Abstract

Previously, we revealed that a linear gradient line source illumination (LGLSI) geometry could work with advanced diffusion models to recover the sample optical properties at wavelengths where sample absorption and reduced scattering were comparable. In this study, we employed the LGLSI geometry with a broadband light source and utilized the spectral analysis to determine the broadband absorption and scattering spectra of turbid samples in the wavelength range from 650 to 1350 nm. The performance of the LGLSI δ-P1 diffusion model based spectral analysis was evaluated using liquid phantoms, and it was found that the sample optical properties could be properly recovered even at wavelengths above 1000 nm where μs' to μa ratios were in the range between 1 to 20. Finally, we will demonstrate the use of our system for recovering the 650 to 1350 nm absorption and scattering spectra of in-vivo human skin. We expect this system can be applied to study deep vessel dilation induced hemoglobin concentration variation and determine the water and lipid concentrations of in-vivo skin in clinical settings in the future.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Chromophore concentrations, absorption and scattering properties of human skin in-vivo

Sheng-Hao Tseng, Paulo Bargo, Anthony Durkin, and Nikiforos Kollias
Opt. Express 17(17) 14599-14617 (2009)

References

  • View by:
  • |
  • |
  • |

  1. A. Cerussi, N. Shah, D. Hsiang, A. Durkin, J. Butler, and B. J. Tromberg, “In vivo absorption, scattering, and physiologic properties of 58 malignant breast tumors determined by broadband diffuse optical spectroscopy,” J. Biomed. Opt. 11(4), 044005 (2006).
    [Crossref] [PubMed]
  2. E. Gratton, V. Toronov, U. Wolf, M. Wolf, and A. Webb, “Measurement of brain activity by near-infrared light,” J. Biomed. Opt. 10(1), 011008 (2005).
    [Crossref] [PubMed]
  3. N. Kollias, A. Baqer, and I. Sadiq, “Minimum erythema dose determination in individuals of skin type V and VI with diffuse reflectance spectroscopy,” Photodermatol. Photoimmunol. Photomed. 10(6), 249–254 (1994).
    [PubMed]
  4. S. H. Tseng, C. K. Hsu, J. Yu-Yun Lee, S. Y. Tzeng, W. R. Chen, and Y. K. Liaw, “Noninvasive evaluation of collagen and hemoglobin contents and scattering property of in vivo keloid scars and normal skin using diffuse reflectance spectroscopy: pilot study,” J. Biomed. Opt. 17(7), 077005 (2012).
    [Crossref] [PubMed]
  5. R. C. Haskell, L. O. Svaasand, T. T. Tsay, T. C. Feng, M. S. McAdams, and B. J. Tromberg, “Boundary Conditions for the Diffusion Equation in Radiative Transfer,” J. Opt. Soc. Am. A 11(10), 2727–2741 (1994).
    [Crossref] [PubMed]
  6. A. Kienle and M. S. Patterson, “Improved solutions of the steady-state and the time-resolved diffusion equations for reflectance from a semi-infinite turbid medium,” J. Opt. Soc. Am. A 14(1), 246–254 (1997).
    [Crossref] [PubMed]
  7. A. Amelink, H. J. C. M. Sterenborg, M. P. L. Bard, and S. A. Burgers, “In vivo measurement of the local optical properties of tissue by use of differential path-length spectroscopy,” Opt. Lett. 29(10), 1087–1089 (2004).
    [Crossref] [PubMed]
  8. J. E. Bender, K. Vishwanath, L. K. Moore, J. Q. Brown, V. Chang, G. M. Palmer, and N. Ramanujam, “A robust Monte Carlo model for the extraction of biological absorption and scattering in vivo,” IEEE Trans. Biomed. Eng. 56(4), 960–968 (2009).
    [Crossref] [PubMed]
  9. C. K. Hayakawa, B. Y. Hill, J. S. You, F. Bevilacqua, J. Spanier, and V. Venugopalan, “Use of the delta-P-1 approximation for recovery of optical absorption, scattering, and asymmetry coefficients in turbid media,” Appl. Opt. 43(24), 4677–4684 (2004).
    [Crossref] [PubMed]
  10. E. L. Hull and T. H. Foster, “Steady-state reflectance spectroscopy in the P-3 approximation,” J. Opt. Soc. Am. A 18(3), 584–599 (2001).
    [Crossref]
  11. M. W. Lee, C. H. Hung, J. L. Liao, N. Y. Cheng, M. F. Hou, and S. H. Tseng, “A linear gradient line source facilitates the use of diffusion models with high order approximation for efficient, accurate turbid sample optical properties recovery,” Biomed. Opt. Express 5(10), 3628–3639 (2014).
    [Crossref] [PubMed]
  12. S. L. Jacques, R. Samatham, and N. Choudhury, “Rapid spectral analysis for spectral imaging,” Biomed. Opt. Express 1(1), 157–164 (2010).
    [Crossref] [PubMed]
  13. N. Rajaram, T. J. Aramil, K. Lee, J. S. Reichenberg, T. H. Nguyen, and J. W. Tunnell, “Design and validation of a clinical instrument for spectral diagnosis of cutaneous malignancy,” Appl. Opt. 49(2), 142–152 (2010).
    [Crossref] [PubMed]
  14. D. Yudovsky and L. Pilon, “Rapid and accurate estimation of blood saturation, melanin content, and epidermis thickness from spectral diffuse reflectance,” Appl. Opt. 49(10), 1707–1719 (2010).
    [Crossref] [PubMed]
  15. A. N. Bashkatov, E. A. Genina, V. I. Kochubey, and V. V. Tuchin, “Optical properties of human skin, subcutaneous and mucous tissues in the wavelength range from 400 to 2000 nm,” J. Phys. D 38(15), 2543–2555 (2005).
    [Crossref]
  16. K. Martin, “In vivo measurements of water in skin by near-infrared reflectance,” Appl. Spectrosc. 52(7), 1001–1007 (1998).
    [Crossref]
  17. G. Nishimura, I. Kida, and M. Tamura, “Characterization of optical parameters with a human forearm at the region from 1.15 to 1.52 µm using diffuse reflectance measurements,” Phys. Med. Biol. 51(11), 2997–3011 (2006).
    [Crossref] [PubMed]
  18. L. L. Randeberg, E. L. Larsen, and L. O. Svaasand, “Characterization of vascular structures and skin bruises using hyperspectral imaging, image analysis and diffusion theory,” J. Biophotonics 3(1-2), 53–65 (2010).
    [Crossref] [PubMed]
  19. R. H. Wilson, K. P. Nadeau, F. B. Jaworski, R. Rowland, J. Q. Nguyen, C. Crouzet, R. B. Saager, B. Choi, B. J. Tromberg, and A. J. Durkin, “Quantitative short-wave infrared multispectral imaging of in vivo tissue optical properties,” J. Biomed. Opt. 19(8), 086011 (2014).
    [Crossref] [PubMed]
  20. R. Nachabé, B. H. Hendriks, A. E. Desjardins, M. van der Voort, M. B. van der Mark, and H. J. Sterenborg, “Estimation of lipid and water concentrations in scattering media with diffuse optical spectroscopy from 900 to 1,600 nm,” J. Biomed. Opt. 15(3), 037015 (2010).
    [Crossref] [PubMed]
  21. R. Nachabé, B. H. Hendriks, M. van der Voort, A. E. Desjardins, and H. J. Sterenborg, “Estimation of biological chromophores using diffuse optical spectroscopy: benefit of extending the UV-VIS wavelength range to include 1000 to 1600 nm,” Biomed. Opt. Express 1(5), 1432–1442 (2010).
    [Crossref] [PubMed]
  22. S. A. Carp, S. A. Prahl, and V. Venugopalan, “Radiative transport in the delta-P-1 approximation: accuracy of fluence rate and optical penetration depth predictions in turbid semi-infinite media,” J. Biomed. Opt. 9(3), 632–647 (2004).
    [Crossref] [PubMed]
  23. S. H. Tseng, P. Bargo, A. Durkin, and N. Kollias, “Chromophore concentrations, absorption and scattering properties of human skin in-vivo,” Opt. Express 17(17), 14599–14617 (2009).
    [Crossref] [PubMed]
  24. Oregon Medical Laser Center,” http:// http://omlc.org/spectra/index.html .
  25. S. A. Prahl, M. J. C. van Gemert, and A. J. Welch, “Determining the optical properties of turbid mediaby using the adding-doubling method,” Appl. Opt. 32(4), 559–568 (1993).
    [Crossref] [PubMed]
  26. S. H. Tseng, A. Grant, and A. J. Durkin, “In vivo determination of skin near-infrared optical properties using diffuse optical spectroscopy,” J. Biomed. Opt. 13(1), 014016 (2008).
    [Crossref] [PubMed]

2014 (2)

M. W. Lee, C. H. Hung, J. L. Liao, N. Y. Cheng, M. F. Hou, and S. H. Tseng, “A linear gradient line source facilitates the use of diffusion models with high order approximation for efficient, accurate turbid sample optical properties recovery,” Biomed. Opt. Express 5(10), 3628–3639 (2014).
[Crossref] [PubMed]

R. H. Wilson, K. P. Nadeau, F. B. Jaworski, R. Rowland, J. Q. Nguyen, C. Crouzet, R. B. Saager, B. Choi, B. J. Tromberg, and A. J. Durkin, “Quantitative short-wave infrared multispectral imaging of in vivo tissue optical properties,” J. Biomed. Opt. 19(8), 086011 (2014).
[Crossref] [PubMed]

2012 (1)

S. H. Tseng, C. K. Hsu, J. Yu-Yun Lee, S. Y. Tzeng, W. R. Chen, and Y. K. Liaw, “Noninvasive evaluation of collagen and hemoglobin contents and scattering property of in vivo keloid scars and normal skin using diffuse reflectance spectroscopy: pilot study,” J. Biomed. Opt. 17(7), 077005 (2012).
[Crossref] [PubMed]

2010 (6)

2009 (2)

S. H. Tseng, P. Bargo, A. Durkin, and N. Kollias, “Chromophore concentrations, absorption and scattering properties of human skin in-vivo,” Opt. Express 17(17), 14599–14617 (2009).
[Crossref] [PubMed]

J. E. Bender, K. Vishwanath, L. K. Moore, J. Q. Brown, V. Chang, G. M. Palmer, and N. Ramanujam, “A robust Monte Carlo model for the extraction of biological absorption and scattering in vivo,” IEEE Trans. Biomed. Eng. 56(4), 960–968 (2009).
[Crossref] [PubMed]

2008 (1)

S. H. Tseng, A. Grant, and A. J. Durkin, “In vivo determination of skin near-infrared optical properties using diffuse optical spectroscopy,” J. Biomed. Opt. 13(1), 014016 (2008).
[Crossref] [PubMed]

2006 (2)

G. Nishimura, I. Kida, and M. Tamura, “Characterization of optical parameters with a human forearm at the region from 1.15 to 1.52 µm using diffuse reflectance measurements,” Phys. Med. Biol. 51(11), 2997–3011 (2006).
[Crossref] [PubMed]

A. Cerussi, N. Shah, D. Hsiang, A. Durkin, J. Butler, and B. J. Tromberg, “In vivo absorption, scattering, and physiologic properties of 58 malignant breast tumors determined by broadband diffuse optical spectroscopy,” J. Biomed. Opt. 11(4), 044005 (2006).
[Crossref] [PubMed]

2005 (2)

E. Gratton, V. Toronov, U. Wolf, M. Wolf, and A. Webb, “Measurement of brain activity by near-infrared light,” J. Biomed. Opt. 10(1), 011008 (2005).
[Crossref] [PubMed]

A. N. Bashkatov, E. A. Genina, V. I. Kochubey, and V. V. Tuchin, “Optical properties of human skin, subcutaneous and mucous tissues in the wavelength range from 400 to 2000 nm,” J. Phys. D 38(15), 2543–2555 (2005).
[Crossref]

2004 (3)

2001 (1)

1998 (1)

1997 (1)

1994 (2)

N. Kollias, A. Baqer, and I. Sadiq, “Minimum erythema dose determination in individuals of skin type V and VI with diffuse reflectance spectroscopy,” Photodermatol. Photoimmunol. Photomed. 10(6), 249–254 (1994).
[PubMed]

R. C. Haskell, L. O. Svaasand, T. T. Tsay, T. C. Feng, M. S. McAdams, and B. J. Tromberg, “Boundary Conditions for the Diffusion Equation in Radiative Transfer,” J. Opt. Soc. Am. A 11(10), 2727–2741 (1994).
[Crossref] [PubMed]

1993 (1)

Amelink, A.

Aramil, T. J.

Baqer, A.

N. Kollias, A. Baqer, and I. Sadiq, “Minimum erythema dose determination in individuals of skin type V and VI with diffuse reflectance spectroscopy,” Photodermatol. Photoimmunol. Photomed. 10(6), 249–254 (1994).
[PubMed]

Bard, M. P. L.

Bargo, P.

Bashkatov, A. N.

A. N. Bashkatov, E. A. Genina, V. I. Kochubey, and V. V. Tuchin, “Optical properties of human skin, subcutaneous and mucous tissues in the wavelength range from 400 to 2000 nm,” J. Phys. D 38(15), 2543–2555 (2005).
[Crossref]

Bender, J. E.

J. E. Bender, K. Vishwanath, L. K. Moore, J. Q. Brown, V. Chang, G. M. Palmer, and N. Ramanujam, “A robust Monte Carlo model for the extraction of biological absorption and scattering in vivo,” IEEE Trans. Biomed. Eng. 56(4), 960–968 (2009).
[Crossref] [PubMed]

Bevilacqua, F.

Brown, J. Q.

J. E. Bender, K. Vishwanath, L. K. Moore, J. Q. Brown, V. Chang, G. M. Palmer, and N. Ramanujam, “A robust Monte Carlo model for the extraction of biological absorption and scattering in vivo,” IEEE Trans. Biomed. Eng. 56(4), 960–968 (2009).
[Crossref] [PubMed]

Burgers, S. A.

Butler, J.

A. Cerussi, N. Shah, D. Hsiang, A. Durkin, J. Butler, and B. J. Tromberg, “In vivo absorption, scattering, and physiologic properties of 58 malignant breast tumors determined by broadband diffuse optical spectroscopy,” J. Biomed. Opt. 11(4), 044005 (2006).
[Crossref] [PubMed]

Carp, S. A.

S. A. Carp, S. A. Prahl, and V. Venugopalan, “Radiative transport in the delta-P-1 approximation: accuracy of fluence rate and optical penetration depth predictions in turbid semi-infinite media,” J. Biomed. Opt. 9(3), 632–647 (2004).
[Crossref] [PubMed]

Cerussi, A.

A. Cerussi, N. Shah, D. Hsiang, A. Durkin, J. Butler, and B. J. Tromberg, “In vivo absorption, scattering, and physiologic properties of 58 malignant breast tumors determined by broadband diffuse optical spectroscopy,” J. Biomed. Opt. 11(4), 044005 (2006).
[Crossref] [PubMed]

Chang, V.

J. E. Bender, K. Vishwanath, L. K. Moore, J. Q. Brown, V. Chang, G. M. Palmer, and N. Ramanujam, “A robust Monte Carlo model for the extraction of biological absorption and scattering in vivo,” IEEE Trans. Biomed. Eng. 56(4), 960–968 (2009).
[Crossref] [PubMed]

Chen, W. R.

S. H. Tseng, C. K. Hsu, J. Yu-Yun Lee, S. Y. Tzeng, W. R. Chen, and Y. K. Liaw, “Noninvasive evaluation of collagen and hemoglobin contents and scattering property of in vivo keloid scars and normal skin using diffuse reflectance spectroscopy: pilot study,” J. Biomed. Opt. 17(7), 077005 (2012).
[Crossref] [PubMed]

Cheng, N. Y.

Choi, B.

R. H. Wilson, K. P. Nadeau, F. B. Jaworski, R. Rowland, J. Q. Nguyen, C. Crouzet, R. B. Saager, B. Choi, B. J. Tromberg, and A. J. Durkin, “Quantitative short-wave infrared multispectral imaging of in vivo tissue optical properties,” J. Biomed. Opt. 19(8), 086011 (2014).
[Crossref] [PubMed]

Choudhury, N.

Crouzet, C.

R. H. Wilson, K. P. Nadeau, F. B. Jaworski, R. Rowland, J. Q. Nguyen, C. Crouzet, R. B. Saager, B. Choi, B. J. Tromberg, and A. J. Durkin, “Quantitative short-wave infrared multispectral imaging of in vivo tissue optical properties,” J. Biomed. Opt. 19(8), 086011 (2014).
[Crossref] [PubMed]

Desjardins, A. E.

R. Nachabé, B. H. Hendriks, A. E. Desjardins, M. van der Voort, M. B. van der Mark, and H. J. Sterenborg, “Estimation of lipid and water concentrations in scattering media with diffuse optical spectroscopy from 900 to 1,600 nm,” J. Biomed. Opt. 15(3), 037015 (2010).
[Crossref] [PubMed]

R. Nachabé, B. H. Hendriks, M. van der Voort, A. E. Desjardins, and H. J. Sterenborg, “Estimation of biological chromophores using diffuse optical spectroscopy: benefit of extending the UV-VIS wavelength range to include 1000 to 1600 nm,” Biomed. Opt. Express 1(5), 1432–1442 (2010).
[Crossref] [PubMed]

Durkin, A.

S. H. Tseng, P. Bargo, A. Durkin, and N. Kollias, “Chromophore concentrations, absorption and scattering properties of human skin in-vivo,” Opt. Express 17(17), 14599–14617 (2009).
[Crossref] [PubMed]

A. Cerussi, N. Shah, D. Hsiang, A. Durkin, J. Butler, and B. J. Tromberg, “In vivo absorption, scattering, and physiologic properties of 58 malignant breast tumors determined by broadband diffuse optical spectroscopy,” J. Biomed. Opt. 11(4), 044005 (2006).
[Crossref] [PubMed]

Durkin, A. J.

R. H. Wilson, K. P. Nadeau, F. B. Jaworski, R. Rowland, J. Q. Nguyen, C. Crouzet, R. B. Saager, B. Choi, B. J. Tromberg, and A. J. Durkin, “Quantitative short-wave infrared multispectral imaging of in vivo tissue optical properties,” J. Biomed. Opt. 19(8), 086011 (2014).
[Crossref] [PubMed]

S. H. Tseng, A. Grant, and A. J. Durkin, “In vivo determination of skin near-infrared optical properties using diffuse optical spectroscopy,” J. Biomed. Opt. 13(1), 014016 (2008).
[Crossref] [PubMed]

Feng, T. C.

Foster, T. H.

Genina, E. A.

A. N. Bashkatov, E. A. Genina, V. I. Kochubey, and V. V. Tuchin, “Optical properties of human skin, subcutaneous and mucous tissues in the wavelength range from 400 to 2000 nm,” J. Phys. D 38(15), 2543–2555 (2005).
[Crossref]

Grant, A.

S. H. Tseng, A. Grant, and A. J. Durkin, “In vivo determination of skin near-infrared optical properties using diffuse optical spectroscopy,” J. Biomed. Opt. 13(1), 014016 (2008).
[Crossref] [PubMed]

Gratton, E.

E. Gratton, V. Toronov, U. Wolf, M. Wolf, and A. Webb, “Measurement of brain activity by near-infrared light,” J. Biomed. Opt. 10(1), 011008 (2005).
[Crossref] [PubMed]

Haskell, R. C.

Hayakawa, C. K.

Hendriks, B. H.

R. Nachabé, B. H. Hendriks, M. van der Voort, A. E. Desjardins, and H. J. Sterenborg, “Estimation of biological chromophores using diffuse optical spectroscopy: benefit of extending the UV-VIS wavelength range to include 1000 to 1600 nm,” Biomed. Opt. Express 1(5), 1432–1442 (2010).
[Crossref] [PubMed]

R. Nachabé, B. H. Hendriks, A. E. Desjardins, M. van der Voort, M. B. van der Mark, and H. J. Sterenborg, “Estimation of lipid and water concentrations in scattering media with diffuse optical spectroscopy from 900 to 1,600 nm,” J. Biomed. Opt. 15(3), 037015 (2010).
[Crossref] [PubMed]

Hill, B. Y.

Hou, M. F.

Hsiang, D.

A. Cerussi, N. Shah, D. Hsiang, A. Durkin, J. Butler, and B. J. Tromberg, “In vivo absorption, scattering, and physiologic properties of 58 malignant breast tumors determined by broadband diffuse optical spectroscopy,” J. Biomed. Opt. 11(4), 044005 (2006).
[Crossref] [PubMed]

Hsu, C. K.

S. H. Tseng, C. K. Hsu, J. Yu-Yun Lee, S. Y. Tzeng, W. R. Chen, and Y. K. Liaw, “Noninvasive evaluation of collagen and hemoglobin contents and scattering property of in vivo keloid scars and normal skin using diffuse reflectance spectroscopy: pilot study,” J. Biomed. Opt. 17(7), 077005 (2012).
[Crossref] [PubMed]

Hull, E. L.

Hung, C. H.

Jacques, S. L.

Jaworski, F. B.

R. H. Wilson, K. P. Nadeau, F. B. Jaworski, R. Rowland, J. Q. Nguyen, C. Crouzet, R. B. Saager, B. Choi, B. J. Tromberg, and A. J. Durkin, “Quantitative short-wave infrared multispectral imaging of in vivo tissue optical properties,” J. Biomed. Opt. 19(8), 086011 (2014).
[Crossref] [PubMed]

Kida, I.

G. Nishimura, I. Kida, and M. Tamura, “Characterization of optical parameters with a human forearm at the region from 1.15 to 1.52 µm using diffuse reflectance measurements,” Phys. Med. Biol. 51(11), 2997–3011 (2006).
[Crossref] [PubMed]

Kienle, A.

Kochubey, V. I.

A. N. Bashkatov, E. A. Genina, V. I. Kochubey, and V. V. Tuchin, “Optical properties of human skin, subcutaneous and mucous tissues in the wavelength range from 400 to 2000 nm,” J. Phys. D 38(15), 2543–2555 (2005).
[Crossref]

Kollias, N.

S. H. Tseng, P. Bargo, A. Durkin, and N. Kollias, “Chromophore concentrations, absorption and scattering properties of human skin in-vivo,” Opt. Express 17(17), 14599–14617 (2009).
[Crossref] [PubMed]

N. Kollias, A. Baqer, and I. Sadiq, “Minimum erythema dose determination in individuals of skin type V and VI with diffuse reflectance spectroscopy,” Photodermatol. Photoimmunol. Photomed. 10(6), 249–254 (1994).
[PubMed]

Larsen, E. L.

L. L. Randeberg, E. L. Larsen, and L. O. Svaasand, “Characterization of vascular structures and skin bruises using hyperspectral imaging, image analysis and diffusion theory,” J. Biophotonics 3(1-2), 53–65 (2010).
[Crossref] [PubMed]

Lee, K.

Lee, M. W.

Liao, J. L.

Liaw, Y. K.

S. H. Tseng, C. K. Hsu, J. Yu-Yun Lee, S. Y. Tzeng, W. R. Chen, and Y. K. Liaw, “Noninvasive evaluation of collagen and hemoglobin contents and scattering property of in vivo keloid scars and normal skin using diffuse reflectance spectroscopy: pilot study,” J. Biomed. Opt. 17(7), 077005 (2012).
[Crossref] [PubMed]

Martin, K.

McAdams, M. S.

Moore, L. K.

J. E. Bender, K. Vishwanath, L. K. Moore, J. Q. Brown, V. Chang, G. M. Palmer, and N. Ramanujam, “A robust Monte Carlo model for the extraction of biological absorption and scattering in vivo,” IEEE Trans. Biomed. Eng. 56(4), 960–968 (2009).
[Crossref] [PubMed]

Nachabé, R.

R. Nachabé, B. H. Hendriks, A. E. Desjardins, M. van der Voort, M. B. van der Mark, and H. J. Sterenborg, “Estimation of lipid and water concentrations in scattering media with diffuse optical spectroscopy from 900 to 1,600 nm,” J. Biomed. Opt. 15(3), 037015 (2010).
[Crossref] [PubMed]

R. Nachabé, B. H. Hendriks, M. van der Voort, A. E. Desjardins, and H. J. Sterenborg, “Estimation of biological chromophores using diffuse optical spectroscopy: benefit of extending the UV-VIS wavelength range to include 1000 to 1600 nm,” Biomed. Opt. Express 1(5), 1432–1442 (2010).
[Crossref] [PubMed]

Nadeau, K. P.

R. H. Wilson, K. P. Nadeau, F. B. Jaworski, R. Rowland, J. Q. Nguyen, C. Crouzet, R. B. Saager, B. Choi, B. J. Tromberg, and A. J. Durkin, “Quantitative short-wave infrared multispectral imaging of in vivo tissue optical properties,” J. Biomed. Opt. 19(8), 086011 (2014).
[Crossref] [PubMed]

Nguyen, J. Q.

R. H. Wilson, K. P. Nadeau, F. B. Jaworski, R. Rowland, J. Q. Nguyen, C. Crouzet, R. B. Saager, B. Choi, B. J. Tromberg, and A. J. Durkin, “Quantitative short-wave infrared multispectral imaging of in vivo tissue optical properties,” J. Biomed. Opt. 19(8), 086011 (2014).
[Crossref] [PubMed]

Nguyen, T. H.

Nishimura, G.

G. Nishimura, I. Kida, and M. Tamura, “Characterization of optical parameters with a human forearm at the region from 1.15 to 1.52 µm using diffuse reflectance measurements,” Phys. Med. Biol. 51(11), 2997–3011 (2006).
[Crossref] [PubMed]

Palmer, G. M.

J. E. Bender, K. Vishwanath, L. K. Moore, J. Q. Brown, V. Chang, G. M. Palmer, and N. Ramanujam, “A robust Monte Carlo model for the extraction of biological absorption and scattering in vivo,” IEEE Trans. Biomed. Eng. 56(4), 960–968 (2009).
[Crossref] [PubMed]

Patterson, M. S.

Pilon, L.

Prahl, S. A.

S. A. Carp, S. A. Prahl, and V. Venugopalan, “Radiative transport in the delta-P-1 approximation: accuracy of fluence rate and optical penetration depth predictions in turbid semi-infinite media,” J. Biomed. Opt. 9(3), 632–647 (2004).
[Crossref] [PubMed]

S. A. Prahl, M. J. C. van Gemert, and A. J. Welch, “Determining the optical properties of turbid mediaby using the adding-doubling method,” Appl. Opt. 32(4), 559–568 (1993).
[Crossref] [PubMed]

Rajaram, N.

Ramanujam, N.

J. E. Bender, K. Vishwanath, L. K. Moore, J. Q. Brown, V. Chang, G. M. Palmer, and N. Ramanujam, “A robust Monte Carlo model for the extraction of biological absorption and scattering in vivo,” IEEE Trans. Biomed. Eng. 56(4), 960–968 (2009).
[Crossref] [PubMed]

Randeberg, L. L.

L. L. Randeberg, E. L. Larsen, and L. O. Svaasand, “Characterization of vascular structures and skin bruises using hyperspectral imaging, image analysis and diffusion theory,” J. Biophotonics 3(1-2), 53–65 (2010).
[Crossref] [PubMed]

Reichenberg, J. S.

Rowland, R.

R. H. Wilson, K. P. Nadeau, F. B. Jaworski, R. Rowland, J. Q. Nguyen, C. Crouzet, R. B. Saager, B. Choi, B. J. Tromberg, and A. J. Durkin, “Quantitative short-wave infrared multispectral imaging of in vivo tissue optical properties,” J. Biomed. Opt. 19(8), 086011 (2014).
[Crossref] [PubMed]

Saager, R. B.

R. H. Wilson, K. P. Nadeau, F. B. Jaworski, R. Rowland, J. Q. Nguyen, C. Crouzet, R. B. Saager, B. Choi, B. J. Tromberg, and A. J. Durkin, “Quantitative short-wave infrared multispectral imaging of in vivo tissue optical properties,” J. Biomed. Opt. 19(8), 086011 (2014).
[Crossref] [PubMed]

Sadiq, I.

N. Kollias, A. Baqer, and I. Sadiq, “Minimum erythema dose determination in individuals of skin type V and VI with diffuse reflectance spectroscopy,” Photodermatol. Photoimmunol. Photomed. 10(6), 249–254 (1994).
[PubMed]

Samatham, R.

Shah, N.

A. Cerussi, N. Shah, D. Hsiang, A. Durkin, J. Butler, and B. J. Tromberg, “In vivo absorption, scattering, and physiologic properties of 58 malignant breast tumors determined by broadband diffuse optical spectroscopy,” J. Biomed. Opt. 11(4), 044005 (2006).
[Crossref] [PubMed]

Spanier, J.

Sterenborg, H. J.

R. Nachabé, B. H. Hendriks, M. van der Voort, A. E. Desjardins, and H. J. Sterenborg, “Estimation of biological chromophores using diffuse optical spectroscopy: benefit of extending the UV-VIS wavelength range to include 1000 to 1600 nm,” Biomed. Opt. Express 1(5), 1432–1442 (2010).
[Crossref] [PubMed]

R. Nachabé, B. H. Hendriks, A. E. Desjardins, M. van der Voort, M. B. van der Mark, and H. J. Sterenborg, “Estimation of lipid and water concentrations in scattering media with diffuse optical spectroscopy from 900 to 1,600 nm,” J. Biomed. Opt. 15(3), 037015 (2010).
[Crossref] [PubMed]

Sterenborg, H. J. C. M.

Svaasand, L. O.

L. L. Randeberg, E. L. Larsen, and L. O. Svaasand, “Characterization of vascular structures and skin bruises using hyperspectral imaging, image analysis and diffusion theory,” J. Biophotonics 3(1-2), 53–65 (2010).
[Crossref] [PubMed]

R. C. Haskell, L. O. Svaasand, T. T. Tsay, T. C. Feng, M. S. McAdams, and B. J. Tromberg, “Boundary Conditions for the Diffusion Equation in Radiative Transfer,” J. Opt. Soc. Am. A 11(10), 2727–2741 (1994).
[Crossref] [PubMed]

Tamura, M.

G. Nishimura, I. Kida, and M. Tamura, “Characterization of optical parameters with a human forearm at the region from 1.15 to 1.52 µm using diffuse reflectance measurements,” Phys. Med. Biol. 51(11), 2997–3011 (2006).
[Crossref] [PubMed]

Toronov, V.

E. Gratton, V. Toronov, U. Wolf, M. Wolf, and A. Webb, “Measurement of brain activity by near-infrared light,” J. Biomed. Opt. 10(1), 011008 (2005).
[Crossref] [PubMed]

Tromberg, B. J.

R. H. Wilson, K. P. Nadeau, F. B. Jaworski, R. Rowland, J. Q. Nguyen, C. Crouzet, R. B. Saager, B. Choi, B. J. Tromberg, and A. J. Durkin, “Quantitative short-wave infrared multispectral imaging of in vivo tissue optical properties,” J. Biomed. Opt. 19(8), 086011 (2014).
[Crossref] [PubMed]

A. Cerussi, N. Shah, D. Hsiang, A. Durkin, J. Butler, and B. J. Tromberg, “In vivo absorption, scattering, and physiologic properties of 58 malignant breast tumors determined by broadband diffuse optical spectroscopy,” J. Biomed. Opt. 11(4), 044005 (2006).
[Crossref] [PubMed]

R. C. Haskell, L. O. Svaasand, T. T. Tsay, T. C. Feng, M. S. McAdams, and B. J. Tromberg, “Boundary Conditions for the Diffusion Equation in Radiative Transfer,” J. Opt. Soc. Am. A 11(10), 2727–2741 (1994).
[Crossref] [PubMed]

Tsay, T. T.

Tseng, S. H.

M. W. Lee, C. H. Hung, J. L. Liao, N. Y. Cheng, M. F. Hou, and S. H. Tseng, “A linear gradient line source facilitates the use of diffusion models with high order approximation for efficient, accurate turbid sample optical properties recovery,” Biomed. Opt. Express 5(10), 3628–3639 (2014).
[Crossref] [PubMed]

S. H. Tseng, C. K. Hsu, J. Yu-Yun Lee, S. Y. Tzeng, W. R. Chen, and Y. K. Liaw, “Noninvasive evaluation of collagen and hemoglobin contents and scattering property of in vivo keloid scars and normal skin using diffuse reflectance spectroscopy: pilot study,” J. Biomed. Opt. 17(7), 077005 (2012).
[Crossref] [PubMed]

S. H. Tseng, P. Bargo, A. Durkin, and N. Kollias, “Chromophore concentrations, absorption and scattering properties of human skin in-vivo,” Opt. Express 17(17), 14599–14617 (2009).
[Crossref] [PubMed]

S. H. Tseng, A. Grant, and A. J. Durkin, “In vivo determination of skin near-infrared optical properties using diffuse optical spectroscopy,” J. Biomed. Opt. 13(1), 014016 (2008).
[Crossref] [PubMed]

Tuchin, V. V.

A. N. Bashkatov, E. A. Genina, V. I. Kochubey, and V. V. Tuchin, “Optical properties of human skin, subcutaneous and mucous tissues in the wavelength range from 400 to 2000 nm,” J. Phys. D 38(15), 2543–2555 (2005).
[Crossref]

Tunnell, J. W.

Tzeng, S. Y.

S. H. Tseng, C. K. Hsu, J. Yu-Yun Lee, S. Y. Tzeng, W. R. Chen, and Y. K. Liaw, “Noninvasive evaluation of collagen and hemoglobin contents and scattering property of in vivo keloid scars and normal skin using diffuse reflectance spectroscopy: pilot study,” J. Biomed. Opt. 17(7), 077005 (2012).
[Crossref] [PubMed]

van der Mark, M. B.

R. Nachabé, B. H. Hendriks, A. E. Desjardins, M. van der Voort, M. B. van der Mark, and H. J. Sterenborg, “Estimation of lipid and water concentrations in scattering media with diffuse optical spectroscopy from 900 to 1,600 nm,” J. Biomed. Opt. 15(3), 037015 (2010).
[Crossref] [PubMed]

van der Voort, M.

R. Nachabé, B. H. Hendriks, A. E. Desjardins, M. van der Voort, M. B. van der Mark, and H. J. Sterenborg, “Estimation of lipid and water concentrations in scattering media with diffuse optical spectroscopy from 900 to 1,600 nm,” J. Biomed. Opt. 15(3), 037015 (2010).
[Crossref] [PubMed]

R. Nachabé, B. H. Hendriks, M. van der Voort, A. E. Desjardins, and H. J. Sterenborg, “Estimation of biological chromophores using diffuse optical spectroscopy: benefit of extending the UV-VIS wavelength range to include 1000 to 1600 nm,” Biomed. Opt. Express 1(5), 1432–1442 (2010).
[Crossref] [PubMed]

van Gemert, M. J. C.

Venugopalan, V.

S. A. Carp, S. A. Prahl, and V. Venugopalan, “Radiative transport in the delta-P-1 approximation: accuracy of fluence rate and optical penetration depth predictions in turbid semi-infinite media,” J. Biomed. Opt. 9(3), 632–647 (2004).
[Crossref] [PubMed]

C. K. Hayakawa, B. Y. Hill, J. S. You, F. Bevilacqua, J. Spanier, and V. Venugopalan, “Use of the delta-P-1 approximation for recovery of optical absorption, scattering, and asymmetry coefficients in turbid media,” Appl. Opt. 43(24), 4677–4684 (2004).
[Crossref] [PubMed]

Vishwanath, K.

J. E. Bender, K. Vishwanath, L. K. Moore, J. Q. Brown, V. Chang, G. M. Palmer, and N. Ramanujam, “A robust Monte Carlo model for the extraction of biological absorption and scattering in vivo,” IEEE Trans. Biomed. Eng. 56(4), 960–968 (2009).
[Crossref] [PubMed]

Webb, A.

E. Gratton, V. Toronov, U. Wolf, M. Wolf, and A. Webb, “Measurement of brain activity by near-infrared light,” J. Biomed. Opt. 10(1), 011008 (2005).
[Crossref] [PubMed]

Welch, A. J.

Wilson, R. H.

R. H. Wilson, K. P. Nadeau, F. B. Jaworski, R. Rowland, J. Q. Nguyen, C. Crouzet, R. B. Saager, B. Choi, B. J. Tromberg, and A. J. Durkin, “Quantitative short-wave infrared multispectral imaging of in vivo tissue optical properties,” J. Biomed. Opt. 19(8), 086011 (2014).
[Crossref] [PubMed]

Wolf, M.

E. Gratton, V. Toronov, U. Wolf, M. Wolf, and A. Webb, “Measurement of brain activity by near-infrared light,” J. Biomed. Opt. 10(1), 011008 (2005).
[Crossref] [PubMed]

Wolf, U.

E. Gratton, V. Toronov, U. Wolf, M. Wolf, and A. Webb, “Measurement of brain activity by near-infrared light,” J. Biomed. Opt. 10(1), 011008 (2005).
[Crossref] [PubMed]

You, J. S.

Yudovsky, D.

Yu-Yun Lee, J.

S. H. Tseng, C. K. Hsu, J. Yu-Yun Lee, S. Y. Tzeng, W. R. Chen, and Y. K. Liaw, “Noninvasive evaluation of collagen and hemoglobin contents and scattering property of in vivo keloid scars and normal skin using diffuse reflectance spectroscopy: pilot study,” J. Biomed. Opt. 17(7), 077005 (2012).
[Crossref] [PubMed]

Appl. Opt. (4)

Appl. Spectrosc. (1)

Biomed. Opt. Express (3)

IEEE Trans. Biomed. Eng. (1)

J. E. Bender, K. Vishwanath, L. K. Moore, J. Q. Brown, V. Chang, G. M. Palmer, and N. Ramanujam, “A robust Monte Carlo model for the extraction of biological absorption and scattering in vivo,” IEEE Trans. Biomed. Eng. 56(4), 960–968 (2009).
[Crossref] [PubMed]

J. Biomed. Opt. (7)

A. Cerussi, N. Shah, D. Hsiang, A. Durkin, J. Butler, and B. J. Tromberg, “In vivo absorption, scattering, and physiologic properties of 58 malignant breast tumors determined by broadband diffuse optical spectroscopy,” J. Biomed. Opt. 11(4), 044005 (2006).
[Crossref] [PubMed]

E. Gratton, V. Toronov, U. Wolf, M. Wolf, and A. Webb, “Measurement of brain activity by near-infrared light,” J. Biomed. Opt. 10(1), 011008 (2005).
[Crossref] [PubMed]

R. H. Wilson, K. P. Nadeau, F. B. Jaworski, R. Rowland, J. Q. Nguyen, C. Crouzet, R. B. Saager, B. Choi, B. J. Tromberg, and A. J. Durkin, “Quantitative short-wave infrared multispectral imaging of in vivo tissue optical properties,” J. Biomed. Opt. 19(8), 086011 (2014).
[Crossref] [PubMed]

R. Nachabé, B. H. Hendriks, A. E. Desjardins, M. van der Voort, M. B. van der Mark, and H. J. Sterenborg, “Estimation of lipid and water concentrations in scattering media with diffuse optical spectroscopy from 900 to 1,600 nm,” J. Biomed. Opt. 15(3), 037015 (2010).
[Crossref] [PubMed]

S. A. Carp, S. A. Prahl, and V. Venugopalan, “Radiative transport in the delta-P-1 approximation: accuracy of fluence rate and optical penetration depth predictions in turbid semi-infinite media,” J. Biomed. Opt. 9(3), 632–647 (2004).
[Crossref] [PubMed]

S. H. Tseng, C. K. Hsu, J. Yu-Yun Lee, S. Y. Tzeng, W. R. Chen, and Y. K. Liaw, “Noninvasive evaluation of collagen and hemoglobin contents and scattering property of in vivo keloid scars and normal skin using diffuse reflectance spectroscopy: pilot study,” J. Biomed. Opt. 17(7), 077005 (2012).
[Crossref] [PubMed]

S. H. Tseng, A. Grant, and A. J. Durkin, “In vivo determination of skin near-infrared optical properties using diffuse optical spectroscopy,” J. Biomed. Opt. 13(1), 014016 (2008).
[Crossref] [PubMed]

J. Biophotonics (1)

L. L. Randeberg, E. L. Larsen, and L. O. Svaasand, “Characterization of vascular structures and skin bruises using hyperspectral imaging, image analysis and diffusion theory,” J. Biophotonics 3(1-2), 53–65 (2010).
[Crossref] [PubMed]

J. Opt. Soc. Am. A (3)

J. Phys. D (1)

A. N. Bashkatov, E. A. Genina, V. I. Kochubey, and V. V. Tuchin, “Optical properties of human skin, subcutaneous and mucous tissues in the wavelength range from 400 to 2000 nm,” J. Phys. D 38(15), 2543–2555 (2005).
[Crossref]

Opt. Express (1)

Opt. Lett. (1)

Photodermatol. Photoimmunol. Photomed. (1)

N. Kollias, A. Baqer, and I. Sadiq, “Minimum erythema dose determination in individuals of skin type V and VI with diffuse reflectance spectroscopy,” Photodermatol. Photoimmunol. Photomed. 10(6), 249–254 (1994).
[PubMed]

Phys. Med. Biol. (1)

G. Nishimura, I. Kida, and M. Tamura, “Characterization of optical parameters with a human forearm at the region from 1.15 to 1.52 µm using diffuse reflectance measurements,” Phys. Med. Biol. 51(11), 2997–3011 (2006).
[Crossref] [PubMed]

Other (1)

Oregon Medical Laser Center,” http:// http://omlc.org/spectra/index.html .

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 (a) Side view of the planar source illumination geometry. (b) Top view of a planar source with radial symmetry. (c) Top view of a linear gradient line source equivalent to a planar source with radial symmetry. Note that the linear gradient line source is achieved by using a scanning MEMS mirror in this study as illustrated in Fig. 2. The color intensity shown in (c) is proportional to light intensity.
Fig. 2
Fig. 2 Schematic of the broadband Linear Gradient Line Source Illumination measurement setup.
Fig. 3
Fig. 3 Absorption spectra of (a) Nigrosin solution and (b) water.
Fig. 4
Fig. 4 (a) Diffuse reflectance measured in the LGLSI geometry (blue line) and the 3 mm SDS DRS geometry (red line) in the wavelength range from 650 to 1000 nm for the liquid phantom LP_a, and their respective fitting results (LGLSI: squares, 3 mm SDS DRS: triangles). (b) μa and (c) μs' spectra of LP_a recovered using the LGLSI geometry (blue dashed lines) and the 3 mm SDS DRS (red dashed lines). The benchmark spectra (black lines) were determined using the IAD method.
Fig. 5
Fig. 5 (a) Diffuse reflectance measured in the LGLSI geometry (blue line) and the 3 mm SDS DRS geometry (red line) in the wavelength range from 1000 to 1350 nm for the liquid phantom LP_a, and their respective fitting results (LGLSI: squares, 3 mm SDS DRS: triangles). (b) μa and (c) μs' spectra of LP_a recovered using the LGLSI geometry (blue dashed lines) and the 3 mm SDS DRS (red dashed lines). The benchmark spectra (black lines) were determined using the IAD method.
Fig. 6
Fig. 6 Diffuse reflectance measured in the LGLSI geometry (blue line) and the 3 mm SDS DRS geometry (red line) for the volar forearm of one of the subjects in the wavelength range from (a) 650 to 1000 nm (b) 1000 to 1350 nm, and their respective fitting results (LGLSI: squares, 3 mm SDS DRS: triangles). (b) μa and (c) μs' spectra of the volar forearm recovered using the LGLSI geometry (blue lines) and the 3 mm SDS DRS (red lines) in the wavelength range from 650 to 1000 nm. μa and μs' spectra recovered in the wavelength range from 1000 to 1350 nm are illustrated in (e) and (f), respectively.

Tables (4)

Tables Icon

Table 1 The recipe of the liquid phantoms

Tables Icon

Table 2 Chromophore concentrations of liquid phantoms recovered using LGLSI and classical DRS geometries at two wavelength regions.

Tables Icon

Table 3 Average chromophore concentrations and standard deviations of the volar forearm of the five subjects recovered using the LGLSI and the classical 3 mm SDS DRS geometries in the wavelength range from 650 to 1000 nm.

Tables Icon

Table 4 Average chromophore concentrations and standard deviations of the volar forearm of the five subjects recovered using the LGLSI and the classical 3 mm SDS DRS geometries in the wavelength range from 1000 to 1350 nm.

Equations (10)

Equations on this page are rendered with MathJax. Learn more.

P δ P 1 ( s ^ s ^ )= 1 4π { 2fδ[ 1( s ^ s ^ ) ]+( 1f )[ 1+3 g * ( s ^ s ^ ) ] },
f= g 2 and g * =g/(g+1),
[ 2 z 2 3 μ a μ t ] Φ d =3 μ s * ( μ t + μ t * g * )exp( μ t * z ),
Φ d (z)= E 0 (1 R s )[αexp( μ t * z)+βexp( μ eff z)],
α= 3 μ s * ( μ t * + g * μ a ) μ eff 2 μ t * 2 ,
β= α(1+Ah μ t * )3Ah g * μ s * (1+Ah μ eff ) ,
R d = Φ d (z) 2A E 0 (1 R s ) | z=0 .
μ s (λ)=A λ b ,
μ a(phantom) (λ)= C Nigroson × ε Nigroson (λ)+ C water × ε water (λ),
μ a(skin) (λ)= C HbO 2 × ε HbO 2 (λ)+ C Hb × ε Hb (λ)+ C melanin × ε melanin (λ) + C water × ε water (λ)+ C lipid × ε lipid (λ)+baseline.

Metrics