Abstract

In this paper we demonstrate the enhancement of the sensing capabilities of glass capillaries. We exploit their properties as optical and acoustic waveguides to transform them potentially into high resolution minimally invasive endoscopic devices. We show two possible applications of silica capillary waveguides demonstrating fluorescence and optical-resolution photoacoustic imaging using a single 330 μm-thick silica capillary. A nanosecond pulsed laser is focused and scanned in front of a capillary by digital phase conjugation through the silica annular ring of the capillary, used as an optical waveguide. We demonstrate optical-resolution photoacoustic images of a 30 μm-thick nylon thread using the water-filled core of the same capillary as an acoustic waveguide, resulting in a fully passive endoscopic device. Moreover, fluorescence images of 1.5 μm beads are obtained collecting the fluorescence signal through the optical waveguide. This kind of silica-capillary waveguide together with wavefront shaping techniques such as digital phase conjugation, paves the way to minimally invasive multi-modal endoscopy.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Optical resolution photoacoustic microscopy based on multimode fibers

Mohesh Moothanchery, Renzhe Bi, Jin Young Kim, Seungwan Jeon, Chulhong Kim, and Malini Olivo
Biomed. Opt. Express 9(3) 1190-1197 (2018)

Light control in a multicore fiber using the memory effect

Nicolino Stasio, Donald B. Conkey, Christophe Moser, and Demetri Psaltis
Opt. Express 23(23) 30532-30544 (2015)

High-resolution, lensless endoscope based on digital scanning through a multimode optical fiber

Ioannis N. Papadopoulos, Salma Farahi, Christophe Moser, and Demetri Psaltis
Biomed. Opt. Express 4(2) 260-270 (2013)

References

  • View by:
  • |
  • |
  • |

  1. O. S. Wolfbeis, “Capillary waveguide sensors,” TrAC, Trends Analyt. Chem. 15(6), 225–232 (1996).
    [Crossref]
  2. M. Borecki, M. L. Korwin-Pawlowski, M. Beblowska, J. Szmidt, and A. Jakubowski, “Optoelectronic Capillary Sensors in Microfluidic and Point-of-Care Instrumentation,” Sensors (Basel) 10(4), 3771–3797 (2010).
    [Crossref] [PubMed]
  3. B. A. Flusberg, E. D. Cocker, W. Piyawattanametha, J. C. Jung, E. L. M. Cheung, and M. J. Schnitzer, “Fiber-optic fluorescence imaging,” Nat. Methods 2(12), 941–950 (2005).
    [Crossref] [PubMed]
  4. G. Oh, E. Chung, and S. H. Yun, “Optical fibers for high-resolution in vivo microendoscopic fluorescence imaging,” Opt. Fiber Technol. 19(6), 760–771 (2013).
    [Crossref]
  5. S. Bianchi and R. Di Leonardo, “A multi-mode fiber probe for holographic micromanipulation and microscopy,” Lab Chip 12(3), 635–639 (2012).
    [Crossref] [PubMed]
  6. I. N. Papadopoulos, S. Farahi, C. Moser, and D. Psaltis, “Focusing and scanning light through a multimode optical fiber using digital phase conjugation,” Opt. Express 20(10), 10583–10590 (2012).
    [Crossref] [PubMed]
  7. T. Cižmár and K. Dholakia, “Exploiting multimode waveguides for pure fibre-based imaging,” Nat. Commun. 3, 1027 (2012).
    [Crossref] [PubMed]
  8. I. N. Papadopoulos, S. Farahi, C. Moser, and D. Psaltis, “High-resolution, lensless endoscope based on digital scanning through a multimode optical fiber,” Biomed. Opt. Express 4(2), 260–270 (2013).
    [Crossref] [PubMed]
  9. H. F. Zhang, K. Maslov, G. Stoica, and L. V. Wang, “Functional photoacoustic microscopy for high-resolution and noninvasive in vivo imaging,” Nat. Biotechnol. 24(7), 848–851 (2006).
    [Crossref] [PubMed]
  10. K. Maslov, G. Stoica, and L. V. Wang, “In vivo dark-field reflection-mode photoacoustic microscopy,” Opt. Lett. 30(6), 625–627 (2005).
    [Crossref] [PubMed]
  11. P. Shao, W. Shi, P. Hajireza, and R. J. Zemp, “Integrated micro-endoscopy system for simultaneous fluorescence and optical-resolution photoacoustic imaging,” J. Biomed. Opt. 17(7), 076024 (2012).
    [Crossref] [PubMed]
  12. K. Maslov, H. F. Zhang, S. Hu, and L. V. Wang, “Optical-resolution photoacoustic microscopy for in vivo imaging of single capillaries,” Opt. Lett. 33(9), 929–931 (2008).
    [Crossref] [PubMed]
  13. Z. Xie, S. Jiao, H. F. Zhang, and C. A. Puliafito, “Laser-scanning optical-resolution photoacoustic microscopy,” Opt. Lett. 34(12), 1771–1773 (2009).
    [Crossref] [PubMed]
  14. P. Beard, “Biomedical photoacoustic imaging,” Interface Focus 1(4), 602–631 (2011).
    [PubMed]
  15. L. V. Wang and S. Hu, “Photoacoustic Tomography: In Vivo Imaging from Organelles to Organs,” Science 335(6075), 1458–1462 (2012).
    [Crossref] [PubMed]
  16. P. Hajireza, W. Shi, and R. J. Zemp, “Label-free in vivo fiber-based optical-resolution photoacoustic microscopy,” Opt. Lett. 36(20), 4107–4109 (2011).
    [Crossref] [PubMed]
  17. J.-M. Yang, K. Maslov, H.-C. Yang, Q. Zhou, K. K. Shung, and L. V. Wang, “Photoacoustic endoscopy,” Opt. Lett. 34(10), 1591–1593 (2009).
    [Crossref] [PubMed]
  18. J.-M. Yang, R. Chen, C. Favazza, J. Yao, C. Li, Z. Hu, Q. Zhou, K. K. Shung, and L. V. Wang, “A 2.5-mm diameter probe for photoacoustic and ultrasonic endoscopy,” Opt. Express 20(21), 23944–23953 (2012).
    [Crossref] [PubMed]
  19. J.-M. Yang, C. Li, R. Chen, B. Rao, J. Yao, C.-H. Yeh, A. Danielli, K. Maslov, Q. Zhou, K. K. Shung, and L. V. Wang, “Optical-resolution photoacoustic endomicroscopy in vivo,” Biomed. Opt. Express 6(3), 918–932 (2015).
    [Crossref] [PubMed]
  20. I. N. Papadopoulos, O. Simandoux, S. Farahi, J. P. Huignard, E. Bossy, D. Psaltis, and C. Moser, “Optical-resolution photoacoustic microscopy by use of a multimode fiber,” Appl. Phys. Lett. 102(21), 211106 (2013).
    [Crossref]
  21. P. N. T. Wells, “Ultrasonic imaging of the human body,” Rep. Prog. Phys. 62(5), 671–722 (1999).
    [Crossref]
  22. O. Simandoux, N. Stasio, J. Gateau, J.-P. Huignard, C. Moser, D. Psaltis, and E. Bossy, “Optical-resolution photoacoustic imaging through thick tissue with a thin capillary as a dual optical-in acoustic-out waveguide,” Appl. Phys. Lett. 106(9), 094102 (2015).
    [Crossref]
  23. B. E. A. Saleh and M. C. Teich, Fundamentals of Photonics (Wiley, 2013).
  24. D. T. Blackstock, Fundamentals of Physical Acoustics (John Wiley & Sons, 2000).
  25. O. Simandoux, “Photoacoustic imaging: contributions to optical-resolution photoacoustic endoscopy and experimental investigation of thermal nonlinearity,” PhD thesis, Université Paris Diderot Paris 7 (2015).
  26. S. Farahi, D. Ziegler, I. N. Papadopoulos, D. Psaltis, and C. Moser, “Dynamic bending compensation while focusing through a multimode fiber,” Opt. Express 21(19), 22504–22514 (2013).
    [Crossref] [PubMed]
  27. M. Plöschner, T. Tyc, and T. Čižmár, “Seeing through chaos in multimode fibres,” Nat. Photonics 9(8), 529–535 (2015).
    [Crossref]
  28. B. Redding, S. M. Popoff, and H. Cao, “All-fiber spectrometer based on speckle pattern reconstruction,” Opt. Express 21(5), 6584–6600 (2013).
    [Crossref] [PubMed]
  29. I. N. Papadopoulos, S. Farahi, C. Moser, and D. Psaltis, “Increasing the imaging capabilities of multimode fibers by exploiting the properties of highly scattering media,” Opt. Lett. 38(15), 2776–2778 (2013).
    [Crossref] [PubMed]
  30. Y. Choi, C. Yoon, M. Kim, J. Yang, and W. Choi, “Disorder-mediated enhancement of fiber numerical aperture,” Opt. Lett. 38(13), 2253–2255 (2013).
    [Crossref] [PubMed]
  31. S. Hu, P. Yan, K. Maslov, J.-M. Lee, and L. V. Wang, “Intravital imaging of amyloid plaques in a transgenic mouse model using optical-resolution photoacoustic microscopy,” Opt. Lett. 34(24), 3899–3901 (2009).
    [Crossref] [PubMed]
  32. S. Hu, K. Maslov, and L. V. Wang, “Second-generation optical-resolution photoacoustic microscopy with improved sensitivity and speed,” Opt. Lett. 36(7), 1134–1136 (2011).
    [Crossref] [PubMed]

2015 (3)

J.-M. Yang, C. Li, R. Chen, B. Rao, J. Yao, C.-H. Yeh, A. Danielli, K. Maslov, Q. Zhou, K. K. Shung, and L. V. Wang, “Optical-resolution photoacoustic endomicroscopy in vivo,” Biomed. Opt. Express 6(3), 918–932 (2015).
[Crossref] [PubMed]

O. Simandoux, N. Stasio, J. Gateau, J.-P. Huignard, C. Moser, D. Psaltis, and E. Bossy, “Optical-resolution photoacoustic imaging through thick tissue with a thin capillary as a dual optical-in acoustic-out waveguide,” Appl. Phys. Lett. 106(9), 094102 (2015).
[Crossref]

M. Plöschner, T. Tyc, and T. Čižmár, “Seeing through chaos in multimode fibres,” Nat. Photonics 9(8), 529–535 (2015).
[Crossref]

2013 (7)

2012 (6)

S. Bianchi and R. Di Leonardo, “A multi-mode fiber probe for holographic micromanipulation and microscopy,” Lab Chip 12(3), 635–639 (2012).
[Crossref] [PubMed]

I. N. Papadopoulos, S. Farahi, C. Moser, and D. Psaltis, “Focusing and scanning light through a multimode optical fiber using digital phase conjugation,” Opt. Express 20(10), 10583–10590 (2012).
[Crossref] [PubMed]

T. Cižmár and K. Dholakia, “Exploiting multimode waveguides for pure fibre-based imaging,” Nat. Commun. 3, 1027 (2012).
[Crossref] [PubMed]

P. Shao, W. Shi, P. Hajireza, and R. J. Zemp, “Integrated micro-endoscopy system for simultaneous fluorescence and optical-resolution photoacoustic imaging,” J. Biomed. Opt. 17(7), 076024 (2012).
[Crossref] [PubMed]

L. V. Wang and S. Hu, “Photoacoustic Tomography: In Vivo Imaging from Organelles to Organs,” Science 335(6075), 1458–1462 (2012).
[Crossref] [PubMed]

J.-M. Yang, R. Chen, C. Favazza, J. Yao, C. Li, Z. Hu, Q. Zhou, K. K. Shung, and L. V. Wang, “A 2.5-mm diameter probe for photoacoustic and ultrasonic endoscopy,” Opt. Express 20(21), 23944–23953 (2012).
[Crossref] [PubMed]

2011 (3)

2010 (1)

M. Borecki, M. L. Korwin-Pawlowski, M. Beblowska, J. Szmidt, and A. Jakubowski, “Optoelectronic Capillary Sensors in Microfluidic and Point-of-Care Instrumentation,” Sensors (Basel) 10(4), 3771–3797 (2010).
[Crossref] [PubMed]

2009 (3)

2008 (1)

2006 (1)

H. F. Zhang, K. Maslov, G. Stoica, and L. V. Wang, “Functional photoacoustic microscopy for high-resolution and noninvasive in vivo imaging,” Nat. Biotechnol. 24(7), 848–851 (2006).
[Crossref] [PubMed]

2005 (2)

K. Maslov, G. Stoica, and L. V. Wang, “In vivo dark-field reflection-mode photoacoustic microscopy,” Opt. Lett. 30(6), 625–627 (2005).
[Crossref] [PubMed]

B. A. Flusberg, E. D. Cocker, W. Piyawattanametha, J. C. Jung, E. L. M. Cheung, and M. J. Schnitzer, “Fiber-optic fluorescence imaging,” Nat. Methods 2(12), 941–950 (2005).
[Crossref] [PubMed]

1999 (1)

P. N. T. Wells, “Ultrasonic imaging of the human body,” Rep. Prog. Phys. 62(5), 671–722 (1999).
[Crossref]

1996 (1)

O. S. Wolfbeis, “Capillary waveguide sensors,” TrAC, Trends Analyt. Chem. 15(6), 225–232 (1996).
[Crossref]

Beard, P.

P. Beard, “Biomedical photoacoustic imaging,” Interface Focus 1(4), 602–631 (2011).
[PubMed]

Beblowska, M.

M. Borecki, M. L. Korwin-Pawlowski, M. Beblowska, J. Szmidt, and A. Jakubowski, “Optoelectronic Capillary Sensors in Microfluidic and Point-of-Care Instrumentation,” Sensors (Basel) 10(4), 3771–3797 (2010).
[Crossref] [PubMed]

Bianchi, S.

S. Bianchi and R. Di Leonardo, “A multi-mode fiber probe for holographic micromanipulation and microscopy,” Lab Chip 12(3), 635–639 (2012).
[Crossref] [PubMed]

Borecki, M.

M. Borecki, M. L. Korwin-Pawlowski, M. Beblowska, J. Szmidt, and A. Jakubowski, “Optoelectronic Capillary Sensors in Microfluidic and Point-of-Care Instrumentation,” Sensors (Basel) 10(4), 3771–3797 (2010).
[Crossref] [PubMed]

Bossy, E.

O. Simandoux, N. Stasio, J. Gateau, J.-P. Huignard, C. Moser, D. Psaltis, and E. Bossy, “Optical-resolution photoacoustic imaging through thick tissue with a thin capillary as a dual optical-in acoustic-out waveguide,” Appl. Phys. Lett. 106(9), 094102 (2015).
[Crossref]

I. N. Papadopoulos, O. Simandoux, S. Farahi, J. P. Huignard, E. Bossy, D. Psaltis, and C. Moser, “Optical-resolution photoacoustic microscopy by use of a multimode fiber,” Appl. Phys. Lett. 102(21), 211106 (2013).
[Crossref]

Cao, H.

Chen, R.

Cheung, E. L. M.

B. A. Flusberg, E. D. Cocker, W. Piyawattanametha, J. C. Jung, E. L. M. Cheung, and M. J. Schnitzer, “Fiber-optic fluorescence imaging,” Nat. Methods 2(12), 941–950 (2005).
[Crossref] [PubMed]

Choi, W.

Choi, Y.

Chung, E.

G. Oh, E. Chung, and S. H. Yun, “Optical fibers for high-resolution in vivo microendoscopic fluorescence imaging,” Opt. Fiber Technol. 19(6), 760–771 (2013).
[Crossref]

Cižmár, T.

M. Plöschner, T. Tyc, and T. Čižmár, “Seeing through chaos in multimode fibres,” Nat. Photonics 9(8), 529–535 (2015).
[Crossref]

T. Cižmár and K. Dholakia, “Exploiting multimode waveguides for pure fibre-based imaging,” Nat. Commun. 3, 1027 (2012).
[Crossref] [PubMed]

Cocker, E. D.

B. A. Flusberg, E. D. Cocker, W. Piyawattanametha, J. C. Jung, E. L. M. Cheung, and M. J. Schnitzer, “Fiber-optic fluorescence imaging,” Nat. Methods 2(12), 941–950 (2005).
[Crossref] [PubMed]

Danielli, A.

Dholakia, K.

T. Cižmár and K. Dholakia, “Exploiting multimode waveguides for pure fibre-based imaging,” Nat. Commun. 3, 1027 (2012).
[Crossref] [PubMed]

Di Leonardo, R.

S. Bianchi and R. Di Leonardo, “A multi-mode fiber probe for holographic micromanipulation and microscopy,” Lab Chip 12(3), 635–639 (2012).
[Crossref] [PubMed]

Farahi, S.

Favazza, C.

Flusberg, B. A.

B. A. Flusberg, E. D. Cocker, W. Piyawattanametha, J. C. Jung, E. L. M. Cheung, and M. J. Schnitzer, “Fiber-optic fluorescence imaging,” Nat. Methods 2(12), 941–950 (2005).
[Crossref] [PubMed]

Gateau, J.

O. Simandoux, N. Stasio, J. Gateau, J.-P. Huignard, C. Moser, D. Psaltis, and E. Bossy, “Optical-resolution photoacoustic imaging through thick tissue with a thin capillary as a dual optical-in acoustic-out waveguide,” Appl. Phys. Lett. 106(9), 094102 (2015).
[Crossref]

Hajireza, P.

P. Shao, W. Shi, P. Hajireza, and R. J. Zemp, “Integrated micro-endoscopy system for simultaneous fluorescence and optical-resolution photoacoustic imaging,” J. Biomed. Opt. 17(7), 076024 (2012).
[Crossref] [PubMed]

P. Hajireza, W. Shi, and R. J. Zemp, “Label-free in vivo fiber-based optical-resolution photoacoustic microscopy,” Opt. Lett. 36(20), 4107–4109 (2011).
[Crossref] [PubMed]

Hu, S.

Hu, Z.

Huignard, J. P.

I. N. Papadopoulos, O. Simandoux, S. Farahi, J. P. Huignard, E. Bossy, D. Psaltis, and C. Moser, “Optical-resolution photoacoustic microscopy by use of a multimode fiber,” Appl. Phys. Lett. 102(21), 211106 (2013).
[Crossref]

Huignard, J.-P.

O. Simandoux, N. Stasio, J. Gateau, J.-P. Huignard, C. Moser, D. Psaltis, and E. Bossy, “Optical-resolution photoacoustic imaging through thick tissue with a thin capillary as a dual optical-in acoustic-out waveguide,” Appl. Phys. Lett. 106(9), 094102 (2015).
[Crossref]

Jakubowski, A.

M. Borecki, M. L. Korwin-Pawlowski, M. Beblowska, J. Szmidt, and A. Jakubowski, “Optoelectronic Capillary Sensors in Microfluidic and Point-of-Care Instrumentation,” Sensors (Basel) 10(4), 3771–3797 (2010).
[Crossref] [PubMed]

Jiao, S.

Jung, J. C.

B. A. Flusberg, E. D. Cocker, W. Piyawattanametha, J. C. Jung, E. L. M. Cheung, and M. J. Schnitzer, “Fiber-optic fluorescence imaging,” Nat. Methods 2(12), 941–950 (2005).
[Crossref] [PubMed]

Kim, M.

Korwin-Pawlowski, M. L.

M. Borecki, M. L. Korwin-Pawlowski, M. Beblowska, J. Szmidt, and A. Jakubowski, “Optoelectronic Capillary Sensors in Microfluidic and Point-of-Care Instrumentation,” Sensors (Basel) 10(4), 3771–3797 (2010).
[Crossref] [PubMed]

Lee, J.-M.

Li, C.

Maslov, K.

Moser, C.

Oh, G.

G. Oh, E. Chung, and S. H. Yun, “Optical fibers for high-resolution in vivo microendoscopic fluorescence imaging,” Opt. Fiber Technol. 19(6), 760–771 (2013).
[Crossref]

Papadopoulos, I. N.

Piyawattanametha, W.

B. A. Flusberg, E. D. Cocker, W. Piyawattanametha, J. C. Jung, E. L. M. Cheung, and M. J. Schnitzer, “Fiber-optic fluorescence imaging,” Nat. Methods 2(12), 941–950 (2005).
[Crossref] [PubMed]

Plöschner, M.

M. Plöschner, T. Tyc, and T. Čižmár, “Seeing through chaos in multimode fibres,” Nat. Photonics 9(8), 529–535 (2015).
[Crossref]

Popoff, S. M.

Psaltis, D.

Puliafito, C. A.

Rao, B.

Redding, B.

Schnitzer, M. J.

B. A. Flusberg, E. D. Cocker, W. Piyawattanametha, J. C. Jung, E. L. M. Cheung, and M. J. Schnitzer, “Fiber-optic fluorescence imaging,” Nat. Methods 2(12), 941–950 (2005).
[Crossref] [PubMed]

Shao, P.

P. Shao, W. Shi, P. Hajireza, and R. J. Zemp, “Integrated micro-endoscopy system for simultaneous fluorescence and optical-resolution photoacoustic imaging,” J. Biomed. Opt. 17(7), 076024 (2012).
[Crossref] [PubMed]

Shi, W.

P. Shao, W. Shi, P. Hajireza, and R. J. Zemp, “Integrated micro-endoscopy system for simultaneous fluorescence and optical-resolution photoacoustic imaging,” J. Biomed. Opt. 17(7), 076024 (2012).
[Crossref] [PubMed]

P. Hajireza, W. Shi, and R. J. Zemp, “Label-free in vivo fiber-based optical-resolution photoacoustic microscopy,” Opt. Lett. 36(20), 4107–4109 (2011).
[Crossref] [PubMed]

Shung, K. K.

Simandoux, O.

O. Simandoux, N. Stasio, J. Gateau, J.-P. Huignard, C. Moser, D. Psaltis, and E. Bossy, “Optical-resolution photoacoustic imaging through thick tissue with a thin capillary as a dual optical-in acoustic-out waveguide,” Appl. Phys. Lett. 106(9), 094102 (2015).
[Crossref]

I. N. Papadopoulos, O. Simandoux, S. Farahi, J. P. Huignard, E. Bossy, D. Psaltis, and C. Moser, “Optical-resolution photoacoustic microscopy by use of a multimode fiber,” Appl. Phys. Lett. 102(21), 211106 (2013).
[Crossref]

Stasio, N.

O. Simandoux, N. Stasio, J. Gateau, J.-P. Huignard, C. Moser, D. Psaltis, and E. Bossy, “Optical-resolution photoacoustic imaging through thick tissue with a thin capillary as a dual optical-in acoustic-out waveguide,” Appl. Phys. Lett. 106(9), 094102 (2015).
[Crossref]

Stoica, G.

H. F. Zhang, K. Maslov, G. Stoica, and L. V. Wang, “Functional photoacoustic microscopy for high-resolution and noninvasive in vivo imaging,” Nat. Biotechnol. 24(7), 848–851 (2006).
[Crossref] [PubMed]

K. Maslov, G. Stoica, and L. V. Wang, “In vivo dark-field reflection-mode photoacoustic microscopy,” Opt. Lett. 30(6), 625–627 (2005).
[Crossref] [PubMed]

Szmidt, J.

M. Borecki, M. L. Korwin-Pawlowski, M. Beblowska, J. Szmidt, and A. Jakubowski, “Optoelectronic Capillary Sensors in Microfluidic and Point-of-Care Instrumentation,” Sensors (Basel) 10(4), 3771–3797 (2010).
[Crossref] [PubMed]

Tyc, T.

M. Plöschner, T. Tyc, and T. Čižmár, “Seeing through chaos in multimode fibres,” Nat. Photonics 9(8), 529–535 (2015).
[Crossref]

Wang, L. V.

J.-M. Yang, C. Li, R. Chen, B. Rao, J. Yao, C.-H. Yeh, A. Danielli, K. Maslov, Q. Zhou, K. K. Shung, and L. V. Wang, “Optical-resolution photoacoustic endomicroscopy in vivo,” Biomed. Opt. Express 6(3), 918–932 (2015).
[Crossref] [PubMed]

J.-M. Yang, R. Chen, C. Favazza, J. Yao, C. Li, Z. Hu, Q. Zhou, K. K. Shung, and L. V. Wang, “A 2.5-mm diameter probe for photoacoustic and ultrasonic endoscopy,” Opt. Express 20(21), 23944–23953 (2012).
[Crossref] [PubMed]

L. V. Wang and S. Hu, “Photoacoustic Tomography: In Vivo Imaging from Organelles to Organs,” Science 335(6075), 1458–1462 (2012).
[Crossref] [PubMed]

S. Hu, K. Maslov, and L. V. Wang, “Second-generation optical-resolution photoacoustic microscopy with improved sensitivity and speed,” Opt. Lett. 36(7), 1134–1136 (2011).
[Crossref] [PubMed]

J.-M. Yang, K. Maslov, H.-C. Yang, Q. Zhou, K. K. Shung, and L. V. Wang, “Photoacoustic endoscopy,” Opt. Lett. 34(10), 1591–1593 (2009).
[Crossref] [PubMed]

S. Hu, P. Yan, K. Maslov, J.-M. Lee, and L. V. Wang, “Intravital imaging of amyloid plaques in a transgenic mouse model using optical-resolution photoacoustic microscopy,” Opt. Lett. 34(24), 3899–3901 (2009).
[Crossref] [PubMed]

K. Maslov, H. F. Zhang, S. Hu, and L. V. Wang, “Optical-resolution photoacoustic microscopy for in vivo imaging of single capillaries,” Opt. Lett. 33(9), 929–931 (2008).
[Crossref] [PubMed]

H. F. Zhang, K. Maslov, G. Stoica, and L. V. Wang, “Functional photoacoustic microscopy for high-resolution and noninvasive in vivo imaging,” Nat. Biotechnol. 24(7), 848–851 (2006).
[Crossref] [PubMed]

K. Maslov, G. Stoica, and L. V. Wang, “In vivo dark-field reflection-mode photoacoustic microscopy,” Opt. Lett. 30(6), 625–627 (2005).
[Crossref] [PubMed]

Wells, P. N. T.

P. N. T. Wells, “Ultrasonic imaging of the human body,” Rep. Prog. Phys. 62(5), 671–722 (1999).
[Crossref]

Wolfbeis, O. S.

O. S. Wolfbeis, “Capillary waveguide sensors,” TrAC, Trends Analyt. Chem. 15(6), 225–232 (1996).
[Crossref]

Xie, Z.

Yan, P.

Yang, H.-C.

Yang, J.

Yang, J.-M.

Yao, J.

Yeh, C.-H.

Yoon, C.

Yun, S. H.

G. Oh, E. Chung, and S. H. Yun, “Optical fibers for high-resolution in vivo microendoscopic fluorescence imaging,” Opt. Fiber Technol. 19(6), 760–771 (2013).
[Crossref]

Zemp, R. J.

P. Shao, W. Shi, P. Hajireza, and R. J. Zemp, “Integrated micro-endoscopy system for simultaneous fluorescence and optical-resolution photoacoustic imaging,” J. Biomed. Opt. 17(7), 076024 (2012).
[Crossref] [PubMed]

P. Hajireza, W. Shi, and R. J. Zemp, “Label-free in vivo fiber-based optical-resolution photoacoustic microscopy,” Opt. Lett. 36(20), 4107–4109 (2011).
[Crossref] [PubMed]

Zhang, H. F.

Zhou, Q.

Ziegler, D.

Appl. Phys. Lett. (2)

O. Simandoux, N. Stasio, J. Gateau, J.-P. Huignard, C. Moser, D. Psaltis, and E. Bossy, “Optical-resolution photoacoustic imaging through thick tissue with a thin capillary as a dual optical-in acoustic-out waveguide,” Appl. Phys. Lett. 106(9), 094102 (2015).
[Crossref]

I. N. Papadopoulos, O. Simandoux, S. Farahi, J. P. Huignard, E. Bossy, D. Psaltis, and C. Moser, “Optical-resolution photoacoustic microscopy by use of a multimode fiber,” Appl. Phys. Lett. 102(21), 211106 (2013).
[Crossref]

Biomed. Opt. Express (2)

Interface Focus (1)

P. Beard, “Biomedical photoacoustic imaging,” Interface Focus 1(4), 602–631 (2011).
[PubMed]

J. Biomed. Opt. (1)

P. Shao, W. Shi, P. Hajireza, and R. J. Zemp, “Integrated micro-endoscopy system for simultaneous fluorescence and optical-resolution photoacoustic imaging,” J. Biomed. Opt. 17(7), 076024 (2012).
[Crossref] [PubMed]

Lab Chip (1)

S. Bianchi and R. Di Leonardo, “A multi-mode fiber probe for holographic micromanipulation and microscopy,” Lab Chip 12(3), 635–639 (2012).
[Crossref] [PubMed]

Nat. Biotechnol. (1)

H. F. Zhang, K. Maslov, G. Stoica, and L. V. Wang, “Functional photoacoustic microscopy for high-resolution and noninvasive in vivo imaging,” Nat. Biotechnol. 24(7), 848–851 (2006).
[Crossref] [PubMed]

Nat. Commun. (1)

T. Cižmár and K. Dholakia, “Exploiting multimode waveguides for pure fibre-based imaging,” Nat. Commun. 3, 1027 (2012).
[Crossref] [PubMed]

Nat. Methods (1)

B. A. Flusberg, E. D. Cocker, W. Piyawattanametha, J. C. Jung, E. L. M. Cheung, and M. J. Schnitzer, “Fiber-optic fluorescence imaging,” Nat. Methods 2(12), 941–950 (2005).
[Crossref] [PubMed]

Nat. Photonics (1)

M. Plöschner, T. Tyc, and T. Čižmár, “Seeing through chaos in multimode fibres,” Nat. Photonics 9(8), 529–535 (2015).
[Crossref]

Opt. Express (4)

Opt. Fiber Technol. (1)

G. Oh, E. Chung, and S. H. Yun, “Optical fibers for high-resolution in vivo microendoscopic fluorescence imaging,” Opt. Fiber Technol. 19(6), 760–771 (2013).
[Crossref]

Opt. Lett. (9)

K. Maslov, G. Stoica, and L. V. Wang, “In vivo dark-field reflection-mode photoacoustic microscopy,” Opt. Lett. 30(6), 625–627 (2005).
[Crossref] [PubMed]

P. Hajireza, W. Shi, and R. J. Zemp, “Label-free in vivo fiber-based optical-resolution photoacoustic microscopy,” Opt. Lett. 36(20), 4107–4109 (2011).
[Crossref] [PubMed]

J.-M. Yang, K. Maslov, H.-C. Yang, Q. Zhou, K. K. Shung, and L. V. Wang, “Photoacoustic endoscopy,” Opt. Lett. 34(10), 1591–1593 (2009).
[Crossref] [PubMed]

K. Maslov, H. F. Zhang, S. Hu, and L. V. Wang, “Optical-resolution photoacoustic microscopy for in vivo imaging of single capillaries,” Opt. Lett. 33(9), 929–931 (2008).
[Crossref] [PubMed]

Z. Xie, S. Jiao, H. F. Zhang, and C. A. Puliafito, “Laser-scanning optical-resolution photoacoustic microscopy,” Opt. Lett. 34(12), 1771–1773 (2009).
[Crossref] [PubMed]

I. N. Papadopoulos, S. Farahi, C. Moser, and D. Psaltis, “Increasing the imaging capabilities of multimode fibers by exploiting the properties of highly scattering media,” Opt. Lett. 38(15), 2776–2778 (2013).
[Crossref] [PubMed]

Y. Choi, C. Yoon, M. Kim, J. Yang, and W. Choi, “Disorder-mediated enhancement of fiber numerical aperture,” Opt. Lett. 38(13), 2253–2255 (2013).
[Crossref] [PubMed]

S. Hu, P. Yan, K. Maslov, J.-M. Lee, and L. V. Wang, “Intravital imaging of amyloid plaques in a transgenic mouse model using optical-resolution photoacoustic microscopy,” Opt. Lett. 34(24), 3899–3901 (2009).
[Crossref] [PubMed]

S. Hu, K. Maslov, and L. V. Wang, “Second-generation optical-resolution photoacoustic microscopy with improved sensitivity and speed,” Opt. Lett. 36(7), 1134–1136 (2011).
[Crossref] [PubMed]

Rep. Prog. Phys. (1)

P. N. T. Wells, “Ultrasonic imaging of the human body,” Rep. Prog. Phys. 62(5), 671–722 (1999).
[Crossref]

Science (1)

L. V. Wang and S. Hu, “Photoacoustic Tomography: In Vivo Imaging from Organelles to Organs,” Science 335(6075), 1458–1462 (2012).
[Crossref] [PubMed]

Sensors (Basel) (1)

M. Borecki, M. L. Korwin-Pawlowski, M. Beblowska, J. Szmidt, and A. Jakubowski, “Optoelectronic Capillary Sensors in Microfluidic and Point-of-Care Instrumentation,” Sensors (Basel) 10(4), 3771–3797 (2010).
[Crossref] [PubMed]

TrAC, Trends Analyt. Chem. (1)

O. S. Wolfbeis, “Capillary waveguide sensors,” TrAC, Trends Analyt. Chem. 15(6), 225–232 (1996).
[Crossref]

Other (3)

B. E. A. Saleh and M. C. Teich, Fundamentals of Photonics (Wiley, 2013).

D. T. Blackstock, Fundamentals of Physical Acoustics (John Wiley & Sons, 2000).

O. Simandoux, “Photoacoustic imaging: contributions to optical-resolution photoacoustic endoscopy and experimental investigation of thermal nonlinearity,” PhD thesis, Université Paris Diderot Paris 7 (2015).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1 Capillary waveguide (CWG): (a) Light escaping the CWG: a closer look to the silica annular part show the speckle diffraction pattern characteristic of multimode waveguides. Scale bar 500 μm; (b) Schematic of the side cross–sectional view of a CWG: the silica annular part of the CWG has a refractive index n2 higher than the cladding (n1) and the hollow core (n3, usually air or water), so light can be guided by total internal reflection. The hollow core adds a degree of freedom to this kind of waveguides respect to common optical fibers. The overall diameter of the CWG is 330 μm. The cladding is 10 μm-thick. The remaining part is composed of the silica part and the hollow core. In this work we used inner diameters of 150 μm (silica part 76.5 μm-thick) and 100 μm (silica part 106.5 μm-thick).
Fig. 2
Fig. 2 Experimental optical setup: The beam is expanded by the telescope formed by lenses OBJ1-L1 and is split in two arms by the polarizing beam splitter PBS: the calibration arm and the imaging arm. The calibration arm beam is focused on the capillary waveguide (CWG) by the objective OBJ2. The output of the capillary is imaged on the CMOS sensor through the 4f imaging system OBJ3-L4. The imaging arm, used as a reference beam, is combined with the image through the non-polarizing beam splitter BS2 generating a hologram. The phase conjugate beam is generated by displacing the calculated phase pattern on the SLM and the reference beam and is redirected back in CWG by BS2. The imaging system OBJ2-L5 and the beam splitter BS1 allow to check the generation of the phase conjugated focused spot on the CCD camera. The delay line and the half wave plates (λ/2) are used to optimize the quality of the digital hologram.
Fig. 3
Fig. 3 The shaped laser beam coming from the SLM is coupled back into the capillary waveguide and creates a sharp focus spot on the sample side. The absorption of nanosecond laser pulse by the sample results in a photoacoustic wave that is guided backwards to the proximal side by the water-filled capillary core, used as an acoustic waveguide. The glass slide is used to deflect the ultrasound (US) signal towards the US transducer. The red dashed line shows the separation between proximal side and sample side. The imaging tip is free of any optical element or transducer, allowing minimally invasive endoscopy.
Fig. 4
Fig. 4 Digital phase conjugation through CWG: (a) During the calibration step, when light is focused directly in the silica part of the CWG, the light gets coupled to the propagation modes of the optical waveguide, so the optical field that exits the CWG on the other side will have a maximum spatial frequency given by the NA of the CWG. The field can be phase conjugated by using an SLM and sent back in the same location, forming a sharp focus; (b) Calibrating the endoscope in several positions it is possible to focus and scan a focus spot with a FWHM = 1.25 μm in a regular grid; (c) Focusing on the hollow core of the CWG, light cannot be coupled into the silica waveguide: light with low propagation angles is reflected better than the one with high angles, which gets lost into radiation modes. The field that exits the CWG has a small spatial spectrum, so the phase conjugated spot has a NA lower than the one of the CWG; (d) Focusing and scanning of a focus spot with a FWHM = 8 μm at the center of CWG; (e) Focusing in a plane at some distance from the capillary facet, it is possible to couple light in the silica part of the CWG even when the objective is focusing at the center of the CWG; (f) A 1.5 μm focused spot is scanned in a regular grid over a 130 × 130 µm2 field of view in a plane 500 μm away from the facet of the CWG. The center of the grid corresponds to the center of the CWG. The elongated shape of the spots on the sides of the grid is given by a not perfect collection of the light during the calibration step. The calibration beam is partially coupled into the CWG due to the working distance and its relative position respect to the CWG. This affects the NA of the spot that can be phase conjugated. (b), (d) and (f) were formed superimposing images of spots focusing at different locations. The exposure time of (d) is 10 times the one used to acquire (b). Scale bars are 50 μm.
Fig. 5
Fig. 5 Demonstration of high resolution fluorescence imaging through the CWG: (a) Fluorescence image of 1.5 μm beads in a plane 100 μm away from the CWG facet. The sample is placed in front of the silica part of the CWG in order to maximize resolution and signal collection. The FWHM of the spot is 1.5 μm and the scanning step is 0.31 μm; (b) white light optical image of the sample; (c) cross-sectional plot along the red dashed line in (a) shows that two beads 2.2 μm far apart were completely resolved, giving an upper limit for the resolution of the fluorescence endoscope of about 2 μm. Scale bar are 10 μm.
Fig. 6
Fig. 6 Collection efficiency of the CWG as a function of the working distance. Light is focused using DPC on a fluorescent bead and collected through the CWG. To generate a point in the curve, all the collected signal was integrated. Focus spots can be created very far away from the CWG, but the quality of the fluorescence images degrades due to decrease in collection efficiency.
Fig. 7
Fig. 7 Characterization of photoacoustic signal collection using the CWG: (a) Photoacoustic signals acquired placing the sample at different distances from the CWG tip. Each position along the y-axis corresponds to a different acquisition. (b) Spectral components of the signals shown in (a). The pulse repetition rate of the laser was set to 200 Hz. The pulse energy at each phase conjugated spot was estimated at 500 nJ/pulse.
Fig. 8
Fig. 8 Optical resolution photoacoustic imaging through CWG. (a) A black nylon thread (30 µm in diameter) was used as absorber. (b) Digital phase conjugation was used to digitally focus and scan a pulsed laser beam over a field of view of 220 × 220 µm2. At a working distance (WD) of 50 µm it was possible to obtain an image of the thread with an SNR of 10. The two arrows indicate two areas where the collection was limited by the proximity of the sample to the CWG. (c) The cross-section of (b) shows a transition from background to signal between 2 and 3 pixels, giving an upper limit for the resolution around 10 µm. At the center of the CWG in fact, for short WDs the phase conjugated spot has a low numerical aperture. (d) Optical resolution photoacoustic image of the same sample at a WD = 1000 µm. Due to the distance, the collection is more homogeneous within the whole field of view, but the SNR decreases. Since at high WD it is possible to scan with the same high resolution in the entire imaging plane, the resolution obtained in this case improves, with a transition from background to signal between 1 and 2 pixels, as shown in (e). Scale bars are 50 µm.

Metrics