Abstract

In vivo two-photon microscopy is an advantageous technique for observing the mouse brain at high resolution. In this study, we developed a two-photon microscopy method that uses a 1064-nm gain-switched laser diode-based light source with average power above 4 W, pulse width of 7.5-picosecond, repetition rate of 10-MHz, and a high-sensitivity photomultiplier tube. Using this newly developed two-photon microscope for in vivo imaging, we were able to successfully image hippocampal neurons in the dentate gyrus and obtain panoramic views of CA1 pyramidal neurons and cerebral cortex, regardless of age of the mouse. Fine dendrites in hippocampal CA1 could be imaged with a high peak-signal-to-background ratio that could not be achieved by titanium sapphire laser excitation. Finally, our system achieved multicolor imaging with neurons and blood vessels in the hippocampal region in vivo. These results indicate that our two-photon microscopy system is suitable for investigations of various neural functions, including the morphological changes undergone by neurons during physiological phenomena.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Label-free near-infrared reflectance microscopy as a complimentary tool for two-photon fluorescence brain imaging

Anna Letizia Allegra Mascaro, Irene Costantini, Emilia Margoni, Giulio Iannello, Alessandro Bria, Leonardo Sacconi, and Francesco S. Pavone
Biomed. Opt. Express 6(11) 4483-4492 (2015)

Deep in vivo two-photon microscopy with a low cost custom built mode-locked 1060 nm fiber laser

Evan P. Perillo, Justin E. McCracken, Daniel C. Fernée, John R. Goldak, Flor A. Medina, David R. Miller, Hsin-Chih Yeh, and Andrew K. Dunn
Biomed. Opt. Express 7(2) 324-334 (2016)

7-ps optical pulse generation from a 1064-nm gain-switched laser diode and its application for two-photon microscopy

Yuta Kusama, Yuichiro Tanushi, Masami Yokoyama, Ryosuke Kawakami, Terumasa Hibi, Yuichi Kozawa, Tomomi Nemoto, Shunichi Sato, and Hiroyuki Yokoyama
Opt. Express 22(5) 5746-5753 (2014)

References

  • View by:
  • |
  • |
  • |

  1. Y. Masamizu, Y. R. Tanaka, Y. H. Tanaka, R. Hira, F. Ohkubo, K. Kitamura, Y. Isomura, T. Okada, and M. Matsuzaki, “Two distinct layer-specific dynamics of cortical ensembles during learning of a motor task,” Nat. Neurosci. 17(7), 987–994 (2014).
    [Crossref] [PubMed]
  2. T. Matsui and K. Ohki, “Target dependence of orientation and direction selectivity of corticocortical projection neurons in the mouse V1,” Front. Neural Circuits 7, 143 (2013).
    [Crossref] [PubMed]
  3. J. Lecoq, J. Savall, D. Vučinić, B. F. Grewe, H. Kim, J. Z. Li, L. J. Kitch, and M. J. Schnitzer, “Visualizing mammalian brain area interactions by dual-axis two-photon calcium imaging,” Nat. Neurosci. 17(12), 1825–1829 (2014).
    [Crossref] [PubMed]
  4. J. Grutzendler, N. Kasthuri, and W. B. Gan, “Long-term dendritic spine stability in the adult cortex,” Nature 420(6917), 812–816 (2002).
    [Crossref] [PubMed]
  5. M. Matsuzaki, N. Honkura, G. C. Ellis-Davies, and H. Kasai, “Structural basis of long-term potentiation in single dendritic spines,” Nature 429(6993), 761–766 (2004).
    [Crossref] [PubMed]
  6. T. Nakashiba, J. D. Cushman, K. A. Pelkey, S. Renaudineau, D. L. Buhl, T. J. McHugh, V. Rodriguez Barrera, R. Chittajallu, K. S. Iwamoto, C. J. McBain, M. S. Fanselow, and S. Tonegawa, “Young dentate granule cells mediate pattern separation, whereas old granule cells facilitate pattern completion,” Cell 149(1), 188–201 (2012).
    [Crossref] [PubMed]
  7. T. Nemoto, “Living cell functions and morphology revealed by two-photon microscopy in intact neural and secretory organs,” Mol. Cells 26(2), 113–120 (2008).
    [PubMed]
  8. J. Noguchi, A. Nagaoka, S. Watanabe, G. C. Ellis-Davies, K. Kitamura, M. Kano, M. Matsuzaki, and H. Kasai, “In vivo two-photon uncaging of glutamate revealing the structure-function relationships of dendritic spines in the neocortex of adult mice,” J. Physiol. 589(10), 2447–2457 (2011).
    [Crossref] [PubMed]
  9. W. Mittmann, D. J. Wallace, U. Czubayko, J. T. Herb, A. T. Schaefer, L. L. Looger, W. Denk, and J. N. D. Kerr, “Two-photon calcium imaging of evoked activity from L5 somatosensory neurons in vivo,” Nat. Neurosci. 14(8), 1089–1093 (2011).
    [Crossref] [PubMed]
  10. M. Oheim, E. Beaurepaire, E. Chaigneau, J. Mertz, and S. Charpak, “Two-photon microscopy in brain tissue: parameters influencing the imaging depth,” J. Neurosci. Methods 111(1), 29–37 (2001).
    [Crossref] [PubMed]
  11. R. Kawakami, K. Sawada, A. Sato, T. Hibi, Y. Kozawa, S. Sato, H. Yokoyama, and T. Nemoto, “Visualizing hippocampal neurons with in vivo two-photon microscopy using a 1030 nm picosecond pulse laser,” Sci. Rep. 3, 1014 (2013).
    [Crossref] [PubMed]
  12. G. Feng, R. H. Mellor, M. Bernstein, C. Keller-Peck, Q. T. Nguyen, M. Wallace, J. M. Nerbonne, J. W. Lichtman, and J. R. Sanes, “Imaging neuronal subsets in transgenic mice expressing multiple spectral variants of GFP,” Neuron 28(1), 41–51 (2000).
    [Crossref] [PubMed]
  13. Y. Kusama, Y. Tanushi, M. Yokoyama, R. Kawakami, T. Hibi, Y. Kozawa, T. Nemoto, S. Sato, and H. Yokoyama, “7-ps optical pulse generation from a 1064-nm gain-switched laser diode and its application for two-photon microscopy,” Opt. Express 22(5), 5746–5753 (2014).
    [Crossref] [PubMed]
  14. A. Holtmaat, T. Bonhoeffer, D. K. Chow, J. Chuckowree, V. De Paola, S. B. Hofer, M. Hübener, T. Keck, G. Knott, W. C. Lee, R. Mostany, T. D. Mrsic-Flogel, E. Nedivi, C. Portera-Cailliau, K. Svoboda, J. T. Trachtenberg, and L. Wilbrecht, “Long-term, high-resolution imaging in the mouse neocortex through a chronic cranial window,” Nat. Protoc. 4(8), 1128–1144 (2009).
    [Crossref] [PubMed]
  15. R. Mostany and C. Portera-Cailliau, “A craniotomy surgery procedure for chronic brain imaging,” J. Vis. Exp. 12(12), 3791 (2008).
    [PubMed]
  16. W. Denk, J. H. Strickler, and W. W. Webb, “Two-photon laser scanning fluorescence microscopy,” Science 248(4951), 73–76 (1990).
    [Crossref] [PubMed]
  17. J. Bewersdorf and S. W. Hell, “Picosecond pulsed two-photon imaging with repetition rates of 200 and 400 MHz,” J. Microsc.Oxford 191(1), 28–38 (1998).
    [Crossref]
  18. H. Yokoyama, H. Guo, T. Yoda, K. Takashima, K. Sato, H. Taniguchi, and H. Ito, “Two-photon bioimaging with picosecond optical pulses from a semiconductor laser,” Opt. Express 14(8), 3467–3471 (2006).
    [Crossref] [PubMed]
  19. K. König, T. W. Becker, P. Fischer, I. Riemann, and K. J. Halbhuber, “Pulse-length dependence of cellular response to intense near-infrared laser pulses in multiphoton microscopes,” Opt. Lett. 24(2), 113–115 (1999).
    [Crossref] [PubMed]
  20. N. G. Horton, K. Wang, D. Kobat, C. G. Clark, F. W. Wise, C. B. Schaffer, and C. Xu, “In vivo three-photon microscopy of subcortical structures within an intact mouse brain,” Nat. Photonics 7(3), 205–209 (2013).
    [Crossref] [PubMed]
  21. T. A. Murray and M. J. Levene, “Singlet gradient index lens for deep in vivo multiphoton microscopy,” J. Biomed. Opt. 17(2), 021106 (2012).
    [Crossref] [PubMed]

2014 (3)

Y. Masamizu, Y. R. Tanaka, Y. H. Tanaka, R. Hira, F. Ohkubo, K. Kitamura, Y. Isomura, T. Okada, and M. Matsuzaki, “Two distinct layer-specific dynamics of cortical ensembles during learning of a motor task,” Nat. Neurosci. 17(7), 987–994 (2014).
[Crossref] [PubMed]

J. Lecoq, J. Savall, D. Vučinić, B. F. Grewe, H. Kim, J. Z. Li, L. J. Kitch, and M. J. Schnitzer, “Visualizing mammalian brain area interactions by dual-axis two-photon calcium imaging,” Nat. Neurosci. 17(12), 1825–1829 (2014).
[Crossref] [PubMed]

Y. Kusama, Y. Tanushi, M. Yokoyama, R. Kawakami, T. Hibi, Y. Kozawa, T. Nemoto, S. Sato, and H. Yokoyama, “7-ps optical pulse generation from a 1064-nm gain-switched laser diode and its application for two-photon microscopy,” Opt. Express 22(5), 5746–5753 (2014).
[Crossref] [PubMed]

2013 (3)

R. Kawakami, K. Sawada, A. Sato, T. Hibi, Y. Kozawa, S. Sato, H. Yokoyama, and T. Nemoto, “Visualizing hippocampal neurons with in vivo two-photon microscopy using a 1030 nm picosecond pulse laser,” Sci. Rep. 3, 1014 (2013).
[Crossref] [PubMed]

T. Matsui and K. Ohki, “Target dependence of orientation and direction selectivity of corticocortical projection neurons in the mouse V1,” Front. Neural Circuits 7, 143 (2013).
[Crossref] [PubMed]

N. G. Horton, K. Wang, D. Kobat, C. G. Clark, F. W. Wise, C. B. Schaffer, and C. Xu, “In vivo three-photon microscopy of subcortical structures within an intact mouse brain,” Nat. Photonics 7(3), 205–209 (2013).
[Crossref] [PubMed]

2012 (2)

T. A. Murray and M. J. Levene, “Singlet gradient index lens for deep in vivo multiphoton microscopy,” J. Biomed. Opt. 17(2), 021106 (2012).
[Crossref] [PubMed]

T. Nakashiba, J. D. Cushman, K. A. Pelkey, S. Renaudineau, D. L. Buhl, T. J. McHugh, V. Rodriguez Barrera, R. Chittajallu, K. S. Iwamoto, C. J. McBain, M. S. Fanselow, and S. Tonegawa, “Young dentate granule cells mediate pattern separation, whereas old granule cells facilitate pattern completion,” Cell 149(1), 188–201 (2012).
[Crossref] [PubMed]

2011 (2)

J. Noguchi, A. Nagaoka, S. Watanabe, G. C. Ellis-Davies, K. Kitamura, M. Kano, M. Matsuzaki, and H. Kasai, “In vivo two-photon uncaging of glutamate revealing the structure-function relationships of dendritic spines in the neocortex of adult mice,” J. Physiol. 589(10), 2447–2457 (2011).
[Crossref] [PubMed]

W. Mittmann, D. J. Wallace, U. Czubayko, J. T. Herb, A. T. Schaefer, L. L. Looger, W. Denk, and J. N. D. Kerr, “Two-photon calcium imaging of evoked activity from L5 somatosensory neurons in vivo,” Nat. Neurosci. 14(8), 1089–1093 (2011).
[Crossref] [PubMed]

2009 (1)

A. Holtmaat, T. Bonhoeffer, D. K. Chow, J. Chuckowree, V. De Paola, S. B. Hofer, M. Hübener, T. Keck, G. Knott, W. C. Lee, R. Mostany, T. D. Mrsic-Flogel, E. Nedivi, C. Portera-Cailliau, K. Svoboda, J. T. Trachtenberg, and L. Wilbrecht, “Long-term, high-resolution imaging in the mouse neocortex through a chronic cranial window,” Nat. Protoc. 4(8), 1128–1144 (2009).
[Crossref] [PubMed]

2008 (2)

R. Mostany and C. Portera-Cailliau, “A craniotomy surgery procedure for chronic brain imaging,” J. Vis. Exp. 12(12), 3791 (2008).
[PubMed]

T. Nemoto, “Living cell functions and morphology revealed by two-photon microscopy in intact neural and secretory organs,” Mol. Cells 26(2), 113–120 (2008).
[PubMed]

2006 (1)

2004 (1)

M. Matsuzaki, N. Honkura, G. C. Ellis-Davies, and H. Kasai, “Structural basis of long-term potentiation in single dendritic spines,” Nature 429(6993), 761–766 (2004).
[Crossref] [PubMed]

2002 (1)

J. Grutzendler, N. Kasthuri, and W. B. Gan, “Long-term dendritic spine stability in the adult cortex,” Nature 420(6917), 812–816 (2002).
[Crossref] [PubMed]

2001 (1)

M. Oheim, E. Beaurepaire, E. Chaigneau, J. Mertz, and S. Charpak, “Two-photon microscopy in brain tissue: parameters influencing the imaging depth,” J. Neurosci. Methods 111(1), 29–37 (2001).
[Crossref] [PubMed]

2000 (1)

G. Feng, R. H. Mellor, M. Bernstein, C. Keller-Peck, Q. T. Nguyen, M. Wallace, J. M. Nerbonne, J. W. Lichtman, and J. R. Sanes, “Imaging neuronal subsets in transgenic mice expressing multiple spectral variants of GFP,” Neuron 28(1), 41–51 (2000).
[Crossref] [PubMed]

1999 (1)

1998 (1)

J. Bewersdorf and S. W. Hell, “Picosecond pulsed two-photon imaging with repetition rates of 200 and 400 MHz,” J. Microsc.Oxford 191(1), 28–38 (1998).
[Crossref]

1990 (1)

W. Denk, J. H. Strickler, and W. W. Webb, “Two-photon laser scanning fluorescence microscopy,” Science 248(4951), 73–76 (1990).
[Crossref] [PubMed]

Beaurepaire, E.

M. Oheim, E. Beaurepaire, E. Chaigneau, J. Mertz, and S. Charpak, “Two-photon microscopy in brain tissue: parameters influencing the imaging depth,” J. Neurosci. Methods 111(1), 29–37 (2001).
[Crossref] [PubMed]

Becker, T. W.

Bernstein, M.

G. Feng, R. H. Mellor, M. Bernstein, C. Keller-Peck, Q. T. Nguyen, M. Wallace, J. M. Nerbonne, J. W. Lichtman, and J. R. Sanes, “Imaging neuronal subsets in transgenic mice expressing multiple spectral variants of GFP,” Neuron 28(1), 41–51 (2000).
[Crossref] [PubMed]

Bewersdorf, J.

J. Bewersdorf and S. W. Hell, “Picosecond pulsed two-photon imaging with repetition rates of 200 and 400 MHz,” J. Microsc.Oxford 191(1), 28–38 (1998).
[Crossref]

Bonhoeffer, T.

A. Holtmaat, T. Bonhoeffer, D. K. Chow, J. Chuckowree, V. De Paola, S. B. Hofer, M. Hübener, T. Keck, G. Knott, W. C. Lee, R. Mostany, T. D. Mrsic-Flogel, E. Nedivi, C. Portera-Cailliau, K. Svoboda, J. T. Trachtenberg, and L. Wilbrecht, “Long-term, high-resolution imaging in the mouse neocortex through a chronic cranial window,” Nat. Protoc. 4(8), 1128–1144 (2009).
[Crossref] [PubMed]

Buhl, D. L.

T. Nakashiba, J. D. Cushman, K. A. Pelkey, S. Renaudineau, D. L. Buhl, T. J. McHugh, V. Rodriguez Barrera, R. Chittajallu, K. S. Iwamoto, C. J. McBain, M. S. Fanselow, and S. Tonegawa, “Young dentate granule cells mediate pattern separation, whereas old granule cells facilitate pattern completion,” Cell 149(1), 188–201 (2012).
[Crossref] [PubMed]

Chaigneau, E.

M. Oheim, E. Beaurepaire, E. Chaigneau, J. Mertz, and S. Charpak, “Two-photon microscopy in brain tissue: parameters influencing the imaging depth,” J. Neurosci. Methods 111(1), 29–37 (2001).
[Crossref] [PubMed]

Charpak, S.

M. Oheim, E. Beaurepaire, E. Chaigneau, J. Mertz, and S. Charpak, “Two-photon microscopy in brain tissue: parameters influencing the imaging depth,” J. Neurosci. Methods 111(1), 29–37 (2001).
[Crossref] [PubMed]

Chittajallu, R.

T. Nakashiba, J. D. Cushman, K. A. Pelkey, S. Renaudineau, D. L. Buhl, T. J. McHugh, V. Rodriguez Barrera, R. Chittajallu, K. S. Iwamoto, C. J. McBain, M. S. Fanselow, and S. Tonegawa, “Young dentate granule cells mediate pattern separation, whereas old granule cells facilitate pattern completion,” Cell 149(1), 188–201 (2012).
[Crossref] [PubMed]

Chow, D. K.

A. Holtmaat, T. Bonhoeffer, D. K. Chow, J. Chuckowree, V. De Paola, S. B. Hofer, M. Hübener, T. Keck, G. Knott, W. C. Lee, R. Mostany, T. D. Mrsic-Flogel, E. Nedivi, C. Portera-Cailliau, K. Svoboda, J. T. Trachtenberg, and L. Wilbrecht, “Long-term, high-resolution imaging in the mouse neocortex through a chronic cranial window,” Nat. Protoc. 4(8), 1128–1144 (2009).
[Crossref] [PubMed]

Chuckowree, J.

A. Holtmaat, T. Bonhoeffer, D. K. Chow, J. Chuckowree, V. De Paola, S. B. Hofer, M. Hübener, T. Keck, G. Knott, W. C. Lee, R. Mostany, T. D. Mrsic-Flogel, E. Nedivi, C. Portera-Cailliau, K. Svoboda, J. T. Trachtenberg, and L. Wilbrecht, “Long-term, high-resolution imaging in the mouse neocortex through a chronic cranial window,” Nat. Protoc. 4(8), 1128–1144 (2009).
[Crossref] [PubMed]

Clark, C. G.

N. G. Horton, K. Wang, D. Kobat, C. G. Clark, F. W. Wise, C. B. Schaffer, and C. Xu, “In vivo three-photon microscopy of subcortical structures within an intact mouse brain,” Nat. Photonics 7(3), 205–209 (2013).
[Crossref] [PubMed]

Cushman, J. D.

T. Nakashiba, J. D. Cushman, K. A. Pelkey, S. Renaudineau, D. L. Buhl, T. J. McHugh, V. Rodriguez Barrera, R. Chittajallu, K. S. Iwamoto, C. J. McBain, M. S. Fanselow, and S. Tonegawa, “Young dentate granule cells mediate pattern separation, whereas old granule cells facilitate pattern completion,” Cell 149(1), 188–201 (2012).
[Crossref] [PubMed]

Czubayko, U.

W. Mittmann, D. J. Wallace, U. Czubayko, J. T. Herb, A. T. Schaefer, L. L. Looger, W. Denk, and J. N. D. Kerr, “Two-photon calcium imaging of evoked activity from L5 somatosensory neurons in vivo,” Nat. Neurosci. 14(8), 1089–1093 (2011).
[Crossref] [PubMed]

De Paola, V.

A. Holtmaat, T. Bonhoeffer, D. K. Chow, J. Chuckowree, V. De Paola, S. B. Hofer, M. Hübener, T. Keck, G. Knott, W. C. Lee, R. Mostany, T. D. Mrsic-Flogel, E. Nedivi, C. Portera-Cailliau, K. Svoboda, J. T. Trachtenberg, and L. Wilbrecht, “Long-term, high-resolution imaging in the mouse neocortex through a chronic cranial window,” Nat. Protoc. 4(8), 1128–1144 (2009).
[Crossref] [PubMed]

Denk, W.

W. Mittmann, D. J. Wallace, U. Czubayko, J. T. Herb, A. T. Schaefer, L. L. Looger, W. Denk, and J. N. D. Kerr, “Two-photon calcium imaging of evoked activity from L5 somatosensory neurons in vivo,” Nat. Neurosci. 14(8), 1089–1093 (2011).
[Crossref] [PubMed]

W. Denk, J. H. Strickler, and W. W. Webb, “Two-photon laser scanning fluorescence microscopy,” Science 248(4951), 73–76 (1990).
[Crossref] [PubMed]

Ellis-Davies, G. C.

J. Noguchi, A. Nagaoka, S. Watanabe, G. C. Ellis-Davies, K. Kitamura, M. Kano, M. Matsuzaki, and H. Kasai, “In vivo two-photon uncaging of glutamate revealing the structure-function relationships of dendritic spines in the neocortex of adult mice,” J. Physiol. 589(10), 2447–2457 (2011).
[Crossref] [PubMed]

M. Matsuzaki, N. Honkura, G. C. Ellis-Davies, and H. Kasai, “Structural basis of long-term potentiation in single dendritic spines,” Nature 429(6993), 761–766 (2004).
[Crossref] [PubMed]

Fanselow, M. S.

T. Nakashiba, J. D. Cushman, K. A. Pelkey, S. Renaudineau, D. L. Buhl, T. J. McHugh, V. Rodriguez Barrera, R. Chittajallu, K. S. Iwamoto, C. J. McBain, M. S. Fanselow, and S. Tonegawa, “Young dentate granule cells mediate pattern separation, whereas old granule cells facilitate pattern completion,” Cell 149(1), 188–201 (2012).
[Crossref] [PubMed]

Feng, G.

G. Feng, R. H. Mellor, M. Bernstein, C. Keller-Peck, Q. T. Nguyen, M. Wallace, J. M. Nerbonne, J. W. Lichtman, and J. R. Sanes, “Imaging neuronal subsets in transgenic mice expressing multiple spectral variants of GFP,” Neuron 28(1), 41–51 (2000).
[Crossref] [PubMed]

Fischer, P.

Gan, W. B.

J. Grutzendler, N. Kasthuri, and W. B. Gan, “Long-term dendritic spine stability in the adult cortex,” Nature 420(6917), 812–816 (2002).
[Crossref] [PubMed]

Grewe, B. F.

J. Lecoq, J. Savall, D. Vučinić, B. F. Grewe, H. Kim, J. Z. Li, L. J. Kitch, and M. J. Schnitzer, “Visualizing mammalian brain area interactions by dual-axis two-photon calcium imaging,” Nat. Neurosci. 17(12), 1825–1829 (2014).
[Crossref] [PubMed]

Grutzendler, J.

J. Grutzendler, N. Kasthuri, and W. B. Gan, “Long-term dendritic spine stability in the adult cortex,” Nature 420(6917), 812–816 (2002).
[Crossref] [PubMed]

Guo, H.

Halbhuber, K. J.

Hell, S. W.

J. Bewersdorf and S. W. Hell, “Picosecond pulsed two-photon imaging with repetition rates of 200 and 400 MHz,” J. Microsc.Oxford 191(1), 28–38 (1998).
[Crossref]

Herb, J. T.

W. Mittmann, D. J. Wallace, U. Czubayko, J. T. Herb, A. T. Schaefer, L. L. Looger, W. Denk, and J. N. D. Kerr, “Two-photon calcium imaging of evoked activity from L5 somatosensory neurons in vivo,” Nat. Neurosci. 14(8), 1089–1093 (2011).
[Crossref] [PubMed]

Hibi, T.

Y. Kusama, Y. Tanushi, M. Yokoyama, R. Kawakami, T. Hibi, Y. Kozawa, T. Nemoto, S. Sato, and H. Yokoyama, “7-ps optical pulse generation from a 1064-nm gain-switched laser diode and its application for two-photon microscopy,” Opt. Express 22(5), 5746–5753 (2014).
[Crossref] [PubMed]

R. Kawakami, K. Sawada, A. Sato, T. Hibi, Y. Kozawa, S. Sato, H. Yokoyama, and T. Nemoto, “Visualizing hippocampal neurons with in vivo two-photon microscopy using a 1030 nm picosecond pulse laser,” Sci. Rep. 3, 1014 (2013).
[Crossref] [PubMed]

Hira, R.

Y. Masamizu, Y. R. Tanaka, Y. H. Tanaka, R. Hira, F. Ohkubo, K. Kitamura, Y. Isomura, T. Okada, and M. Matsuzaki, “Two distinct layer-specific dynamics of cortical ensembles during learning of a motor task,” Nat. Neurosci. 17(7), 987–994 (2014).
[Crossref] [PubMed]

Hofer, S. B.

A. Holtmaat, T. Bonhoeffer, D. K. Chow, J. Chuckowree, V. De Paola, S. B. Hofer, M. Hübener, T. Keck, G. Knott, W. C. Lee, R. Mostany, T. D. Mrsic-Flogel, E. Nedivi, C. Portera-Cailliau, K. Svoboda, J. T. Trachtenberg, and L. Wilbrecht, “Long-term, high-resolution imaging in the mouse neocortex through a chronic cranial window,” Nat. Protoc. 4(8), 1128–1144 (2009).
[Crossref] [PubMed]

Holtmaat, A.

A. Holtmaat, T. Bonhoeffer, D. K. Chow, J. Chuckowree, V. De Paola, S. B. Hofer, M. Hübener, T. Keck, G. Knott, W. C. Lee, R. Mostany, T. D. Mrsic-Flogel, E. Nedivi, C. Portera-Cailliau, K. Svoboda, J. T. Trachtenberg, and L. Wilbrecht, “Long-term, high-resolution imaging in the mouse neocortex through a chronic cranial window,” Nat. Protoc. 4(8), 1128–1144 (2009).
[Crossref] [PubMed]

Honkura, N.

M. Matsuzaki, N. Honkura, G. C. Ellis-Davies, and H. Kasai, “Structural basis of long-term potentiation in single dendritic spines,” Nature 429(6993), 761–766 (2004).
[Crossref] [PubMed]

Horton, N. G.

N. G. Horton, K. Wang, D. Kobat, C. G. Clark, F. W. Wise, C. B. Schaffer, and C. Xu, “In vivo three-photon microscopy of subcortical structures within an intact mouse brain,” Nat. Photonics 7(3), 205–209 (2013).
[Crossref] [PubMed]

Hübener, M.

A. Holtmaat, T. Bonhoeffer, D. K. Chow, J. Chuckowree, V. De Paola, S. B. Hofer, M. Hübener, T. Keck, G. Knott, W. C. Lee, R. Mostany, T. D. Mrsic-Flogel, E. Nedivi, C. Portera-Cailliau, K. Svoboda, J. T. Trachtenberg, and L. Wilbrecht, “Long-term, high-resolution imaging in the mouse neocortex through a chronic cranial window,” Nat. Protoc. 4(8), 1128–1144 (2009).
[Crossref] [PubMed]

Isomura, Y.

Y. Masamizu, Y. R. Tanaka, Y. H. Tanaka, R. Hira, F. Ohkubo, K. Kitamura, Y. Isomura, T. Okada, and M. Matsuzaki, “Two distinct layer-specific dynamics of cortical ensembles during learning of a motor task,” Nat. Neurosci. 17(7), 987–994 (2014).
[Crossref] [PubMed]

Ito, H.

Iwamoto, K. S.

T. Nakashiba, J. D. Cushman, K. A. Pelkey, S. Renaudineau, D. L. Buhl, T. J. McHugh, V. Rodriguez Barrera, R. Chittajallu, K. S. Iwamoto, C. J. McBain, M. S. Fanselow, and S. Tonegawa, “Young dentate granule cells mediate pattern separation, whereas old granule cells facilitate pattern completion,” Cell 149(1), 188–201 (2012).
[Crossref] [PubMed]

Kano, M.

J. Noguchi, A. Nagaoka, S. Watanabe, G. C. Ellis-Davies, K. Kitamura, M. Kano, M. Matsuzaki, and H. Kasai, “In vivo two-photon uncaging of glutamate revealing the structure-function relationships of dendritic spines in the neocortex of adult mice,” J. Physiol. 589(10), 2447–2457 (2011).
[Crossref] [PubMed]

Kasai, H.

J. Noguchi, A. Nagaoka, S. Watanabe, G. C. Ellis-Davies, K. Kitamura, M. Kano, M. Matsuzaki, and H. Kasai, “In vivo two-photon uncaging of glutamate revealing the structure-function relationships of dendritic spines in the neocortex of adult mice,” J. Physiol. 589(10), 2447–2457 (2011).
[Crossref] [PubMed]

M. Matsuzaki, N. Honkura, G. C. Ellis-Davies, and H. Kasai, “Structural basis of long-term potentiation in single dendritic spines,” Nature 429(6993), 761–766 (2004).
[Crossref] [PubMed]

Kasthuri, N.

J. Grutzendler, N. Kasthuri, and W. B. Gan, “Long-term dendritic spine stability in the adult cortex,” Nature 420(6917), 812–816 (2002).
[Crossref] [PubMed]

Kawakami, R.

Y. Kusama, Y. Tanushi, M. Yokoyama, R. Kawakami, T. Hibi, Y. Kozawa, T. Nemoto, S. Sato, and H. Yokoyama, “7-ps optical pulse generation from a 1064-nm gain-switched laser diode and its application for two-photon microscopy,” Opt. Express 22(5), 5746–5753 (2014).
[Crossref] [PubMed]

R. Kawakami, K. Sawada, A. Sato, T. Hibi, Y. Kozawa, S. Sato, H. Yokoyama, and T. Nemoto, “Visualizing hippocampal neurons with in vivo two-photon microscopy using a 1030 nm picosecond pulse laser,” Sci. Rep. 3, 1014 (2013).
[Crossref] [PubMed]

Keck, T.

A. Holtmaat, T. Bonhoeffer, D. K. Chow, J. Chuckowree, V. De Paola, S. B. Hofer, M. Hübener, T. Keck, G. Knott, W. C. Lee, R. Mostany, T. D. Mrsic-Flogel, E. Nedivi, C. Portera-Cailliau, K. Svoboda, J. T. Trachtenberg, and L. Wilbrecht, “Long-term, high-resolution imaging in the mouse neocortex through a chronic cranial window,” Nat. Protoc. 4(8), 1128–1144 (2009).
[Crossref] [PubMed]

Keller-Peck, C.

G. Feng, R. H. Mellor, M. Bernstein, C. Keller-Peck, Q. T. Nguyen, M. Wallace, J. M. Nerbonne, J. W. Lichtman, and J. R. Sanes, “Imaging neuronal subsets in transgenic mice expressing multiple spectral variants of GFP,” Neuron 28(1), 41–51 (2000).
[Crossref] [PubMed]

Kerr, J. N. D.

W. Mittmann, D. J. Wallace, U. Czubayko, J. T. Herb, A. T. Schaefer, L. L. Looger, W. Denk, and J. N. D. Kerr, “Two-photon calcium imaging of evoked activity from L5 somatosensory neurons in vivo,” Nat. Neurosci. 14(8), 1089–1093 (2011).
[Crossref] [PubMed]

Kim, H.

J. Lecoq, J. Savall, D. Vučinić, B. F. Grewe, H. Kim, J. Z. Li, L. J. Kitch, and M. J. Schnitzer, “Visualizing mammalian brain area interactions by dual-axis two-photon calcium imaging,” Nat. Neurosci. 17(12), 1825–1829 (2014).
[Crossref] [PubMed]

Kitamura, K.

Y. Masamizu, Y. R. Tanaka, Y. H. Tanaka, R. Hira, F. Ohkubo, K. Kitamura, Y. Isomura, T. Okada, and M. Matsuzaki, “Two distinct layer-specific dynamics of cortical ensembles during learning of a motor task,” Nat. Neurosci. 17(7), 987–994 (2014).
[Crossref] [PubMed]

J. Noguchi, A. Nagaoka, S. Watanabe, G. C. Ellis-Davies, K. Kitamura, M. Kano, M. Matsuzaki, and H. Kasai, “In vivo two-photon uncaging of glutamate revealing the structure-function relationships of dendritic spines in the neocortex of adult mice,” J. Physiol. 589(10), 2447–2457 (2011).
[Crossref] [PubMed]

Kitch, L. J.

J. Lecoq, J. Savall, D. Vučinić, B. F. Grewe, H. Kim, J. Z. Li, L. J. Kitch, and M. J. Schnitzer, “Visualizing mammalian brain area interactions by dual-axis two-photon calcium imaging,” Nat. Neurosci. 17(12), 1825–1829 (2014).
[Crossref] [PubMed]

Knott, G.

A. Holtmaat, T. Bonhoeffer, D. K. Chow, J. Chuckowree, V. De Paola, S. B. Hofer, M. Hübener, T. Keck, G. Knott, W. C. Lee, R. Mostany, T. D. Mrsic-Flogel, E. Nedivi, C. Portera-Cailliau, K. Svoboda, J. T. Trachtenberg, and L. Wilbrecht, “Long-term, high-resolution imaging in the mouse neocortex through a chronic cranial window,” Nat. Protoc. 4(8), 1128–1144 (2009).
[Crossref] [PubMed]

Kobat, D.

N. G. Horton, K. Wang, D. Kobat, C. G. Clark, F. W. Wise, C. B. Schaffer, and C. Xu, “In vivo three-photon microscopy of subcortical structures within an intact mouse brain,” Nat. Photonics 7(3), 205–209 (2013).
[Crossref] [PubMed]

König, K.

Kozawa, Y.

Y. Kusama, Y. Tanushi, M. Yokoyama, R. Kawakami, T. Hibi, Y. Kozawa, T. Nemoto, S. Sato, and H. Yokoyama, “7-ps optical pulse generation from a 1064-nm gain-switched laser diode and its application for two-photon microscopy,” Opt. Express 22(5), 5746–5753 (2014).
[Crossref] [PubMed]

R. Kawakami, K. Sawada, A. Sato, T. Hibi, Y. Kozawa, S. Sato, H. Yokoyama, and T. Nemoto, “Visualizing hippocampal neurons with in vivo two-photon microscopy using a 1030 nm picosecond pulse laser,” Sci. Rep. 3, 1014 (2013).
[Crossref] [PubMed]

Kusama, Y.

Lecoq, J.

J. Lecoq, J. Savall, D. Vučinić, B. F. Grewe, H. Kim, J. Z. Li, L. J. Kitch, and M. J. Schnitzer, “Visualizing mammalian brain area interactions by dual-axis two-photon calcium imaging,” Nat. Neurosci. 17(12), 1825–1829 (2014).
[Crossref] [PubMed]

Lee, W. C.

A. Holtmaat, T. Bonhoeffer, D. K. Chow, J. Chuckowree, V. De Paola, S. B. Hofer, M. Hübener, T. Keck, G. Knott, W. C. Lee, R. Mostany, T. D. Mrsic-Flogel, E. Nedivi, C. Portera-Cailliau, K. Svoboda, J. T. Trachtenberg, and L. Wilbrecht, “Long-term, high-resolution imaging in the mouse neocortex through a chronic cranial window,” Nat. Protoc. 4(8), 1128–1144 (2009).
[Crossref] [PubMed]

Levene, M. J.

T. A. Murray and M. J. Levene, “Singlet gradient index lens for deep in vivo multiphoton microscopy,” J. Biomed. Opt. 17(2), 021106 (2012).
[Crossref] [PubMed]

Li, J. Z.

J. Lecoq, J. Savall, D. Vučinić, B. F. Grewe, H. Kim, J. Z. Li, L. J. Kitch, and M. J. Schnitzer, “Visualizing mammalian brain area interactions by dual-axis two-photon calcium imaging,” Nat. Neurosci. 17(12), 1825–1829 (2014).
[Crossref] [PubMed]

Lichtman, J. W.

G. Feng, R. H. Mellor, M. Bernstein, C. Keller-Peck, Q. T. Nguyen, M. Wallace, J. M. Nerbonne, J. W. Lichtman, and J. R. Sanes, “Imaging neuronal subsets in transgenic mice expressing multiple spectral variants of GFP,” Neuron 28(1), 41–51 (2000).
[Crossref] [PubMed]

Looger, L. L.

W. Mittmann, D. J. Wallace, U. Czubayko, J. T. Herb, A. T. Schaefer, L. L. Looger, W. Denk, and J. N. D. Kerr, “Two-photon calcium imaging of evoked activity from L5 somatosensory neurons in vivo,” Nat. Neurosci. 14(8), 1089–1093 (2011).
[Crossref] [PubMed]

Masamizu, Y.

Y. Masamizu, Y. R. Tanaka, Y. H. Tanaka, R. Hira, F. Ohkubo, K. Kitamura, Y. Isomura, T. Okada, and M. Matsuzaki, “Two distinct layer-specific dynamics of cortical ensembles during learning of a motor task,” Nat. Neurosci. 17(7), 987–994 (2014).
[Crossref] [PubMed]

Matsui, T.

T. Matsui and K. Ohki, “Target dependence of orientation and direction selectivity of corticocortical projection neurons in the mouse V1,” Front. Neural Circuits 7, 143 (2013).
[Crossref] [PubMed]

Matsuzaki, M.

Y. Masamizu, Y. R. Tanaka, Y. H. Tanaka, R. Hira, F. Ohkubo, K. Kitamura, Y. Isomura, T. Okada, and M. Matsuzaki, “Two distinct layer-specific dynamics of cortical ensembles during learning of a motor task,” Nat. Neurosci. 17(7), 987–994 (2014).
[Crossref] [PubMed]

J. Noguchi, A. Nagaoka, S. Watanabe, G. C. Ellis-Davies, K. Kitamura, M. Kano, M. Matsuzaki, and H. Kasai, “In vivo two-photon uncaging of glutamate revealing the structure-function relationships of dendritic spines in the neocortex of adult mice,” J. Physiol. 589(10), 2447–2457 (2011).
[Crossref] [PubMed]

M. Matsuzaki, N. Honkura, G. C. Ellis-Davies, and H. Kasai, “Structural basis of long-term potentiation in single dendritic spines,” Nature 429(6993), 761–766 (2004).
[Crossref] [PubMed]

McBain, C. J.

T. Nakashiba, J. D. Cushman, K. A. Pelkey, S. Renaudineau, D. L. Buhl, T. J. McHugh, V. Rodriguez Barrera, R. Chittajallu, K. S. Iwamoto, C. J. McBain, M. S. Fanselow, and S. Tonegawa, “Young dentate granule cells mediate pattern separation, whereas old granule cells facilitate pattern completion,” Cell 149(1), 188–201 (2012).
[Crossref] [PubMed]

McHugh, T. J.

T. Nakashiba, J. D. Cushman, K. A. Pelkey, S. Renaudineau, D. L. Buhl, T. J. McHugh, V. Rodriguez Barrera, R. Chittajallu, K. S. Iwamoto, C. J. McBain, M. S. Fanselow, and S. Tonegawa, “Young dentate granule cells mediate pattern separation, whereas old granule cells facilitate pattern completion,” Cell 149(1), 188–201 (2012).
[Crossref] [PubMed]

Mellor, R. H.

G. Feng, R. H. Mellor, M. Bernstein, C. Keller-Peck, Q. T. Nguyen, M. Wallace, J. M. Nerbonne, J. W. Lichtman, and J. R. Sanes, “Imaging neuronal subsets in transgenic mice expressing multiple spectral variants of GFP,” Neuron 28(1), 41–51 (2000).
[Crossref] [PubMed]

Mertz, J.

M. Oheim, E. Beaurepaire, E. Chaigneau, J. Mertz, and S. Charpak, “Two-photon microscopy in brain tissue: parameters influencing the imaging depth,” J. Neurosci. Methods 111(1), 29–37 (2001).
[Crossref] [PubMed]

Mittmann, W.

W. Mittmann, D. J. Wallace, U. Czubayko, J. T. Herb, A. T. Schaefer, L. L. Looger, W. Denk, and J. N. D. Kerr, “Two-photon calcium imaging of evoked activity from L5 somatosensory neurons in vivo,” Nat. Neurosci. 14(8), 1089–1093 (2011).
[Crossref] [PubMed]

Mostany, R.

A. Holtmaat, T. Bonhoeffer, D. K. Chow, J. Chuckowree, V. De Paola, S. B. Hofer, M. Hübener, T. Keck, G. Knott, W. C. Lee, R. Mostany, T. D. Mrsic-Flogel, E. Nedivi, C. Portera-Cailliau, K. Svoboda, J. T. Trachtenberg, and L. Wilbrecht, “Long-term, high-resolution imaging in the mouse neocortex through a chronic cranial window,” Nat. Protoc. 4(8), 1128–1144 (2009).
[Crossref] [PubMed]

R. Mostany and C. Portera-Cailliau, “A craniotomy surgery procedure for chronic brain imaging,” J. Vis. Exp. 12(12), 3791 (2008).
[PubMed]

Mrsic-Flogel, T. D.

A. Holtmaat, T. Bonhoeffer, D. K. Chow, J. Chuckowree, V. De Paola, S. B. Hofer, M. Hübener, T. Keck, G. Knott, W. C. Lee, R. Mostany, T. D. Mrsic-Flogel, E. Nedivi, C. Portera-Cailliau, K. Svoboda, J. T. Trachtenberg, and L. Wilbrecht, “Long-term, high-resolution imaging in the mouse neocortex through a chronic cranial window,” Nat. Protoc. 4(8), 1128–1144 (2009).
[Crossref] [PubMed]

Murray, T. A.

T. A. Murray and M. J. Levene, “Singlet gradient index lens for deep in vivo multiphoton microscopy,” J. Biomed. Opt. 17(2), 021106 (2012).
[Crossref] [PubMed]

Nagaoka, A.

J. Noguchi, A. Nagaoka, S. Watanabe, G. C. Ellis-Davies, K. Kitamura, M. Kano, M. Matsuzaki, and H. Kasai, “In vivo two-photon uncaging of glutamate revealing the structure-function relationships of dendritic spines in the neocortex of adult mice,” J. Physiol. 589(10), 2447–2457 (2011).
[Crossref] [PubMed]

Nakashiba, T.

T. Nakashiba, J. D. Cushman, K. A. Pelkey, S. Renaudineau, D. L. Buhl, T. J. McHugh, V. Rodriguez Barrera, R. Chittajallu, K. S. Iwamoto, C. J. McBain, M. S. Fanselow, and S. Tonegawa, “Young dentate granule cells mediate pattern separation, whereas old granule cells facilitate pattern completion,” Cell 149(1), 188–201 (2012).
[Crossref] [PubMed]

Nedivi, E.

A. Holtmaat, T. Bonhoeffer, D. K. Chow, J. Chuckowree, V. De Paola, S. B. Hofer, M. Hübener, T. Keck, G. Knott, W. C. Lee, R. Mostany, T. D. Mrsic-Flogel, E. Nedivi, C. Portera-Cailliau, K. Svoboda, J. T. Trachtenberg, and L. Wilbrecht, “Long-term, high-resolution imaging in the mouse neocortex through a chronic cranial window,” Nat. Protoc. 4(8), 1128–1144 (2009).
[Crossref] [PubMed]

Nemoto, T.

Y. Kusama, Y. Tanushi, M. Yokoyama, R. Kawakami, T. Hibi, Y. Kozawa, T. Nemoto, S. Sato, and H. Yokoyama, “7-ps optical pulse generation from a 1064-nm gain-switched laser diode and its application for two-photon microscopy,” Opt. Express 22(5), 5746–5753 (2014).
[Crossref] [PubMed]

R. Kawakami, K. Sawada, A. Sato, T. Hibi, Y. Kozawa, S. Sato, H. Yokoyama, and T. Nemoto, “Visualizing hippocampal neurons with in vivo two-photon microscopy using a 1030 nm picosecond pulse laser,” Sci. Rep. 3, 1014 (2013).
[Crossref] [PubMed]

T. Nemoto, “Living cell functions and morphology revealed by two-photon microscopy in intact neural and secretory organs,” Mol. Cells 26(2), 113–120 (2008).
[PubMed]

Nerbonne, J. M.

G. Feng, R. H. Mellor, M. Bernstein, C. Keller-Peck, Q. T. Nguyen, M. Wallace, J. M. Nerbonne, J. W. Lichtman, and J. R. Sanes, “Imaging neuronal subsets in transgenic mice expressing multiple spectral variants of GFP,” Neuron 28(1), 41–51 (2000).
[Crossref] [PubMed]

Nguyen, Q. T.

G. Feng, R. H. Mellor, M. Bernstein, C. Keller-Peck, Q. T. Nguyen, M. Wallace, J. M. Nerbonne, J. W. Lichtman, and J. R. Sanes, “Imaging neuronal subsets in transgenic mice expressing multiple spectral variants of GFP,” Neuron 28(1), 41–51 (2000).
[Crossref] [PubMed]

Noguchi, J.

J. Noguchi, A. Nagaoka, S. Watanabe, G. C. Ellis-Davies, K. Kitamura, M. Kano, M. Matsuzaki, and H. Kasai, “In vivo two-photon uncaging of glutamate revealing the structure-function relationships of dendritic spines in the neocortex of adult mice,” J. Physiol. 589(10), 2447–2457 (2011).
[Crossref] [PubMed]

Oheim, M.

M. Oheim, E. Beaurepaire, E. Chaigneau, J. Mertz, and S. Charpak, “Two-photon microscopy in brain tissue: parameters influencing the imaging depth,” J. Neurosci. Methods 111(1), 29–37 (2001).
[Crossref] [PubMed]

Ohki, K.

T. Matsui and K. Ohki, “Target dependence of orientation and direction selectivity of corticocortical projection neurons in the mouse V1,” Front. Neural Circuits 7, 143 (2013).
[Crossref] [PubMed]

Ohkubo, F.

Y. Masamizu, Y. R. Tanaka, Y. H. Tanaka, R. Hira, F. Ohkubo, K. Kitamura, Y. Isomura, T. Okada, and M. Matsuzaki, “Two distinct layer-specific dynamics of cortical ensembles during learning of a motor task,” Nat. Neurosci. 17(7), 987–994 (2014).
[Crossref] [PubMed]

Okada, T.

Y. Masamizu, Y. R. Tanaka, Y. H. Tanaka, R. Hira, F. Ohkubo, K. Kitamura, Y. Isomura, T. Okada, and M. Matsuzaki, “Two distinct layer-specific dynamics of cortical ensembles during learning of a motor task,” Nat. Neurosci. 17(7), 987–994 (2014).
[Crossref] [PubMed]

Pelkey, K. A.

T. Nakashiba, J. D. Cushman, K. A. Pelkey, S. Renaudineau, D. L. Buhl, T. J. McHugh, V. Rodriguez Barrera, R. Chittajallu, K. S. Iwamoto, C. J. McBain, M. S. Fanselow, and S. Tonegawa, “Young dentate granule cells mediate pattern separation, whereas old granule cells facilitate pattern completion,” Cell 149(1), 188–201 (2012).
[Crossref] [PubMed]

Portera-Cailliau, C.

A. Holtmaat, T. Bonhoeffer, D. K. Chow, J. Chuckowree, V. De Paola, S. B. Hofer, M. Hübener, T. Keck, G. Knott, W. C. Lee, R. Mostany, T. D. Mrsic-Flogel, E. Nedivi, C. Portera-Cailliau, K. Svoboda, J. T. Trachtenberg, and L. Wilbrecht, “Long-term, high-resolution imaging in the mouse neocortex through a chronic cranial window,” Nat. Protoc. 4(8), 1128–1144 (2009).
[Crossref] [PubMed]

R. Mostany and C. Portera-Cailliau, “A craniotomy surgery procedure for chronic brain imaging,” J. Vis. Exp. 12(12), 3791 (2008).
[PubMed]

Renaudineau, S.

T. Nakashiba, J. D. Cushman, K. A. Pelkey, S. Renaudineau, D. L. Buhl, T. J. McHugh, V. Rodriguez Barrera, R. Chittajallu, K. S. Iwamoto, C. J. McBain, M. S. Fanselow, and S. Tonegawa, “Young dentate granule cells mediate pattern separation, whereas old granule cells facilitate pattern completion,” Cell 149(1), 188–201 (2012).
[Crossref] [PubMed]

Riemann, I.

Rodriguez Barrera, V.

T. Nakashiba, J. D. Cushman, K. A. Pelkey, S. Renaudineau, D. L. Buhl, T. J. McHugh, V. Rodriguez Barrera, R. Chittajallu, K. S. Iwamoto, C. J. McBain, M. S. Fanselow, and S. Tonegawa, “Young dentate granule cells mediate pattern separation, whereas old granule cells facilitate pattern completion,” Cell 149(1), 188–201 (2012).
[Crossref] [PubMed]

Sanes, J. R.

G. Feng, R. H. Mellor, M. Bernstein, C. Keller-Peck, Q. T. Nguyen, M. Wallace, J. M. Nerbonne, J. W. Lichtman, and J. R. Sanes, “Imaging neuronal subsets in transgenic mice expressing multiple spectral variants of GFP,” Neuron 28(1), 41–51 (2000).
[Crossref] [PubMed]

Sato, A.

R. Kawakami, K. Sawada, A. Sato, T. Hibi, Y. Kozawa, S. Sato, H. Yokoyama, and T. Nemoto, “Visualizing hippocampal neurons with in vivo two-photon microscopy using a 1030 nm picosecond pulse laser,” Sci. Rep. 3, 1014 (2013).
[Crossref] [PubMed]

Sato, K.

Sato, S.

Y. Kusama, Y. Tanushi, M. Yokoyama, R. Kawakami, T. Hibi, Y. Kozawa, T. Nemoto, S. Sato, and H. Yokoyama, “7-ps optical pulse generation from a 1064-nm gain-switched laser diode and its application for two-photon microscopy,” Opt. Express 22(5), 5746–5753 (2014).
[Crossref] [PubMed]

R. Kawakami, K. Sawada, A. Sato, T. Hibi, Y. Kozawa, S. Sato, H. Yokoyama, and T. Nemoto, “Visualizing hippocampal neurons with in vivo two-photon microscopy using a 1030 nm picosecond pulse laser,” Sci. Rep. 3, 1014 (2013).
[Crossref] [PubMed]

Savall, J.

J. Lecoq, J. Savall, D. Vučinić, B. F. Grewe, H. Kim, J. Z. Li, L. J. Kitch, and M. J. Schnitzer, “Visualizing mammalian brain area interactions by dual-axis two-photon calcium imaging,” Nat. Neurosci. 17(12), 1825–1829 (2014).
[Crossref] [PubMed]

Sawada, K.

R. Kawakami, K. Sawada, A. Sato, T. Hibi, Y. Kozawa, S. Sato, H. Yokoyama, and T. Nemoto, “Visualizing hippocampal neurons with in vivo two-photon microscopy using a 1030 nm picosecond pulse laser,” Sci. Rep. 3, 1014 (2013).
[Crossref] [PubMed]

Schaefer, A. T.

W. Mittmann, D. J. Wallace, U. Czubayko, J. T. Herb, A. T. Schaefer, L. L. Looger, W. Denk, and J. N. D. Kerr, “Two-photon calcium imaging of evoked activity from L5 somatosensory neurons in vivo,” Nat. Neurosci. 14(8), 1089–1093 (2011).
[Crossref] [PubMed]

Schaffer, C. B.

N. G. Horton, K. Wang, D. Kobat, C. G. Clark, F. W. Wise, C. B. Schaffer, and C. Xu, “In vivo three-photon microscopy of subcortical structures within an intact mouse brain,” Nat. Photonics 7(3), 205–209 (2013).
[Crossref] [PubMed]

Schnitzer, M. J.

J. Lecoq, J. Savall, D. Vučinić, B. F. Grewe, H. Kim, J. Z. Li, L. J. Kitch, and M. J. Schnitzer, “Visualizing mammalian brain area interactions by dual-axis two-photon calcium imaging,” Nat. Neurosci. 17(12), 1825–1829 (2014).
[Crossref] [PubMed]

Strickler, J. H.

W. Denk, J. H. Strickler, and W. W. Webb, “Two-photon laser scanning fluorescence microscopy,” Science 248(4951), 73–76 (1990).
[Crossref] [PubMed]

Svoboda, K.

A. Holtmaat, T. Bonhoeffer, D. K. Chow, J. Chuckowree, V. De Paola, S. B. Hofer, M. Hübener, T. Keck, G. Knott, W. C. Lee, R. Mostany, T. D. Mrsic-Flogel, E. Nedivi, C. Portera-Cailliau, K. Svoboda, J. T. Trachtenberg, and L. Wilbrecht, “Long-term, high-resolution imaging in the mouse neocortex through a chronic cranial window,” Nat. Protoc. 4(8), 1128–1144 (2009).
[Crossref] [PubMed]

Takashima, K.

Tanaka, Y. H.

Y. Masamizu, Y. R. Tanaka, Y. H. Tanaka, R. Hira, F. Ohkubo, K. Kitamura, Y. Isomura, T. Okada, and M. Matsuzaki, “Two distinct layer-specific dynamics of cortical ensembles during learning of a motor task,” Nat. Neurosci. 17(7), 987–994 (2014).
[Crossref] [PubMed]

Tanaka, Y. R.

Y. Masamizu, Y. R. Tanaka, Y. H. Tanaka, R. Hira, F. Ohkubo, K. Kitamura, Y. Isomura, T. Okada, and M. Matsuzaki, “Two distinct layer-specific dynamics of cortical ensembles during learning of a motor task,” Nat. Neurosci. 17(7), 987–994 (2014).
[Crossref] [PubMed]

Taniguchi, H.

Tanushi, Y.

Tonegawa, S.

T. Nakashiba, J. D. Cushman, K. A. Pelkey, S. Renaudineau, D. L. Buhl, T. J. McHugh, V. Rodriguez Barrera, R. Chittajallu, K. S. Iwamoto, C. J. McBain, M. S. Fanselow, and S. Tonegawa, “Young dentate granule cells mediate pattern separation, whereas old granule cells facilitate pattern completion,” Cell 149(1), 188–201 (2012).
[Crossref] [PubMed]

Trachtenberg, J. T.

A. Holtmaat, T. Bonhoeffer, D. K. Chow, J. Chuckowree, V. De Paola, S. B. Hofer, M. Hübener, T. Keck, G. Knott, W. C. Lee, R. Mostany, T. D. Mrsic-Flogel, E. Nedivi, C. Portera-Cailliau, K. Svoboda, J. T. Trachtenberg, and L. Wilbrecht, “Long-term, high-resolution imaging in the mouse neocortex through a chronic cranial window,” Nat. Protoc. 4(8), 1128–1144 (2009).
[Crossref] [PubMed]

Vucinic, D.

J. Lecoq, J. Savall, D. Vučinić, B. F. Grewe, H. Kim, J. Z. Li, L. J. Kitch, and M. J. Schnitzer, “Visualizing mammalian brain area interactions by dual-axis two-photon calcium imaging,” Nat. Neurosci. 17(12), 1825–1829 (2014).
[Crossref] [PubMed]

Wallace, D. J.

W. Mittmann, D. J. Wallace, U. Czubayko, J. T. Herb, A. T. Schaefer, L. L. Looger, W. Denk, and J. N. D. Kerr, “Two-photon calcium imaging of evoked activity from L5 somatosensory neurons in vivo,” Nat. Neurosci. 14(8), 1089–1093 (2011).
[Crossref] [PubMed]

Wallace, M.

G. Feng, R. H. Mellor, M. Bernstein, C. Keller-Peck, Q. T. Nguyen, M. Wallace, J. M. Nerbonne, J. W. Lichtman, and J. R. Sanes, “Imaging neuronal subsets in transgenic mice expressing multiple spectral variants of GFP,” Neuron 28(1), 41–51 (2000).
[Crossref] [PubMed]

Wang, K.

N. G. Horton, K. Wang, D. Kobat, C. G. Clark, F. W. Wise, C. B. Schaffer, and C. Xu, “In vivo three-photon microscopy of subcortical structures within an intact mouse brain,” Nat. Photonics 7(3), 205–209 (2013).
[Crossref] [PubMed]

Watanabe, S.

J. Noguchi, A. Nagaoka, S. Watanabe, G. C. Ellis-Davies, K. Kitamura, M. Kano, M. Matsuzaki, and H. Kasai, “In vivo two-photon uncaging of glutamate revealing the structure-function relationships of dendritic spines in the neocortex of adult mice,” J. Physiol. 589(10), 2447–2457 (2011).
[Crossref] [PubMed]

Webb, W. W.

W. Denk, J. H. Strickler, and W. W. Webb, “Two-photon laser scanning fluorescence microscopy,” Science 248(4951), 73–76 (1990).
[Crossref] [PubMed]

Wilbrecht, L.

A. Holtmaat, T. Bonhoeffer, D. K. Chow, J. Chuckowree, V. De Paola, S. B. Hofer, M. Hübener, T. Keck, G. Knott, W. C. Lee, R. Mostany, T. D. Mrsic-Flogel, E. Nedivi, C. Portera-Cailliau, K. Svoboda, J. T. Trachtenberg, and L. Wilbrecht, “Long-term, high-resolution imaging in the mouse neocortex through a chronic cranial window,” Nat. Protoc. 4(8), 1128–1144 (2009).
[Crossref] [PubMed]

Wise, F. W.

N. G. Horton, K. Wang, D. Kobat, C. G. Clark, F. W. Wise, C. B. Schaffer, and C. Xu, “In vivo three-photon microscopy of subcortical structures within an intact mouse brain,” Nat. Photonics 7(3), 205–209 (2013).
[Crossref] [PubMed]

Xu, C.

N. G. Horton, K. Wang, D. Kobat, C. G. Clark, F. W. Wise, C. B. Schaffer, and C. Xu, “In vivo three-photon microscopy of subcortical structures within an intact mouse brain,” Nat. Photonics 7(3), 205–209 (2013).
[Crossref] [PubMed]

Yoda, T.

Yokoyama, H.

Yokoyama, M.

Cell (1)

T. Nakashiba, J. D. Cushman, K. A. Pelkey, S. Renaudineau, D. L. Buhl, T. J. McHugh, V. Rodriguez Barrera, R. Chittajallu, K. S. Iwamoto, C. J. McBain, M. S. Fanselow, and S. Tonegawa, “Young dentate granule cells mediate pattern separation, whereas old granule cells facilitate pattern completion,” Cell 149(1), 188–201 (2012).
[Crossref] [PubMed]

Front. Neural Circuits (1)

T. Matsui and K. Ohki, “Target dependence of orientation and direction selectivity of corticocortical projection neurons in the mouse V1,” Front. Neural Circuits 7, 143 (2013).
[Crossref] [PubMed]

J. Biomed. Opt. (1)

T. A. Murray and M. J. Levene, “Singlet gradient index lens for deep in vivo multiphoton microscopy,” J. Biomed. Opt. 17(2), 021106 (2012).
[Crossref] [PubMed]

J. Microsc.Oxford (1)

J. Bewersdorf and S. W. Hell, “Picosecond pulsed two-photon imaging with repetition rates of 200 and 400 MHz,” J. Microsc.Oxford 191(1), 28–38 (1998).
[Crossref]

J. Neurosci. Methods (1)

M. Oheim, E. Beaurepaire, E. Chaigneau, J. Mertz, and S. Charpak, “Two-photon microscopy in brain tissue: parameters influencing the imaging depth,” J. Neurosci. Methods 111(1), 29–37 (2001).
[Crossref] [PubMed]

J. Physiol. (1)

J. Noguchi, A. Nagaoka, S. Watanabe, G. C. Ellis-Davies, K. Kitamura, M. Kano, M. Matsuzaki, and H. Kasai, “In vivo two-photon uncaging of glutamate revealing the structure-function relationships of dendritic spines in the neocortex of adult mice,” J. Physiol. 589(10), 2447–2457 (2011).
[Crossref] [PubMed]

J. Vis. Exp. (1)

R. Mostany and C. Portera-Cailliau, “A craniotomy surgery procedure for chronic brain imaging,” J. Vis. Exp. 12(12), 3791 (2008).
[PubMed]

Mol. Cells (1)

T. Nemoto, “Living cell functions and morphology revealed by two-photon microscopy in intact neural and secretory organs,” Mol. Cells 26(2), 113–120 (2008).
[PubMed]

Nat. Neurosci. (3)

W. Mittmann, D. J. Wallace, U. Czubayko, J. T. Herb, A. T. Schaefer, L. L. Looger, W. Denk, and J. N. D. Kerr, “Two-photon calcium imaging of evoked activity from L5 somatosensory neurons in vivo,” Nat. Neurosci. 14(8), 1089–1093 (2011).
[Crossref] [PubMed]

J. Lecoq, J. Savall, D. Vučinić, B. F. Grewe, H. Kim, J. Z. Li, L. J. Kitch, and M. J. Schnitzer, “Visualizing mammalian brain area interactions by dual-axis two-photon calcium imaging,” Nat. Neurosci. 17(12), 1825–1829 (2014).
[Crossref] [PubMed]

Y. Masamizu, Y. R. Tanaka, Y. H. Tanaka, R. Hira, F. Ohkubo, K. Kitamura, Y. Isomura, T. Okada, and M. Matsuzaki, “Two distinct layer-specific dynamics of cortical ensembles during learning of a motor task,” Nat. Neurosci. 17(7), 987–994 (2014).
[Crossref] [PubMed]

Nat. Photonics (1)

N. G. Horton, K. Wang, D. Kobat, C. G. Clark, F. W. Wise, C. B. Schaffer, and C. Xu, “In vivo three-photon microscopy of subcortical structures within an intact mouse brain,” Nat. Photonics 7(3), 205–209 (2013).
[Crossref] [PubMed]

Nat. Protoc. (1)

A. Holtmaat, T. Bonhoeffer, D. K. Chow, J. Chuckowree, V. De Paola, S. B. Hofer, M. Hübener, T. Keck, G. Knott, W. C. Lee, R. Mostany, T. D. Mrsic-Flogel, E. Nedivi, C. Portera-Cailliau, K. Svoboda, J. T. Trachtenberg, and L. Wilbrecht, “Long-term, high-resolution imaging in the mouse neocortex through a chronic cranial window,” Nat. Protoc. 4(8), 1128–1144 (2009).
[Crossref] [PubMed]

Nature (2)

J. Grutzendler, N. Kasthuri, and W. B. Gan, “Long-term dendritic spine stability in the adult cortex,” Nature 420(6917), 812–816 (2002).
[Crossref] [PubMed]

M. Matsuzaki, N. Honkura, G. C. Ellis-Davies, and H. Kasai, “Structural basis of long-term potentiation in single dendritic spines,” Nature 429(6993), 761–766 (2004).
[Crossref] [PubMed]

Neuron (1)

G. Feng, R. H. Mellor, M. Bernstein, C. Keller-Peck, Q. T. Nguyen, M. Wallace, J. M. Nerbonne, J. W. Lichtman, and J. R. Sanes, “Imaging neuronal subsets in transgenic mice expressing multiple spectral variants of GFP,” Neuron 28(1), 41–51 (2000).
[Crossref] [PubMed]

Opt. Express (2)

Opt. Lett. (1)

Sci. Rep. (1)

R. Kawakami, K. Sawada, A. Sato, T. Hibi, Y. Kozawa, S. Sato, H. Yokoyama, and T. Nemoto, “Visualizing hippocampal neurons with in vivo two-photon microscopy using a 1030 nm picosecond pulse laser,” Sci. Rep. 3, 1014 (2013).
[Crossref] [PubMed]

Science (1)

W. Denk, J. H. Strickler, and W. W. Webb, “Two-photon laser scanning fluorescence microscopy,” Science 248(4951), 73–76 (1990).
[Crossref] [PubMed]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 Schematic diagram for in vivo two-photon microscopy using the novel GSLD based light source. (a) Optical arrangement for introduction of the 1064-nm picosecond (newly developed) GSLD-based seed laser and 1000-nm femtosecond (Ti:Sa) lasers into the two-photon microscope. The optical pathway from each laser is indicated by a red (GSLD) or orange (Ti:Sa) line. The pulse duration of the 1064-nm GSLD laser beam was about 7.5-picoseconds, and the average output power was over 4 W. The excitation laser was changed using an insertion mirror, and emissions were detected by GaAsP-NDD in the A1R MP+ (Nikon). Under the objective lens, the average excitation laser power was measured relative to the driver current of the pump LD for PCF. ISO: isolator, DM: dichroic mirror at 690-nm. A 35-mm disposable dish was mounted on the head of the H-line mouse. The mouse head was suspended from the adapter stage by the dish, and the body was held under the stage using a soft cloth. The apparatus included a horizontal adjustment mechanism to secure the head of the mouse under an upright microscope stage [11]. (b) Three adjuster bolts were located on the adapter stage. Fluorescent red beads were placed on the cover slip. The angle of adapter stage could be manually controlled using these bolts to ensure that the cover slip became horizontal observing these beads as an indicator of the cover slip angle.
Fig. 2
Fig. 2 Two-photon fluorescence imaging of cortical and hippocampal neurons with 1000-nm MaiTai eHP DeepSee and 1064-nm high-peak power GSLD based light-source excitation in young adult H-line mouse brain. Maximum intensity projections of three-dimensional stacks were obtained with a 1000-nm Ti:Sa laser (left panel) and a 1064-nm GSLD (right panel). Each xy image of the cortical region and hippocampal region was acquired under a different scanning condition. Six normalized xy frames from the z-stack at various depths are shown, including the hippocampal CA1 pyramidal cell layer, apical dendrites, and hippocampal dentate gyrus.
Fig. 3
Fig. 3 Two-photon fluorescence imaging of cortical and hippocampal neurons with 1000-nm MaiTai eHP DeepSee and 1064-nm high-peak power GSLD based light source excitation in adult H-line mouse brain. Maximum intensity projections of three-dimensional stacks were obtained with the 1000-nm TiSa laser (left panel) and 1064-nm GSLD (right panel). Each xy image of the cortical region and hippocampal region was acquired under different scanning conditions. Six normalized xy frames from the z-stack at various depths are shown, including the hippocampal CA1 pyramidal cell layer, apical dendrites, and hippocampal dentate gyrus.
Fig. 4
Fig. 4 Quantitative analyses of peak signal-to-background ratio for in vivo imaging of hippocampal neurons. (a) A cross-sectional (xy) image obtained from the hippocampal areas of young adult and adult mice. (b). In the upper panels, the signal and background peaks were calculated from fluorescence intensities in a line profile (20-μm diameter) across an individual neural process (signal: red line) and the background area (white line). The ratio R at each process was calculated by dividing the signal peak by the background (see Materials and Methods). The depth dependence of the average and Standard Error of the Mean of signal peak–to-background ratios (R) was calculated in young adult (a) and adult (b) mice. Red and black circles indicate averages obtained using the 1064-nm GSLD and 1000-nm Ti:Sa lasers, respectively (n = 7 processes; averages ± SEM).
Fig. 5
Fig. 5 In vivo multi-color imaging of EYFP in the pyramidal neurons and Alexa Fluor 546 in a blood vessel in the H-line mouse brain. Maximum intensity projections of three-dimensional stacks were obtained with the 1064-nm GSLD based light source. Each xy image was performed unmixing using NIS-ELEMENTS (Nikon) and excluding signals that overlapped with each other. Each stack contains EYFP and Alexa Fluor 546 signals. In the merged image, green and magenta indicate EYFP and Alexa Fluor 546, respectively. The cortical and hippocampal regions were acquired under different scanning conditions. Six normalized xy frames from the z-stack at various depths are shown, including the white matter, hippocampal CA1 pyramidal cell layer, and hippocampal fissure area. The red arrowhead indicates a large blood vessel relay on the hippocampus.

Tables (1)

Tables Icon

Table 1 Specifications of the 1064-nm GSLD based light, mode-locked Ti:Sa, and 1030-nm mode-locked LD based laser.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

R=  I s   /( iB.G. I b i / N b )
Na P peak 2 τ pulse f repi
Na P peak P average

Metrics