Abstract

For predicting pain stimulation effects and avoiding damage in 1940nm laser evoked potentials (LEPs) experiments, a 2-layer finite element model (FEM-2) was constructed. A series of experiments were conducted on ex-vivo pig skin pieces to verify temperature distribution predicted by this model. Various laser powers and beam radii were employed. Experimental data of time-dependent temperature responses in different sub-skin depths and space-dependent surface temperature was recorded by thermocouple instrument. By comparing with the experimental data and model results, FEM-2 model was proved to predict temperature distributions accurately. A logarithmic relationship between laser power density and temperature increment was revealed by the results. It is concluded that power density is an effective parameter to estimate pain and damage effect. The obtained results also indicated that the proposed FEM-2 model can be extended to predict pain and damage thresholds of human skin samples and thus contribute to LEPs study.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Investigation of the distribution of laser damage precursors at 1064 nm, 12 ns on Niobia-Silica and Zirconia-Silica mixtures

X. Fu, A. Melnikaitis, L. Gallais, S. Kiáčas, R. Drazdys, V. Sirutkaitis, and M. Commandré
Opt. Express 20(23) 26089-26098 (2012)

In vivo analysis of THz wave irradiation induced acute inflammatory response in skin by laser-scanning confocal microscopy

Yoonha Hwang, Jinhyo Ahn, Jungho Mun, Sangyoon Bae, Young Uk Jeong, Nikolay A. Vinokurov, and Pilhan Kim
Opt. Express 22(10) 11465-11475 (2014)

Myocardial temperature distribution under cw Nd:YAG laser irradiation in in vitro and in vivo situations: theory and experiment

Robert Splinter, Serguei Y. Semenov, Glenn A. Nanney, Laszlo Littmann, Jan R. Tuntelder, Robert H. Svenson, Chi Hui Chuang, and George P. Tatsis
Appl. Opt. 34(3) 391-399 (1995)

References

  • View by:
  • |
  • |
  • |

  1. L. Arendt-Nielsen and A. C. Chen, “Lasers and other thermal stimulators for activation of skin nociceptors in humans,” Neurophysiologie Clinique Clin. Neurophysiol. 33(6), 259–268 (2003).
  2. L. Plaghki and A. Mouraux, “How do we selectively activate skin nociceptors with a high power infrared laser? Physiology and biophysics of laser stimulation,” Neurophysiologie Clinique Clin. Neurophysiol. 33(6), 269–277 (2003).
  3. J. W. Oliver, D. J. Stolarski, G. D. Noojin, H. M. Hodnett, C. A. Harbert, K. J. Schuster, M. F. Foltz, S. S. Kumru, C. P. Cain, C. J. Finkeldei, G. D. Buffington, I. D. Noojin, and R. J. Thomas, “Infrared skin damage thresholds from 1940-nm continuous-wave laser exposures,” J. Biomed. Opt. 15(6), 065008 (2010).
    [Crossref] [PubMed]
  4. J. Mor and A. Carmon, “Laser emitted radiant heat for pain research,” Pain 1(3), 233–237 (1975).
    [Crossref] [PubMed]
  5. D. Julius and A. I. Basbaum, “Molecular mechanisms of nociception,” Nature 413(6852), 203–210 (2001).
    [Crossref] [PubMed]
  6. S. N. Raja, R. A. Meyer, M. Ringkamp, and J. N. Campbell, “Peripheral neural mechanisms of nociception,” Textbook of Pain. 4, 11–57 (1999).
  7. M. J. Caterina and D. Julius, “The vanilloid receptor: a molecular gateway to the pain pathway,” Annu. Rev. Neurosci. 24(1), 487–517 (2001).
    [Crossref] [PubMed]
  8. B. Chen, S. L. Thomsen, R. J. Thomas, and A. J. Welch, “Modeling thermal damage in skin from 2000-nm laser irradiation,” J. Biomed. Opt. 11(6), 064028 (2006).
    [Crossref] [PubMed]
  9. B. Bromm and R. D. Treede, “CO2 laser radiant heat pulses activate C nociceptors in man,” Pflugers Arch. 399(2), 155–156 (1983).
    [Crossref] [PubMed]
  10. M. J. Brugmans, J. Kemper, G. H. Gijsbers, F. W. van der Meulen, and M. J. van Gemert, “Temperature response of biological materials to pulsed non-ablative CO2 laser irradiation,” Lasers Surg. Med. 11(6), 587–594 (1991).
    [Crossref] [PubMed]
  11. M. H. Al-Saadi, V. Nadeau, and M. R. Dickinson, “A novel modelling and experimental technique to predict and measure tissue temperature during CO2 laser stimuli for human pain studies,” Lasers Med. Sci. 21(2), 95–100 (2006).
    [Crossref] [PubMed]
  12. K. S. Frahm, O. K. Andersen, L. Arendt-Nielsen, and C. D. Mørch, “Spatial temperature distribution in human hairy and glabrous skin after infrared CO2 laser radiation,” Biomed. Eng. Online 9(1), 69 (2010).
    [Crossref] [PubMed]
  13. P. Lu, S. Hsu, M. Tsai, F. Jaw, A. Wang, and C. Yen, “Temporal and spatial temperature distribution in the glabrous skin of rats induced by short-pulse CO2 laser,” J. Biomed. Opt. 17(11), 117002 (2012).
  14. E. Marchandise, A. Mouraux, L. Plaghki, and F. Henrotte, “Finite element analysis of thermal laser skin stimulation for a finer characterization of the nociceptive system,” J. Neurosci. Methods 223, 1–10 (2014).
    [Crossref] [PubMed]
  15. B. Choi and A. J. Welch, “Analysis of thermal relaxation during laser irradiation of tissue,” Lasers Surg. Med. 29(4), 351–359 (2001).
    [Crossref] [PubMed]
  16. H. H. Pennes, “Analysis of tissue and arterial blood temperatures in the resting human forearm. 1948,” J. Appl. Physiol. 85(1), 5–34 (1998).
    [PubMed]
  17. J. W. Valvano, “Tissue thermal properties and perfusion” in Optical-Thermal Response of Laser-Irradiated Tissue, W. M. Star, B. C. Wilson, A. J. Welch, eds. (Springer US, 1995).
  18. A. Shitzer and R. C. Eberhart, Heat Transfer in Medicine and Biology: Analysis and Applications (Plenum Pub Corp, 1985).
  19. S. L. Jacques and S. A. Prahl, “Modeling optical and thermal distributions in tissue during laser irradiation,” Lasers Surg. Med. 6(6), 494–503 (1987).
    [Crossref] [PubMed]
  20. L. Kou, D. Labrie, and P. Chylek, “Refractive indices of water and ice in the 0.65- to 2.5-µm spectral range,” Appl. Opt. 32(19), 3531–3540 (1993).
    [Crossref] [PubMed]
  21. J. Spiegel, C. Hansen, and R. D. Treede, “Clinical evaluation criteria for the assessment of impaired pain sensitivity by thulium-laser evoked potentials,” Clin. Neurophysiol. 111(4), 725–735 (2000).
    [Crossref] [PubMed]
  22. R. Kaufmann, A. Hartmann, and R. Hibst, “Cutting and Skin-Ablative Properties of Pulsed Mid-Infrared Laser Surgery,” J. Dermatol. Surg. Oncol. 20(2), 112–118 (1994).
    [Crossref] [PubMed]

2014 (1)

E. Marchandise, A. Mouraux, L. Plaghki, and F. Henrotte, “Finite element analysis of thermal laser skin stimulation for a finer characterization of the nociceptive system,” J. Neurosci. Methods 223, 1–10 (2014).
[Crossref] [PubMed]

2012 (1)

P. Lu, S. Hsu, M. Tsai, F. Jaw, A. Wang, and C. Yen, “Temporal and spatial temperature distribution in the glabrous skin of rats induced by short-pulse CO2 laser,” J. Biomed. Opt. 17(11), 117002 (2012).

2010 (2)

K. S. Frahm, O. K. Andersen, L. Arendt-Nielsen, and C. D. Mørch, “Spatial temperature distribution in human hairy and glabrous skin after infrared CO2 laser radiation,” Biomed. Eng. Online 9(1), 69 (2010).
[Crossref] [PubMed]

J. W. Oliver, D. J. Stolarski, G. D. Noojin, H. M. Hodnett, C. A. Harbert, K. J. Schuster, M. F. Foltz, S. S. Kumru, C. P. Cain, C. J. Finkeldei, G. D. Buffington, I. D. Noojin, and R. J. Thomas, “Infrared skin damage thresholds from 1940-nm continuous-wave laser exposures,” J. Biomed. Opt. 15(6), 065008 (2010).
[Crossref] [PubMed]

2006 (2)

B. Chen, S. L. Thomsen, R. J. Thomas, and A. J. Welch, “Modeling thermal damage in skin from 2000-nm laser irradiation,” J. Biomed. Opt. 11(6), 064028 (2006).
[Crossref] [PubMed]

M. H. Al-Saadi, V. Nadeau, and M. R. Dickinson, “A novel modelling and experimental technique to predict and measure tissue temperature during CO2 laser stimuli for human pain studies,” Lasers Med. Sci. 21(2), 95–100 (2006).
[Crossref] [PubMed]

2003 (2)

L. Arendt-Nielsen and A. C. Chen, “Lasers and other thermal stimulators for activation of skin nociceptors in humans,” Neurophysiologie Clinique Clin. Neurophysiol. 33(6), 259–268 (2003).

L. Plaghki and A. Mouraux, “How do we selectively activate skin nociceptors with a high power infrared laser? Physiology and biophysics of laser stimulation,” Neurophysiologie Clinique Clin. Neurophysiol. 33(6), 269–277 (2003).

2001 (3)

D. Julius and A. I. Basbaum, “Molecular mechanisms of nociception,” Nature 413(6852), 203–210 (2001).
[Crossref] [PubMed]

M. J. Caterina and D. Julius, “The vanilloid receptor: a molecular gateway to the pain pathway,” Annu. Rev. Neurosci. 24(1), 487–517 (2001).
[Crossref] [PubMed]

B. Choi and A. J. Welch, “Analysis of thermal relaxation during laser irradiation of tissue,” Lasers Surg. Med. 29(4), 351–359 (2001).
[Crossref] [PubMed]

2000 (1)

J. Spiegel, C. Hansen, and R. D. Treede, “Clinical evaluation criteria for the assessment of impaired pain sensitivity by thulium-laser evoked potentials,” Clin. Neurophysiol. 111(4), 725–735 (2000).
[Crossref] [PubMed]

1999 (1)

S. N. Raja, R. A. Meyer, M. Ringkamp, and J. N. Campbell, “Peripheral neural mechanisms of nociception,” Textbook of Pain. 4, 11–57 (1999).

1998 (1)

H. H. Pennes, “Analysis of tissue and arterial blood temperatures in the resting human forearm. 1948,” J. Appl. Physiol. 85(1), 5–34 (1998).
[PubMed]

1994 (1)

R. Kaufmann, A. Hartmann, and R. Hibst, “Cutting and Skin-Ablative Properties of Pulsed Mid-Infrared Laser Surgery,” J. Dermatol. Surg. Oncol. 20(2), 112–118 (1994).
[Crossref] [PubMed]

1993 (1)

1991 (1)

M. J. Brugmans, J. Kemper, G. H. Gijsbers, F. W. van der Meulen, and M. J. van Gemert, “Temperature response of biological materials to pulsed non-ablative CO2 laser irradiation,” Lasers Surg. Med. 11(6), 587–594 (1991).
[Crossref] [PubMed]

1987 (1)

S. L. Jacques and S. A. Prahl, “Modeling optical and thermal distributions in tissue during laser irradiation,” Lasers Surg. Med. 6(6), 494–503 (1987).
[Crossref] [PubMed]

1983 (1)

B. Bromm and R. D. Treede, “CO2 laser radiant heat pulses activate C nociceptors in man,” Pflugers Arch. 399(2), 155–156 (1983).
[Crossref] [PubMed]

1975 (1)

J. Mor and A. Carmon, “Laser emitted radiant heat for pain research,” Pain 1(3), 233–237 (1975).
[Crossref] [PubMed]

Al-Saadi, M. H.

M. H. Al-Saadi, V. Nadeau, and M. R. Dickinson, “A novel modelling and experimental technique to predict and measure tissue temperature during CO2 laser stimuli for human pain studies,” Lasers Med. Sci. 21(2), 95–100 (2006).
[Crossref] [PubMed]

Andersen, O. K.

K. S. Frahm, O. K. Andersen, L. Arendt-Nielsen, and C. D. Mørch, “Spatial temperature distribution in human hairy and glabrous skin after infrared CO2 laser radiation,” Biomed. Eng. Online 9(1), 69 (2010).
[Crossref] [PubMed]

Arendt-Nielsen, L.

K. S. Frahm, O. K. Andersen, L. Arendt-Nielsen, and C. D. Mørch, “Spatial temperature distribution in human hairy and glabrous skin after infrared CO2 laser radiation,” Biomed. Eng. Online 9(1), 69 (2010).
[Crossref] [PubMed]

L. Arendt-Nielsen and A. C. Chen, “Lasers and other thermal stimulators for activation of skin nociceptors in humans,” Neurophysiologie Clinique Clin. Neurophysiol. 33(6), 259–268 (2003).

Basbaum, A. I.

D. Julius and A. I. Basbaum, “Molecular mechanisms of nociception,” Nature 413(6852), 203–210 (2001).
[Crossref] [PubMed]

Bromm, B.

B. Bromm and R. D. Treede, “CO2 laser radiant heat pulses activate C nociceptors in man,” Pflugers Arch. 399(2), 155–156 (1983).
[Crossref] [PubMed]

Brugmans, M. J.

M. J. Brugmans, J. Kemper, G. H. Gijsbers, F. W. van der Meulen, and M. J. van Gemert, “Temperature response of biological materials to pulsed non-ablative CO2 laser irradiation,” Lasers Surg. Med. 11(6), 587–594 (1991).
[Crossref] [PubMed]

Buffington, G. D.

J. W. Oliver, D. J. Stolarski, G. D. Noojin, H. M. Hodnett, C. A. Harbert, K. J. Schuster, M. F. Foltz, S. S. Kumru, C. P. Cain, C. J. Finkeldei, G. D. Buffington, I. D. Noojin, and R. J. Thomas, “Infrared skin damage thresholds from 1940-nm continuous-wave laser exposures,” J. Biomed. Opt. 15(6), 065008 (2010).
[Crossref] [PubMed]

Cain, C. P.

J. W. Oliver, D. J. Stolarski, G. D. Noojin, H. M. Hodnett, C. A. Harbert, K. J. Schuster, M. F. Foltz, S. S. Kumru, C. P. Cain, C. J. Finkeldei, G. D. Buffington, I. D. Noojin, and R. J. Thomas, “Infrared skin damage thresholds from 1940-nm continuous-wave laser exposures,” J. Biomed. Opt. 15(6), 065008 (2010).
[Crossref] [PubMed]

Campbell, J. N.

S. N. Raja, R. A. Meyer, M. Ringkamp, and J. N. Campbell, “Peripheral neural mechanisms of nociception,” Textbook of Pain. 4, 11–57 (1999).

Carmon, A.

J. Mor and A. Carmon, “Laser emitted radiant heat for pain research,” Pain 1(3), 233–237 (1975).
[Crossref] [PubMed]

Caterina, M. J.

M. J. Caterina and D. Julius, “The vanilloid receptor: a molecular gateway to the pain pathway,” Annu. Rev. Neurosci. 24(1), 487–517 (2001).
[Crossref] [PubMed]

Chen, A. C.

L. Arendt-Nielsen and A. C. Chen, “Lasers and other thermal stimulators for activation of skin nociceptors in humans,” Neurophysiologie Clinique Clin. Neurophysiol. 33(6), 259–268 (2003).

Chen, B.

B. Chen, S. L. Thomsen, R. J. Thomas, and A. J. Welch, “Modeling thermal damage in skin from 2000-nm laser irradiation,” J. Biomed. Opt. 11(6), 064028 (2006).
[Crossref] [PubMed]

Choi, B.

B. Choi and A. J. Welch, “Analysis of thermal relaxation during laser irradiation of tissue,” Lasers Surg. Med. 29(4), 351–359 (2001).
[Crossref] [PubMed]

Chylek, P.

Dickinson, M. R.

M. H. Al-Saadi, V. Nadeau, and M. R. Dickinson, “A novel modelling and experimental technique to predict and measure tissue temperature during CO2 laser stimuli for human pain studies,” Lasers Med. Sci. 21(2), 95–100 (2006).
[Crossref] [PubMed]

Finkeldei, C. J.

J. W. Oliver, D. J. Stolarski, G. D. Noojin, H. M. Hodnett, C. A. Harbert, K. J. Schuster, M. F. Foltz, S. S. Kumru, C. P. Cain, C. J. Finkeldei, G. D. Buffington, I. D. Noojin, and R. J. Thomas, “Infrared skin damage thresholds from 1940-nm continuous-wave laser exposures,” J. Biomed. Opt. 15(6), 065008 (2010).
[Crossref] [PubMed]

Foltz, M. F.

J. W. Oliver, D. J. Stolarski, G. D. Noojin, H. M. Hodnett, C. A. Harbert, K. J. Schuster, M. F. Foltz, S. S. Kumru, C. P. Cain, C. J. Finkeldei, G. D. Buffington, I. D. Noojin, and R. J. Thomas, “Infrared skin damage thresholds from 1940-nm continuous-wave laser exposures,” J. Biomed. Opt. 15(6), 065008 (2010).
[Crossref] [PubMed]

Frahm, K. S.

K. S. Frahm, O. K. Andersen, L. Arendt-Nielsen, and C. D. Mørch, “Spatial temperature distribution in human hairy and glabrous skin after infrared CO2 laser radiation,” Biomed. Eng. Online 9(1), 69 (2010).
[Crossref] [PubMed]

Gijsbers, G. H.

M. J. Brugmans, J. Kemper, G. H. Gijsbers, F. W. van der Meulen, and M. J. van Gemert, “Temperature response of biological materials to pulsed non-ablative CO2 laser irradiation,” Lasers Surg. Med. 11(6), 587–594 (1991).
[Crossref] [PubMed]

Hansen, C.

J. Spiegel, C. Hansen, and R. D. Treede, “Clinical evaluation criteria for the assessment of impaired pain sensitivity by thulium-laser evoked potentials,” Clin. Neurophysiol. 111(4), 725–735 (2000).
[Crossref] [PubMed]

Harbert, C. A.

J. W. Oliver, D. J. Stolarski, G. D. Noojin, H. M. Hodnett, C. A. Harbert, K. J. Schuster, M. F. Foltz, S. S. Kumru, C. P. Cain, C. J. Finkeldei, G. D. Buffington, I. D. Noojin, and R. J. Thomas, “Infrared skin damage thresholds from 1940-nm continuous-wave laser exposures,” J. Biomed. Opt. 15(6), 065008 (2010).
[Crossref] [PubMed]

Hartmann, A.

R. Kaufmann, A. Hartmann, and R. Hibst, “Cutting and Skin-Ablative Properties of Pulsed Mid-Infrared Laser Surgery,” J. Dermatol. Surg. Oncol. 20(2), 112–118 (1994).
[Crossref] [PubMed]

Henrotte, F.

E. Marchandise, A. Mouraux, L. Plaghki, and F. Henrotte, “Finite element analysis of thermal laser skin stimulation for a finer characterization of the nociceptive system,” J. Neurosci. Methods 223, 1–10 (2014).
[Crossref] [PubMed]

Hibst, R.

R. Kaufmann, A. Hartmann, and R. Hibst, “Cutting and Skin-Ablative Properties of Pulsed Mid-Infrared Laser Surgery,” J. Dermatol. Surg. Oncol. 20(2), 112–118 (1994).
[Crossref] [PubMed]

Hodnett, H. M.

J. W. Oliver, D. J. Stolarski, G. D. Noojin, H. M. Hodnett, C. A. Harbert, K. J. Schuster, M. F. Foltz, S. S. Kumru, C. P. Cain, C. J. Finkeldei, G. D. Buffington, I. D. Noojin, and R. J. Thomas, “Infrared skin damage thresholds from 1940-nm continuous-wave laser exposures,” J. Biomed. Opt. 15(6), 065008 (2010).
[Crossref] [PubMed]

Hsu, S.

P. Lu, S. Hsu, M. Tsai, F. Jaw, A. Wang, and C. Yen, “Temporal and spatial temperature distribution in the glabrous skin of rats induced by short-pulse CO2 laser,” J. Biomed. Opt. 17(11), 117002 (2012).

Jacques, S. L.

S. L. Jacques and S. A. Prahl, “Modeling optical and thermal distributions in tissue during laser irradiation,” Lasers Surg. Med. 6(6), 494–503 (1987).
[Crossref] [PubMed]

Jaw, F.

P. Lu, S. Hsu, M. Tsai, F. Jaw, A. Wang, and C. Yen, “Temporal and spatial temperature distribution in the glabrous skin of rats induced by short-pulse CO2 laser,” J. Biomed. Opt. 17(11), 117002 (2012).

Julius, D.

D. Julius and A. I. Basbaum, “Molecular mechanisms of nociception,” Nature 413(6852), 203–210 (2001).
[Crossref] [PubMed]

M. J. Caterina and D. Julius, “The vanilloid receptor: a molecular gateway to the pain pathway,” Annu. Rev. Neurosci. 24(1), 487–517 (2001).
[Crossref] [PubMed]

Kaufmann, R.

R. Kaufmann, A. Hartmann, and R. Hibst, “Cutting and Skin-Ablative Properties of Pulsed Mid-Infrared Laser Surgery,” J. Dermatol. Surg. Oncol. 20(2), 112–118 (1994).
[Crossref] [PubMed]

Kemper, J.

M. J. Brugmans, J. Kemper, G. H. Gijsbers, F. W. van der Meulen, and M. J. van Gemert, “Temperature response of biological materials to pulsed non-ablative CO2 laser irradiation,” Lasers Surg. Med. 11(6), 587–594 (1991).
[Crossref] [PubMed]

Kou, L.

Kumru, S. S.

J. W. Oliver, D. J. Stolarski, G. D. Noojin, H. M. Hodnett, C. A. Harbert, K. J. Schuster, M. F. Foltz, S. S. Kumru, C. P. Cain, C. J. Finkeldei, G. D. Buffington, I. D. Noojin, and R. J. Thomas, “Infrared skin damage thresholds from 1940-nm continuous-wave laser exposures,” J. Biomed. Opt. 15(6), 065008 (2010).
[Crossref] [PubMed]

Labrie, D.

Lu, P.

P. Lu, S. Hsu, M. Tsai, F. Jaw, A. Wang, and C. Yen, “Temporal and spatial temperature distribution in the glabrous skin of rats induced by short-pulse CO2 laser,” J. Biomed. Opt. 17(11), 117002 (2012).

Marchandise, E.

E. Marchandise, A. Mouraux, L. Plaghki, and F. Henrotte, “Finite element analysis of thermal laser skin stimulation for a finer characterization of the nociceptive system,” J. Neurosci. Methods 223, 1–10 (2014).
[Crossref] [PubMed]

Meyer, R. A.

S. N. Raja, R. A. Meyer, M. Ringkamp, and J. N. Campbell, “Peripheral neural mechanisms of nociception,” Textbook of Pain. 4, 11–57 (1999).

Mor, J.

J. Mor and A. Carmon, “Laser emitted radiant heat for pain research,” Pain 1(3), 233–237 (1975).
[Crossref] [PubMed]

Mørch, C. D.

K. S. Frahm, O. K. Andersen, L. Arendt-Nielsen, and C. D. Mørch, “Spatial temperature distribution in human hairy and glabrous skin after infrared CO2 laser radiation,” Biomed. Eng. Online 9(1), 69 (2010).
[Crossref] [PubMed]

Mouraux, A.

E. Marchandise, A. Mouraux, L. Plaghki, and F. Henrotte, “Finite element analysis of thermal laser skin stimulation for a finer characterization of the nociceptive system,” J. Neurosci. Methods 223, 1–10 (2014).
[Crossref] [PubMed]

L. Plaghki and A. Mouraux, “How do we selectively activate skin nociceptors with a high power infrared laser? Physiology and biophysics of laser stimulation,” Neurophysiologie Clinique Clin. Neurophysiol. 33(6), 269–277 (2003).

Nadeau, V.

M. H. Al-Saadi, V. Nadeau, and M. R. Dickinson, “A novel modelling and experimental technique to predict and measure tissue temperature during CO2 laser stimuli for human pain studies,” Lasers Med. Sci. 21(2), 95–100 (2006).
[Crossref] [PubMed]

Noojin, G. D.

J. W. Oliver, D. J. Stolarski, G. D. Noojin, H. M. Hodnett, C. A. Harbert, K. J. Schuster, M. F. Foltz, S. S. Kumru, C. P. Cain, C. J. Finkeldei, G. D. Buffington, I. D. Noojin, and R. J. Thomas, “Infrared skin damage thresholds from 1940-nm continuous-wave laser exposures,” J. Biomed. Opt. 15(6), 065008 (2010).
[Crossref] [PubMed]

Noojin, I. D.

J. W. Oliver, D. J. Stolarski, G. D. Noojin, H. M. Hodnett, C. A. Harbert, K. J. Schuster, M. F. Foltz, S. S. Kumru, C. P. Cain, C. J. Finkeldei, G. D. Buffington, I. D. Noojin, and R. J. Thomas, “Infrared skin damage thresholds from 1940-nm continuous-wave laser exposures,” J. Biomed. Opt. 15(6), 065008 (2010).
[Crossref] [PubMed]

Oliver, J. W.

J. W. Oliver, D. J. Stolarski, G. D. Noojin, H. M. Hodnett, C. A. Harbert, K. J. Schuster, M. F. Foltz, S. S. Kumru, C. P. Cain, C. J. Finkeldei, G. D. Buffington, I. D. Noojin, and R. J. Thomas, “Infrared skin damage thresholds from 1940-nm continuous-wave laser exposures,” J. Biomed. Opt. 15(6), 065008 (2010).
[Crossref] [PubMed]

Pennes, H. H.

H. H. Pennes, “Analysis of tissue and arterial blood temperatures in the resting human forearm. 1948,” J. Appl. Physiol. 85(1), 5–34 (1998).
[PubMed]

Plaghki, L.

E. Marchandise, A. Mouraux, L. Plaghki, and F. Henrotte, “Finite element analysis of thermal laser skin stimulation for a finer characterization of the nociceptive system,” J. Neurosci. Methods 223, 1–10 (2014).
[Crossref] [PubMed]

L. Plaghki and A. Mouraux, “How do we selectively activate skin nociceptors with a high power infrared laser? Physiology and biophysics of laser stimulation,” Neurophysiologie Clinique Clin. Neurophysiol. 33(6), 269–277 (2003).

Prahl, S. A.

S. L. Jacques and S. A. Prahl, “Modeling optical and thermal distributions in tissue during laser irradiation,” Lasers Surg. Med. 6(6), 494–503 (1987).
[Crossref] [PubMed]

Raja, S. N.

S. N. Raja, R. A. Meyer, M. Ringkamp, and J. N. Campbell, “Peripheral neural mechanisms of nociception,” Textbook of Pain. 4, 11–57 (1999).

Ringkamp, M.

S. N. Raja, R. A. Meyer, M. Ringkamp, and J. N. Campbell, “Peripheral neural mechanisms of nociception,” Textbook of Pain. 4, 11–57 (1999).

Schuster, K. J.

J. W. Oliver, D. J. Stolarski, G. D. Noojin, H. M. Hodnett, C. A. Harbert, K. J. Schuster, M. F. Foltz, S. S. Kumru, C. P. Cain, C. J. Finkeldei, G. D. Buffington, I. D. Noojin, and R. J. Thomas, “Infrared skin damage thresholds from 1940-nm continuous-wave laser exposures,” J. Biomed. Opt. 15(6), 065008 (2010).
[Crossref] [PubMed]

Spiegel, J.

J. Spiegel, C. Hansen, and R. D. Treede, “Clinical evaluation criteria for the assessment of impaired pain sensitivity by thulium-laser evoked potentials,” Clin. Neurophysiol. 111(4), 725–735 (2000).
[Crossref] [PubMed]

Stolarski, D. J.

J. W. Oliver, D. J. Stolarski, G. D. Noojin, H. M. Hodnett, C. A. Harbert, K. J. Schuster, M. F. Foltz, S. S. Kumru, C. P. Cain, C. J. Finkeldei, G. D. Buffington, I. D. Noojin, and R. J. Thomas, “Infrared skin damage thresholds from 1940-nm continuous-wave laser exposures,” J. Biomed. Opt. 15(6), 065008 (2010).
[Crossref] [PubMed]

Thomas, R. J.

J. W. Oliver, D. J. Stolarski, G. D. Noojin, H. M. Hodnett, C. A. Harbert, K. J. Schuster, M. F. Foltz, S. S. Kumru, C. P. Cain, C. J. Finkeldei, G. D. Buffington, I. D. Noojin, and R. J. Thomas, “Infrared skin damage thresholds from 1940-nm continuous-wave laser exposures,” J. Biomed. Opt. 15(6), 065008 (2010).
[Crossref] [PubMed]

B. Chen, S. L. Thomsen, R. J. Thomas, and A. J. Welch, “Modeling thermal damage in skin from 2000-nm laser irradiation,” J. Biomed. Opt. 11(6), 064028 (2006).
[Crossref] [PubMed]

Thomsen, S. L.

B. Chen, S. L. Thomsen, R. J. Thomas, and A. J. Welch, “Modeling thermal damage in skin from 2000-nm laser irradiation,” J. Biomed. Opt. 11(6), 064028 (2006).
[Crossref] [PubMed]

Treede, R. D.

J. Spiegel, C. Hansen, and R. D. Treede, “Clinical evaluation criteria for the assessment of impaired pain sensitivity by thulium-laser evoked potentials,” Clin. Neurophysiol. 111(4), 725–735 (2000).
[Crossref] [PubMed]

B. Bromm and R. D. Treede, “CO2 laser radiant heat pulses activate C nociceptors in man,” Pflugers Arch. 399(2), 155–156 (1983).
[Crossref] [PubMed]

Tsai, M.

P. Lu, S. Hsu, M. Tsai, F. Jaw, A. Wang, and C. Yen, “Temporal and spatial temperature distribution in the glabrous skin of rats induced by short-pulse CO2 laser,” J. Biomed. Opt. 17(11), 117002 (2012).

van der Meulen, F. W.

M. J. Brugmans, J. Kemper, G. H. Gijsbers, F. W. van der Meulen, and M. J. van Gemert, “Temperature response of biological materials to pulsed non-ablative CO2 laser irradiation,” Lasers Surg. Med. 11(6), 587–594 (1991).
[Crossref] [PubMed]

van Gemert, M. J.

M. J. Brugmans, J. Kemper, G. H. Gijsbers, F. W. van der Meulen, and M. J. van Gemert, “Temperature response of biological materials to pulsed non-ablative CO2 laser irradiation,” Lasers Surg. Med. 11(6), 587–594 (1991).
[Crossref] [PubMed]

Wang, A.

P. Lu, S. Hsu, M. Tsai, F. Jaw, A. Wang, and C. Yen, “Temporal and spatial temperature distribution in the glabrous skin of rats induced by short-pulse CO2 laser,” J. Biomed. Opt. 17(11), 117002 (2012).

Welch, A. J.

B. Chen, S. L. Thomsen, R. J. Thomas, and A. J. Welch, “Modeling thermal damage in skin from 2000-nm laser irradiation,” J. Biomed. Opt. 11(6), 064028 (2006).
[Crossref] [PubMed]

B. Choi and A. J. Welch, “Analysis of thermal relaxation during laser irradiation of tissue,” Lasers Surg. Med. 29(4), 351–359 (2001).
[Crossref] [PubMed]

Yen, C.

P. Lu, S. Hsu, M. Tsai, F. Jaw, A. Wang, and C. Yen, “Temporal and spatial temperature distribution in the glabrous skin of rats induced by short-pulse CO2 laser,” J. Biomed. Opt. 17(11), 117002 (2012).

Annu. Rev. Neurosci. (1)

M. J. Caterina and D. Julius, “The vanilloid receptor: a molecular gateway to the pain pathway,” Annu. Rev. Neurosci. 24(1), 487–517 (2001).
[Crossref] [PubMed]

Appl. Opt. (1)

Biomed. Eng. Online (1)

K. S. Frahm, O. K. Andersen, L. Arendt-Nielsen, and C. D. Mørch, “Spatial temperature distribution in human hairy and glabrous skin after infrared CO2 laser radiation,” Biomed. Eng. Online 9(1), 69 (2010).
[Crossref] [PubMed]

Clin. Neurophysiol. (1)

J. Spiegel, C. Hansen, and R. D. Treede, “Clinical evaluation criteria for the assessment of impaired pain sensitivity by thulium-laser evoked potentials,” Clin. Neurophysiol. 111(4), 725–735 (2000).
[Crossref] [PubMed]

J. Appl. Physiol. (1)

H. H. Pennes, “Analysis of tissue and arterial blood temperatures in the resting human forearm. 1948,” J. Appl. Physiol. 85(1), 5–34 (1998).
[PubMed]

J. Biomed. Opt. (3)

P. Lu, S. Hsu, M. Tsai, F. Jaw, A. Wang, and C. Yen, “Temporal and spatial temperature distribution in the glabrous skin of rats induced by short-pulse CO2 laser,” J. Biomed. Opt. 17(11), 117002 (2012).

B. Chen, S. L. Thomsen, R. J. Thomas, and A. J. Welch, “Modeling thermal damage in skin from 2000-nm laser irradiation,” J. Biomed. Opt. 11(6), 064028 (2006).
[Crossref] [PubMed]

J. W. Oliver, D. J. Stolarski, G. D. Noojin, H. M. Hodnett, C. A. Harbert, K. J. Schuster, M. F. Foltz, S. S. Kumru, C. P. Cain, C. J. Finkeldei, G. D. Buffington, I. D. Noojin, and R. J. Thomas, “Infrared skin damage thresholds from 1940-nm continuous-wave laser exposures,” J. Biomed. Opt. 15(6), 065008 (2010).
[Crossref] [PubMed]

J. Dermatol. Surg. Oncol. (1)

R. Kaufmann, A. Hartmann, and R. Hibst, “Cutting and Skin-Ablative Properties of Pulsed Mid-Infrared Laser Surgery,” J. Dermatol. Surg. Oncol. 20(2), 112–118 (1994).
[Crossref] [PubMed]

J. Neurosci. Methods (1)

E. Marchandise, A. Mouraux, L. Plaghki, and F. Henrotte, “Finite element analysis of thermal laser skin stimulation for a finer characterization of the nociceptive system,” J. Neurosci. Methods 223, 1–10 (2014).
[Crossref] [PubMed]

Lasers Med. Sci. (1)

M. H. Al-Saadi, V. Nadeau, and M. R. Dickinson, “A novel modelling and experimental technique to predict and measure tissue temperature during CO2 laser stimuli for human pain studies,” Lasers Med. Sci. 21(2), 95–100 (2006).
[Crossref] [PubMed]

Lasers Surg. Med. (3)

M. J. Brugmans, J. Kemper, G. H. Gijsbers, F. W. van der Meulen, and M. J. van Gemert, “Temperature response of biological materials to pulsed non-ablative CO2 laser irradiation,” Lasers Surg. Med. 11(6), 587–594 (1991).
[Crossref] [PubMed]

B. Choi and A. J. Welch, “Analysis of thermal relaxation during laser irradiation of tissue,” Lasers Surg. Med. 29(4), 351–359 (2001).
[Crossref] [PubMed]

S. L. Jacques and S. A. Prahl, “Modeling optical and thermal distributions in tissue during laser irradiation,” Lasers Surg. Med. 6(6), 494–503 (1987).
[Crossref] [PubMed]

Nature (1)

D. Julius and A. I. Basbaum, “Molecular mechanisms of nociception,” Nature 413(6852), 203–210 (2001).
[Crossref] [PubMed]

Neurophysiologie Clinique Clin. Neurophysiol. (2)

L. Arendt-Nielsen and A. C. Chen, “Lasers and other thermal stimulators for activation of skin nociceptors in humans,” Neurophysiologie Clinique Clin. Neurophysiol. 33(6), 259–268 (2003).

L. Plaghki and A. Mouraux, “How do we selectively activate skin nociceptors with a high power infrared laser? Physiology and biophysics of laser stimulation,” Neurophysiologie Clinique Clin. Neurophysiol. 33(6), 269–277 (2003).

Pain (1)

J. Mor and A. Carmon, “Laser emitted radiant heat for pain research,” Pain 1(3), 233–237 (1975).
[Crossref] [PubMed]

Pflugers Arch. (1)

B. Bromm and R. D. Treede, “CO2 laser radiant heat pulses activate C nociceptors in man,” Pflugers Arch. 399(2), 155–156 (1983).
[Crossref] [PubMed]

Textbook of Pain. (1)

S. N. Raja, R. A. Meyer, M. Ringkamp, and J. N. Campbell, “Peripheral neural mechanisms of nociception,” Textbook of Pain. 4, 11–57 (1999).

Other (2)

J. W. Valvano, “Tissue thermal properties and perfusion” in Optical-Thermal Response of Laser-Irradiated Tissue, W. M. Star, B. C. Wilson, A. J. Welch, eds. (Springer US, 1995).

A. Shitzer and R. C. Eberhart, Heat Transfer in Medicine and Biology: Analysis and Applications (Plenum Pub Corp, 1985).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1 Laser stimulator and thermocouple temperature measurement system.
Fig. 2
Fig. 2 Schematic of experimental system.
Fig. 3
Fig. 3 Schematic of cutaneous temperature measurement position and FEM-2 model. (a) Cutaneous temperature measurement position 2R (i.e. 7 mm) was the maximum radius of the irradiated area. (b) Parameters of FEM-2 model in glabrous skin.
Fig. 4
Fig. 4 Spatio-temporal distribution of the temperature field of irradiated skin. (a) Temporal variation trend of temperature distribution at the center of the skin surface. (b) Spatial distribution of skin surface temperature after 30 s irradiation.
Fig. 5
Fig. 5 Comparison of skin surface temperature rises between model results and experimental data. (a) Temporal variation trend of irradiated central point in skin surface. (b) Spatial temperature distribution after 30 s irradiation.
Fig. 6
Fig. 6 Comparison of temperature rises in different depths of subcutaneous tissue between model results and experimental data after 30 s irradiation.
Fig. 7
Fig. 7 Difference between output of human skin model and pig skin model. (a) Temporal variation trend in skin surface irradiated center. (b) Spatial distribution of skin surface after 30 s irradiation. (c) Variation trend in temperature fields with different depths after 30 s irradiation.
Fig. 8
Fig. 8 Spatio-temporal distribution of temperature fields generated by laser irradiation. (a) Temporal variation in temperature fields of 2 mm radiation radius with 1 W power. (b) Difference in distribution of skin temperature fields generated by a 1 W power laser of 2 mm and 3.5 mm radiation radii at 10 s of irradiation.
Fig. 9
Fig. 9 Relationship between laser power density and temperature rise generated by 30 s of laser irradiation. (a) Maximum temperature rise of the central region in the irradiated surface by different average power density. (b) Correlation of temperature rise at a depth of 500-600μm beneath the central point of the irradiated skin for different average laser power densities.

Tables (1)

Tables Icon

Table 1 Correlation of laser power density and skin temperature field generated by laser irradiation

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

ρ( ω c )=1000 (0.0616 ω c +0.938) 1
c p ( ω c )=2500 ω c +1700
k( ω c )=ρ× 10 3 (0.454 ω c +0.174)
S( r,t,z )=(1R)P(t) μ α exp[0.5 r 2 w 0 2 μ α z]
ρc T t =Δ( kΔT ) ρ b c b w b ( T 0 T )+S( r,t,z )
S 1 ( r,t,z )=(1R)P(t) μ α1 exp[0.5 r 2 w 0 2 μ α1 z]
S 2 ( r,t,z )= μ α2 μ α1 S 1 ( r,t, D 1 )exp[ μ α2 (z D 1 ) ]

Metrics