photo-acoustic imaging of surface acoustic wave slowness using multiplexed, two-wave mixing array interferometry,” IEEE Trans. Ultrasonics, Ferroelectrics Frequency Control 49(8), 1118–1123 (2002).
    [Crossref]
  53. T. T. Wu and F. J. Chai, “Propagation of surface waves in anisotropic solid: Theoretical calculation and experiment,” Ultrasonics 32(1), 21–29 (1994).
    [Crossref]
  54. F. F. Chai and T. T. Wu, “Determination of anisotropic elastic constants using laser-generated surface waves,” J. Acoust. Soc. Am. 95(6), 3232–3241 (1994).
    [Crossref]
  55. S. E. Dahms, H. J. Piechota, R. Dahiya, T. F. Lue, and E. A. Tanagho, “Composition and biomechanical properties of the bladder acellular matrix graft: comparative analysis in rat, pig and human,” Br. J. Urol. 82(3), 411–419 (1998).
    [Crossref] [PubMed]
  56. J. W. Lee, E. I. S. Lorenzo, B. Ahn, C. K. Oh, H. J. Kim, W. K. Han, J. Kim, and K. H. Rha, “Palpation Device for the Identification of Kidney and Bladder Cancer: A Pilot Study,” Yonsei Med. J. 52(5), 768–772 (2011).
    [Crossref] [PubMed]
  57. M. O. Culjat, D. Goldenberg, P. Tewari, and R. S. Singh, “A review of tissue substitutes for ultrasound imaging,” Ultrasound Med. Biol. 36(6), 861–873 (2010).
    [Crossref] [PubMed]
  58. N. T. Peter Wells and H. D. Liang, “Medical ultrasound: imaging of soft tissue strain and elasticity”, J. R. Soc. Interface rsif20110054; published ahead of print, 1742–5662 (2011).
    [Crossref]
  59. R. van Mastrigt and D. J. Griffiths, “Contractility of the urinary bladder,” Urol. Int. 34(6), 410–420 (1979).
    [Crossref] [PubMed]
  60. D. J. Griffiths, A Physical Approach to Flow Through the Urethra: Uniform Tubes, in Urodynamics, The Mechanics and Hydrodynamics of the Lower Urinary Tract, vol. 4, (Lenihan J. M. A., Bristol, Adam Hilger Ltd. 1980) Chap. 3, pp. 25–43.
  61. D. J. Griffiths, The Course of Micturition, in Urodynamics, The Mechanics and Hydrodynamics of the Lower Urinary Tract, J. M. A. Lenihan, A. Hilger eds., vol. 4 (Lenihan J. M. A., Bristol, Adam Hilger Ltd. 1980) Chap. 11, pp. 124–32.
  62. W. Schäfer, “Principles and clinical application of advanced urodynamic analysis of voiding function,” Urol. Clin. North Am. 17(3), 553–566 (1990).
    [PubMed]
  63. Y. C. Fung, Mechanical Properties of Living Tissues, 2nd ed. (Springer Media and Business media, New York 1992) p. 568.
  64. G. van Soest, F. Mastik, N. de Jong, and A. F. W. van der Steen, “Robust intravascular optical coherence elastography by line correlations,” Phys. Med. Biol. 52(9), 2445–2458 (2007).
    [Crossref] [PubMed]
  65. K. M. Kennedy, R. A. McLaughlin, B. F. Kennedy, A. Tien, B. Latham, C. M. Saunders, and D. D. Sampson, “Needle optical coherence elastography for the measurement of microscale mechanical contrast deep within human breast tissues,” J. Biomed. Opt. 18(12), 121510 (2013).
    [Crossref] [PubMed]

2013 (6)

I. Z. Nenadic, B. Qiang, M. W. Urban, L. H. de Araujo Vasconcelo, A. Nabavizadeh, A. Alizad, J. F. Greenleaf, and M. Fatemi, “Ultrasound bladder vibrometry method for measuring viscoelasticity of the bladder wall,” Phys. Med. Biol. 58(8), 2675–2695 (2013).
[Crossref] [PubMed]

R. Cao, Z. Huang, T. Varghese, and G. Nabi, “Tissue mimicking materials for the detection of prostate cancer using shear wave elastography: A validation study,” Med. Phys. 40(2), 022903 (2013).
[Crossref] [PubMed]

H. Ying, L. Da, J. Luo, L. Li-Xia, X. Yu, X. Li-Mei, and R. Wei-Dong, “Quantitative assessment of bladder neck compliance by using transvaginal real-time elastography of women, Ultrasound,” Med. Biol. 39(10), 1727–1734 (2013).

C. Li, S. Song, G. Guan, R. K. Wang, and Z. Huang, “Frequency dependence of laser ultrasonic SAW phase velocities measurements,” Ultrasonics 53(1), 191–195 (2013).
[Crossref] [PubMed]

G. Guan, C. Li, Y. Ling, Y. Yang, J. B. Vorstius, R. P. Keatch, R. K. Wang, and Z. H. Huang, “Quantitative evaluation of degenerated tendon model using combined optical coherence elastography and acoustic radiation force method,” J. Biomed. Opt. 18(11), 111417 (2013).
[Crossref] [PubMed]

K. M. Kennedy, R. A. McLaughlin, B. F. Kennedy, A. Tien, B. Latham, C. M. Saunders, and D. D. Sampson, “Needle optical coherence elastography for the measurement of microscale mechanical contrast deep within human breast tissues,” J. Biomed. Opt. 18(12), 121510 (2013).
[Crossref] [PubMed]

2012 (7)

B. F. Kennedy, M. Wojtkowski, M. Szkulmowski, K. M. Kennedy, K. Karnowski, and D. D. Sampson, “Improved measurement of vibration amplitude in dynamic optical coherence elastography,” Biomed. Opt. Express 3(12), 3138–3152 (2012).

C. Li, G. Guan, Z. Huang, M. Johnstone, and R. K. Wang, “Noncontact all-optical measurement of corneal elasticity,” Opt. Lett. 37(10), 1625–1627 (2012).
[Crossref] [PubMed]

C. Li, G. Guan, X. Cheng, Z. Huang, and R. K. Wang, “Quantitative elastography provided by surface acoustic waves measured by phase-sensitive optical coherence tomography,” Opt. Lett. 37(4), 722–724 (2012).
[Crossref] [PubMed]

C. Li, G. Guan, S. Li, Z. Huang, and R. K. Wang, “Evaluating elastic properties of heterogeneous soft tissue by surface acoustic waves detected by phase-sensitive optical coherence tomography,” J. Biomed. Opt. 17(5), 057002 (2012).
[Crossref] [PubMed]

S. Wang, J. Li, R. K. Manapuram, F. M. Menodiado, D. R. Ingram, M. D. Twa, A. J. Lazar, D. C. Lev, R. E. Pollock, and K. V. Larin, “Noncontact measurement of elasticity for the detection of soft-tissue tumors using phase-sensitive optical coherence tomography combined with a focused air-puff system,” Opt. Lett. 37(24), 5184–5186 (2012).
[Crossref] [PubMed]

K. D. Mohan and A. L. Oldenburg, “Elastography of soft materials and tissues by holographic imaging of surface acoustic waves,” Opt. Express 20(17), 18887–18897 (2012).
[Crossref] [PubMed]

H. L. Cheng, Y. Loai, and W. A. Farhat, “Monitoring tissue development in acellular matrix-based regeneration for bladder tissue engineering: multiexponential diffusion and T2* for improved specificity,” NMR Biomed. 25(3), 418–426 (2012).
[Crossref] [PubMed]

2011 (5)

H. Rivaz, E. M. Boctor, M. A. Choti, and G. D. Hager, “Real-time regularized ultrasound elastography,” IEEE Trans. Med. Imaging 30(4), 928–945 (2011).
[Crossref] [PubMed]

C. Li, G. Guan, R. Reif, Z. Huang, and R. K. Wang, “Determining elastic properties of skin by measuring surface waves from an impulse mechanical stimulus using phase-sensitive optical coherence tomography,” J. R. Soc. Interface 9(70), 831–841 (2011).
[PubMed]

C. Li, Z. Huang, and R. K. Wang, “Elastic properties of soft tissue-mimicking phantoms assessed by combined use of laser ultrasonics and low coherence interferometry,” Opt. Express 19(11), 10153–10163 (2011).
[Crossref] [PubMed]

B. F. Kennedy, X. Liang, S. G. Adie, D. K. Gerstmann, B. C. Quirk, S. A. Boppart, and D. D. Sampson, “In vivo three-dimensional optical coherence elastography,” Opt. Express 19(7), 6623–6634 (2011).
[Crossref] [PubMed]

J. W. Lee, E. I. S. Lorenzo, B. Ahn, C. K. Oh, H. J. Kim, W. K. Han, J. Kim, and K. H. Rha, “Palpation Device for the Identification of Kidney and Bladder Cancer: A Pilot Study,” Yonsei Med. J. 52(5), 768–772 (2011).
[Crossref] [PubMed]

2010 (3)

M. O. Culjat, D. Goldenberg, P. Tewari, and R. S. Singh, “A review of tissue substitutes for ultrasound imaging,” Ultrasound Med. Biol. 36(6), 861–873 (2010).
[Crossref] [PubMed]

A. Evans, P. Whelehan, K. Thomson, D. McLean, K. Brauer, C. Purdie, L. Jordan, L. Baker, and A. Thompson, “Quantitative shear wave ultrasound elastography: initial experience in solid breast masses,” Breast Cancer Res. 12(6), R104 (2010).
[Crossref] [PubMed]

T. Elgeti, M. Beling, B. Hamm, J. Braun, and I. Sack, “Cardiac magnetic resonance elastography: toward the diagnosis of abnormal myocardial relaxation,” Invest. Radiol. 45(12), 782–787 (2010).
[Crossref] [PubMed]

2009 (4)

2008 (1)

S. K. Venkatesh, M. Yin, J. F. Glockner, N. Takahashi, P. A. Araoz, J. A. Talwalkar, and R. L. Ehman, “MR elastography of liver tumors: preliminary results,” AJR Am. J. Roentgenol. 190(6), 1534–1540 (2008).
[Crossref] [PubMed]

2007 (3)

L. M. Liao and W. Schaefer, “Cross-sectional and longitudinal studies on interaction between bladder compliance and outflow obstruction in men with benign prostatic hyperplasia,” Asian J. Androl. 9(1), 51–56 (2007).
[Crossref] [PubMed]

T. Rago, F. Santini, M. Scutari, A. Pinchera, and P. Vitti, “Elastography: new developments in ultrasound for predicting malignancy in thyroid nodules,” J. Clin. Endocrinol. Metab. 92(8), 2917–2922 (2007).
[Crossref] [PubMed]

G. van Soest, F. Mastik, N. de Jong, and A. F. W. van der Steen, “Robust intravascular optical coherence elastography by line correlations,” Phys. Med. Biol. 52(9), 2445–2458 (2007).
[Crossref] [PubMed]

2006 (2)

Q. J. Huang, Y. Cheng, X. J. Liu, X. D. Xu, and S. Y. Zhang, “Study of the elastic constants in a La0.6Sr0.4MnO3 film by means of laser-generated ultrasonic wave method,” Ultrasonics 44(Suppl 1), e1223–e1227 (2006).
[Crossref] [PubMed]

S. Korossis, F. Bolland, E. Ingham, J. Fisher, J. Kearney, and J. Southgate, “Review: tissue engineering of the urinary bladder: considering structure-function relationships and the role of mechanotransduction,” Tissue Eng. 12(4), 635–644 (2006).
[Crossref] [PubMed]

2004 (1)

D. H. Hurley and J. B. Spicer, “Line source representation for laser-generated ultrasound in an elastic transversely isotropic half-space,” J. Acoust. Soc. Am. 116(5), 2914–2922 (2004).
[Crossref]

2002 (2)

Y. Zhou, T. W. Murray, and S. Krishnaswamy, “Photo-acoustic imaging of surface acoustic wave slowness using multiplexed, two-wave mixing array interferometry,” IEEE Trans. Ultrasonics, Ferroelectrics Frequency Control 49(8), 1118–1123 (2002).
[Crossref]

A. L. McKnight, J. L. Kugel, P. J. Rossman, A. Manduca, L. C. Hartmann, and R. L. Ehman, “MR elastography of breast cancer: preliminary results,” AJR Am. J. Roentgenol. 178(6), 1411–1417 (2002).
[Crossref] [PubMed]

2001 (2)

F. Reverdy and B. Audoin, “Ultrasonic measurement of elastic constant of anisotropic materials with laser source and laser receiver focused on the same interface,” J. Appl. Phys. 90(9), 4829–4835 (2001).
[Crossref]

S. Kenderian, B. B. Djordjevic, and R. E. Green., “Point and line source laser generation of ultrasound for inspection of internal and surface flaws in rail and structural materials,” Res. Nondestruct. Eval. 13(4), 189–200 (2001).
[Crossref]

2000 (2)

C. Glorieux, W. Gao, S. E. Kruger, K. Van de Rostyne, W. Lauriks, and J. Thoen, “Surface acoustic wave depth profiling of elastically inhomogeneous materials,” J. Appl. Phys. 88(7), 4394–4400 (2000).
[Crossref]

J. A. Rogers, A. A. Maznev, M. J. Banet, and K. A. Nelson, “Optical generation and characterization of acoustic waves in thin films: fundamentals and applications,” Annu. Rev. Mater. Sci. 30(1), 117–157 (2000).
[Crossref]

1999 (2)

S. Madersbacher, A. Pycha, C. H. Klingler, C. Mian, B. Djavan, T. Stulnig, and M. Marberger, “Interrelationships of bladder compliance with age, detrusor instability, and obstruction in elderly men with lower urinary tract symptoms,” Neurourol. Urodyn. 18(1), 3–13 (1999).
[Crossref] [PubMed]

K. M. Azadzoi, T. Tarcan, R. Kozlowski, R. J. Krane, and M. B. Siroky, “Overactivity and structural changes in the chronically ischemic bladder,” J. Urol. 162(5), 1768–1778 (1999).
[Crossref] [PubMed]

1998 (3)

A. P. Sarvazyan, O. V. Rudenko, S. D. Swanson, J. B. Fowlkes, and S. Y. Emelianov, “Shear wave elasticity imaging: A new ultrasonic technology of medical diagnostics,” Ultrasound Med. Biol. 24(9), 1419–1435 (1998).
[Crossref] [PubMed]

D. Schneider, B. Schultrich, H. J. Scheibe, H. Ziegele, and M. Griepentrog, “A laser-acoustic method for testing and classifying hard surface layers,” Thin Solid Films 332(1–2), 157–163 (1998).
[Crossref]

S. E. Dahms, H. J. Piechota, R. Dahiya, T. F. Lue, and E. A. Tanagho, “Composition and biomechanical properties of the bladder acellular matrix graft: comparative analysis in rat, pig and human,” Br. J. Urol. 82(3), 411–419 (1998).
[Crossref] [PubMed]

1997 (2)

D. Schneider and T. A. Schwarz, “Photoacoustic method for characterising thin films,” Surf. Coat. Tech. 91(1–2), 136–146 (1997).
[Crossref]

T. Watanabe, S. Omata, J. Z. Lee, and C. E. Constantinou, “Comparative analysis of bladder wall compliance based on cystometry and biosensor measurements during the micturition cycle of the rat,” Neurourol. Urodyn. 16(6), 567–581 (1997).
[Crossref] [PubMed]

1996 (1)

P. A. Doyle and C. M. Scala, “Near-field ultrasonic Rayleigh waves from a laser line source,” Ultrasonics 34(1), 1–8 (1996).
[Crossref]

1994 (3)

T. T. Wu and F. J. Chai, “Propagation of surface waves in anisotropic solid: Theoretical calculation and experiment,” Ultrasonics 32(1), 21–29 (1994).
[Crossref]

F. F. Chai and T. T. Wu, “Determination of anisotropic elastic constants using laser-generated surface waves,” J. Acoust. Soc. Am. 95(6), 3232–3241 (1994).
[Crossref]

E. H. Landau, V. R. Jayanthi, B. M. Churchill, E. Shapiro, R. F. Gilmour, A. E. Khoury, E. J. Macarak, G. A. McLorie, R. E. Steckler, and B. A. Kogan, “Loss of elasticity in dysfunctional bladders: urodynamic and histochemical correlation,” J. Urol. 152(2 Pt 2), 702–705 (1994).
[PubMed]

1993 (1)

A. Elbadawi, S. V. Yalla, and N. M. Resnick, “Structural basis of geriatric voiding dysfunction. IV. Bladder outlet obstruction,” J. Urol. 150(5 Pt 2), 1681–1695 (1993).
[PubMed]

1990 (2)

A. G. Every and W. Sachse, “Determination of the elastic constants of anisotropic solids from acoustic-wave group-velocity measurements,” Phys. Rev. B Condens. Matter 42(13), 8196–8205 (1990).
[Crossref] [PubMed]

W. Schäfer, “Principles and clinical application of advanced urodynamic analysis of voiding function,” Urol. Clin. North Am. 17(3), 553–566 (1990).
[PubMed]

1986 (1)

N. N. Bhatia and A. Bergman, “Cystometry: unstable bladder and urinary tract infection,” Br. J. Urol. 58(2), 134–137 (1986).
[Crossref] [PubMed]

1985 (1)

K. Sabanathan, H. M. Duffin, and C. M. Castleden, “Urinary tract infection after cystometry,” Age Ageing 14(5), 291–295 (1985).
[Crossref] [PubMed]

1979 (1)

R. van Mastrigt and D. J. Griffiths, “Contractility of the urinary bladder,” Urol. Int. 34(6), 410–420 (1979).
[Crossref] [PubMed]

Adie, S. G.

Ahn, B.

J. W. Lee, E. I. S. Lorenzo, B. Ahn, C. K. Oh, H. J. Kim, W. K. Han, J. Kim, and K. H. Rha, “Palpation Device for the Identification of Kidney and Bladder Cancer: A Pilot Study,” Yonsei Med. J. 52(5), 768–772 (2011).
[Crossref] [PubMed]

Alizad, A.

I. Z. Nenadic, B. Qiang, M. W. Urban, L. H. de Araujo Vasconcelo, A. Nabavizadeh, A. Alizad, J. F. Greenleaf, and M. Fatemi, “Ultrasound bladder vibrometry method for measuring viscoelasticity of the bladder wall,” Phys. Med. Biol. 58(8), 2675–2695 (2013).
[Crossref] [PubMed]

Araoz, P. A.

S. K. Venkatesh, M. Yin, J. F. Glockner, N. Takahashi, P. A. Araoz, J. A. Talwalkar, and R. L. Ehman, “MR elastography of liver tumors: preliminary results,” AJR Am. J. Roentgenol. 190(6), 1534–1540 (2008).
[Crossref] [PubMed]

Audoin, B.

F. Reverdy and B. Audoin, “Ultrasonic measurement of elastic constant of anisotropic materials with laser source and laser receiver focused on the same interface,” J. Appl. Phys. 90(9), 4829–4835 (2001).
[Crossref]

Azadzoi, K. M.

K. M. Azadzoi, T. Tarcan, R. Kozlowski, R. J. Krane, and M. B. Siroky, “Overactivity and structural changes in the chronically ischemic bladder,” J. Urol. 162(5), 1768–1778 (1999).
[Crossref] [PubMed]

Baker, L.

A. Evans, P. Whelehan, K. Thomson, D. McLean, K. Brauer, C. Purdie, L. Jordan, L. Baker, and A. Thompson, “Quantitative shear wave ultrasound elastography: initial experience in solid breast masses,” Breast Cancer Res. 12(6), R104 (2010).
[Crossref] [PubMed]

Banet, M. J.

J. A. Rogers, A. A. Maznev, M. J. Banet, and K. A. Nelson, “Optical generation and characterization of acoustic waves in thin films: fundamentals and applications,” Annu. Rev. Mater. Sci. 30(1), 117–157 (2000).
[Crossref]

Beling, M.

T. Elgeti, M. Beling, B. Hamm, J. Braun, and I. Sack, “Cardiac magnetic resonance elastography: toward the diagnosis of abnormal myocardial relaxation,” Invest. Radiol. 45(12), 782–787 (2010).
[Crossref] [PubMed]

Bergman, A.

N. N. Bhatia and A. Bergman, “Cystometry: unstable bladder and urinary tract infection,” Br. J. Urol. 58(2), 134–137 (1986).
[Crossref] [PubMed]

Bhatia, N. N.

N. N. Bhatia and A. Bergman, “Cystometry: unstable bladder and urinary tract infection,” Br. J. Urol. 58(2), 134–137 (1986).
[Crossref] [PubMed]

Boctor, E. M.

H. Rivaz, E. M. Boctor, M. A. Choti, and G. D. Hager, “Real-time regularized ultrasound elastography,” IEEE Trans. Med. Imaging 30(4), 928–945 (2011).
[Crossref] [PubMed]

Bolland, F.

S. Korossis, F. Bolland, E. Ingham, J. Fisher, J. Kearney, and J. Southgate, “Review: tissue engineering of the urinary bladder: considering structure-function relationships and the role of mechanotransduction,” Tissue Eng. 12(4), 635–644 (2006).
[Crossref] [PubMed]

Boppart, S. A.

Brauer, K.

A. Evans, P. Whelehan, K. Thomson, D. McLean, K. Brauer, C. Purdie, L. Jordan, L. Baker, and A. Thompson, “Quantitative shear wave ultrasound elastography: initial experience in solid breast masses,” Breast Cancer Res. 12(6), R104 (2010).
[Crossref] [PubMed]

Braun, J.

T. Elgeti, M. Beling, B. Hamm, J. Braun, and I. Sack, “Cardiac magnetic resonance elastography: toward the diagnosis of abnormal myocardial relaxation,” Invest. Radiol. 45(12), 782–787 (2010).
[Crossref] [PubMed]

T. Elgeti, M. Laule, N. Kaufels, J. Schnorr, B. Hamm, A. Samani, J. Braun, and I. Sack, “Cardiac MR elastography: comparison with left ventricular pressure measurement,” J. Cardiovasc. Magn. Reson. 11(1), 44 (2009).
[Crossref] [PubMed]

Cao, R.

R. Cao, Z. Huang, T. Varghese, and G. Nabi, “Tissue mimicking materials for the detection of prostate cancer using shear wave elastography: A validation study,” Med. Phys. 40(2), 022903 (2013).
[Crossref] [PubMed]

Castleden, C. M.

K. Sabanathan, H. M. Duffin, and C. M. Castleden, “Urinary tract infection after cystometry,” Age Ageing 14(5), 291–295 (1985).
[Crossref] [PubMed]

Chai, F. F.

F. F. Chai and T. T. Wu, “Determination of anisotropic elastic constants using laser-generated surface waves,” J. Acoust. Soc. Am. 95(6), 3232–3241 (1994).
[Crossref]

Chai, F. J.

T. T. Wu and F. J. Chai, “Propagation of surface waves in anisotropic solid: Theoretical calculation and experiment,” Ultrasonics 32(1), 21–29 (1994).
[Crossref]

Cheng, H. L.

H. L. Cheng, Y. Loai, and W. A. Farhat, “Monitoring tissue development in acellular matrix-based regeneration for bladder tissue engineering: multiexponential diffusion and T2* for improved specificity,” NMR Biomed. 25(3), 418–426 (2012).
[Crossref] [PubMed]

Cheng, X.

Cheng, Y.

Q. J. Huang, Y. Cheng, X. J. Liu, X. D. Xu, and S. Y. Zhang, “Study of the elastic constants in a La0.6Sr0.4MnO3 film by means of laser-generated ultrasonic wave method,” Ultrasonics 44(Suppl 1), e1223–e1227 (2006).
[Crossref] [PubMed]

Choti, M. A.

H. Rivaz, E. M. Boctor, M. A. Choti, and G. D. Hager, “Real-time regularized ultrasound elastography,” IEEE Trans. Med. Imaging 30(4), 928–945 (2011).
[Crossref] [PubMed]

Churchill, B. M.

E. H. Landau, V. R. Jayanthi, B. M. Churchill, E. Shapiro, R. F. Gilmour, A. E. Khoury, E. J. Macarak, G. A. McLorie, R. E. Steckler, and B. A. Kogan, “Loss of elasticity in dysfunctional bladders: urodynamic and histochemical correlation,” J. Urol. 152(2 Pt 2), 702–705 (1994).
[PubMed]

Constantinou, C. E.

T. Watanabe, S. Omata, J. Z. Lee, and C. E. Constantinou, “Comparative analysis of bladder wall compliance based on cystometry and biosensor measurements during the micturition cycle of the rat,” Neurourol. Urodyn. 16(6), 567–581 (1997).
[Crossref] [PubMed]

Culjat, M. O.

M. O. Culjat, D. Goldenberg, P. Tewari, and R. S. Singh, “A review of tissue substitutes for ultrasound imaging,” Ultrasound Med. Biol. 36(6), 861–873 (2010).
[Crossref] [PubMed]

Da, L.

H. Ying, L. Da, J. Luo, L. Li-Xia, X. Yu, X. Li-Mei, and R. Wei-Dong, “Quantitative assessment of bladder neck compliance by using transvaginal real-time elastography of women, Ultrasound,” Med. Biol. 39(10), 1727–1734 (2013).

Dahiya, R.

S. E. Dahms, H. J. Piechota, R. Dahiya, T. F. Lue, and E. A. Tanagho, “Composition and biomechanical properties of the bladder acellular matrix graft: comparative analysis in rat, pig and human,” Br. J. Urol. 82(3), 411–419 (1998).
[Crossref] [PubMed]

Dahms, S. E.

S. E. Dahms, H. J. Piechota, R. Dahiya, T. F. Lue, and E. A. Tanagho, “Composition and biomechanical properties of the bladder acellular matrix graft: comparative analysis in rat, pig and human,” Br. J. Urol. 82(3), 411–419 (1998).
[Crossref] [PubMed]

de Araujo Vasconcelo, L. H.

I. Z. Nenadic, B. Qiang, M. W. Urban, L. H. de Araujo Vasconcelo, A. Nabavizadeh, A. Alizad, J. F. Greenleaf, and M. Fatemi, “Ultrasound bladder vibrometry method for measuring viscoelasticity of the bladder wall,” Phys. Med. Biol. 58(8), 2675–2695 (2013).
[Crossref] [PubMed]

de Jong, N.

G. van Soest, F. Mastik, N. de Jong, and A. F. W. van der Steen, “Robust intravascular optical coherence elastography by line correlations,” Phys. Med. Biol. 52(9), 2445–2458 (2007).
[Crossref] [PubMed]

Djavan, B.

S. Madersbacher, A. Pycha, C. H. Klingler, C. Mian, B. Djavan, T. Stulnig, and M. Marberger, “Interrelationships of bladder compliance with age, detrusor instability, and obstruction in elderly men with lower urinary tract symptoms,” Neurourol. Urodyn. 18(1), 3–13 (1999).
[Crossref] [PubMed]

Djordjevic, B. B.

S. Kenderian, B. B. Djordjevic, and R. E. Green., “Point and line source laser generation of ultrasound for inspection of internal and surface flaws in rail and structural materials,” Res. Nondestruct. Eval. 13(4), 189–200 (2001).
[Crossref]

Doyle, P. A.

P. A. Doyle and C. M. Scala, “Near-field ultrasonic Rayleigh waves from a laser line source,” Ultrasonics 34(1), 1–8 (1996).
[Crossref]

Duffin, H. M.

K. Sabanathan, H. M. Duffin, and C. M. Castleden, “Urinary tract infection after cystometry,” Age Ageing 14(5), 291–295 (1985).
[Crossref] [PubMed]

Ehman, R. L.

S. K. Venkatesh, M. Yin, J. F. Glockner, N. Takahashi, P. A. Araoz, J. A. Talwalkar, and R. L. Ehman, “MR elastography of liver tumors: preliminary results,” AJR Am. J. Roentgenol. 190(6), 1534–1540 (2008).
[Crossref] [PubMed]

A. L. McKnight, J. L. Kugel, P. J. Rossman, A. Manduca, L. C. Hartmann, and R. L. Ehman, “MR elastography of breast cancer: preliminary results,” AJR Am. J. Roentgenol. 178(6), 1411–1417 (2002).
[Crossref] [PubMed]

Elbadawi, A.

A. Elbadawi, S. V. Yalla, and N. M. Resnick, “Structural basis of geriatric voiding dysfunction. IV. Bladder outlet obstruction,” J. Urol. 150(5 Pt 2), 1681–1695 (1993).
[PubMed]

Elgeti, T.

T. Elgeti, M. Beling, B. Hamm, J. Braun, and I. Sack, “Cardiac magnetic resonance elastography: toward the diagnosis of abnormal myocardial relaxation,” Invest. Radiol. 45(12), 782–787 (2010).
[Crossref] [PubMed]

T. Elgeti, M. Laule, N. Kaufels, J. Schnorr, B. Hamm, A. Samani, J. Braun, and I. Sack, “Cardiac MR elastography: comparison with left ventricular pressure measurement,” J. Cardiovasc. Magn. Reson. 11(1), 44 (2009).
[Crossref] [PubMed]

Emelianov, S. Y.

A. P. Sarvazyan, O. V. Rudenko, S. D. Swanson, J. B. Fowlkes, and S. Y. Emelianov, “Shear wave elasticity imaging: A new ultrasonic technology of medical diagnostics,” Ultrasound Med. Biol. 24(9), 1419–1435 (1998).
[Crossref] [PubMed]

Evans, A.

A. Evans, P. Whelehan, K. Thomson, D. McLean, K. Brauer, C. Purdie, L. Jordan, L. Baker, and A. Thompson, “Quantitative shear wave ultrasound elastography: initial experience in solid breast masses,” Breast Cancer Res. 12(6), R104 (2010).
[Crossref] [PubMed]

Every, A. G.

A. G. Every and W. Sachse, “Determination of the elastic constants of anisotropic solids from acoustic-wave group-velocity measurements,” Phys. Rev. B Condens. Matter 42(13), 8196–8205 (1990).
[Crossref] [PubMed]

Farhat, W. A.

H. L. Cheng, Y. Loai, and W. A. Farhat, “Monitoring tissue development in acellular matrix-based regeneration for bladder tissue engineering: multiexponential diffusion and T2* for improved specificity,” NMR Biomed. 25(3), 418–426 (2012).
[Crossref] [PubMed]

Fatemi, M.

I. Z. Nenadic, B. Qiang, M. W. Urban, L. H. de Araujo Vasconcelo, A. Nabavizadeh, A. Alizad, J. F. Greenleaf, and M. Fatemi, “Ultrasound bladder vibrometry method for measuring viscoelasticity of the bladder wall,” Phys. Med. Biol. 58(8), 2675–2695 (2013).
[Crossref] [PubMed]

Fisher, J.

S. Korossis, F. Bolland, E. Ingham, J. Fisher, J. Kearney, and J. Southgate, “Review: tissue engineering of the urinary bladder: considering structure-function relationships and the role of mechanotransduction,” Tissue Eng. 12(4), 635–644 (2006).
[Crossref] [PubMed]

Fleming, S.

Fowlkes, J. B.

A. P. Sarvazyan, O. V. Rudenko, S. D. Swanson, J. B. Fowlkes, and S. Y. Emelianov, “Shear wave elasticity imaging: A new ultrasonic technology of medical diagnostics,” Ultrasound Med. Biol. 24(9), 1419–1435 (1998).
[Crossref] [PubMed]

Gao, W.

C. Glorieux, W. Gao, S. E. Kruger, K. Van de Rostyne, W. Lauriks, and J. Thoen, “Surface acoustic wave depth profiling of elastically inhomogeneous materials,” J. Appl. Phys. 88(7), 4394–4400 (2000).
[Crossref]

Gerstmann, D. K.

Gilmour, R. F.

E. H. Landau, V. R. Jayanthi, B. M. Churchill, E. Shapiro, R. F. Gilmour, A. E. Khoury, E. J. Macarak, G. A. McLorie, R. E. Steckler, and B. A. Kogan, “Loss of elasticity in dysfunctional bladders: urodynamic and histochemical correlation,” J. Urol. 152(2 Pt 2), 702–705 (1994).
[PubMed]

Glockner, J. F.

S. K. Venkatesh, M. Yin, J. F. Glockner, N. Takahashi, P. A. Araoz, J. A. Talwalkar, and R. L. Ehman, “MR elastography of liver tumors: preliminary results,” AJR Am. J. Roentgenol. 190(6), 1534–1540 (2008).
[Crossref] [PubMed]

Glorieux, C.

C. Glorieux, W. Gao, S. E. Kruger, K. Van de Rostyne, W. Lauriks, and J. Thoen, “Surface acoustic wave depth profiling of elastically inhomogeneous materials,” J. Appl. Phys. 88(7), 4394–4400 (2000).
[Crossref]

Goldenberg, D.

M. O. Culjat, D. Goldenberg, P. Tewari, and R. S. Singh, “A review of tissue substitutes for ultrasound imaging,” Ultrasound Med. Biol. 36(6), 861–873 (2010).
[Crossref] [PubMed]

Green, R. E.

S. Kenderian, B. B. Djordjevic, and R. E. Green., “Point and line source laser generation of ultrasound for inspection of internal and surface flaws in rail and structural materials,” Res. Nondestruct. Eval. 13(4), 189–200 (2001).
[Crossref]

Greenleaf, J. F.

I. Z. Nenadic, B. Qiang, M. W. Urban, L. H. de Araujo Vasconcelo, A. Nabavizadeh, A. Alizad, J. F. Greenleaf, and M. Fatemi, “Ultrasound bladder vibrometry method for measuring viscoelasticity of the bladder wall,” Phys. Med. Biol. 58(8), 2675–2695 (2013).
[Crossref] [PubMed]

X. Zhang and J. F. Greenleaf, “Theoretical and experimental studies on group velocity for estimating the elasticity of arteries”, IEEE International Ultrasonics Symposium Proceedings, 2453–2455 (2009).
[Crossref]

Griepentrog, M.

D. Schneider, B. Schultrich, H. J. Scheibe, H. Ziegele, and M. Griepentrog, “A laser-acoustic method for testing and classifying hard surface layers,” Thin Solid Films 332(1–2), 157–163 (1998).
[Crossref]

Griffiths, D. J.

R. van Mastrigt and D. J. Griffiths, “Contractility of the urinary bladder,” Urol. Int. 34(6), 410–420 (1979).
[Crossref] [PubMed]

Guan, G.

C. Li, S. Song, G. Guan, R. K. Wang, and Z. Huang, “Frequency dependence of laser ultrasonic SAW phase velocities measurements,” Ultrasonics 53(1), 191–195 (2013).
[Crossref] [PubMed]

G. Guan, C. Li, Y. Ling, Y. Yang, J. B. Vorstius, R. P. Keatch, R. K. Wang, and Z. H. Huang, “Quantitative evaluation of degenerated tendon model using combined optical coherence elastography and acoustic radiation force method,” J. Biomed. Opt. 18(11), 111417 (2013).
[Crossref] [PubMed]

C. Li, G. Guan, Z. Huang, M. Johnstone, and R. K. Wang, “Noncontact all-optical measurement of corneal elasticity,” Opt. Lett. 37(10), 1625–1627 (2012).
[Crossref] [PubMed]

C. Li, G. Guan, X. Cheng, Z. Huang, and R. K. Wang, “Quantitative elastography provided by surface acoustic waves measured by phase-sensitive optical coherence tomography,” Opt. Lett. 37(4), 722–724 (2012).
[Crossref] [PubMed]

C. Li, G. Guan, S. Li, Z. Huang, and R. K. Wang, “Evaluating elastic properties of heterogeneous soft tissue by surface acoustic waves detected by phase-sensitive optical coherence tomography,” J. Biomed. Opt. 17(5), 057002 (2012).
[Crossref] [PubMed]

C. Li, G. Guan, R. Reif, Z. Huang, and R. K. Wang, “Determining elastic properties of skin by measuring surface waves from an impulse mechanical stimulus using phase-sensitive optical coherence tomography,” J. R. Soc. Interface 9(70), 831–841 (2011).
[PubMed]

Hager, G. D.

H. Rivaz, E. M. Boctor, M. A. Choti, and G. D. Hager, “Real-time regularized ultrasound elastography,” IEEE Trans. Med. Imaging 30(4), 928–945 (2011).
[Crossref] [PubMed]

Hamm, B.

T. Elgeti, M. Beling, B. Hamm, J. Braun, and I. Sack, “Cardiac magnetic resonance elastography: toward the diagnosis of abnormal myocardial relaxation,” Invest. Radiol. 45(12), 782–787 (2010).
[Crossref] [PubMed]

T. Elgeti, M. Laule, N. Kaufels, J. Schnorr, B. Hamm, A. Samani, J. Braun, and I. Sack, “Cardiac MR elastography: comparison with left ventricular pressure measurement,” J. Cardiovasc. Magn. Reson. 11(1), 44 (2009).
[Crossref] [PubMed]

Han, W. K.

J. W. Lee, E. I. S. Lorenzo, B. Ahn, C. K. Oh, H. J. Kim, W. K. Han, J. Kim, and K. H. Rha, “Palpation Device for the Identification of Kidney and Bladder Cancer: A Pilot Study,” Yonsei Med. J. 52(5), 768–772 (2011).
[Crossref] [PubMed]

Hartmann, L. C.

A. L. McKnight, J. L. Kugel, P. J. Rossman, A. Manduca, L. C. Hartmann, and R. L. Ehman, “MR elastography of breast cancer: preliminary results,” AJR Am. J. Roentgenol. 178(6), 1411–1417 (2002).
[Crossref] [PubMed]

Hillman, T. R.

Huang, Q. J.

Q. J. Huang, Y. Cheng, X. J. Liu, X. D. Xu, and S. Y. Zhang, “Study of the elastic constants in a La0.6Sr0.4MnO3 film by means of laser-generated ultrasonic wave method,” Ultrasonics 44(Suppl 1), e1223–e1227 (2006).
[Crossref] [PubMed]

Huang, Z.

C. Li, S. Song, G. Guan, R. K. Wang, and Z. Huang, “Frequency dependence of laser ultrasonic SAW phase velocities measurements,” Ultrasonics 53(1), 191–195 (2013).
[Crossref] [PubMed]

R. Cao, Z. Huang, T. Varghese, and G. Nabi, “Tissue mimicking materials for the detection of prostate cancer using shear wave elastography: A validation study,” Med. Phys. 40(2), 022903 (2013).
[Crossref] [PubMed]

C. Li, G. Guan, Z. Huang, M. Johnstone, and R. K. Wang, “Noncontact all-optical measurement of corneal elasticity,” Opt. Lett. 37(10), 1625–1627 (2012).
[Crossref] [PubMed]

C. Li, G. Guan, S. Li, Z. Huang, and R. K. Wang, “Evaluating elastic properties of heterogeneous soft tissue by surface acoustic waves detected by phase-sensitive optical coherence tomography,” J. Biomed. Opt. 17(5), 057002 (2012).
[Crossref] [PubMed]

C. Li, G. Guan, X. Cheng, Z. Huang, and R. K. Wang, “Quantitative elastography provided by surface acoustic waves measured by phase-sensitive optical coherence tomography,” Opt. Lett. 37(4), 722–724 (2012).
[Crossref] [PubMed]

C. Li, G. Guan, R. Reif, Z. Huang, and R. K. Wang, “Determining elastic properties of skin by measuring surface waves from an impulse mechanical stimulus using phase-sensitive optical coherence tomography,” J. R. Soc. Interface 9(70), 831–841 (2011).
[PubMed]

C. Li, Z. Huang, and R. K. Wang, “Elastic properties of soft tissue-mimicking phantoms assessed by combined use of laser ultrasonics and low coherence interferometry,” Opt. Express 19(11), 10153–10163 (2011).
[Crossref] [PubMed]

Huang, Z. H.

G. Guan, C. Li, Y. Ling, Y. Yang, J. B. Vorstius, R. P. Keatch, R. K. Wang, and Z. H. Huang, “Quantitative evaluation of degenerated tendon model using combined optical coherence elastography and acoustic radiation force method,” J. Biomed. Opt. 18(11), 111417 (2013).
[Crossref] [PubMed]

Hurley, D. H.

D. H. Hurley and J. B. Spicer, “Line source representation for laser-generated ultrasound in an elastic transversely isotropic half-space,” J. Acoust. Soc. Am. 116(5), 2914–2922 (2004).
[Crossref]

Ingham, E.

S. Korossis, F. Bolland, E. Ingham, J. Fisher, J. Kearney, and J. Southgate, “Review: tissue engineering of the urinary bladder: considering structure-function relationships and the role of mechanotransduction,” Tissue Eng. 12(4), 635–644 (2006).
[Crossref] [PubMed]

Ingram, D. R.

Jayanthi, V. R.

E. H. Landau, V. R. Jayanthi, B. M. Churchill, E. Shapiro, R. F. Gilmour, A. E. Khoury, E. J. Macarak, G. A. McLorie, R. E. Steckler, and B. A. Kogan, “Loss of elasticity in dysfunctional bladders: urodynamic and histochemical correlation,” J. Urol. 152(2 Pt 2), 702–705 (1994).
[PubMed]

Johnstone, M.

Jordan, L.

A. Evans, P. Whelehan, K. Thomson, D. McLean, K. Brauer, C. Purdie, L. Jordan, L. Baker, and A. Thompson, “Quantitative shear wave ultrasound elastography: initial experience in solid breast masses,” Breast Cancer Res. 12(6), R104 (2010).
[Crossref] [PubMed]

Karnowski, K.

Kaufels, N.

T. Elgeti, M. Laule, N. Kaufels, J. Schnorr, B. Hamm, A. Samani, J. Braun, and I. Sack, “Cardiac MR elastography: comparison with left ventricular pressure measurement,” J. Cardiovasc. Magn. Reson. 11(1), 44 (2009).
[Crossref] [PubMed]

Kearney, J.

S. Korossis, F. Bolland, E. Ingham, J. Fisher, J. Kearney, and J. Southgate, “Review: tissue engineering of the urinary bladder: considering structure-function relationships and the role of mechanotransduction,” Tissue Eng. 12(4), 635–644 (2006).
[Crossref] [PubMed]

Keatch, R. P.

G. Guan, C. Li, Y. Ling, Y. Yang, J. B. Vorstius, R. P. Keatch, R. K. Wang, and Z. H. Huang, “Quantitative evaluation of degenerated tendon model using combined optical coherence elastography and acoustic radiation force method,” J. Biomed. Opt. 18(11), 111417 (2013).
[Crossref] [PubMed]

Kenderian, S.

S. Kenderian, B. B. Djordjevic, and R. E. Green., “Point and line source laser generation of ultrasound for inspection of internal and surface flaws in rail and structural materials,” Res. Nondestruct. Eval. 13(4), 189–200 (2001).
[Crossref]

Kennedy, B. F.

Kennedy, K. M.

K. M. Kennedy, R. A. McLaughlin, B. F. Kennedy, A. Tien, B. Latham, C. M. Saunders, and D. D. Sampson, “Needle optical coherence elastography for the measurement of microscale mechanical contrast deep within human breast tissues,” J. Biomed. Opt. 18(12), 121510 (2013).
[Crossref] [PubMed]

B. F. Kennedy, M. Wojtkowski, M. Szkulmowski, K. M. Kennedy, K. Karnowski, and D. D. Sampson, “Improved measurement of vibration amplitude in dynamic optical coherence elastography,” Biomed. Opt. Express 3(12), 3138–3152 (2012).

Khoury, A. E.

E. H. Landau, V. R. Jayanthi, B. M. Churchill, E. Shapiro, R. F. Gilmour, A. E. Khoury, E. J. Macarak, G. A. McLorie, R. E. Steckler, and B. A. Kogan, “Loss of elasticity in dysfunctional bladders: urodynamic and histochemical correlation,” J. Urol. 152(2 Pt 2), 702–705 (1994).
[PubMed]

Kim, H. J.

J. W. Lee, E. I. S. Lorenzo, B. Ahn, C. K. Oh, H. J. Kim, W. K. Han, J. Kim, and K. H. Rha, “Palpation Device for the Identification of Kidney and Bladder Cancer: A Pilot Study,” Yonsei Med. J. 52(5), 768–772 (2011).
[Crossref] [PubMed]

Kim, J.

J. W. Lee, E. I. S. Lorenzo, B. Ahn, C. K. Oh, H. J. Kim, W. K. Han, J. Kim, and K. H. Rha, “Palpation Device for the Identification of Kidney and Bladder Cancer: A Pilot Study,” Yonsei Med. J. 52(5), 768–772 (2011).
[Crossref] [PubMed]

Klingler, C. H.

S. Madersbacher, A. Pycha, C. H. Klingler, C. Mian, B. Djavan, T. Stulnig, and M. Marberger, “Interrelationships of bladder compliance with age, detrusor instability, and obstruction in elderly men with lower urinary tract symptoms,” Neurourol. Urodyn. 18(1), 3–13 (1999).
[Crossref] [PubMed]

Kogan, B. A.

E. H. Landau, V. R. Jayanthi, B. M. Churchill, E. Shapiro, R. F. Gilmour, A. E. Khoury, E. J. Macarak, G. A. McLorie, R. E. Steckler, and B. A. Kogan, “Loss of elasticity in dysfunctional bladders: urodynamic and histochemical correlation,” J. Urol. 152(2 Pt 2), 702–705 (1994).
[PubMed]

Korossis, S.

S. Korossis, F. Bolland, E. Ingham, J. Fisher, J. Kearney, and J. Southgate, “Review: tissue engineering of the urinary bladder: considering structure-function relationships and the role of mechanotransduction,” Tissue Eng. 12(4), 635–644 (2006).
[Crossref] [PubMed]

Kozlowski, R.

K. M. Azadzoi, T. Tarcan, R. Kozlowski, R. J. Krane, and M. B. Siroky, “Overactivity and structural changes in the chronically ischemic bladder,” J. Urol. 162(5), 1768–1778 (1999).
[Crossref] [PubMed]

Krane, R. J.

K. M. Azadzoi, T. Tarcan, R. Kozlowski, R. J. Krane, and M. B. Siroky, “Overactivity and structural changes in the chronically ischemic bladder,” J. Urol. 162(5), 1768–1778 (1999).
[Crossref] [PubMed]

Krishnaswamy, S.

Y. Zhou, T. W. Murray, and S. Krishnaswamy, “Photo-acoustic imaging of surface acoustic wave slowness using multiplexed, two-wave mixing array interferometry,” IEEE Trans. Ultrasonics, Ferroelectrics Frequency Control 49(8), 1118–1123 (2002).
[Crossref]

Kruger, S. E.

C. Glorieux, W. Gao, S. E. Kruger, K. Van de Rostyne, W. Lauriks, and J. Thoen, “Surface acoustic wave depth profiling of elastically inhomogeneous materials,” J. Appl. Phys. 88(7), 4394–4400 (2000).
[Crossref]

Kugel, J. L.

A. L. McKnight, J. L. Kugel, P. J. Rossman, A. Manduca, L. C. Hartmann, and R. L. Ehman, “MR elastography of breast cancer: preliminary results,” AJR Am. J. Roentgenol. 178(6), 1411–1417 (2002).
[Crossref] [PubMed]

Landau, E. H.

E. H. Landau, V. R. Jayanthi, B. M. Churchill, E. Shapiro, R. F. Gilmour, A. E. Khoury, E. J. Macarak, G. A. McLorie, R. E. Steckler, and B. A. Kogan, “Loss of elasticity in dysfunctional bladders: urodynamic and histochemical correlation,” J. Urol. 152(2 Pt 2), 702–705 (1994).
[PubMed]

Larin, K. V.

Latham, B.

K. M. Kennedy, R. A. McLaughlin, B. F. Kennedy, A. Tien, B. Latham, C. M. Saunders, and D. D. Sampson, “Needle optical coherence elastography for the measurement of microscale mechanical contrast deep within human breast tissues,” J. Biomed. Opt. 18(12), 121510 (2013).
[Crossref] [PubMed]

Laule, M.

T. Elgeti, M. Laule, N. Kaufels, J. Schnorr, B. Hamm, A. Samani, J. Braun, and I. Sack, “Cardiac MR elastography: comparison with left ventricular pressure measurement,” J. Cardiovasc. Magn. Reson. 11(1), 44 (2009).
[Crossref] [PubMed]

Lauriks, W.

C. Glorieux, W. Gao, S. E. Kruger, K. Van de Rostyne, W. Lauriks, and J. Thoen, “Surface acoustic wave depth profiling of elastically inhomogeneous materials,” J. Appl. Phys. 88(7), 4394–4400 (2000).
[Crossref]

Law, S.

Lazar, A. J.

Lee, J. W.

J. W. Lee, E. I. S. Lorenzo, B. Ahn, C. K. Oh, H. J. Kim, W. K. Han, J. Kim, and K. H. Rha, “Palpation Device for the Identification of Kidney and Bladder Cancer: A Pilot Study,” Yonsei Med. J. 52(5), 768–772 (2011).
[Crossref] [PubMed]

Lee, J. Z.

T. Watanabe, S. Omata, J. Z. Lee, and C. E. Constantinou, “Comparative analysis of bladder wall compliance based on cystometry and biosensor measurements during the micturition cycle of the rat,” Neurourol. Urodyn. 16(6), 567–581 (1997).
[Crossref] [PubMed]

Lee, Y. C.

Lev, D. C.

Li, C.

C. Li, S. Song, G. Guan, R. K. Wang, and Z. Huang, “Frequency dependence of laser ultrasonic SAW phase velocities measurements,” Ultrasonics 53(1), 191–195 (2013).
[Crossref] [PubMed]

G. Guan, C. Li, Y. Ling, Y. Yang, J. B. Vorstius, R. P. Keatch, R. K. Wang, and Z. H. Huang, “Quantitative evaluation of degenerated tendon model using combined optical coherence elastography and acoustic radiation force method,” J. Biomed. Opt. 18(11), 111417 (2013).
[Crossref] [PubMed]

C. Li, G. Guan, Z. Huang, M. Johnstone, and R. K. Wang, “Noncontact all-optical measurement of corneal elasticity,” Opt. Lett. 37(10), 1625–1627 (2012).
[Crossref] [PubMed]

C. Li, G. Guan, X. Cheng, Z. Huang, and R. K. Wang, “Quantitative elastography provided by surface acoustic waves measured by phase-sensitive optical coherence tomography,” Opt. Lett. 37(4), 722–724 (2012).
[Crossref] [PubMed]

C. Li, G. Guan, S. Li, Z. Huang, and R. K. Wang, “Evaluating elastic properties of heterogeneous soft tissue by surface acoustic waves detected by phase-sensitive optical coherence tomography,” J. Biomed. Opt. 17(5), 057002 (2012).
[Crossref] [PubMed]

C. Li, G. Guan, R. Reif, Z. Huang, and R. K. Wang, “Determining elastic properties of skin by measuring surface waves from an impulse mechanical stimulus using phase-sensitive optical coherence tomography,” J. R. Soc. Interface 9(70), 831–841 (2011).
[PubMed]

C. Li, Z. Huang, and R. K. Wang, “Elastic properties of soft tissue-mimicking phantoms assessed by combined use of laser ultrasonics and low coherence interferometry,” Opt. Express 19(11), 10153–10163 (2011).
[Crossref] [PubMed]

Li, J.

Li, S.

C. Li, G. Guan, S. Li, Z. Huang, and R. K. Wang, “Evaluating elastic properties of heterogeneous soft tissue by surface acoustic waves detected by phase-sensitive optical coherence tomography,” J. Biomed. Opt. 17(5), 057002 (2012).
[Crossref] [PubMed]

Liang, X.

Liao, L. M.

L. M. Liao and W. Schaefer, “Cross-sectional and longitudinal studies on interaction between bladder compliance and outflow obstruction in men with benign prostatic hyperplasia,” Asian J. Androl. 9(1), 51–56 (2007).
[Crossref] [PubMed]

Li-Mei, X.

H. Ying, L. Da, J. Luo, L. Li-Xia, X. Yu, X. Li-Mei, and R. Wei-Dong, “Quantitative assessment of bladder neck compliance by using transvaginal real-time elastography of women, Ultrasound,” Med. Biol. 39(10), 1727–1734 (2013).

Ling, Y.

G. Guan, C. Li, Y. Ling, Y. Yang, J. B. Vorstius, R. P. Keatch, R. K. Wang, and Z. H. Huang, “Quantitative evaluation of degenerated tendon model using combined optical coherence elastography and acoustic radiation force method,” J. Biomed. Opt. 18(11), 111417 (2013).
[Crossref] [PubMed]

Liu, X. J.

Q. J. Huang, Y. Cheng, X. J. Liu, X. D. Xu, and S. Y. Zhang, “Study of the elastic constants in a La0.6Sr0.4MnO3 film by means of laser-generated ultrasonic wave method,” Ultrasonics 44(Suppl 1), e1223–e1227 (2006).
[Crossref] [PubMed]

Li-Xia, L.

H. Ying, L. Da, J. Luo, L. Li-Xia, X. Yu, X. Li-Mei, and R. Wei-Dong, “Quantitative assessment of bladder neck compliance by using transvaginal real-time elastography of women, Ultrasound,” Med. Biol. 39(10), 1727–1734 (2013).

Loai, Y.

H. L. Cheng, Y. Loai, and W. A. Farhat, “Monitoring tissue development in acellular matrix-based regeneration for bladder tissue engineering: multiexponential diffusion and T2* for improved specificity,” NMR Biomed. 25(3), 418–426 (2012).
[Crossref] [PubMed]

Lorenzo, E. I. S.

J. W. Lee, E. I. S. Lorenzo, B. Ahn, C. K. Oh, H. J. Kim, W. K. Han, J. Kim, and K. H. Rha, “Palpation Device for the Identification of Kidney and Bladder Cancer: A Pilot Study,” Yonsei Med. J. 52(5), 768–772 (2011).
[Crossref] [PubMed]

Lue, T. F.

S. E. Dahms, H. J. Piechota, R. Dahiya, T. F. Lue, and E. A. Tanagho, “Composition and biomechanical properties of the bladder acellular matrix graft: comparative analysis in rat, pig and human,” Br. J. Urol. 82(3), 411–419 (1998).
[Crossref] [PubMed]

Luo, J.

H. Ying, L. Da, J. Luo, L. Li-Xia, X. Yu, X. Li-Mei, and R. Wei-Dong, “Quantitative assessment of bladder neck compliance by using transvaginal real-time elastography of women, Ultrasound,” Med. Biol. 39(10), 1727–1734 (2013).

Macarak, E. J.

E. H. Landau, V. R. Jayanthi, B. M. Churchill, E. Shapiro, R. F. Gilmour, A. E. Khoury, E. J. Macarak, G. A. McLorie, R. E. Steckler, and B. A. Kogan, “Loss of elasticity in dysfunctional bladders: urodynamic and histochemical correlation,” J. Urol. 152(2 Pt 2), 702–705 (1994).
[PubMed]

Madersbacher, S.

S. Madersbacher, A. Pycha, C. H. Klingler, C. Mian, B. Djavan, T. Stulnig, and M. Marberger, “Interrelationships of bladder compliance with age, detrusor instability, and obstruction in elderly men with lower urinary tract symptoms,” Neurourol. Urodyn. 18(1), 3–13 (1999).
[Crossref] [PubMed]

Manapuram, R. K.

Manduca, A.

A. L. McKnight, J. L. Kugel, P. J. Rossman, A. Manduca, L. C. Hartmann, and R. L. Ehman, “MR elastography of breast cancer: preliminary results,” AJR Am. J. Roentgenol. 178(6), 1411–1417 (2002).
[Crossref] [PubMed]

Marberger, M.

S. Madersbacher, A. Pycha, C. H. Klingler, C. Mian, B. Djavan, T. Stulnig, and M. Marberger, “Interrelationships of bladder compliance with age, detrusor instability, and obstruction in elderly men with lower urinary tract symptoms,” Neurourol. Urodyn. 18(1), 3–13 (1999).
[Crossref] [PubMed]

Mastik, F.

G. van Soest, F. Mastik, N. de Jong, and A. F. W. van der Steen, “Robust intravascular optical coherence elastography by line correlations,” Phys. Med. Biol. 52(9), 2445–2458 (2007).
[Crossref] [PubMed]

Maznev, A. A.

J. A. Rogers, A. A. Maznev, M. J. Banet, and K. A. Nelson, “Optical generation and characterization of acoustic waves in thin films: fundamentals and applications,” Annu. Rev. Mater. Sci. 30(1), 117–157 (2000).
[Crossref]

McKnight, A. L.

A. L. McKnight, J. L. Kugel, P. J. Rossman, A. Manduca, L. C. Hartmann, and R. L. Ehman, “MR elastography of breast cancer: preliminary results,” AJR Am. J. Roentgenol. 178(6), 1411–1417 (2002).
[Crossref] [PubMed]

McLaughlin, R. A.

K. M. Kennedy, R. A. McLaughlin, B. F. Kennedy, A. Tien, B. Latham, C. M. Saunders, and D. D. Sampson, “Needle optical coherence elastography for the measurement of microscale mechanical contrast deep within human breast tissues,” J. Biomed. Opt. 18(12), 121510 (2013).
[Crossref] [PubMed]

B. F. Kennedy, T. R. Hillman, R. A. McLaughlin, B. C. Quirk, and D. D. Sampson, “In vivo dynamic optical coherence elastography using a ring actuator,” Opt. Express 17(24), 21762–21772 (2009).
[Crossref] [PubMed]

McLean, D.

A. Evans, P. Whelehan, K. Thomson, D. McLean, K. Brauer, C. Purdie, L. Jordan, L. Baker, and A. Thompson, “Quantitative shear wave ultrasound elastography: initial experience in solid breast masses,” Breast Cancer Res. 12(6), R104 (2010).
[Crossref] [PubMed]

McLorie, G. A.

E. H. Landau, V. R. Jayanthi, B. M. Churchill, E. Shapiro, R. F. Gilmour, A. E. Khoury, E. J. Macarak, G. A. McLorie, R. E. Steckler, and B. A. Kogan, “Loss of elasticity in dysfunctional bladders: urodynamic and histochemical correlation,” J. Urol. 152(2 Pt 2), 702–705 (1994).
[PubMed]

Menodiado, F. M.

Mian, C.

S. Madersbacher, A. Pycha, C. H. Klingler, C. Mian, B. Djavan, T. Stulnig, and M. Marberger, “Interrelationships of bladder compliance with age, detrusor instability, and obstruction in elderly men with lower urinary tract symptoms,” Neurourol. Urodyn. 18(1), 3–13 (1999).
[Crossref] [PubMed]

Mohan, K. D.

Murray, T. W.

Y. Zhou, T. W. Murray, and S. Krishnaswamy, “Photo-acoustic imaging of surface acoustic wave slowness using multiplexed, two-wave mixing array interferometry,” IEEE Trans. Ultrasonics, Ferroelectrics Frequency Control 49(8), 1118–1123 (2002).
[Crossref]

Nabavizadeh, A.

I. Z. Nenadic, B. Qiang, M. W. Urban, L. H. de Araujo Vasconcelo, A. Nabavizadeh, A. Alizad, J. F. Greenleaf, and M. Fatemi, “Ultrasound bladder vibrometry method for measuring viscoelasticity of the bladder wall,” Phys. Med. Biol. 58(8), 2675–2695 (2013).
[Crossref] [PubMed]

Nabi, G.

R. Cao, Z. Huang, T. Varghese, and G. Nabi, “Tissue mimicking materials for the detection of prostate cancer using shear wave elastography: A validation study,” Med. Phys. 40(2), 022903 (2013).
[Crossref] [PubMed]

Nelson, K. A.

J. A. Rogers, A. A. Maznev, M. J. Banet, and K. A. Nelson, “Optical generation and characterization of acoustic waves in thin films: fundamentals and applications,” Annu. Rev. Mater. Sci. 30(1), 117–157 (2000).
[Crossref]

Nenadic, I. Z.

I. Z. Nenadic, B. Qiang, M. W. Urban, L. H. de Araujo Vasconcelo, A. Nabavizadeh, A. Alizad, J. F. Greenleaf, and M. Fatemi, “Ultrasound bladder vibrometry method for measuring viscoelasticity of the bladder wall,” Phys. Med. Biol. 58(8), 2675–2695 (2013).
[Crossref] [PubMed]

Oh, C. K.

J. W. Lee, E. I. S. Lorenzo, B. Ahn, C. K. Oh, H. J. Kim, W. K. Han, J. Kim, and K. H. Rha, “Palpation Device for the Identification of Kidney and Bladder Cancer: A Pilot Study,” Yonsei Med. J. 52(5), 768–772 (2011).
[Crossref] [PubMed]

Oldenburg, A. L.

Omata, S.

T. Watanabe, S. Omata, J. Z. Lee, and C. E. Constantinou, “Comparative analysis of bladder wall compliance based on cystometry and biosensor measurements during the micturition cycle of the rat,” Neurourol. Urodyn. 16(6), 567–581 (1997).
[Crossref] [PubMed]

Piechota, H. J.

S. E. Dahms, H. J. Piechota, R. Dahiya, T. F. Lue, and E. A. Tanagho, “Composition and biomechanical properties of the bladder acellular matrix graft: comparative analysis in rat, pig and human,” Br. J. Urol. 82(3), 411–419 (1998).
[Crossref] [PubMed]

Pinchera, A.

T. Rago, F. Santini, M. Scutari, A. Pinchera, and P. Vitti, “Elastography: new developments in ultrasound for predicting malignancy in thyroid nodules,” J. Clin. Endocrinol. Metab. 92(8), 2917–2922 (2007).
[Crossref] [PubMed]

Pollock, R. E.

Purdie, C.

A. Evans, P. Whelehan, K. Thomson, D. McLean, K. Brauer, C. Purdie, L. Jordan, L. Baker, and A. Thompson, “Quantitative shear wave ultrasound elastography: initial experience in solid breast masses,” Breast Cancer Res. 12(6), R104 (2010).
[Crossref] [PubMed]

Pycha, A.

S. Madersbacher, A. Pycha, C. H. Klingler, C. Mian, B. Djavan, T. Stulnig, and M. Marberger, “Interrelationships of bladder compliance with age, detrusor instability, and obstruction in elderly men with lower urinary tract symptoms,” Neurourol. Urodyn. 18(1), 3–13 (1999).
[Crossref] [PubMed]

Qiang, B.

I. Z. Nenadic, B. Qiang, M. W. Urban, L. H. de Araujo Vasconcelo, A. Nabavizadeh, A. Alizad, J. F. Greenleaf, and M. Fatemi, “Ultrasound bladder vibrometry method for measuring viscoelasticity of the bladder wall,” Phys. Med. Biol. 58(8), 2675–2695 (2013).
[Crossref] [PubMed]

Quirk, B. C.

Rago, T.

T. Rago, F. Santini, M. Scutari, A. Pinchera, and P. Vitti, “Elastography: new developments in ultrasound for predicting malignancy in thyroid nodules,” J. Clin. Endocrinol. Metab. 92(8), 2917–2922 (2007).
[Crossref] [PubMed]

Reif, R.

C. Li, G. Guan, R. Reif, Z. Huang, and R. K. Wang, “Determining elastic properties of skin by measuring surface waves from an impulse mechanical stimulus using phase-sensitive optical coherence tomography,” J. R. Soc. Interface 9(70), 831–841 (2011).
[PubMed]

Resnick, N. M.

A. Elbadawi, S. V. Yalla, and N. M. Resnick, “Structural basis of geriatric voiding dysfunction. IV. Bladder outlet obstruction,” J. Urol. 150(5 Pt 2), 1681–1695 (1993).
[PubMed]

Reverdy, F.

F. Reverdy and B. Audoin, “Ultrasonic measurement of elastic constant of anisotropic materials with laser source and laser receiver focused on the same interface,” J. Appl. Phys. 90(9), 4829–4835 (2001).
[Crossref]

Rha, K. H.

J. W. Lee, E. I. S. Lorenzo, B. Ahn, C. K. Oh, H. J. Kim, W. K. Han, J. Kim, and K. H. Rha, “Palpation Device for the Identification of Kidney and Bladder Cancer: A Pilot Study,” Yonsei Med. J. 52(5), 768–772 (2011).
[Crossref] [PubMed]

Rivaz, H.

H. Rivaz, E. M. Boctor, M. A. Choti, and G. D. Hager, “Real-time regularized ultrasound elastography,” IEEE Trans. Med. Imaging 30(4), 928–945 (2011).
[Crossref] [PubMed]

Rogers, J. A.

J. A. Rogers, A. A. Maznev, M. J. Banet, and K. A. Nelson, “Optical generation and characterization of acoustic waves in thin films: fundamentals and applications,” Annu. Rev. Mater. Sci. 30(1), 117–157 (2000).
[Crossref]

Rossman, P. J.

A. L. McKnight, J. L. Kugel, P. J. Rossman, A. Manduca, L. C. Hartmann, and R. L. Ehman, “MR elastography of breast cancer: preliminary results,” AJR Am. J. Roentgenol. 178(6), 1411–1417 (2002).
[Crossref] [PubMed]

Rudenko, O. V.

A. P. Sarvazyan, O. V. Rudenko, S. D. Swanson, J. B. Fowlkes, and S. Y. Emelianov, “Shear wave elasticity imaging: A new ultrasonic technology of medical diagnostics,” Ultrasound Med. Biol. 24(9), 1419–1435 (1998).
[Crossref] [PubMed]

Sabanathan, K.

K. Sabanathan, H. M. Duffin, and C. M. Castleden, “Urinary tract infection after cystometry,” Age Ageing 14(5), 291–295 (1985).
[Crossref] [PubMed]

Sachse, W.

A. G. Every and W. Sachse, “Determination of the elastic constants of anisotropic solids from acoustic-wave group-velocity measurements,” Phys. Rev. B Condens. Matter 42(13), 8196–8205 (1990).
[Crossref] [PubMed]

Sack, I.

T. Elgeti, M. Beling, B. Hamm, J. Braun, and I. Sack, “Cardiac magnetic resonance elastography: toward the diagnosis of abnormal myocardial relaxation,” Invest. Radiol. 45(12), 782–787 (2010).
[Crossref] [PubMed]

T. Elgeti, M. Laule, N. Kaufels, J. Schnorr, B. Hamm, A. Samani, J. Braun, and I. Sack, “Cardiac MR elastography: comparison with left ventricular pressure measurement,” J. Cardiovasc. Magn. Reson. 11(1), 44 (2009).
[Crossref] [PubMed]

Samani, A.

T. Elgeti, M. Laule, N. Kaufels, J. Schnorr, B. Hamm, A. Samani, J. Braun, and I. Sack, “Cardiac MR elastography: comparison with left ventricular pressure measurement,” J. Cardiovasc. Magn. Reson. 11(1), 44 (2009).
[Crossref] [PubMed]

Sampson, D. D.

Santini, F.

T. Rago, F. Santini, M. Scutari, A. Pinchera, and P. Vitti, “Elastography: new developments in ultrasound for predicting malignancy in thyroid nodules,” J. Clin. Endocrinol. Metab. 92(8), 2917–2922 (2007).
[Crossref] [PubMed]

Sarvazyan, A. P.

A. P. Sarvazyan, O. V. Rudenko, S. D. Swanson, J. B. Fowlkes, and S. Y. Emelianov, “Shear wave elasticity imaging: A new ultrasonic technology of medical diagnostics,” Ultrasound Med. Biol. 24(9), 1419–1435 (1998).
[Crossref] [PubMed]

Saunders, C. M.

K. M. Kennedy, R. A. McLaughlin, B. F. Kennedy, A. Tien, B. Latham, C. M. Saunders, and D. D. Sampson, “Needle optical coherence elastography for the measurement of microscale mechanical contrast deep within human breast tissues,” J. Biomed. Opt. 18(12), 121510 (2013).
[Crossref] [PubMed]

Scala, C. M.

P. A. Doyle and C. M. Scala, “Near-field ultrasonic Rayleigh waves from a laser line source,” Ultrasonics 34(1), 1–8 (1996).
[Crossref]

Schaefer, W.

L. M. Liao and W. Schaefer, “Cross-sectional and longitudinal studies on interaction between bladder compliance and outflow obstruction in men with benign prostatic hyperplasia,” Asian J. Androl. 9(1), 51–56 (2007).
[Crossref] [PubMed]

Schäfer, W.

W. Schäfer, “Principles and clinical application of advanced urodynamic analysis of voiding function,” Urol. Clin. North Am. 17(3), 553–566 (1990).
[PubMed]

Scheibe, H. J.

D. Schneider, B. Schultrich, H. J. Scheibe, H. Ziegele, and M. Griepentrog, “A laser-acoustic method for testing and classifying hard surface layers,” Thin Solid Films 332(1–2), 157–163 (1998).
[Crossref]

Schneider, D.

D. Schneider, B. Schultrich, H. J. Scheibe, H. Ziegele, and M. Griepentrog, “A laser-acoustic method for testing and classifying hard surface layers,” Thin Solid Films 332(1–2), 157–163 (1998).
[Crossref]

D. Schneider and T. A. Schwarz, “Photoacoustic method for characterising thin films,” Surf. Coat. Tech. 91(1–2), 136–146 (1997).
[Crossref]

Schnorr, J.

T. Elgeti, M. Laule, N. Kaufels, J. Schnorr, B. Hamm, A. Samani, J. Braun, and I. Sack, “Cardiac MR elastography: comparison with left ventricular pressure measurement,” J. Cardiovasc. Magn. Reson. 11(1), 44 (2009).
[Crossref] [PubMed]

Schultrich, B.

D. Schneider, B. Schultrich, H. J. Scheibe, H. Ziegele, and M. Griepentrog, “A laser-acoustic method for testing and classifying hard surface layers,” Thin Solid Films 332(1–2), 157–163 (1998).
[Crossref]

Schwarz, T. A.

D. Schneider and T. A. Schwarz, “Photoacoustic method for characterising thin films,” Surf. Coat. Tech. 91(1–2), 136–146 (1997).
[Crossref]

Scutari, M.

T. Rago, F. Santini, M. Scutari, A. Pinchera, and P. Vitti, “Elastography: new developments in ultrasound for predicting malignancy in thyroid nodules,” J. Clin. Endocrinol. Metab. 92(8), 2917–2922 (2007).
[Crossref] [PubMed]

Shapiro, E.

E. H. Landau, V. R. Jayanthi, B. M. Churchill, E. Shapiro, R. F. Gilmour, A. E. Khoury, E. J. Macarak, G. A. McLorie, R. E. Steckler, and B. A. Kogan, “Loss of elasticity in dysfunctional bladders: urodynamic and histochemical correlation,” J. Urol. 152(2 Pt 2), 702–705 (1994).
[PubMed]

Singh, R. S.

M. O. Culjat, D. Goldenberg, P. Tewari, and R. S. Singh, “A review of tissue substitutes for ultrasound imaging,” Ultrasound Med. Biol. 36(6), 861–873 (2010).
[Crossref] [PubMed]

Siroky, M. B.

K. M. Azadzoi, T. Tarcan, R. Kozlowski, R. J. Krane, and M. B. Siroky, “Overactivity and structural changes in the chronically ischemic bladder,” J. Urol. 162(5), 1768–1778 (1999).
[Crossref] [PubMed]

Song, S.

C. Li, S. Song, G. Guan, R. K. Wang, and Z. Huang, “Frequency dependence of laser ultrasonic SAW phase velocities measurements,” Ultrasonics 53(1), 191–195 (2013).
[Crossref] [PubMed]

Southgate, J.

S. Korossis, F. Bolland, E. Ingham, J. Fisher, J. Kearney, and J. Southgate, “Review: tissue engineering of the urinary bladder: considering structure-function relationships and the role of mechanotransduction,” Tissue Eng. 12(4), 635–644 (2006).
[Crossref] [PubMed]

Spicer, J. B.

D. H. Hurley and J. B. Spicer, “Line source representation for laser-generated ultrasound in an elastic transversely isotropic half-space,” J. Acoust. Soc. Am. 116(5), 2914–2922 (2004).
[Crossref]

Steckler, R. E.

E. H. Landau, V. R. Jayanthi, B. M. Churchill, E. Shapiro, R. F. Gilmour, A. E. Khoury, E. J. Macarak, G. A. McLorie, R. E. Steckler, and B. A. Kogan, “Loss of elasticity in dysfunctional bladders: urodynamic and histochemical correlation,” J. Urol. 152(2 Pt 2), 702–705 (1994).
[PubMed]

Stulnig, T.

S. Madersbacher, A. Pycha, C. H. Klingler, C. Mian, B. Djavan, T. Stulnig, and M. Marberger, “Interrelationships of bladder compliance with age, detrusor instability, and obstruction in elderly men with lower urinary tract symptoms,” Neurourol. Urodyn. 18(1), 3–13 (1999).
[Crossref] [PubMed]

Swain, M.

Swanson, S. D.

A. P. Sarvazyan, O. V. Rudenko, S. D. Swanson, J. B. Fowlkes, and S. Y. Emelianov, “Shear wave elasticity imaging: A new ultrasonic technology of medical diagnostics,” Ultrasound Med. Biol. 24(9), 1419–1435 (1998).
[Crossref] [PubMed]

Szkulmowski, M.

Takahashi, N.

S. K. Venkatesh, M. Yin, J. F. Glockner, N. Takahashi, P. A. Araoz, J. A. Talwalkar, and R. L. Ehman, “MR elastography of liver tumors: preliminary results,” AJR Am. J. Roentgenol. 190(6), 1534–1540 (2008).
[Crossref] [PubMed]

Talwalkar, J. A.

S. K. Venkatesh, M. Yin, J. F. Glockner, N. Takahashi, P. A. Araoz, J. A. Talwalkar, and R. L. Ehman, “MR elastography of liver tumors: preliminary results,” AJR Am. J. Roentgenol. 190(6), 1534–1540 (2008).
[Crossref] [PubMed]

Tanagho, E. A.

S. E. Dahms, H. J. Piechota, R. Dahiya, T. F. Lue, and E. A. Tanagho, “Composition and biomechanical properties of the bladder acellular matrix graft: comparative analysis in rat, pig and human,” Br. J. Urol. 82(3), 411–419 (1998).
[Crossref] [PubMed]

Tarcan, T.

K. M. Azadzoi, T. Tarcan, R. Kozlowski, R. J. Krane, and M. B. Siroky, “Overactivity and structural changes in the chronically ischemic bladder,” J. Urol. 162(5), 1768–1778 (1999).
[Crossref] [PubMed]

Tewari, P.

M. O. Culjat, D. Goldenberg, P. Tewari, and R. S. Singh, “A review of tissue substitutes for ultrasound imaging,” Ultrasound Med. Biol. 36(6), 861–873 (2010).
[Crossref] [PubMed]

Thoen, J.

C. Glorieux, W. Gao, S. E. Kruger, K. Van de Rostyne, W. Lauriks, and J. Thoen, “Surface acoustic wave depth profiling of elastically inhomogeneous materials,” J. Appl. Phys. 88(7), 4394–4400 (2000).
[Crossref]

Thompson, A.

A. Evans, P. Whelehan, K. Thomson, D. McLean, K. Brauer, C. Purdie, L. Jordan, L. Baker, and A. Thompson, “Quantitative shear wave ultrasound elastography: initial experience in solid breast masses,” Breast Cancer Res. 12(6), R104 (2010).
[Crossref] [PubMed]

Thomson, K.

A. Evans, P. Whelehan, K. Thomson, D. McLean, K. Brauer, C. Purdie, L. Jordan, L. Baker, and A. Thompson, “Quantitative shear wave ultrasound elastography: initial experience in solid breast masses,” Breast Cancer Res. 12(6), R104 (2010).
[Crossref] [PubMed]

Tien, A.

K. M. Kennedy, R. A. McLaughlin, B. F. Kennedy, A. Tien, B. Latham, C. M. Saunders, and D. D. Sampson, “Needle optical coherence elastography for the measurement of microscale mechanical contrast deep within human breast tissues,” J. Biomed. Opt. 18(12), 121510 (2013).
[Crossref] [PubMed]

Twa, M. D.

Urban, M. W.

I. Z. Nenadic, B. Qiang, M. W. Urban, L. H. de Araujo Vasconcelo, A. Nabavizadeh, A. Alizad, J. F. Greenleaf, and M. Fatemi, “Ultrasound bladder vibrometry method for measuring viscoelasticity of the bladder wall,” Phys. Med. Biol. 58(8), 2675–2695 (2013).
[Crossref] [PubMed]

Van de Rostyne, K.

C. Glorieux, W. Gao, S. E. Kruger, K. Van de Rostyne, W. Lauriks, and J. Thoen, “Surface acoustic wave depth profiling of elastically inhomogeneous materials,” J. Appl. Phys. 88(7), 4394–4400 (2000).
[Crossref]

van der Steen, A. F. W.

G. van Soest, F. Mastik, N. de Jong, and A. F. W. van der Steen, “Robust intravascular optical coherence elastography by line correlations,” Phys. Med. Biol. 52(9), 2445–2458 (2007).
[Crossref] [PubMed]

van Mastrigt, R.

R. van Mastrigt and D. J. Griffiths, “Contractility of the urinary bladder,” Urol. Int. 34(6), 410–420 (1979).
[Crossref] [PubMed]

van Soest, G.

G. van Soest, F. Mastik, N. de Jong, and A. F. W. van der Steen, “Robust intravascular optical coherence elastography by line correlations,” Phys. Med. Biol. 52(9), 2445–2458 (2007).
[Crossref] [PubMed]

Varghese, T.

R. Cao, Z. Huang, T. Varghese, and G. Nabi, “Tissue mimicking materials for the detection of prostate cancer using shear wave elastography: A validation study,” Med. Phys. 40(2), 022903 (2013).
[Crossref] [PubMed]

Venkatesh, S. K.

S. K. Venkatesh, M. Yin, J. F. Glockner, N. Takahashi, P. A. Araoz, J. A. Talwalkar, and R. L. Ehman, “MR elastography of liver tumors: preliminary results,” AJR Am. J. Roentgenol. 190(6), 1534–1540 (2008).
[Crossref] [PubMed]

Vitti, P.

T. Rago, F. Santini, M. Scutari, A. Pinchera, and P. Vitti, “Elastography: new developments in ultrasound for predicting malignancy in thyroid nodules,” J. Clin. Endocrinol. Metab. 92(8), 2917–2922 (2007).
[Crossref] [PubMed]

Vorstius, J. B.

G. Guan, C. Li, Y. Ling, Y. Yang, J. B. Vorstius, R. P. Keatch, R. K. Wang, and Z. H. Huang, “Quantitative evaluation of degenerated tendon model using combined optical coherence elastography and acoustic radiation force method,” J. Biomed. Opt. 18(11), 111417 (2013).
[Crossref] [PubMed]

Wang, H. C.

Wang, R. K.

C. Li, S. Song, G. Guan, R. K. Wang, and Z. Huang, “Frequency dependence of laser ultrasonic SAW phase velocities measurements,” Ultrasonics 53(1), 191–195 (2013).
[Crossref] [PubMed]

G. Guan, C. Li, Y. Ling, Y. Yang, J. B. Vorstius, R. P. Keatch, R. K. Wang, and Z. H. Huang, “Quantitative evaluation of degenerated tendon model using combined optical coherence elastography and acoustic radiation force method,” J. Biomed. Opt. 18(11), 111417 (2013).
[Crossref] [PubMed]

C. Li, G. Guan, X. Cheng, Z. Huang, and R. K. Wang, “Quantitative elastography provided by surface acoustic waves measured by phase-sensitive optical coherence tomography,” Opt. Lett. 37(4), 722–724 (2012).
[Crossref] [PubMed]

C. Li, G. Guan, Z. Huang, M. Johnstone, and R. K. Wang, “Noncontact all-optical measurement of corneal elasticity,” Opt. Lett. 37(10), 1625–1627 (2012).
[Crossref] [PubMed]

C. Li, G. Guan, S. Li, Z. Huang, and R. K. Wang, “Evaluating elastic properties of heterogeneous soft tissue by surface acoustic waves detected by phase-sensitive optical coherence tomography,” J. Biomed. Opt. 17(5), 057002 (2012).
[Crossref] [PubMed]

C. Li, G. Guan, R. Reif, Z. Huang, and R. K. Wang, “Determining elastic properties of skin by measuring surface waves from an impulse mechanical stimulus using phase-sensitive optical coherence tomography,” J. R. Soc. Interface 9(70), 831–841 (2011).
[PubMed]

C. Li, Z. Huang, and R. K. Wang, “Elastic properties of soft tissue-mimicking phantoms assessed by combined use of laser ultrasonics and low coherence interferometry,” Opt. Express 19(11), 10153–10163 (2011).
[Crossref] [PubMed]

Wang, S.

Watanabe, T.

T. Watanabe, S. Omata, J. Z. Lee, and C. E. Constantinou, “Comparative analysis of bladder wall compliance based on cystometry and biosensor measurements during the micturition cycle of the rat,” Neurourol. Urodyn. 16(6), 567–581 (1997).
[Crossref] [PubMed]

Wei-Dong, R.

H. Ying, L. Da, J. Luo, L. Li-Xia, X. Yu, X. Li-Mei, and R. Wei-Dong, “Quantitative assessment of bladder neck compliance by using transvaginal real-time elastography of women, Ultrasound,” Med. Biol. 39(10), 1727–1734 (2013).

Whelehan, P.

A. Evans, P. Whelehan, K. Thomson, D. McLean, K. Brauer, C. Purdie, L. Jordan, L. Baker, and A. Thompson, “Quantitative shear wave ultrasound elastography: initial experience in solid breast masses,” Breast Cancer Res. 12(6), R104 (2010).
[Crossref] [PubMed]

Wojtkowski, M.

Wu, T. T.

F. F. Chai and T. T. Wu, “Determination of anisotropic elastic constants using laser-generated surface waves,” J. Acoust. Soc. Am. 95(6), 3232–3241 (1994).
[Crossref]

T. T. Wu and F. J. Chai, “Propagation of surface waves in anisotropic solid: Theoretical calculation and experiment,” Ultrasonics 32(1), 21–29 (1994).
[Crossref]

Xu, X. D.

Q. J. Huang, Y. Cheng, X. J. Liu, X. D. Xu, and S. Y. Zhang, “Study of the elastic constants in a La0.6Sr0.4MnO3 film by means of laser-generated ultrasonic wave method,” Ultrasonics 44(Suppl 1), e1223–e1227 (2006).
[Crossref] [PubMed]

Xue, J.

Yalla, S. V.

A. Elbadawi, S. V. Yalla, and N. M. Resnick, “Structural basis of geriatric voiding dysfunction. IV. Bladder outlet obstruction,” J. Urol. 150(5 Pt 2), 1681–1695 (1993).
[PubMed]

Yang, Y.

G. Guan, C. Li, Y. Ling, Y. Yang, J. B. Vorstius, R. P. Keatch, R. K. Wang, and Z. H. Huang, “Quantitative evaluation of degenerated tendon model using combined optical coherence elastography and acoustic radiation force method,” J. Biomed. Opt. 18(11), 111417 (2013).
[Crossref] [PubMed]

Yin, M.

S. K. Venkatesh, M. Yin, J. F. Glockner, N. Takahashi, P. A. Araoz, J. A. Talwalkar, and R. L. Ehman, “MR elastography of liver tumors: preliminary results,” AJR Am. J. Roentgenol. 190(6), 1534–1540 (2008).
[Crossref] [PubMed]

Ying, H.

H. Ying, L. Da, J. Luo, L. Li-Xia, X. Yu, X. Li-Mei, and R. Wei-Dong, “Quantitative assessment of bladder neck compliance by using transvaginal real-time elastography of women, Ultrasound,” Med. Biol. 39(10), 1727–1734 (2013).

Yu, X.

H. Ying, L. Da, J. Luo, L. Li-Xia, X. Yu, X. Li-Mei, and R. Wei-Dong, “Quantitative assessment of bladder neck compliance by using transvaginal real-time elastography of women, Ultrasound,” Med. Biol. 39(10), 1727–1734 (2013).

Zhang, S. Y.

Q. J. Huang, Y. Cheng, X. J. Liu, X. D. Xu, and S. Y. Zhang, “Study of the elastic constants in a La0.6Sr0.4MnO3 film by means of laser-generated ultrasonic wave method,” Ultrasonics 44(Suppl 1), e1223–e1227 (2006).
[Crossref] [PubMed]

Zhang, X.

X. Zhang and J. F. Greenleaf, “Theoretical and experimental studies on group velocity for estimating the elasticity of arteries”, IEEE International Ultrasonics Symposium Proceedings, 2453–2455 (2009).
[Crossref]

Zhou, Y.

Y. Zhou, T. W. Murray, and S. Krishnaswamy, “Photo-acoustic imaging of surface acoustic wave slowness using multiplexed, two-wave mixing array interferometry,” IEEE Trans. Ultrasonics, Ferroelectrics Frequency Control 49(8), 1118–1123 (2002).
[Crossref]

Ziegele, H.

D. Schneider, B. Schultrich, H. J. Scheibe, H. Ziegele, and M. Griepentrog, “A laser-acoustic method for testing and classifying hard surface layers,” Thin Solid Films 332(1–2), 157–163 (1998).
[Crossref]

Age Ageing (1)

K. Sabanathan, H. M. Duffin, and C. M. Castleden, “Urinary tract infection after cystometry,” Age Ageing 14(5), 291–295 (1985).
[Crossref] [PubMed]

AJR Am. J. Roentgenol. (2)

S. K. Venkatesh, M. Yin, J. F. Glockner, N. Takahashi, P. A. Araoz, J. A. Talwalkar, and R. L. Ehman, “MR elastography of liver tumors: preliminary results,” AJR Am. J. Roentgenol. 190(6), 1534–1540 (2008).
[Crossref] [PubMed]

A. L. McKnight, J. L. Kugel, P. J. Rossman, A. Manduca, L. C. Hartmann, and R. L. Ehman, “MR elastography of breast cancer: preliminary results,” AJR Am. J. Roentgenol. 178(6), 1411–1417 (2002).
[Crossref] [PubMed]

Annu. Rev. Mater. Sci. (1)

J. A. Rogers, A. A. Maznev, M. J. Banet, and K. A. Nelson, “Optical generation and characterization of acoustic waves in thin films: fundamentals and applications,” Annu. Rev. Mater. Sci. 30(1), 117–157 (2000).
[Crossref]

Appl. Opt. (1)

Asian J. Androl. (1)

L. M. Liao and W. Schaefer, “Cross-sectional and longitudinal studies on interaction between bladder compliance and outflow obstruction in men with benign prostatic hyperplasia,” Asian J. Androl. 9(1), 51–56 (2007).
[Crossref] [PubMed]

Biomed. Opt. Express (1)

Br. J. Urol. (2)

S. E. Dahms, H. J. Piechota, R. Dahiya, T. F. Lue, and E. A. Tanagho, “Composition and biomechanical properties of the bladder acellular matrix graft: comparative analysis in rat, pig and human,” Br. J. Urol. 82(3), 411–419 (1998).
[Crossref] [PubMed]

N. N. Bhatia and A. Bergman, “Cystometry: unstable bladder and urinary tract infection,” Br. J. Urol. 58(2), 134–137 (1986).
[Crossref] [PubMed]

Breast Cancer Res. (1)

A. Evans, P. Whelehan, K. Thomson, D. McLean, K. Brauer, C. Purdie, L. Jordan, L. Baker, and A. Thompson, “Quantitative shear wave ultrasound elastography: initial experience in solid breast masses,” Breast Cancer Res. 12(6), R104 (2010).
[Crossref] [PubMed]

IEEE Trans. Med. Imaging (1)

H. Rivaz, E. M. Boctor, M. A. Choti, and G. D. Hager, “Real-time regularized ultrasound elastography,” IEEE Trans. Med. Imaging 30(4), 928–945 (2011).
[Crossref] [PubMed]

IEEE Trans. Ultrasonics, Ferroelectrics Frequency Control (1)

Y. Zhou, T. W. Murray, and S. Krishnaswamy, “Photo-acoustic imaging of surface acoustic wave slowness using multiplexed, two-wave mixing array interferometry,” IEEE Trans. Ultrasonics, Ferroelectrics Frequency Control 49(8), 1118–1123 (2002).
[Crossref]

Invest. Radiol. (1)

T. Elgeti, M. Beling, B. Hamm, J. Braun, and I. Sack, “Cardiac magnetic resonance elastography: toward the diagnosis of abnormal myocardial relaxation,” Invest. Radiol. 45(12), 782–787 (2010).
[Crossref] [PubMed]

J. Acoust. Soc. Am. (2)

D. H. Hurley and J. B. Spicer, “Line source representation for laser-generated ultrasound in an elastic transversely isotropic half-space,” J. Acoust. Soc. Am. 116(5), 2914–2922 (2004).
[Crossref]

F. F. Chai and T. T. Wu, “Determination of anisotropic elastic constants using laser-generated surface waves,” J. Acoust. Soc. Am. 95(6), 3232–3241 (1994).
[Crossref]

J. Appl. Phys. (2)

C. Glorieux, W. Gao, S. E. Kruger, K. Van de Rostyne, W. Lauriks, and J. Thoen, “Surface acoustic wave depth profiling of elastically inhomogeneous materials,” J. Appl. Phys. 88(7), 4394–4400 (2000).
[Crossref]

F. Reverdy and B. Audoin, “Ultrasonic measurement of elastic constant of anisotropic materials with laser source and laser receiver focused on the same interface,” J. Appl. Phys. 90(9), 4829–4835 (2001).
[Crossref]

J. Biomed. Opt. (3)

C. Li, G. Guan, S. Li, Z. Huang, and R. K. Wang, “Evaluating elastic properties of heterogeneous soft tissue by surface acoustic waves detected by phase-sensitive optical coherence tomography,” J. Biomed. Opt. 17(5), 057002 (2012).
[Crossref] [PubMed]

K. M. Kennedy, R. A. McLaughlin, B. F. Kennedy, A. Tien, B. Latham, C. M. Saunders, and D. D. Sampson, “Needle optical coherence elastography for the measurement of microscale mechanical contrast deep within human breast tissues,” J. Biomed. Opt. 18(12), 121510 (2013).
[Crossref] [PubMed]

G. Guan, C. Li, Y. Ling, Y. Yang, J. B. Vorstius, R. P. Keatch, R. K. Wang, and Z. H. Huang, “Quantitative evaluation of degenerated tendon model using combined optical coherence elastography and acoustic radiation force method,” J. Biomed. Opt. 18(11), 111417 (2013).
[Crossref] [PubMed]

J. Cardiovasc. Magn. Reson. (1)

T. Elgeti, M. Laule, N. Kaufels, J. Schnorr, B. Hamm, A. Samani, J. Braun, and I. Sack, “Cardiac MR elastography: comparison with left ventricular pressure measurement,” J. Cardiovasc. Magn. Reson. 11(1), 44 (2009).
[Crossref] [PubMed]

J. Clin. Endocrinol. Metab. (1)

T. Rago, F. Santini, M. Scutari, A. Pinchera, and P. Vitti, “Elastography: new developments in ultrasound for predicting malignancy in thyroid nodules,” J. Clin. Endocrinol. Metab. 92(8), 2917–2922 (2007).
[Crossref] [PubMed]

J. R. Soc. Interface (1)

C. Li, G. Guan, R. Reif, Z. Huang, and R. K. Wang, “Determining elastic properties of skin by measuring surface waves from an impulse mechanical stimulus using phase-sensitive optical coherence tomography,” J. R. Soc. Interface 9(70), 831–841 (2011).
[PubMed]

J. Urol. (3)

A. Elbadawi, S. V. Yalla, and N. M. Resnick, “Structural basis of geriatric voiding dysfunction. IV. Bladder outlet obstruction,” J. Urol. 150(5 Pt 2), 1681–1695 (1993).
[PubMed]

E. H. Landau, V. R. Jayanthi, B. M. Churchill, E. Shapiro, R. F. Gilmour, A. E. Khoury, E. J. Macarak, G. A. McLorie, R. E. Steckler, and B. A. Kogan, “Loss of elasticity in dysfunctional bladders: urodynamic and histochemical correlation,” J. Urol. 152(2 Pt 2), 702–705 (1994).
[PubMed]

K. M. Azadzoi, T. Tarcan, R. Kozlowski, R. J. Krane, and M. B. Siroky, “Overactivity and structural changes in the chronically ischemic bladder,” J. Urol. 162(5), 1768–1778 (1999).
[Crossref] [PubMed]

Med. Biol. (1)

H. Ying, L. Da, J. Luo, L. Li-Xia, X. Yu, X. Li-Mei, and R. Wei-Dong, “Quantitative assessment of bladder neck compliance by using transvaginal real-time elastography of women, Ultrasound,” Med. Biol. 39(10), 1727–1734 (2013).

Med. Phys. (1)

R. Cao, Z. Huang, T. Varghese, and G. Nabi, “Tissue mimicking materials for the detection of prostate cancer using shear wave elastography: A validation study,” Med. Phys. 40(2), 022903 (2013).
[Crossref] [PubMed]

Neurourol. Urodyn. (2)

T. Watanabe, S. Omata, J. Z. Lee, and C. E. Constantinou, “Comparative analysis of bladder wall compliance based on cystometry and biosensor measurements during the micturition cycle of the rat,” Neurourol. Urodyn. 16(6), 567–581 (1997).
[Crossref] [PubMed]

S. Madersbacher, A. Pycha, C. H. Klingler, C. Mian, B. Djavan, T. Stulnig, and M. Marberger, “Interrelationships of bladder compliance with age, detrusor instability, and obstruction in elderly men with lower urinary tract symptoms,” Neurourol. Urodyn. 18(1), 3–13 (1999).
[Crossref] [PubMed]

NMR Biomed. (1)

H. L. Cheng, Y. Loai, and W. A. Farhat, “Monitoring tissue development in acellular matrix-based regeneration for bladder tissue engineering: multiexponential diffusion and T2* for improved specificity,” NMR Biomed. 25(3), 418–426 (2012).
[Crossref] [PubMed]

Opt. Express (5)

Opt. Lett. (3)

Phys. Med. Biol. (2)

G. van Soest, F. Mastik, N. de Jong, and A. F. W. van der Steen, “Robust intravascular optical coherence elastography by line correlations,” Phys. Med. Biol. 52(9), 2445–2458 (2007).
[Crossref] [PubMed]

I. Z. Nenadic, B. Qiang, M. W. Urban, L. H. de Araujo Vasconcelo, A. Nabavizadeh, A. Alizad, J. F. Greenleaf, and M. Fatemi, “Ultrasound bladder vibrometry method for measuring viscoelasticity of the bladder wall,” Phys. Med. Biol. 58(8), 2675–2695 (2013).
[Crossref] [PubMed]

Phys. Rev. B Condens. Matter (1)

A. G. Every and W. Sachse, “Determination of the elastic constants of anisotropic solids from acoustic-wave group-velocity measurements,” Phys. Rev. B Condens. Matter 42(13), 8196–8205 (1990).
[Crossref] [PubMed]

Res. Nondestruct. Eval. (1)

S. Kenderian, B. B. Djordjevic, and R. E. Green., “Point and line source laser generation of ultrasound for inspection of internal and surface flaws in rail and structural materials,” Res. Nondestruct. Eval. 13(4), 189–200 (2001).
[Crossref]

Surf. Coat. Tech. (1)

D. Schneider and T. A. Schwarz, “Photoacoustic method for characterising thin films,” Surf. Coat. Tech. 91(1–2), 136–146 (1997).
[Crossref]

Thin Solid Films (1)

D. Schneider, B. Schultrich, H. J. Scheibe, H. Ziegele, and M. Griepentrog, “A laser-acoustic method for testing and classifying hard surface layers,” Thin Solid Films 332(1–2), 157–163 (1998).
[Crossref]

Tissue Eng. (1)

S. Korossis, F. Bolland, E. Ingham, J. Fisher, J. Kearney, and J. Southgate, “Review: tissue engineering of the urinary bladder: considering structure-function relationships and the role of mechanotransduction,” Tissue Eng. 12(4), 635–644 (2006).
[Crossref] [PubMed]

Ultrasonics (4)

P. A. Doyle and C. M. Scala, “Near-field ultrasonic Rayleigh waves from a laser line source,” Ultrasonics 34(1), 1–8 (1996).
[Crossref]

Q. J. Huang, Y. Cheng, X. J. Liu, X. D. Xu, and S. Y. Zhang, “Study of the elastic constants in a La0.6Sr0.4MnO3 film by means of laser-generated ultrasonic wave method,” Ultrasonics 44(Suppl 1), e1223–e1227 (2006).
[Crossref] [PubMed]

C. Li, S. Song, G. Guan, R. K. Wang, and Z. Huang, “Frequency dependence of laser ultrasonic SAW phase velocities measurements,” Ultrasonics 53(1), 191–195 (2013).
[Crossref] [PubMed]

T. T. Wu and F. J. Chai, “Propagation of surface waves in anisotropic solid: Theoretical calculation and experiment,” Ultrasonics 32(1), 21–29 (1994).
[Crossref]

Ultrasound Med. Biol. (2)

M. O. Culjat, D. Goldenberg, P. Tewari, and R. S. Singh, “A review of tissue substitutes for ultrasound imaging,” Ultrasound Med. Biol. 36(6), 861–873 (2010).
[Crossref] [PubMed]

A. P. Sarvazyan, O. V. Rudenko, S. D. Swanson, J. B. Fowlkes, and S. Y. Emelianov, “Shear wave elasticity imaging: A new ultrasonic technology of medical diagnostics,” Ultrasound Med. Biol. 24(9), 1419–1435 (1998).
[Crossref] [PubMed]

Urol. Clin. North Am. (1)

W. Schäfer, “Principles and clinical application of advanced urodynamic analysis of voiding function,” Urol. Clin. North Am. 17(3), 553–566 (1990).
[PubMed]

Urol. Int. (1)

R. van Mastrigt and D. J. Griffiths, “Contractility of the urinary bladder,” Urol. Int. 34(6), 410–420 (1979).
[Crossref] [PubMed]

Yonsei Med. J. (1)

J. W. Lee, E. I. S. Lorenzo, B. Ahn, C. K. Oh, H. J. Kim, W. K. Han, J. Kim, and K. H. Rha, “Palpation Device for the Identification of Kidney and Bladder Cancer: A Pilot Study,” Yonsei Med. J. 52(5), 768–772 (2011).
[Crossref] [PubMed]

Other (10)

N. T. Peter Wells and H. D. Liang, “Medical ultrasound: imaging of soft tissue strain and elasticity”, J. R. Soc. Interface rsif20110054; published ahead of print, 1742–5662 (2011).
[Crossref]

D. J. Griffiths, A Physical Approach to Flow Through the Urethra: Uniform Tubes, in Urodynamics, The Mechanics and Hydrodynamics of the Lower Urinary Tract, vol. 4, (Lenihan J. M. A., Bristol, Adam Hilger Ltd. 1980) Chap. 3, pp. 25–43.

D. J. Griffiths, The Course of Micturition, in Urodynamics, The Mechanics and Hydrodynamics of the Lower Urinary Tract, J. M. A. Lenihan, A. Hilger eds., vol. 4 (Lenihan J. M. A., Bristol, Adam Hilger Ltd. 1980) Chap. 11, pp. 124–32.

Y. C. Fung, Mechanical Properties of Living Tissues, 2nd ed. (Springer Media and Business media, New York 1992) p. 568.

N. A. Vorontsova, V. E. Gazhonova, S. O. Churkina, E. B. Savinova, I. A. Ponomorenko, and A. V. Zubarev, “Sonoelastography in Patients with Endometriosis of Different Location”, ECR, Vienna, Austria (2012).

C. S. Scruby and L. E. Drain, Laser Ultrasonics: Techniques and Applications, 1990.

P. Ridgway, R. Russo, E. Lafond, T. Jackson, and X. Zhang, “A Sensor for Laser Ultrasonic Measurement of Elastic Properties During Manufacture”, in Proceedings of 16th WCNDT 2004 - World Conference on NDT (2004).

H. S. Wang, S. Fleming, S. Law, and T. Huang, “Selection of Appropriate Laser Parameters for Launching Surface Acoustic Waves on Tooth Enamel for Non-Destructive Hardness Measurement”, in Proceedings of IEEE Australian Conference of Optical Fibre Technology/Australian Optical Society (ACOFT/AOS) (2006).

X. Zhang and J. F. Greenleaf, “Theoretical and experimental studies on group velocity for estimating the elasticity of arteries”, IEEE International Ultrasonics Symposium Proceedings, 2453–2455 (2009).
[Crossref]

About the bladder, http://www.cuh.org.uk/addenbrookes-hospital/services/bladder-cancer/about-bladder-cancer/about-bladder .

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1 (Left) an overview of porcine urinary bladder, (middle) a diagram of different layers of porcine urinary bladder wall and (right) histological photo of porcine uriniary bladder wall (the scale is 1 mm) [42].
Fig. 2
Fig. 2 Schematic display of system setup.
Fig. 3
Fig. 3 Typical laser-induced SAW recorded by PhS-OCT at the surface (a) via the serosal side of the bladder wall and (b) via the luminal side of the bladder wall. Each curve is shifted vertically by an equal distance to better illustrate the results captured at different positions. The horizontal dotted lines indicate the baseline. The bar indicates the estimated displacement of the surface wave. The similar dotted lines and bars also applies to Figs. 7 and 8.
Fig. 4
Fig. 4 Frequency spectrum of SAWs tested from inside and outside of bladder wall.
Fig. 5
Fig. 5 Typical phase velocity curves from inside (blue line) and outside of bladder wall (red bold line with marks).
Fig. 6
Fig. 6 Elastography from (a) inside and (b) outside of bladder from vibration OCE.
Fig. 7
Fig. 7 Typical laser-induced SAWs recorded by PhS-OCT at surface of bladder body with the contents controlled at (a) 0 ml, (b) 100 ml, and (c) 200 ml by loading.
Fig. 8
Fig. 8 Typical laser-induced SAWs recorded by PhS-OCT at serosal side of bladder neck with contents controlled at (a) 0 ml, (b) 100 ml, and (c) 200 ml by loading.
Fig. 9
Fig. 9 Estimated Young’s modulus under loading and unloading of bladder body (left) and bladder neck (right).

Tables (2)

Tables Icon

Table 1 Phase velocity (averaged), estimated Young's modulus, and estimated layer thickness of 10 locations on bladder wall.

Tables Icon

Table 2 SAW group velocities of ex vivo porcine urinary bladder during loading and unloading of water.

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

C R = 0.87+1.12v 1+v E 2ρ(1+v) ,
zλ= C R f .
Δz= Δϕλ 4πn ,
Y 12 (f)= Y 1 (f) Y 2 (f) ¯ = A 1 A 2 e i( φ 2 φ 1 ) ,
Δφ/2π=(x1x2)/λ.
C R (f)=(x1x2)2πf/Δφ.

Metrics