Abstract

Liquid perfluorocarbon (PFC) droplets incorporating optical absorbers can be vaporized through photothermal heating using a pulsed laser source. Here, we report on the effect of droplet core material on the optical fluence required to produce droplet vaporization. We fabricate gold nanoparticle templated microbubbles filled with various PFC gases (C3F8, C4F10, and C5F12) and apply pressure to condense them into droplets. The core material is found to have a strong effect on the threshold optical fluence, with lower boiling point droplets allowing for vaporization at lower laser fluence. The impact of droplet size on vaporization threshold is discussed, as well as a proposed mechanism for the relatively broad distribution of vaporization thresholds observed within a droplet population with the same core material. We propose that the control of optical vaporization threshold enabled by engineering the droplet core may find application in contrast enhanced photoacoustic imaging and therapy.

© 2014 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Photoacoustic and ultrasound imaging using dual contrast perfluorocarbon nanodroplets triggered by laser pulses at 1064 nm

Alexander S. Hannah, Donald VanderLaan, Yun-Sheng Chen, and Stanislav Y. Emelianov
Biomed. Opt. Express 5(9) 3042-3052 (2014)

Vaporization of perfluorocarbon droplets using optical irradiation

Eric Strohm, Min Rui, Ivan Gorelikov, Naomi Matsuura, and Michael Kolios
Biomed. Opt. Express 2(6) 1432-1442 (2011)

Gold nanoparticle targeted photoacoustic cavitation for potential deep tissue imaging and therapy

Hengyi Ju, Ronald A. Roy, and Todd W. Murray
Biomed. Opt. Express 4(1) 66-76 (2013)

References

  • View by:
  • |
  • |
  • |

  1. T. O. Matsunaga, P. S. Sheeran, S. Luois, J. E. Streeter, L. B. Mullin, B. Banerjee, and P. A. Dayton, “Phase-change nanoparticles using highly volatile perfluorocarbons: toward a platform for extravascular ultrasound imaging,” Theranostics 2(12), 1185–1198 (2012).
    [Crossref] [PubMed]
  2. N. Rapoport, “Phase-shift, stimuli-responsive perfluorocarbon nanodroplets for drug delivery to cancer,” Wiley Interdiscip Rev Nanomed Nanobiotechnol 4(5), 492–510 (2012).
    [Crossref] [PubMed]
  3. P. S. Sheeran and P. A. Dayton, “Improving the performance of phase-change perfluorocarbon droplets for medical ultrasonography: current progress, challenges, and prospects,” Scientifica (Cairo) 2014, 579684 (2014).
    [Crossref] [PubMed]
  4. O. D. Kripfgans, J. B. Fowlkes, D. L. Miller, O. P. Eldevik, and P. L. Carson, “Acoustic droplet vaporization for therapeutic and diagnostic applications,” Ultrasound Med. Biol. 26(7), 1177–1189 (2000).
    [Crossref] [PubMed]
  5. O. Shpak, M. Verweij, H. J. Vos, N. de Jong, D. Lohse, and M. Versluis, “Acoustic droplet vaporization is initiated by superharmonic focusing,” Proc. Natl. Acad. Sci. U.S.A. 111(5), 1697–1702 (2014).
    [Crossref] [PubMed]
  6. D. S. Li, O. D. Kripfgans, M. L. Fabiilli, J. Brian Fowlkes, and J. L. Bull, “Initial nucleation site formation due to acoustic droplet vaporization,” Appl. Phys. Lett. 104(6), 063703 (2014).
    [Crossref] [PubMed]
  7. A. Hannah, G. Luke, K. Wilson, K. Homan, and S. Emelianov, “Indocyanine green-loaded photoacoustic nanodroplets: dual contrast nanoconstructs for enhanced photoacoustic and ultrasound imaging,” ACS Nano 8(1), 250–259 (2014).
    [Crossref] [PubMed]
  8. A. S. Hannah, D. VanderLaan, Y.-S. Chen, and S. Y. Emelianov, “Photoacoustic and ultrasound imaging using dual contrast perfluorocarbon nanodroplets triggered by laser pulses at 1064 nm,” Biomed. Opt. Express 5(9), 3042–3052 (2014).
    [Crossref] [PubMed]
  9. K. Wilson, K. Homan, and S. Emelianov, “Biomedical photoacoustics beyond thermal expansion using triggered nanodroplet vaporization for contrast-enhanced imaging,” Nat. Commun. 3, 618 (2012).
    [Crossref] [PubMed]
  10. C. W. Wei, J. Xia, M. Lombardo, C. Perez, B. Arnal, K. Larson-Smith, I. Pelivanov, T. Matula, L. Pozzo, and M. O’Donnell, “Laser-induced cavitation in nanoemulsion with gold nanospheres for blood clot disruption: in vitro results,” Opt. Lett. 39(9), 2599–2602 (2014).
    [Crossref] [PubMed]
  11. C. W. Wei, M. Lombardo, K. Larson-Smith, I. Pelivanov, C. Perez, J. Xia, T. Matula, D. Pozzo, and M. O’Donnell, “Nonlinear contrast enhancement in photoacoustic molecular imaging with gold nanosphere encapsulated nanoemulsions,” Appl. Phys. Lett. 104(3), 033701 (2014).
    [Crossref] [PubMed]
  12. J. Jian, C. Liu, Y. Gong, L. Su, B. Zhang, Z. Wang, D. Wang, Y. Zhou, F. Xu, P. Li, Y. Zheng, L. Song, and X. Zhou, “India ink incorporated multifunctional phase-transition nanodroplets for photoacoustic/ultrasound dual-modality imaging and photoacoustic effect based tumor therapy,” Theranostics 4(10), 1026–1038 (2014).
    [Crossref] [PubMed]
  13. E. Strohm, M. Rui, I. Gorelikov, N. Matsuura, and M. Kolios, “Vaporization of perfluorocarbon droplets using optical irradiation,” Biomed. Opt. Express 2(6), 1432–1442 (2011).
    [Crossref] [PubMed]
  14. C. T. Avedisian, “The homogeneous nucleation limits of liquids,” J. Phys. Chem. Ref. Data 14(3), 695–729 (1985).
    [Crossref]
  15. J. E. Shepherd and B. Sturtevant, “Rapid evaporation at the superheat limit,” J. Fluid Mech. 121(-1), 379–402 (1982).
    [Crossref]
  16. H.-Y. Kwak and S. Lee, “Homogeneous bubble nucleation predicted by a molecular interaction model,” J. Heat Transfer 113(3), 714–721 (1991).
    [Crossref]
  17. T. J. Jarvis, M. D. Donohue, and J. L. Katz, “Bubble nucleation mechanisms of liquid droplets superheated in other liquids,” J. Colloid Interface Sci. 50(2), 359–368 (1975).
    [Crossref]
  18. J. G. Eberhart, W. Kremsner, and M. Blander, “Metastability limits of superheated liquids: Bubble nucleation temperatures of hydrocarbons and their mixtures,” J. Colloid Interface Sci. 50(2), 369–378 (1975).
    [Crossref]
  19. F. Caupin and E. Herbert, “Cavitation in water: a review,” C. R. Phys. 7(9-10), 1000–1017 (2006).
    [Crossref]
  20. P. S. Sheeran, V. P. Wong, S. Luois, R. J. McFarland, W. D. Ross, S. Feingold, T. O. Matsunaga, and P. A. Dayton, “Decafluorobutane as a Phase-Change Contrast Agent for Low-Energy Extravascular Ultrasonic Imaging,” Ultrasound Med. Biol. 37(9), 1518–1530 (2011).
    [Crossref] [PubMed]
  21. T. R. C. Thermodynamic Tables, Non-Hydrocarbons (College Station, Tex : Thermodynamics Research Center, 1985).
  22. J. D. Dove, T. W. Murray, and M. A. Borden, “Enhanced photoacoustic response with plasmonic nanoparticle-templated microbubbles,” Soft Matter 9(32), 7743–7750 (2013).
    [Crossref]
  23. P. A. Mountford, S. R. Sirsi, and M. A. Borden, “Condensation Phase Diagrams for Lipid-Coated Perfluorobutane Microbubbles,” Langmuir 30(21), 6209–6218 (2014).
    [Crossref] [PubMed]
  24. P. S. Sheeran, S. Luois, P. A. Dayton, and T. O. Matsunaga, “Formulation and acoustic studies of a new phase-shift agent for diagnostic and therapeutic ultrasound,” Langmuir 27(17), 10412–10420 (2011).
    [Crossref] [PubMed]
  25. M. F. L’Annunziata, Handbook of Radioactivity Analysis (Elsevier, 2012).
  26. J. J. Kwan and M. A. Borden, “Microbubble dissolution in a multigas environment,” Langmuir 26(9), 6542–6548 (2010).
    [Crossref] [PubMed]
  27. K. Sarkar, A. Katiyar, and P. Jain, “Growth and dissolution of an encapsulated contrast microbubble: Effects of encapsulation permeability,” Ultrasound Med. Biol. 35(8), 1385–1396 (2009).
    [Crossref] [PubMed]
  28. J. D. Dove, M. A. Borden, and T. W. Murray, “Optically induced resonance of nanoparticle-loaded microbubbles,” Opt. Lett. 39(13), 3732–3735 (2014).
    [Crossref] [PubMed]
  29. H. Goldenberg and C. J. Tranter, “Heat flow in an infinite medium heated by a sphere,” Br. J. Appl. Phys. 3(9), 296–298 (1952).
    [Crossref]
  30. P. G. de Gennes, “Conformations of polymers attached to an interface,” Macromolecules 13(5), 1069–1075 (1980).
    [Crossref]
  31. M. A. Borden, H. Zhang, R. J. Gillies, P. A. Dayton, and K. W. Ferrara, “A stimulus-responsive contrast agent for ultrasound molecular imaging,” Biomaterials 29(5), 597–606 (2008).
    [Crossref] [PubMed]
  32. B. Khlebtsov, V. Zharov, A. Melnikov, V. Tuchin, and N. Khlebtsov, “Optical amplification of photothermal therapy with gold nanoparticles and nanoclusters,” Nanotechnology 17(20), 5167–5179 (2006).
    [Crossref]
  33. A. O. Govorov, W. Zhang, T. Skeini, H. Richardson, J. Lee, and N. A. Kotov, “Gold nanoparticle ensembles as heaters and actuators: melting and collective plasmon resonances,” Nanoscale Res. Lett. 1(1), 84–90 (2006).
    [Crossref]
  34. S. Sirsi, J. Feshitan, J. Kwan, S. Homma, and M. Borden, “Effect of microbubble size on fundamental mode high frequency ultrasound imaging in mice,” Ultrasound Med. Biol. 36(6), 935–948 (2010).
    [Crossref] [PubMed]
  35. J. E. Streeter, R. Gessner, I. Miles, and P. A. Dayton, “Improving sensitivity in ultrasound molecular imaging by tailoring contrast agent size distribution: in vivo studies,” Mol. Imaging 9(2), 87–95 (2010).
    [PubMed]
  36. H. Ju, R. A. Roy, and T. W. Murray, “Gold nanoparticle targeted photoacoustic cavitation for potential deep tissue imaging and therapy,” Biomed. Opt. Express 4(1), 66–76 (2013).
    [Crossref] [PubMed]
  37. P. S. Sheeran, S. H. Luois, L. B. Mullin, T. O. Matsunaga, and P. A. Dayton, “Design of ultrasonically-activatable nanoparticles using low boiling point perfluorocarbons,” Biomaterials 33(11), 3262–3269 (2012).
    [Crossref] [PubMed]

2014 (10)

P. S. Sheeran and P. A. Dayton, “Improving the performance of phase-change perfluorocarbon droplets for medical ultrasonography: current progress, challenges, and prospects,” Scientifica (Cairo) 2014, 579684 (2014).
[Crossref] [PubMed]

O. Shpak, M. Verweij, H. J. Vos, N. de Jong, D. Lohse, and M. Versluis, “Acoustic droplet vaporization is initiated by superharmonic focusing,” Proc. Natl. Acad. Sci. U.S.A. 111(5), 1697–1702 (2014).
[Crossref] [PubMed]

D. S. Li, O. D. Kripfgans, M. L. Fabiilli, J. Brian Fowlkes, and J. L. Bull, “Initial nucleation site formation due to acoustic droplet vaporization,” Appl. Phys. Lett. 104(6), 063703 (2014).
[Crossref] [PubMed]

A. Hannah, G. Luke, K. Wilson, K. Homan, and S. Emelianov, “Indocyanine green-loaded photoacoustic nanodroplets: dual contrast nanoconstructs for enhanced photoacoustic and ultrasound imaging,” ACS Nano 8(1), 250–259 (2014).
[Crossref] [PubMed]

A. S. Hannah, D. VanderLaan, Y.-S. Chen, and S. Y. Emelianov, “Photoacoustic and ultrasound imaging using dual contrast perfluorocarbon nanodroplets triggered by laser pulses at 1064 nm,” Biomed. Opt. Express 5(9), 3042–3052 (2014).
[Crossref] [PubMed]

C. W. Wei, J. Xia, M. Lombardo, C. Perez, B. Arnal, K. Larson-Smith, I. Pelivanov, T. Matula, L. Pozzo, and M. O’Donnell, “Laser-induced cavitation in nanoemulsion with gold nanospheres for blood clot disruption: in vitro results,” Opt. Lett. 39(9), 2599–2602 (2014).
[Crossref] [PubMed]

C. W. Wei, M. Lombardo, K. Larson-Smith, I. Pelivanov, C. Perez, J. Xia, T. Matula, D. Pozzo, and M. O’Donnell, “Nonlinear contrast enhancement in photoacoustic molecular imaging with gold nanosphere encapsulated nanoemulsions,” Appl. Phys. Lett. 104(3), 033701 (2014).
[Crossref] [PubMed]

J. Jian, C. Liu, Y. Gong, L. Su, B. Zhang, Z. Wang, D. Wang, Y. Zhou, F. Xu, P. Li, Y. Zheng, L. Song, and X. Zhou, “India ink incorporated multifunctional phase-transition nanodroplets for photoacoustic/ultrasound dual-modality imaging and photoacoustic effect based tumor therapy,” Theranostics 4(10), 1026–1038 (2014).
[Crossref] [PubMed]

P. A. Mountford, S. R. Sirsi, and M. A. Borden, “Condensation Phase Diagrams for Lipid-Coated Perfluorobutane Microbubbles,” Langmuir 30(21), 6209–6218 (2014).
[Crossref] [PubMed]

J. D. Dove, M. A. Borden, and T. W. Murray, “Optically induced resonance of nanoparticle-loaded microbubbles,” Opt. Lett. 39(13), 3732–3735 (2014).
[Crossref] [PubMed]

2013 (2)

J. D. Dove, T. W. Murray, and M. A. Borden, “Enhanced photoacoustic response with plasmonic nanoparticle-templated microbubbles,” Soft Matter 9(32), 7743–7750 (2013).
[Crossref]

H. Ju, R. A. Roy, and T. W. Murray, “Gold nanoparticle targeted photoacoustic cavitation for potential deep tissue imaging and therapy,” Biomed. Opt. Express 4(1), 66–76 (2013).
[Crossref] [PubMed]

2012 (4)

P. S. Sheeran, S. H. Luois, L. B. Mullin, T. O. Matsunaga, and P. A. Dayton, “Design of ultrasonically-activatable nanoparticles using low boiling point perfluorocarbons,” Biomaterials 33(11), 3262–3269 (2012).
[Crossref] [PubMed]

K. Wilson, K. Homan, and S. Emelianov, “Biomedical photoacoustics beyond thermal expansion using triggered nanodroplet vaporization for contrast-enhanced imaging,” Nat. Commun. 3, 618 (2012).
[Crossref] [PubMed]

T. O. Matsunaga, P. S. Sheeran, S. Luois, J. E. Streeter, L. B. Mullin, B. Banerjee, and P. A. Dayton, “Phase-change nanoparticles using highly volatile perfluorocarbons: toward a platform for extravascular ultrasound imaging,” Theranostics 2(12), 1185–1198 (2012).
[Crossref] [PubMed]

N. Rapoport, “Phase-shift, stimuli-responsive perfluorocarbon nanodroplets for drug delivery to cancer,” Wiley Interdiscip Rev Nanomed Nanobiotechnol 4(5), 492–510 (2012).
[Crossref] [PubMed]

2011 (3)

E. Strohm, M. Rui, I. Gorelikov, N. Matsuura, and M. Kolios, “Vaporization of perfluorocarbon droplets using optical irradiation,” Biomed. Opt. Express 2(6), 1432–1442 (2011).
[Crossref] [PubMed]

P. S. Sheeran, V. P. Wong, S. Luois, R. J. McFarland, W. D. Ross, S. Feingold, T. O. Matsunaga, and P. A. Dayton, “Decafluorobutane as a Phase-Change Contrast Agent for Low-Energy Extravascular Ultrasonic Imaging,” Ultrasound Med. Biol. 37(9), 1518–1530 (2011).
[Crossref] [PubMed]

P. S. Sheeran, S. Luois, P. A. Dayton, and T. O. Matsunaga, “Formulation and acoustic studies of a new phase-shift agent for diagnostic and therapeutic ultrasound,” Langmuir 27(17), 10412–10420 (2011).
[Crossref] [PubMed]

2010 (3)

J. J. Kwan and M. A. Borden, “Microbubble dissolution in a multigas environment,” Langmuir 26(9), 6542–6548 (2010).
[Crossref] [PubMed]

S. Sirsi, J. Feshitan, J. Kwan, S. Homma, and M. Borden, “Effect of microbubble size on fundamental mode high frequency ultrasound imaging in mice,” Ultrasound Med. Biol. 36(6), 935–948 (2010).
[Crossref] [PubMed]

J. E. Streeter, R. Gessner, I. Miles, and P. A. Dayton, “Improving sensitivity in ultrasound molecular imaging by tailoring contrast agent size distribution: in vivo studies,” Mol. Imaging 9(2), 87–95 (2010).
[PubMed]

2009 (1)

K. Sarkar, A. Katiyar, and P. Jain, “Growth and dissolution of an encapsulated contrast microbubble: Effects of encapsulation permeability,” Ultrasound Med. Biol. 35(8), 1385–1396 (2009).
[Crossref] [PubMed]

2008 (1)

M. A. Borden, H. Zhang, R. J. Gillies, P. A. Dayton, and K. W. Ferrara, “A stimulus-responsive contrast agent for ultrasound molecular imaging,” Biomaterials 29(5), 597–606 (2008).
[Crossref] [PubMed]

2006 (3)

B. Khlebtsov, V. Zharov, A. Melnikov, V. Tuchin, and N. Khlebtsov, “Optical amplification of photothermal therapy with gold nanoparticles and nanoclusters,” Nanotechnology 17(20), 5167–5179 (2006).
[Crossref]

A. O. Govorov, W. Zhang, T. Skeini, H. Richardson, J. Lee, and N. A. Kotov, “Gold nanoparticle ensembles as heaters and actuators: melting and collective plasmon resonances,” Nanoscale Res. Lett. 1(1), 84–90 (2006).
[Crossref]

F. Caupin and E. Herbert, “Cavitation in water: a review,” C. R. Phys. 7(9-10), 1000–1017 (2006).
[Crossref]

2000 (1)

O. D. Kripfgans, J. B. Fowlkes, D. L. Miller, O. P. Eldevik, and P. L. Carson, “Acoustic droplet vaporization for therapeutic and diagnostic applications,” Ultrasound Med. Biol. 26(7), 1177–1189 (2000).
[Crossref] [PubMed]

1991 (1)

H.-Y. Kwak and S. Lee, “Homogeneous bubble nucleation predicted by a molecular interaction model,” J. Heat Transfer 113(3), 714–721 (1991).
[Crossref]

1985 (1)

C. T. Avedisian, “The homogeneous nucleation limits of liquids,” J. Phys. Chem. Ref. Data 14(3), 695–729 (1985).
[Crossref]

1982 (1)

J. E. Shepherd and B. Sturtevant, “Rapid evaporation at the superheat limit,” J. Fluid Mech. 121(-1), 379–402 (1982).
[Crossref]

1980 (1)

P. G. de Gennes, “Conformations of polymers attached to an interface,” Macromolecules 13(5), 1069–1075 (1980).
[Crossref]

1975 (2)

T. J. Jarvis, M. D. Donohue, and J. L. Katz, “Bubble nucleation mechanisms of liquid droplets superheated in other liquids,” J. Colloid Interface Sci. 50(2), 359–368 (1975).
[Crossref]

J. G. Eberhart, W. Kremsner, and M. Blander, “Metastability limits of superheated liquids: Bubble nucleation temperatures of hydrocarbons and their mixtures,” J. Colloid Interface Sci. 50(2), 369–378 (1975).
[Crossref]

1952 (1)

H. Goldenberg and C. J. Tranter, “Heat flow in an infinite medium heated by a sphere,” Br. J. Appl. Phys. 3(9), 296–298 (1952).
[Crossref]

Arnal, B.

Avedisian, C. T.

C. T. Avedisian, “The homogeneous nucleation limits of liquids,” J. Phys. Chem. Ref. Data 14(3), 695–729 (1985).
[Crossref]

Banerjee, B.

T. O. Matsunaga, P. S. Sheeran, S. Luois, J. E. Streeter, L. B. Mullin, B. Banerjee, and P. A. Dayton, “Phase-change nanoparticles using highly volatile perfluorocarbons: toward a platform for extravascular ultrasound imaging,” Theranostics 2(12), 1185–1198 (2012).
[Crossref] [PubMed]

Blander, M.

J. G. Eberhart, W. Kremsner, and M. Blander, “Metastability limits of superheated liquids: Bubble nucleation temperatures of hydrocarbons and their mixtures,” J. Colloid Interface Sci. 50(2), 369–378 (1975).
[Crossref]

Borden, M.

S. Sirsi, J. Feshitan, J. Kwan, S. Homma, and M. Borden, “Effect of microbubble size on fundamental mode high frequency ultrasound imaging in mice,” Ultrasound Med. Biol. 36(6), 935–948 (2010).
[Crossref] [PubMed]

Borden, M. A.

J. D. Dove, M. A. Borden, and T. W. Murray, “Optically induced resonance of nanoparticle-loaded microbubbles,” Opt. Lett. 39(13), 3732–3735 (2014).
[Crossref] [PubMed]

P. A. Mountford, S. R. Sirsi, and M. A. Borden, “Condensation Phase Diagrams for Lipid-Coated Perfluorobutane Microbubbles,” Langmuir 30(21), 6209–6218 (2014).
[Crossref] [PubMed]

J. D. Dove, T. W. Murray, and M. A. Borden, “Enhanced photoacoustic response with plasmonic nanoparticle-templated microbubbles,” Soft Matter 9(32), 7743–7750 (2013).
[Crossref]

J. J. Kwan and M. A. Borden, “Microbubble dissolution in a multigas environment,” Langmuir 26(9), 6542–6548 (2010).
[Crossref] [PubMed]

M. A. Borden, H. Zhang, R. J. Gillies, P. A. Dayton, and K. W. Ferrara, “A stimulus-responsive contrast agent for ultrasound molecular imaging,” Biomaterials 29(5), 597–606 (2008).
[Crossref] [PubMed]

Brian Fowlkes, J.

D. S. Li, O. D. Kripfgans, M. L. Fabiilli, J. Brian Fowlkes, and J. L. Bull, “Initial nucleation site formation due to acoustic droplet vaporization,” Appl. Phys. Lett. 104(6), 063703 (2014).
[Crossref] [PubMed]

Bull, J. L.

D. S. Li, O. D. Kripfgans, M. L. Fabiilli, J. Brian Fowlkes, and J. L. Bull, “Initial nucleation site formation due to acoustic droplet vaporization,” Appl. Phys. Lett. 104(6), 063703 (2014).
[Crossref] [PubMed]

Carson, P. L.

O. D. Kripfgans, J. B. Fowlkes, D. L. Miller, O. P. Eldevik, and P. L. Carson, “Acoustic droplet vaporization for therapeutic and diagnostic applications,” Ultrasound Med. Biol. 26(7), 1177–1189 (2000).
[Crossref] [PubMed]

Caupin, F.

F. Caupin and E. Herbert, “Cavitation in water: a review,” C. R. Phys. 7(9-10), 1000–1017 (2006).
[Crossref]

Chen, Y.-S.

Dayton, P. A.

P. S. Sheeran and P. A. Dayton, “Improving the performance of phase-change perfluorocarbon droplets for medical ultrasonography: current progress, challenges, and prospects,” Scientifica (Cairo) 2014, 579684 (2014).
[Crossref] [PubMed]

T. O. Matsunaga, P. S. Sheeran, S. Luois, J. E. Streeter, L. B. Mullin, B. Banerjee, and P. A. Dayton, “Phase-change nanoparticles using highly volatile perfluorocarbons: toward a platform for extravascular ultrasound imaging,” Theranostics 2(12), 1185–1198 (2012).
[Crossref] [PubMed]

P. S. Sheeran, S. H. Luois, L. B. Mullin, T. O. Matsunaga, and P. A. Dayton, “Design of ultrasonically-activatable nanoparticles using low boiling point perfluorocarbons,” Biomaterials 33(11), 3262–3269 (2012).
[Crossref] [PubMed]

P. S. Sheeran, S. Luois, P. A. Dayton, and T. O. Matsunaga, “Formulation and acoustic studies of a new phase-shift agent for diagnostic and therapeutic ultrasound,” Langmuir 27(17), 10412–10420 (2011).
[Crossref] [PubMed]

P. S. Sheeran, V. P. Wong, S. Luois, R. J. McFarland, W. D. Ross, S. Feingold, T. O. Matsunaga, and P. A. Dayton, “Decafluorobutane as a Phase-Change Contrast Agent for Low-Energy Extravascular Ultrasonic Imaging,” Ultrasound Med. Biol. 37(9), 1518–1530 (2011).
[Crossref] [PubMed]

J. E. Streeter, R. Gessner, I. Miles, and P. A. Dayton, “Improving sensitivity in ultrasound molecular imaging by tailoring contrast agent size distribution: in vivo studies,” Mol. Imaging 9(2), 87–95 (2010).
[PubMed]

M. A. Borden, H. Zhang, R. J. Gillies, P. A. Dayton, and K. W. Ferrara, “A stimulus-responsive contrast agent for ultrasound molecular imaging,” Biomaterials 29(5), 597–606 (2008).
[Crossref] [PubMed]

de Gennes, P. G.

P. G. de Gennes, “Conformations of polymers attached to an interface,” Macromolecules 13(5), 1069–1075 (1980).
[Crossref]

de Jong, N.

O. Shpak, M. Verweij, H. J. Vos, N. de Jong, D. Lohse, and M. Versluis, “Acoustic droplet vaporization is initiated by superharmonic focusing,” Proc. Natl. Acad. Sci. U.S.A. 111(5), 1697–1702 (2014).
[Crossref] [PubMed]

Donohue, M. D.

T. J. Jarvis, M. D. Donohue, and J. L. Katz, “Bubble nucleation mechanisms of liquid droplets superheated in other liquids,” J. Colloid Interface Sci. 50(2), 359–368 (1975).
[Crossref]

Dove, J. D.

J. D. Dove, M. A. Borden, and T. W. Murray, “Optically induced resonance of nanoparticle-loaded microbubbles,” Opt. Lett. 39(13), 3732–3735 (2014).
[Crossref] [PubMed]

J. D. Dove, T. W. Murray, and M. A. Borden, “Enhanced photoacoustic response with plasmonic nanoparticle-templated microbubbles,” Soft Matter 9(32), 7743–7750 (2013).
[Crossref]

Eberhart, J. G.

J. G. Eberhart, W. Kremsner, and M. Blander, “Metastability limits of superheated liquids: Bubble nucleation temperatures of hydrocarbons and their mixtures,” J. Colloid Interface Sci. 50(2), 369–378 (1975).
[Crossref]

Eldevik, O. P.

O. D. Kripfgans, J. B. Fowlkes, D. L. Miller, O. P. Eldevik, and P. L. Carson, “Acoustic droplet vaporization for therapeutic and diagnostic applications,” Ultrasound Med. Biol. 26(7), 1177–1189 (2000).
[Crossref] [PubMed]

Emelianov, S.

A. Hannah, G. Luke, K. Wilson, K. Homan, and S. Emelianov, “Indocyanine green-loaded photoacoustic nanodroplets: dual contrast nanoconstructs for enhanced photoacoustic and ultrasound imaging,” ACS Nano 8(1), 250–259 (2014).
[Crossref] [PubMed]

K. Wilson, K. Homan, and S. Emelianov, “Biomedical photoacoustics beyond thermal expansion using triggered nanodroplet vaporization for contrast-enhanced imaging,” Nat. Commun. 3, 618 (2012).
[Crossref] [PubMed]

Emelianov, S. Y.

Fabiilli, M. L.

D. S. Li, O. D. Kripfgans, M. L. Fabiilli, J. Brian Fowlkes, and J. L. Bull, “Initial nucleation site formation due to acoustic droplet vaporization,” Appl. Phys. Lett. 104(6), 063703 (2014).
[Crossref] [PubMed]

Feingold, S.

P. S. Sheeran, V. P. Wong, S. Luois, R. J. McFarland, W. D. Ross, S. Feingold, T. O. Matsunaga, and P. A. Dayton, “Decafluorobutane as a Phase-Change Contrast Agent for Low-Energy Extravascular Ultrasonic Imaging,” Ultrasound Med. Biol. 37(9), 1518–1530 (2011).
[Crossref] [PubMed]

Ferrara, K. W.

M. A. Borden, H. Zhang, R. J. Gillies, P. A. Dayton, and K. W. Ferrara, “A stimulus-responsive contrast agent for ultrasound molecular imaging,” Biomaterials 29(5), 597–606 (2008).
[Crossref] [PubMed]

Feshitan, J.

S. Sirsi, J. Feshitan, J. Kwan, S. Homma, and M. Borden, “Effect of microbubble size on fundamental mode high frequency ultrasound imaging in mice,” Ultrasound Med. Biol. 36(6), 935–948 (2010).
[Crossref] [PubMed]

Fowlkes, J. B.

O. D. Kripfgans, J. B. Fowlkes, D. L. Miller, O. P. Eldevik, and P. L. Carson, “Acoustic droplet vaporization for therapeutic and diagnostic applications,” Ultrasound Med. Biol. 26(7), 1177–1189 (2000).
[Crossref] [PubMed]

Gessner, R.

J. E. Streeter, R. Gessner, I. Miles, and P. A. Dayton, “Improving sensitivity in ultrasound molecular imaging by tailoring contrast agent size distribution: in vivo studies,” Mol. Imaging 9(2), 87–95 (2010).
[PubMed]

Gillies, R. J.

M. A. Borden, H. Zhang, R. J. Gillies, P. A. Dayton, and K. W. Ferrara, “A stimulus-responsive contrast agent for ultrasound molecular imaging,” Biomaterials 29(5), 597–606 (2008).
[Crossref] [PubMed]

Goldenberg, H.

H. Goldenberg and C. J. Tranter, “Heat flow in an infinite medium heated by a sphere,” Br. J. Appl. Phys. 3(9), 296–298 (1952).
[Crossref]

Gong, Y.

J. Jian, C. Liu, Y. Gong, L. Su, B. Zhang, Z. Wang, D. Wang, Y. Zhou, F. Xu, P. Li, Y. Zheng, L. Song, and X. Zhou, “India ink incorporated multifunctional phase-transition nanodroplets for photoacoustic/ultrasound dual-modality imaging and photoacoustic effect based tumor therapy,” Theranostics 4(10), 1026–1038 (2014).
[Crossref] [PubMed]

Gorelikov, I.

Govorov, A. O.

A. O. Govorov, W. Zhang, T. Skeini, H. Richardson, J. Lee, and N. A. Kotov, “Gold nanoparticle ensembles as heaters and actuators: melting and collective plasmon resonances,” Nanoscale Res. Lett. 1(1), 84–90 (2006).
[Crossref]

Hannah, A.

A. Hannah, G. Luke, K. Wilson, K. Homan, and S. Emelianov, “Indocyanine green-loaded photoacoustic nanodroplets: dual contrast nanoconstructs for enhanced photoacoustic and ultrasound imaging,” ACS Nano 8(1), 250–259 (2014).
[Crossref] [PubMed]

Hannah, A. S.

Herbert, E.

F. Caupin and E. Herbert, “Cavitation in water: a review,” C. R. Phys. 7(9-10), 1000–1017 (2006).
[Crossref]

Homan, K.

A. Hannah, G. Luke, K. Wilson, K. Homan, and S. Emelianov, “Indocyanine green-loaded photoacoustic nanodroplets: dual contrast nanoconstructs for enhanced photoacoustic and ultrasound imaging,” ACS Nano 8(1), 250–259 (2014).
[Crossref] [PubMed]

K. Wilson, K. Homan, and S. Emelianov, “Biomedical photoacoustics beyond thermal expansion using triggered nanodroplet vaporization for contrast-enhanced imaging,” Nat. Commun. 3, 618 (2012).
[Crossref] [PubMed]

Homma, S.

S. Sirsi, J. Feshitan, J. Kwan, S. Homma, and M. Borden, “Effect of microbubble size on fundamental mode high frequency ultrasound imaging in mice,” Ultrasound Med. Biol. 36(6), 935–948 (2010).
[Crossref] [PubMed]

Jain, P.

K. Sarkar, A. Katiyar, and P. Jain, “Growth and dissolution of an encapsulated contrast microbubble: Effects of encapsulation permeability,” Ultrasound Med. Biol. 35(8), 1385–1396 (2009).
[Crossref] [PubMed]

Jarvis, T. J.

T. J. Jarvis, M. D. Donohue, and J. L. Katz, “Bubble nucleation mechanisms of liquid droplets superheated in other liquids,” J. Colloid Interface Sci. 50(2), 359–368 (1975).
[Crossref]

Jian, J.

J. Jian, C. Liu, Y. Gong, L. Su, B. Zhang, Z. Wang, D. Wang, Y. Zhou, F. Xu, P. Li, Y. Zheng, L. Song, and X. Zhou, “India ink incorporated multifunctional phase-transition nanodroplets for photoacoustic/ultrasound dual-modality imaging and photoacoustic effect based tumor therapy,” Theranostics 4(10), 1026–1038 (2014).
[Crossref] [PubMed]

Ju, H.

Katiyar, A.

K. Sarkar, A. Katiyar, and P. Jain, “Growth and dissolution of an encapsulated contrast microbubble: Effects of encapsulation permeability,” Ultrasound Med. Biol. 35(8), 1385–1396 (2009).
[Crossref] [PubMed]

Katz, J. L.

T. J. Jarvis, M. D. Donohue, and J. L. Katz, “Bubble nucleation mechanisms of liquid droplets superheated in other liquids,” J. Colloid Interface Sci. 50(2), 359–368 (1975).
[Crossref]

Khlebtsov, B.

B. Khlebtsov, V. Zharov, A. Melnikov, V. Tuchin, and N. Khlebtsov, “Optical amplification of photothermal therapy with gold nanoparticles and nanoclusters,” Nanotechnology 17(20), 5167–5179 (2006).
[Crossref]

Khlebtsov, N.

B. Khlebtsov, V. Zharov, A. Melnikov, V. Tuchin, and N. Khlebtsov, “Optical amplification of photothermal therapy with gold nanoparticles and nanoclusters,” Nanotechnology 17(20), 5167–5179 (2006).
[Crossref]

Kolios, M.

Kotov, N. A.

A. O. Govorov, W. Zhang, T. Skeini, H. Richardson, J. Lee, and N. A. Kotov, “Gold nanoparticle ensembles as heaters and actuators: melting and collective plasmon resonances,” Nanoscale Res. Lett. 1(1), 84–90 (2006).
[Crossref]

Kremsner, W.

J. G. Eberhart, W. Kremsner, and M. Blander, “Metastability limits of superheated liquids: Bubble nucleation temperatures of hydrocarbons and their mixtures,” J. Colloid Interface Sci. 50(2), 369–378 (1975).
[Crossref]

Kripfgans, O. D.

D. S. Li, O. D. Kripfgans, M. L. Fabiilli, J. Brian Fowlkes, and J. L. Bull, “Initial nucleation site formation due to acoustic droplet vaporization,” Appl. Phys. Lett. 104(6), 063703 (2014).
[Crossref] [PubMed]

O. D. Kripfgans, J. B. Fowlkes, D. L. Miller, O. P. Eldevik, and P. L. Carson, “Acoustic droplet vaporization for therapeutic and diagnostic applications,” Ultrasound Med. Biol. 26(7), 1177–1189 (2000).
[Crossref] [PubMed]

Kwak, H.-Y.

H.-Y. Kwak and S. Lee, “Homogeneous bubble nucleation predicted by a molecular interaction model,” J. Heat Transfer 113(3), 714–721 (1991).
[Crossref]

Kwan, J.

S. Sirsi, J. Feshitan, J. Kwan, S. Homma, and M. Borden, “Effect of microbubble size on fundamental mode high frequency ultrasound imaging in mice,” Ultrasound Med. Biol. 36(6), 935–948 (2010).
[Crossref] [PubMed]

Kwan, J. J.

J. J. Kwan and M. A. Borden, “Microbubble dissolution in a multigas environment,” Langmuir 26(9), 6542–6548 (2010).
[Crossref] [PubMed]

Larson-Smith, K.

C. W. Wei, M. Lombardo, K. Larson-Smith, I. Pelivanov, C. Perez, J. Xia, T. Matula, D. Pozzo, and M. O’Donnell, “Nonlinear contrast enhancement in photoacoustic molecular imaging with gold nanosphere encapsulated nanoemulsions,” Appl. Phys. Lett. 104(3), 033701 (2014).
[Crossref] [PubMed]

C. W. Wei, J. Xia, M. Lombardo, C. Perez, B. Arnal, K. Larson-Smith, I. Pelivanov, T. Matula, L. Pozzo, and M. O’Donnell, “Laser-induced cavitation in nanoemulsion with gold nanospheres for blood clot disruption: in vitro results,” Opt. Lett. 39(9), 2599–2602 (2014).
[Crossref] [PubMed]

Lee, J.

A. O. Govorov, W. Zhang, T. Skeini, H. Richardson, J. Lee, and N. A. Kotov, “Gold nanoparticle ensembles as heaters and actuators: melting and collective plasmon resonances,” Nanoscale Res. Lett. 1(1), 84–90 (2006).
[Crossref]

Lee, S.

H.-Y. Kwak and S. Lee, “Homogeneous bubble nucleation predicted by a molecular interaction model,” J. Heat Transfer 113(3), 714–721 (1991).
[Crossref]

Li, D. S.

D. S. Li, O. D. Kripfgans, M. L. Fabiilli, J. Brian Fowlkes, and J. L. Bull, “Initial nucleation site formation due to acoustic droplet vaporization,” Appl. Phys. Lett. 104(6), 063703 (2014).
[Crossref] [PubMed]

Li, P.

J. Jian, C. Liu, Y. Gong, L. Su, B. Zhang, Z. Wang, D. Wang, Y. Zhou, F. Xu, P. Li, Y. Zheng, L. Song, and X. Zhou, “India ink incorporated multifunctional phase-transition nanodroplets for photoacoustic/ultrasound dual-modality imaging and photoacoustic effect based tumor therapy,” Theranostics 4(10), 1026–1038 (2014).
[Crossref] [PubMed]

Liu, C.

J. Jian, C. Liu, Y. Gong, L. Su, B. Zhang, Z. Wang, D. Wang, Y. Zhou, F. Xu, P. Li, Y. Zheng, L. Song, and X. Zhou, “India ink incorporated multifunctional phase-transition nanodroplets for photoacoustic/ultrasound dual-modality imaging and photoacoustic effect based tumor therapy,” Theranostics 4(10), 1026–1038 (2014).
[Crossref] [PubMed]

Lohse, D.

O. Shpak, M. Verweij, H. J. Vos, N. de Jong, D. Lohse, and M. Versluis, “Acoustic droplet vaporization is initiated by superharmonic focusing,” Proc. Natl. Acad. Sci. U.S.A. 111(5), 1697–1702 (2014).
[Crossref] [PubMed]

Lombardo, M.

C. W. Wei, J. Xia, M. Lombardo, C. Perez, B. Arnal, K. Larson-Smith, I. Pelivanov, T. Matula, L. Pozzo, and M. O’Donnell, “Laser-induced cavitation in nanoemulsion with gold nanospheres for blood clot disruption: in vitro results,” Opt. Lett. 39(9), 2599–2602 (2014).
[Crossref] [PubMed]

C. W. Wei, M. Lombardo, K. Larson-Smith, I. Pelivanov, C. Perez, J. Xia, T. Matula, D. Pozzo, and M. O’Donnell, “Nonlinear contrast enhancement in photoacoustic molecular imaging with gold nanosphere encapsulated nanoemulsions,” Appl. Phys. Lett. 104(3), 033701 (2014).
[Crossref] [PubMed]

Luke, G.

A. Hannah, G. Luke, K. Wilson, K. Homan, and S. Emelianov, “Indocyanine green-loaded photoacoustic nanodroplets: dual contrast nanoconstructs for enhanced photoacoustic and ultrasound imaging,” ACS Nano 8(1), 250–259 (2014).
[Crossref] [PubMed]

Luois, S.

T. O. Matsunaga, P. S. Sheeran, S. Luois, J. E. Streeter, L. B. Mullin, B. Banerjee, and P. A. Dayton, “Phase-change nanoparticles using highly volatile perfluorocarbons: toward a platform for extravascular ultrasound imaging,” Theranostics 2(12), 1185–1198 (2012).
[Crossref] [PubMed]

P. S. Sheeran, S. Luois, P. A. Dayton, and T. O. Matsunaga, “Formulation and acoustic studies of a new phase-shift agent for diagnostic and therapeutic ultrasound,” Langmuir 27(17), 10412–10420 (2011).
[Crossref] [PubMed]

P. S. Sheeran, V. P. Wong, S. Luois, R. J. McFarland, W. D. Ross, S. Feingold, T. O. Matsunaga, and P. A. Dayton, “Decafluorobutane as a Phase-Change Contrast Agent for Low-Energy Extravascular Ultrasonic Imaging,” Ultrasound Med. Biol. 37(9), 1518–1530 (2011).
[Crossref] [PubMed]

Luois, S. H.

P. S. Sheeran, S. H. Luois, L. B. Mullin, T. O. Matsunaga, and P. A. Dayton, “Design of ultrasonically-activatable nanoparticles using low boiling point perfluorocarbons,” Biomaterials 33(11), 3262–3269 (2012).
[Crossref] [PubMed]

Matsunaga, T. O.

P. S. Sheeran, S. H. Luois, L. B. Mullin, T. O. Matsunaga, and P. A. Dayton, “Design of ultrasonically-activatable nanoparticles using low boiling point perfluorocarbons,” Biomaterials 33(11), 3262–3269 (2012).
[Crossref] [PubMed]

T. O. Matsunaga, P. S. Sheeran, S. Luois, J. E. Streeter, L. B. Mullin, B. Banerjee, and P. A. Dayton, “Phase-change nanoparticles using highly volatile perfluorocarbons: toward a platform for extravascular ultrasound imaging,” Theranostics 2(12), 1185–1198 (2012).
[Crossref] [PubMed]

P. S. Sheeran, V. P. Wong, S. Luois, R. J. McFarland, W. D. Ross, S. Feingold, T. O. Matsunaga, and P. A. Dayton, “Decafluorobutane as a Phase-Change Contrast Agent for Low-Energy Extravascular Ultrasonic Imaging,” Ultrasound Med. Biol. 37(9), 1518–1530 (2011).
[Crossref] [PubMed]

P. S. Sheeran, S. Luois, P. A. Dayton, and T. O. Matsunaga, “Formulation and acoustic studies of a new phase-shift agent for diagnostic and therapeutic ultrasound,” Langmuir 27(17), 10412–10420 (2011).
[Crossref] [PubMed]

Matsuura, N.

Matula, T.

C. W. Wei, J. Xia, M. Lombardo, C. Perez, B. Arnal, K. Larson-Smith, I. Pelivanov, T. Matula, L. Pozzo, and M. O’Donnell, “Laser-induced cavitation in nanoemulsion with gold nanospheres for blood clot disruption: in vitro results,” Opt. Lett. 39(9), 2599–2602 (2014).
[Crossref] [PubMed]

C. W. Wei, M. Lombardo, K. Larson-Smith, I. Pelivanov, C. Perez, J. Xia, T. Matula, D. Pozzo, and M. O’Donnell, “Nonlinear contrast enhancement in photoacoustic molecular imaging with gold nanosphere encapsulated nanoemulsions,” Appl. Phys. Lett. 104(3), 033701 (2014).
[Crossref] [PubMed]

McFarland, R. J.

P. S. Sheeran, V. P. Wong, S. Luois, R. J. McFarland, W. D. Ross, S. Feingold, T. O. Matsunaga, and P. A. Dayton, “Decafluorobutane as a Phase-Change Contrast Agent for Low-Energy Extravascular Ultrasonic Imaging,” Ultrasound Med. Biol. 37(9), 1518–1530 (2011).
[Crossref] [PubMed]

Melnikov, A.

B. Khlebtsov, V. Zharov, A. Melnikov, V. Tuchin, and N. Khlebtsov, “Optical amplification of photothermal therapy with gold nanoparticles and nanoclusters,” Nanotechnology 17(20), 5167–5179 (2006).
[Crossref]

Miles, I.

J. E. Streeter, R. Gessner, I. Miles, and P. A. Dayton, “Improving sensitivity in ultrasound molecular imaging by tailoring contrast agent size distribution: in vivo studies,” Mol. Imaging 9(2), 87–95 (2010).
[PubMed]

Miller, D. L.

O. D. Kripfgans, J. B. Fowlkes, D. L. Miller, O. P. Eldevik, and P. L. Carson, “Acoustic droplet vaporization for therapeutic and diagnostic applications,” Ultrasound Med. Biol. 26(7), 1177–1189 (2000).
[Crossref] [PubMed]

Mountford, P. A.

P. A. Mountford, S. R. Sirsi, and M. A. Borden, “Condensation Phase Diagrams for Lipid-Coated Perfluorobutane Microbubbles,” Langmuir 30(21), 6209–6218 (2014).
[Crossref] [PubMed]

Mullin, L. B.

T. O. Matsunaga, P. S. Sheeran, S. Luois, J. E. Streeter, L. B. Mullin, B. Banerjee, and P. A. Dayton, “Phase-change nanoparticles using highly volatile perfluorocarbons: toward a platform for extravascular ultrasound imaging,” Theranostics 2(12), 1185–1198 (2012).
[Crossref] [PubMed]

P. S. Sheeran, S. H. Luois, L. B. Mullin, T. O. Matsunaga, and P. A. Dayton, “Design of ultrasonically-activatable nanoparticles using low boiling point perfluorocarbons,” Biomaterials 33(11), 3262–3269 (2012).
[Crossref] [PubMed]

Murray, T. W.

O’Donnell, M.

C. W. Wei, M. Lombardo, K. Larson-Smith, I. Pelivanov, C. Perez, J. Xia, T. Matula, D. Pozzo, and M. O’Donnell, “Nonlinear contrast enhancement in photoacoustic molecular imaging with gold nanosphere encapsulated nanoemulsions,” Appl. Phys. Lett. 104(3), 033701 (2014).
[Crossref] [PubMed]

C. W. Wei, J. Xia, M. Lombardo, C. Perez, B. Arnal, K. Larson-Smith, I. Pelivanov, T. Matula, L. Pozzo, and M. O’Donnell, “Laser-induced cavitation in nanoemulsion with gold nanospheres for blood clot disruption: in vitro results,” Opt. Lett. 39(9), 2599–2602 (2014).
[Crossref] [PubMed]

Pelivanov, I.

C. W. Wei, M. Lombardo, K. Larson-Smith, I. Pelivanov, C. Perez, J. Xia, T. Matula, D. Pozzo, and M. O’Donnell, “Nonlinear contrast enhancement in photoacoustic molecular imaging with gold nanosphere encapsulated nanoemulsions,” Appl. Phys. Lett. 104(3), 033701 (2014).
[Crossref] [PubMed]

C. W. Wei, J. Xia, M. Lombardo, C. Perez, B. Arnal, K. Larson-Smith, I. Pelivanov, T. Matula, L. Pozzo, and M. O’Donnell, “Laser-induced cavitation in nanoemulsion with gold nanospheres for blood clot disruption: in vitro results,” Opt. Lett. 39(9), 2599–2602 (2014).
[Crossref] [PubMed]

Perez, C.

C. W. Wei, J. Xia, M. Lombardo, C. Perez, B. Arnal, K. Larson-Smith, I. Pelivanov, T. Matula, L. Pozzo, and M. O’Donnell, “Laser-induced cavitation in nanoemulsion with gold nanospheres for blood clot disruption: in vitro results,” Opt. Lett. 39(9), 2599–2602 (2014).
[Crossref] [PubMed]

C. W. Wei, M. Lombardo, K. Larson-Smith, I. Pelivanov, C. Perez, J. Xia, T. Matula, D. Pozzo, and M. O’Donnell, “Nonlinear contrast enhancement in photoacoustic molecular imaging with gold nanosphere encapsulated nanoemulsions,” Appl. Phys. Lett. 104(3), 033701 (2014).
[Crossref] [PubMed]

Pozzo, D.

C. W. Wei, M. Lombardo, K. Larson-Smith, I. Pelivanov, C. Perez, J. Xia, T. Matula, D. Pozzo, and M. O’Donnell, “Nonlinear contrast enhancement in photoacoustic molecular imaging with gold nanosphere encapsulated nanoemulsions,” Appl. Phys. Lett. 104(3), 033701 (2014).
[Crossref] [PubMed]

Pozzo, L.

Rapoport, N.

N. Rapoport, “Phase-shift, stimuli-responsive perfluorocarbon nanodroplets for drug delivery to cancer,” Wiley Interdiscip Rev Nanomed Nanobiotechnol 4(5), 492–510 (2012).
[Crossref] [PubMed]

Richardson, H.

A. O. Govorov, W. Zhang, T. Skeini, H. Richardson, J. Lee, and N. A. Kotov, “Gold nanoparticle ensembles as heaters and actuators: melting and collective plasmon resonances,” Nanoscale Res. Lett. 1(1), 84–90 (2006).
[Crossref]

Ross, W. D.

P. S. Sheeran, V. P. Wong, S. Luois, R. J. McFarland, W. D. Ross, S. Feingold, T. O. Matsunaga, and P. A. Dayton, “Decafluorobutane as a Phase-Change Contrast Agent for Low-Energy Extravascular Ultrasonic Imaging,” Ultrasound Med. Biol. 37(9), 1518–1530 (2011).
[Crossref] [PubMed]

Roy, R. A.

Rui, M.

Sarkar, K.

K. Sarkar, A. Katiyar, and P. Jain, “Growth and dissolution of an encapsulated contrast microbubble: Effects of encapsulation permeability,” Ultrasound Med. Biol. 35(8), 1385–1396 (2009).
[Crossref] [PubMed]

Sheeran, P. S.

P. S. Sheeran and P. A. Dayton, “Improving the performance of phase-change perfluorocarbon droplets for medical ultrasonography: current progress, challenges, and prospects,” Scientifica (Cairo) 2014, 579684 (2014).
[Crossref] [PubMed]

T. O. Matsunaga, P. S. Sheeran, S. Luois, J. E. Streeter, L. B. Mullin, B. Banerjee, and P. A. Dayton, “Phase-change nanoparticles using highly volatile perfluorocarbons: toward a platform for extravascular ultrasound imaging,” Theranostics 2(12), 1185–1198 (2012).
[Crossref] [PubMed]

P. S. Sheeran, S. H. Luois, L. B. Mullin, T. O. Matsunaga, and P. A. Dayton, “Design of ultrasonically-activatable nanoparticles using low boiling point perfluorocarbons,” Biomaterials 33(11), 3262–3269 (2012).
[Crossref] [PubMed]

P. S. Sheeran, S. Luois, P. A. Dayton, and T. O. Matsunaga, “Formulation and acoustic studies of a new phase-shift agent for diagnostic and therapeutic ultrasound,” Langmuir 27(17), 10412–10420 (2011).
[Crossref] [PubMed]

P. S. Sheeran, V. P. Wong, S. Luois, R. J. McFarland, W. D. Ross, S. Feingold, T. O. Matsunaga, and P. A. Dayton, “Decafluorobutane as a Phase-Change Contrast Agent for Low-Energy Extravascular Ultrasonic Imaging,” Ultrasound Med. Biol. 37(9), 1518–1530 (2011).
[Crossref] [PubMed]

Shepherd, J. E.

J. E. Shepherd and B. Sturtevant, “Rapid evaporation at the superheat limit,” J. Fluid Mech. 121(-1), 379–402 (1982).
[Crossref]

Shpak, O.

O. Shpak, M. Verweij, H. J. Vos, N. de Jong, D. Lohse, and M. Versluis, “Acoustic droplet vaporization is initiated by superharmonic focusing,” Proc. Natl. Acad. Sci. U.S.A. 111(5), 1697–1702 (2014).
[Crossref] [PubMed]

Sirsi, S.

S. Sirsi, J. Feshitan, J. Kwan, S. Homma, and M. Borden, “Effect of microbubble size on fundamental mode high frequency ultrasound imaging in mice,” Ultrasound Med. Biol. 36(6), 935–948 (2010).
[Crossref] [PubMed]

Sirsi, S. R.

P. A. Mountford, S. R. Sirsi, and M. A. Borden, “Condensation Phase Diagrams for Lipid-Coated Perfluorobutane Microbubbles,” Langmuir 30(21), 6209–6218 (2014).
[Crossref] [PubMed]

Skeini, T.

A. O. Govorov, W. Zhang, T. Skeini, H. Richardson, J. Lee, and N. A. Kotov, “Gold nanoparticle ensembles as heaters and actuators: melting and collective plasmon resonances,” Nanoscale Res. Lett. 1(1), 84–90 (2006).
[Crossref]

Song, L.

J. Jian, C. Liu, Y. Gong, L. Su, B. Zhang, Z. Wang, D. Wang, Y. Zhou, F. Xu, P. Li, Y. Zheng, L. Song, and X. Zhou, “India ink incorporated multifunctional phase-transition nanodroplets for photoacoustic/ultrasound dual-modality imaging and photoacoustic effect based tumor therapy,” Theranostics 4(10), 1026–1038 (2014).
[Crossref] [PubMed]

Streeter, J. E.

T. O. Matsunaga, P. S. Sheeran, S. Luois, J. E. Streeter, L. B. Mullin, B. Banerjee, and P. A. Dayton, “Phase-change nanoparticles using highly volatile perfluorocarbons: toward a platform for extravascular ultrasound imaging,” Theranostics 2(12), 1185–1198 (2012).
[Crossref] [PubMed]

J. E. Streeter, R. Gessner, I. Miles, and P. A. Dayton, “Improving sensitivity in ultrasound molecular imaging by tailoring contrast agent size distribution: in vivo studies,” Mol. Imaging 9(2), 87–95 (2010).
[PubMed]

Strohm, E.

Sturtevant, B.

J. E. Shepherd and B. Sturtevant, “Rapid evaporation at the superheat limit,” J. Fluid Mech. 121(-1), 379–402 (1982).
[Crossref]

Su, L.

J. Jian, C. Liu, Y. Gong, L. Su, B. Zhang, Z. Wang, D. Wang, Y. Zhou, F. Xu, P. Li, Y. Zheng, L. Song, and X. Zhou, “India ink incorporated multifunctional phase-transition nanodroplets for photoacoustic/ultrasound dual-modality imaging and photoacoustic effect based tumor therapy,” Theranostics 4(10), 1026–1038 (2014).
[Crossref] [PubMed]

Tranter, C. J.

H. Goldenberg and C. J. Tranter, “Heat flow in an infinite medium heated by a sphere,” Br. J. Appl. Phys. 3(9), 296–298 (1952).
[Crossref]

Tuchin, V.

B. Khlebtsov, V. Zharov, A. Melnikov, V. Tuchin, and N. Khlebtsov, “Optical amplification of photothermal therapy with gold nanoparticles and nanoclusters,” Nanotechnology 17(20), 5167–5179 (2006).
[Crossref]

VanderLaan, D.

Versluis, M.

O. Shpak, M. Verweij, H. J. Vos, N. de Jong, D. Lohse, and M. Versluis, “Acoustic droplet vaporization is initiated by superharmonic focusing,” Proc. Natl. Acad. Sci. U.S.A. 111(5), 1697–1702 (2014).
[Crossref] [PubMed]

Verweij, M.

O. Shpak, M. Verweij, H. J. Vos, N. de Jong, D. Lohse, and M. Versluis, “Acoustic droplet vaporization is initiated by superharmonic focusing,” Proc. Natl. Acad. Sci. U.S.A. 111(5), 1697–1702 (2014).
[Crossref] [PubMed]

Vos, H. J.

O. Shpak, M. Verweij, H. J. Vos, N. de Jong, D. Lohse, and M. Versluis, “Acoustic droplet vaporization is initiated by superharmonic focusing,” Proc. Natl. Acad. Sci. U.S.A. 111(5), 1697–1702 (2014).
[Crossref] [PubMed]

Wang, D.

J. Jian, C. Liu, Y. Gong, L. Su, B. Zhang, Z. Wang, D. Wang, Y. Zhou, F. Xu, P. Li, Y. Zheng, L. Song, and X. Zhou, “India ink incorporated multifunctional phase-transition nanodroplets for photoacoustic/ultrasound dual-modality imaging and photoacoustic effect based tumor therapy,” Theranostics 4(10), 1026–1038 (2014).
[Crossref] [PubMed]

Wang, Z.

J. Jian, C. Liu, Y. Gong, L. Su, B. Zhang, Z. Wang, D. Wang, Y. Zhou, F. Xu, P. Li, Y. Zheng, L. Song, and X. Zhou, “India ink incorporated multifunctional phase-transition nanodroplets for photoacoustic/ultrasound dual-modality imaging and photoacoustic effect based tumor therapy,” Theranostics 4(10), 1026–1038 (2014).
[Crossref] [PubMed]

Wei, C. W.

C. W. Wei, J. Xia, M. Lombardo, C. Perez, B. Arnal, K. Larson-Smith, I. Pelivanov, T. Matula, L. Pozzo, and M. O’Donnell, “Laser-induced cavitation in nanoemulsion with gold nanospheres for blood clot disruption: in vitro results,” Opt. Lett. 39(9), 2599–2602 (2014).
[Crossref] [PubMed]

C. W. Wei, M. Lombardo, K. Larson-Smith, I. Pelivanov, C. Perez, J. Xia, T. Matula, D. Pozzo, and M. O’Donnell, “Nonlinear contrast enhancement in photoacoustic molecular imaging with gold nanosphere encapsulated nanoemulsions,” Appl. Phys. Lett. 104(3), 033701 (2014).
[Crossref] [PubMed]

Wilson, K.

A. Hannah, G. Luke, K. Wilson, K. Homan, and S. Emelianov, “Indocyanine green-loaded photoacoustic nanodroplets: dual contrast nanoconstructs for enhanced photoacoustic and ultrasound imaging,” ACS Nano 8(1), 250–259 (2014).
[Crossref] [PubMed]

K. Wilson, K. Homan, and S. Emelianov, “Biomedical photoacoustics beyond thermal expansion using triggered nanodroplet vaporization for contrast-enhanced imaging,” Nat. Commun. 3, 618 (2012).
[Crossref] [PubMed]

Wong, V. P.

P. S. Sheeran, V. P. Wong, S. Luois, R. J. McFarland, W. D. Ross, S. Feingold, T. O. Matsunaga, and P. A. Dayton, “Decafluorobutane as a Phase-Change Contrast Agent for Low-Energy Extravascular Ultrasonic Imaging,” Ultrasound Med. Biol. 37(9), 1518–1530 (2011).
[Crossref] [PubMed]

Xia, J.

C. W. Wei, M. Lombardo, K. Larson-Smith, I. Pelivanov, C. Perez, J. Xia, T. Matula, D. Pozzo, and M. O’Donnell, “Nonlinear contrast enhancement in photoacoustic molecular imaging with gold nanosphere encapsulated nanoemulsions,” Appl. Phys. Lett. 104(3), 033701 (2014).
[Crossref] [PubMed]

C. W. Wei, J. Xia, M. Lombardo, C. Perez, B. Arnal, K. Larson-Smith, I. Pelivanov, T. Matula, L. Pozzo, and M. O’Donnell, “Laser-induced cavitation in nanoemulsion with gold nanospheres for blood clot disruption: in vitro results,” Opt. Lett. 39(9), 2599–2602 (2014).
[Crossref] [PubMed]

Xu, F.

J. Jian, C. Liu, Y. Gong, L. Su, B. Zhang, Z. Wang, D. Wang, Y. Zhou, F. Xu, P. Li, Y. Zheng, L. Song, and X. Zhou, “India ink incorporated multifunctional phase-transition nanodroplets for photoacoustic/ultrasound dual-modality imaging and photoacoustic effect based tumor therapy,” Theranostics 4(10), 1026–1038 (2014).
[Crossref] [PubMed]

Zhang, B.

J. Jian, C. Liu, Y. Gong, L. Su, B. Zhang, Z. Wang, D. Wang, Y. Zhou, F. Xu, P. Li, Y. Zheng, L. Song, and X. Zhou, “India ink incorporated multifunctional phase-transition nanodroplets for photoacoustic/ultrasound dual-modality imaging and photoacoustic effect based tumor therapy,” Theranostics 4(10), 1026–1038 (2014).
[Crossref] [PubMed]

Zhang, H.

M. A. Borden, H. Zhang, R. J. Gillies, P. A. Dayton, and K. W. Ferrara, “A stimulus-responsive contrast agent for ultrasound molecular imaging,” Biomaterials 29(5), 597–606 (2008).
[Crossref] [PubMed]

Zhang, W.

A. O. Govorov, W. Zhang, T. Skeini, H. Richardson, J. Lee, and N. A. Kotov, “Gold nanoparticle ensembles as heaters and actuators: melting and collective plasmon resonances,” Nanoscale Res. Lett. 1(1), 84–90 (2006).
[Crossref]

Zharov, V.

B. Khlebtsov, V. Zharov, A. Melnikov, V. Tuchin, and N. Khlebtsov, “Optical amplification of photothermal therapy with gold nanoparticles and nanoclusters,” Nanotechnology 17(20), 5167–5179 (2006).
[Crossref]

Zheng, Y.

J. Jian, C. Liu, Y. Gong, L. Su, B. Zhang, Z. Wang, D. Wang, Y. Zhou, F. Xu, P. Li, Y. Zheng, L. Song, and X. Zhou, “India ink incorporated multifunctional phase-transition nanodroplets for photoacoustic/ultrasound dual-modality imaging and photoacoustic effect based tumor therapy,” Theranostics 4(10), 1026–1038 (2014).
[Crossref] [PubMed]

Zhou, X.

J. Jian, C. Liu, Y. Gong, L. Su, B. Zhang, Z. Wang, D. Wang, Y. Zhou, F. Xu, P. Li, Y. Zheng, L. Song, and X. Zhou, “India ink incorporated multifunctional phase-transition nanodroplets for photoacoustic/ultrasound dual-modality imaging and photoacoustic effect based tumor therapy,” Theranostics 4(10), 1026–1038 (2014).
[Crossref] [PubMed]

Zhou, Y.

J. Jian, C. Liu, Y. Gong, L. Su, B. Zhang, Z. Wang, D. Wang, Y. Zhou, F. Xu, P. Li, Y. Zheng, L. Song, and X. Zhou, “India ink incorporated multifunctional phase-transition nanodroplets for photoacoustic/ultrasound dual-modality imaging and photoacoustic effect based tumor therapy,” Theranostics 4(10), 1026–1038 (2014).
[Crossref] [PubMed]

ACS Nano (1)

A. Hannah, G. Luke, K. Wilson, K. Homan, and S. Emelianov, “Indocyanine green-loaded photoacoustic nanodroplets: dual contrast nanoconstructs for enhanced photoacoustic and ultrasound imaging,” ACS Nano 8(1), 250–259 (2014).
[Crossref] [PubMed]

Appl. Phys. Lett. (2)

D. S. Li, O. D. Kripfgans, M. L. Fabiilli, J. Brian Fowlkes, and J. L. Bull, “Initial nucleation site formation due to acoustic droplet vaporization,” Appl. Phys. Lett. 104(6), 063703 (2014).
[Crossref] [PubMed]

C. W. Wei, M. Lombardo, K. Larson-Smith, I. Pelivanov, C. Perez, J. Xia, T. Matula, D. Pozzo, and M. O’Donnell, “Nonlinear contrast enhancement in photoacoustic molecular imaging with gold nanosphere encapsulated nanoemulsions,” Appl. Phys. Lett. 104(3), 033701 (2014).
[Crossref] [PubMed]

Biomaterials (2)

M. A. Borden, H. Zhang, R. J. Gillies, P. A. Dayton, and K. W. Ferrara, “A stimulus-responsive contrast agent for ultrasound molecular imaging,” Biomaterials 29(5), 597–606 (2008).
[Crossref] [PubMed]

P. S. Sheeran, S. H. Luois, L. B. Mullin, T. O. Matsunaga, and P. A. Dayton, “Design of ultrasonically-activatable nanoparticles using low boiling point perfluorocarbons,” Biomaterials 33(11), 3262–3269 (2012).
[Crossref] [PubMed]

Biomed. Opt. Express (3)

Br. J. Appl. Phys. (1)

H. Goldenberg and C. J. Tranter, “Heat flow in an infinite medium heated by a sphere,” Br. J. Appl. Phys. 3(9), 296–298 (1952).
[Crossref]

C. R. Phys. (1)

F. Caupin and E. Herbert, “Cavitation in water: a review,” C. R. Phys. 7(9-10), 1000–1017 (2006).
[Crossref]

J. Colloid Interface Sci. (2)

T. J. Jarvis, M. D. Donohue, and J. L. Katz, “Bubble nucleation mechanisms of liquid droplets superheated in other liquids,” J. Colloid Interface Sci. 50(2), 359–368 (1975).
[Crossref]

J. G. Eberhart, W. Kremsner, and M. Blander, “Metastability limits of superheated liquids: Bubble nucleation temperatures of hydrocarbons and their mixtures,” J. Colloid Interface Sci. 50(2), 369–378 (1975).
[Crossref]

J. Fluid Mech. (1)

J. E. Shepherd and B. Sturtevant, “Rapid evaporation at the superheat limit,” J. Fluid Mech. 121(-1), 379–402 (1982).
[Crossref]

J. Heat Transfer (1)

H.-Y. Kwak and S. Lee, “Homogeneous bubble nucleation predicted by a molecular interaction model,” J. Heat Transfer 113(3), 714–721 (1991).
[Crossref]

J. Phys. Chem. Ref. Data (1)

C. T. Avedisian, “The homogeneous nucleation limits of liquids,” J. Phys. Chem. Ref. Data 14(3), 695–729 (1985).
[Crossref]

Langmuir (3)

P. A. Mountford, S. R. Sirsi, and M. A. Borden, “Condensation Phase Diagrams for Lipid-Coated Perfluorobutane Microbubbles,” Langmuir 30(21), 6209–6218 (2014).
[Crossref] [PubMed]

P. S. Sheeran, S. Luois, P. A. Dayton, and T. O. Matsunaga, “Formulation and acoustic studies of a new phase-shift agent for diagnostic and therapeutic ultrasound,” Langmuir 27(17), 10412–10420 (2011).
[Crossref] [PubMed]

J. J. Kwan and M. A. Borden, “Microbubble dissolution in a multigas environment,” Langmuir 26(9), 6542–6548 (2010).
[Crossref] [PubMed]

Macromolecules (1)

P. G. de Gennes, “Conformations of polymers attached to an interface,” Macromolecules 13(5), 1069–1075 (1980).
[Crossref]

Mol. Imaging (1)

J. E. Streeter, R. Gessner, I. Miles, and P. A. Dayton, “Improving sensitivity in ultrasound molecular imaging by tailoring contrast agent size distribution: in vivo studies,” Mol. Imaging 9(2), 87–95 (2010).
[PubMed]

Nanoscale Res. Lett. (1)

A. O. Govorov, W. Zhang, T. Skeini, H. Richardson, J. Lee, and N. A. Kotov, “Gold nanoparticle ensembles as heaters and actuators: melting and collective plasmon resonances,” Nanoscale Res. Lett. 1(1), 84–90 (2006).
[Crossref]

Nanotechnology (1)

B. Khlebtsov, V. Zharov, A. Melnikov, V. Tuchin, and N. Khlebtsov, “Optical amplification of photothermal therapy with gold nanoparticles and nanoclusters,” Nanotechnology 17(20), 5167–5179 (2006).
[Crossref]

Nat. Commun. (1)

K. Wilson, K. Homan, and S. Emelianov, “Biomedical photoacoustics beyond thermal expansion using triggered nanodroplet vaporization for contrast-enhanced imaging,” Nat. Commun. 3, 618 (2012).
[Crossref] [PubMed]

Opt. Lett. (2)

Proc. Natl. Acad. Sci. U.S.A. (1)

O. Shpak, M. Verweij, H. J. Vos, N. de Jong, D. Lohse, and M. Versluis, “Acoustic droplet vaporization is initiated by superharmonic focusing,” Proc. Natl. Acad. Sci. U.S.A. 111(5), 1697–1702 (2014).
[Crossref] [PubMed]

Scientifica (Cairo) (1)

P. S. Sheeran and P. A. Dayton, “Improving the performance of phase-change perfluorocarbon droplets for medical ultrasonography: current progress, challenges, and prospects,” Scientifica (Cairo) 2014, 579684 (2014).
[Crossref] [PubMed]

Soft Matter (1)

J. D. Dove, T. W. Murray, and M. A. Borden, “Enhanced photoacoustic response with plasmonic nanoparticle-templated microbubbles,” Soft Matter 9(32), 7743–7750 (2013).
[Crossref]

Theranostics (2)

T. O. Matsunaga, P. S. Sheeran, S. Luois, J. E. Streeter, L. B. Mullin, B. Banerjee, and P. A. Dayton, “Phase-change nanoparticles using highly volatile perfluorocarbons: toward a platform for extravascular ultrasound imaging,” Theranostics 2(12), 1185–1198 (2012).
[Crossref] [PubMed]

J. Jian, C. Liu, Y. Gong, L. Su, B. Zhang, Z. Wang, D. Wang, Y. Zhou, F. Xu, P. Li, Y. Zheng, L. Song, and X. Zhou, “India ink incorporated multifunctional phase-transition nanodroplets for photoacoustic/ultrasound dual-modality imaging and photoacoustic effect based tumor therapy,” Theranostics 4(10), 1026–1038 (2014).
[Crossref] [PubMed]

Ultrasound Med. Biol. (4)

P. S. Sheeran, V. P. Wong, S. Luois, R. J. McFarland, W. D. Ross, S. Feingold, T. O. Matsunaga, and P. A. Dayton, “Decafluorobutane as a Phase-Change Contrast Agent for Low-Energy Extravascular Ultrasonic Imaging,” Ultrasound Med. Biol. 37(9), 1518–1530 (2011).
[Crossref] [PubMed]

O. D. Kripfgans, J. B. Fowlkes, D. L. Miller, O. P. Eldevik, and P. L. Carson, “Acoustic droplet vaporization for therapeutic and diagnostic applications,” Ultrasound Med. Biol. 26(7), 1177–1189 (2000).
[Crossref] [PubMed]

K. Sarkar, A. Katiyar, and P. Jain, “Growth and dissolution of an encapsulated contrast microbubble: Effects of encapsulation permeability,” Ultrasound Med. Biol. 35(8), 1385–1396 (2009).
[Crossref] [PubMed]

S. Sirsi, J. Feshitan, J. Kwan, S. Homma, and M. Borden, “Effect of microbubble size on fundamental mode high frequency ultrasound imaging in mice,” Ultrasound Med. Biol. 36(6), 935–948 (2010).
[Crossref] [PubMed]

Wiley Interdiscip Rev Nanomed Nanobiotechnol (1)

N. Rapoport, “Phase-shift, stimuli-responsive perfluorocarbon nanodroplets for drug delivery to cancer,” Wiley Interdiscip Rev Nanomed Nanobiotechnol 4(5), 492–510 (2012).
[Crossref] [PubMed]

Other (2)

T. R. C. Thermodynamic Tables, Non-Hydrocarbons (College Station, Tex : Thermodynamics Research Center, 1985).

M. F. L’Annunziata, Handbook of Radioactivity Analysis (Elsevier, 2012).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1 Fabrication procedure to produce nanoparticle-loaded microbubble condensed droplets. (a) Nanoparticle-loaded microbubbles are (b) cooled and pressurized to create (c) optically active droplets.
Fig. 2
Fig. 2 Experimental setup used to study optical droplet vaporization.
Fig. 3
Fig. 3 (a) Size distribution of nanoparticle-coated microbubbles and the droplets produced after condensation of the microbubbles. (b) Absorption spectra comparing nanoparticles, nanoparticle-coated droplets and nanoparticle-free droplets.
Fig. 4
Fig. 4 (a) The response of a droplet to a single optical pulse before vaporization at 20 mJ/cm2 and during vaporization when the pulsed laser was increased to 22 mJ/cm2. The unfiltered response is shown as the gray line where the solid blue and red lines have been digitally filtered with a 10 MHz low-pass filter. (b) The photoacoustic response of a microbubble produced from droplet vaporization illuminated with a fluence of 15 mJ/cm2.
Fig. 5
Fig. 5 (a) The dark field microscopy image captured after scanning the pulsed laser at a fluence of 10 mJ/cm2, the white lines with arrows indicate the scanning direction. (b) The resulting vaporized bubbles with dashed lines outlining the scanned area which is 100 µm in the vertical direction and 150 µm in the horizontal direction. The pulsed laser fluence was 50mJ/cm2.
Fig. 6
Fig. 6 Frequency density histograms of droplet vaporization with increasing fluence for three different cores (a) C3F8, (b) C4F10 and (c) C5F12.
Fig. 7
Fig. 7 (a) The fluence to vaporize 50% of the droplets plotted against 90% of critical temperature. The gray dashed line is a linear fit to the data with a y-intercept set to 298 K. (b) The heating efficiency of a 5nm gold sphere surrounded by water is plotted as a function of the distance from gold-liquid interface. The black dotted line is the estimated heating efficiency from the experiments and the blue dotted line is the estimated length of the PEG brush layer.
Fig. 8
Fig. 8 (a) Comparison of the size distribution of C4F10 bubbles prior to condensation and the bubbles produced from droplet vaporization. (b-d) Size distributions of vaporized C4F10 bubbles with fluence thresholds of (b) 0-14, (c) 14-30, and (d) 30-60 mJ/cm2.

Metrics