Abstract

We present a simple but effective method to quantitatively measure the birefringence of tissue by an all single-mode fiber (SMF) based polarization-sensitive optical coherence tomography (PS-OCT) with single input polarization state. We theoretically verify that our SMF based PS-OCT system can quantify the phase retardance and optic axis orientation after a simple calibration process using a quarter wave plate (QWP). Based on the proposed method, the quantification of the phase retardance and optic axis orientation of a Berek polarization compensator and biological tissues were demonstrated.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Determination of birefringence and absolute optic axis orientation using polarization-sensitive optical coherence tomography with PM fibers

Jun Zhang, Shuguang Guo, Woonggyu Jung, J. Stuart Nelson, and Zhongping Chen
Opt. Express 11(24) 3262-3270 (2003)

Single input state polarization sensitive swept source optical coherence tomography based on an all single mode fiber interferometer

Wolfgang Trasischker, Stefan Zotter, Teresa Torzicky, Bernhard Baumann, Richard Haindl, Michael Pircher, and Christoph K. Hitzenberger
Biomed. Opt. Express 5(8) 2798-2809 (2014)

Fiber-based polarization-sensitive OCT of the human retina with correction of system polarization distortions

Boy Braaf, Koenraad A. Vermeer, Mattijs de Groot, Kari V. Vienola, and Johannes F. de Boer
Biomed. Opt. Express 5(8) 2736-2758 (2014)

References

  • View by:
  • |
  • |
  • |

  1. M. R. Hee, D. Huang, E. A. Swanson, and J. G. Fujimoto, “Polarization-sensitive low-coherence reflectometer for birefringence characterization and ranging,” J. Opt. Soc. Am. B 9(6), 903–908 (1992).
    [Crossref]
  2. D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and et, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
    [Crossref] [PubMed]
  3. M. K. Al-Qaisi and T. Akkin, “Swept-source polarization-sensitive optical coherence tomography based on polarization-maintaining fiber,” Opt. Express 18(4), 3392–3403 (2010).
    [Crossref] [PubMed]
  4. M. Yamanari, S. Makita, and Y. Yasuno, “Polarization-sensitive swept-source optical coherence tomography with continuous source polarization modulation,” Opt. Express 16(8), 5892–5906 (2008).
    [Crossref] [PubMed]
  5. S. Zotter, M. Pircher, E. Götzinger, T. Torzicky, H. Yoshida, F. Hirose, S. Holzer, J. Kroisamer, C. Vass, U. Schmidt-Erfurth, and C. K. Hitzenberger, “Measuring retinal nerve fiber layer birefringence, retardation, and thickness using wide-field, high-speed polarization sensitive spectral domain OCT,” Invest. Ophthalmol. Vis. Sci. 54(1), 72–84 (2013).
    [Crossref] [PubMed]
  6. S. D. Giattina, B. K. Courtney, P. R. Herz, M. Harman, S. Shortkroff, D. L. Stamper, B. Liu, J. G. Fujimoto, and M. E. Brezinski, “Assessment of coronary plaque collagen with polarization sensitive optical coherence tomography (PS-OCT),” Int. J. Cardiol. 107(3), 400–409 (2006).
    [Crossref] [PubMed]
  7. L. Duan, T. Marvdashti, A. Lee, J. Y. Tang, and A. K. Ellerbee, “Automated identification of basal cell carcinoma by polarization-sensitive optical coherence tomography,” Biomed. Opt. Express 5(10), 3717–3729 (2014).
    [Crossref] [PubMed]
  8. H. Wang, A. J. Black, J. Zhu, T. W. Stigen, M. K. Al-Qaisi, T. I. Netoff, A. Abosch, and T. Akkin, “Reconstructing micrometer-scale fiber pathways in the brain: multi-contrast optical coherence tomography based tractography,” Neuroimage 58(4), 984–992 (2011).
    [Crossref] [PubMed]
  9. H. Wang, J. Zhu, and T. Akkin, “Serial optical coherence scanner for large-scale brain imaging at microscopic resolution,” Neuroimage 84(1), 1007–1017 (2014).
    [Crossref] [PubMed]
  10. C. Fan, Y. Wang, and R. K. Wang, “Spectral domain polarization sensitive optical coherence tomography achieved by single camera detection,” Opt. Express 15(13), 7950–7961 (2007).
    [Crossref] [PubMed]
  11. C. Fan and G. Yao, “Single camera spectral domain polarization-sensitive optical coherence tomography using offset B-scan modulation,” Opt. Express 18(7), 7281–7287 (2010).
    [Crossref] [PubMed]
  12. C. Fan and G. Yao, “Full-range spectral domain Jones matrix optical coherence tomography using a single spectral camera,” Opt. Express 20(20), 22360–22371 (2012).
    [Crossref] [PubMed]
  13. S. Jiao, G. Yao, and L. V. Wang, “Depth-resolved two-dimensional stokes vectors of backscattered light and Mueller matrices of biological tissue measured with optical coherence tomography,” Appl. Opt. 39(34), 6318–6324 (2000).
    [Crossref] [PubMed]
  14. G. Yao and L. V. Wang, “Two-dimensional depth-resolved Mueller matrix characterization of biological tissue by optical coherence tomography,” Opt. Lett. 24(8), 537–539 (1999).
    [Crossref] [PubMed]
  15. S. Jiao, W. Yu, G. Stoica, and L. V. Wang, “Optical-fiber-based Mueller optical coherence tomography,” Opt. Lett. 28(14), 1206–1208 (2003).
    [Crossref] [PubMed]
  16. B. H. Park, C. Saxer, S. M. Srinivas, J. S. Nelson, and J. F. de Boer, “In vivo burn depth determination by high-speed fiber-based polarization sensitive optical coherence tomography,” J. Biomed. Opt. 6(4), 474–479 (2001).
    [Crossref] [PubMed]
  17. B. H. Park, M. C. Pierce, B. Cense, and J. F. de Boer, “Jones matrix analysis for a polarization-sensitive optical coherence tomography system using fiber-optic components,” Opt. Lett. 29(21), 2512–2514 (2004).
    [Crossref] [PubMed]
  18. B. Park, M. Pierce, B. Cense, and J. de Boer, “Real-time multi-functional optical coherence tomography,” Opt. Express 11(7), 782–793 (2003).
    [Crossref] [PubMed]
  19. B. Park, M. C. Pierce, B. Cense, S.-H. Yun, M. Mujat, G. Tearney, B. Bouma, and J. de Boer, “Real-time fiber-based multi-functional spectral-domain optical coherence tomography at 1.3 µm,” Opt. Express 13(11), 3931–3944 (2005).
    [Crossref] [PubMed]
  20. M. Yamanari, S. Makita, V. D. Madjarova, T. Yatagai, and Y. Yasuno, “Fiber-based polarization-sensitive Fourier domain optical coherence tomography using B-scan-oriented polarization modulation method,” Opt. Express 14(14), 6502–6515 (2006).
    [Crossref] [PubMed]
  21. W. Y. Oh, S. H. Yun, B. J. Vakoc, M. Shishkov, A. E. Desjardins, B. H. Park, J. F. de Boer, G. J. Tearney, and B. E. Bouma, “High-speed polarization sensitive optical frequency domain imaging with frequency multiplexing,” Opt. Express 16(2), 1096–1103 (2008).
    [Crossref] [PubMed]
  22. B. Baumann, W. Choi, B. Potsaid, D. Huang, J. S. Duker, and J. G. Fujimoto, “Swept source/Fourier domain polarization sensitive optical coherence tomography with a passive polarization delay unit,” Opt. Express 20(9), 10229–10241 (2012).
    [Crossref] [PubMed]
  23. S. Makita, M. Yamanari, and Y. Yasuno, “Generalized Jones matrix optical coherence tomography: performance and local birefringence imaging,” Opt. Express 18(2), 854–876 (2010).
    [Crossref] [PubMed]
  24. X. Fu, Z. Wang, H. Wang, Y. T. Wang, M. W. Jenkins, and A. M. Rollins, “Fiber-optic catheter-based polarization-sensitive OCT for radio-frequency ablation monitoring,” Opt. Lett. 39(17), 5066–5069 (2014).
    [Crossref] [PubMed]
  25. Z. Wang, H.-C. Lee, O. O. Ahsen, B. Lee, W. Choi, B. Potsaid, J. Liu, V. Jayaraman, A. Cable, M. F. Kraus, K. Liang, J. Hornegger, and J. G. Fujimoto, “Depth-encoded all-fiber swept source polarization sensitive OCT,” Biomed. Opt. Express 5(9), 2931–2949 (2014).
    [Crossref] [PubMed]
  26. K. L. Lurie, T. J. Moritz, and A. K. Ellerbee, “Design considerations for polarization-sensitive optical coherence tomography with a single input polarization state,” Biomed. Opt. Express 3(9), 2273–2287 (2012).
    [Crossref] [PubMed]
  27. J. De Boer, S. Srinivas, A. Malekafzali, Z. Chen, and J. Nelson, “Imaging thermally damaged tissue by polarization sensitive optical coherence tomography,” Opt. Express 3(6), 212–218 (1998).
    [Crossref] [PubMed]
  28. C. Hitzenberger, E. Goetzinger, M. Sticker, M. Pircher, and A. Fercher, “Measurement and imaging of birefringence and optic axis orientation by phase resolved polarization sensitive optical coherence tomography,” Opt. Express 9(13), 780–790 (2001).
    [Crossref] [PubMed]
  29. J. F. de Boer and T. E. Milner, “Review of polarization sensitive optical coherence tomography and Stokes vector determination,” J. Biomed. Opt. 7(3), 359–371 (2002).
    [Crossref] [PubMed]
  30. E. Götzinger, M. Pircher, and C. K. Hitzenberger, “High speed spectral domain polarization sensitive optical coherence tomography of the human retina,” Opt. Express 13(25), 10217–10229 (2005).
    [Crossref] [PubMed]
  31. H. Wang, M. K. Al-Qaisi, and T. Akkin, “Polarization-maintaining fiber based polarization-sensitive optical coherence tomography in spectral domain,” Opt. Lett. 35(2), 154–156 (2010).
    [Crossref] [PubMed]
  32. M. Bonesi, H. Sattmann, T. Torzicky, S. Zotter, B. Baumann, M. Pircher, E. Götzinger, C. Eigenwillig, W. Wieser, R. Huber, and C. K. Hitzenberger, “High-speed polarization sensitive optical coherence tomography scan engine based on Fourier domain mode locked laser,” Biomed. Opt. Express 3(11), 2987–3000 (2012).
    [Crossref] [PubMed]
  33. E. Götzinger, B. Baumann, M. Pircher, and C. K. Hitzenberger, “Polarization maintaining fiber based ultra-high resolution spectral domain polarization sensitive optical coherence tomography,” Opt. Express 17(25), 22704–22717 (2009).
    [Crossref] [PubMed]
  34. D. P. Davé, T. Akkin, and T. E. Milner, “Polarization-maintaining fiber-based optical low-coherence reflectometer for characterization and ranging of birefringence,” Opt. Lett. 28(19), 1775–1777 (2003).
    [Crossref] [PubMed]
  35. W. Trasischker, S. Zotter, T. Torzicky, B. Baumann, R. Haindl, M. Pircher, and C. K. Hitzenberger, “Single input state polarization sensitive swept source optical coherence tomography based on an all single mode fiber interferometer,” Biomed. Opt. Express 5(8), 2798–2809 (2014).
    [Crossref] [PubMed]
  36. H. Lin, M.-C. Kao, C.-M. Lai, J.-C. Huang, and W.-C. Kuo, “All fiber optics circular-state swept source polarization-sensitive optical coherence tomography,” J. Biomed. Opt. 19(2), 021110 (2014).
    [Crossref] [PubMed]
  37. PSOCT1300, Thorlabs, http://www.thorlabs.com/newgrouppage9.cfm?objectgroup_id=4406
  38. X. Yang, L. Chin, B. R. Klyen, T. Shavlakadze, R. A. McLaughlin, M. D. Grounds, and D. D. Sampson, “Quantitative assessment of muscle damage in the mdx mouse model of Duchenne muscular dystrophy using polarization-sensitive optical coherence tomography,” J. Appl. Physiol. 115(9), 1393–1401 (2013).
    [Crossref] [PubMed]
  39. L. Chin, X. Yang, R. A. McLaughlin, P. B. Noble, and D. D. Sampson, “En face parametric imaging of tissue birefringence using polarization-sensitive optical coherence tomography,” J. Biomed. Opt. 18(6), 066005 (2013).
    [Crossref] [PubMed]
  40. Thorlabs INT-POL-1300-Manual, http://www.thorlabs.com/thorcat/19300/INT-POL-1300-Manual.pdf .
  41. A. Kersey, M. Davis, and M. Marrone, “Statistical Properties of Fiber-Birefringence Models,” in Optical Fiber Sensors(Optical Society of America, 1992), P17.
  42. K. M. Hebeda, T. Menovsky, J. F. Beek, J. G. Wolbers, and M. J. van Gemert, “Light propagation in the brain depends on nerve fiber orientation,” Neurosurgery 35(4), 720–724 (1994).
    [Crossref] [PubMed]

2014 (6)

2013 (3)

X. Yang, L. Chin, B. R. Klyen, T. Shavlakadze, R. A. McLaughlin, M. D. Grounds, and D. D. Sampson, “Quantitative assessment of muscle damage in the mdx mouse model of Duchenne muscular dystrophy using polarization-sensitive optical coherence tomography,” J. Appl. Physiol. 115(9), 1393–1401 (2013).
[Crossref] [PubMed]

L. Chin, X. Yang, R. A. McLaughlin, P. B. Noble, and D. D. Sampson, “En face parametric imaging of tissue birefringence using polarization-sensitive optical coherence tomography,” J. Biomed. Opt. 18(6), 066005 (2013).
[Crossref] [PubMed]

S. Zotter, M. Pircher, E. Götzinger, T. Torzicky, H. Yoshida, F. Hirose, S. Holzer, J. Kroisamer, C. Vass, U. Schmidt-Erfurth, and C. K. Hitzenberger, “Measuring retinal nerve fiber layer birefringence, retardation, and thickness using wide-field, high-speed polarization sensitive spectral domain OCT,” Invest. Ophthalmol. Vis. Sci. 54(1), 72–84 (2013).
[Crossref] [PubMed]

2012 (4)

2011 (1)

H. Wang, A. J. Black, J. Zhu, T. W. Stigen, M. K. Al-Qaisi, T. I. Netoff, A. Abosch, and T. Akkin, “Reconstructing micrometer-scale fiber pathways in the brain: multi-contrast optical coherence tomography based tractography,” Neuroimage 58(4), 984–992 (2011).
[Crossref] [PubMed]

2010 (4)

2009 (1)

2008 (2)

2007 (1)

2006 (2)

S. D. Giattina, B. K. Courtney, P. R. Herz, M. Harman, S. Shortkroff, D. L. Stamper, B. Liu, J. G. Fujimoto, and M. E. Brezinski, “Assessment of coronary plaque collagen with polarization sensitive optical coherence tomography (PS-OCT),” Int. J. Cardiol. 107(3), 400–409 (2006).
[Crossref] [PubMed]

M. Yamanari, S. Makita, V. D. Madjarova, T. Yatagai, and Y. Yasuno, “Fiber-based polarization-sensitive Fourier domain optical coherence tomography using B-scan-oriented polarization modulation method,” Opt. Express 14(14), 6502–6515 (2006).
[Crossref] [PubMed]

2005 (2)

2004 (1)

2003 (3)

2002 (1)

J. F. de Boer and T. E. Milner, “Review of polarization sensitive optical coherence tomography and Stokes vector determination,” J. Biomed. Opt. 7(3), 359–371 (2002).
[Crossref] [PubMed]

2001 (2)

C. Hitzenberger, E. Goetzinger, M. Sticker, M. Pircher, and A. Fercher, “Measurement and imaging of birefringence and optic axis orientation by phase resolved polarization sensitive optical coherence tomography,” Opt. Express 9(13), 780–790 (2001).
[Crossref] [PubMed]

B. H. Park, C. Saxer, S. M. Srinivas, J. S. Nelson, and J. F. de Boer, “In vivo burn depth determination by high-speed fiber-based polarization sensitive optical coherence tomography,” J. Biomed. Opt. 6(4), 474–479 (2001).
[Crossref] [PubMed]

2000 (1)

1999 (1)

1998 (1)

1994 (1)

K. M. Hebeda, T. Menovsky, J. F. Beek, J. G. Wolbers, and M. J. van Gemert, “Light propagation in the brain depends on nerve fiber orientation,” Neurosurgery 35(4), 720–724 (1994).
[Crossref] [PubMed]

1992 (1)

1991 (1)

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and et, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref] [PubMed]

Abosch, A.

H. Wang, A. J. Black, J. Zhu, T. W. Stigen, M. K. Al-Qaisi, T. I. Netoff, A. Abosch, and T. Akkin, “Reconstructing micrometer-scale fiber pathways in the brain: multi-contrast optical coherence tomography based tractography,” Neuroimage 58(4), 984–992 (2011).
[Crossref] [PubMed]

Ahsen, O. O.

Akkin, T.

Al-Qaisi, M. K.

Baumann, B.

Beek, J. F.

K. M. Hebeda, T. Menovsky, J. F. Beek, J. G. Wolbers, and M. J. van Gemert, “Light propagation in the brain depends on nerve fiber orientation,” Neurosurgery 35(4), 720–724 (1994).
[Crossref] [PubMed]

Black, A. J.

H. Wang, A. J. Black, J. Zhu, T. W. Stigen, M. K. Al-Qaisi, T. I. Netoff, A. Abosch, and T. Akkin, “Reconstructing micrometer-scale fiber pathways in the brain: multi-contrast optical coherence tomography based tractography,” Neuroimage 58(4), 984–992 (2011).
[Crossref] [PubMed]

Bonesi, M.

Bouma, B.

Bouma, B. E.

Brezinski, M. E.

S. D. Giattina, B. K. Courtney, P. R. Herz, M. Harman, S. Shortkroff, D. L. Stamper, B. Liu, J. G. Fujimoto, and M. E. Brezinski, “Assessment of coronary plaque collagen with polarization sensitive optical coherence tomography (PS-OCT),” Int. J. Cardiol. 107(3), 400–409 (2006).
[Crossref] [PubMed]

Cable, A.

Cense, B.

Chang, W.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and et, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref] [PubMed]

Chen, Z.

Chin, L.

X. Yang, L. Chin, B. R. Klyen, T. Shavlakadze, R. A. McLaughlin, M. D. Grounds, and D. D. Sampson, “Quantitative assessment of muscle damage in the mdx mouse model of Duchenne muscular dystrophy using polarization-sensitive optical coherence tomography,” J. Appl. Physiol. 115(9), 1393–1401 (2013).
[Crossref] [PubMed]

L. Chin, X. Yang, R. A. McLaughlin, P. B. Noble, and D. D. Sampson, “En face parametric imaging of tissue birefringence using polarization-sensitive optical coherence tomography,” J. Biomed. Opt. 18(6), 066005 (2013).
[Crossref] [PubMed]

Choi, W.

Courtney, B. K.

S. D. Giattina, B. K. Courtney, P. R. Herz, M. Harman, S. Shortkroff, D. L. Stamper, B. Liu, J. G. Fujimoto, and M. E. Brezinski, “Assessment of coronary plaque collagen with polarization sensitive optical coherence tomography (PS-OCT),” Int. J. Cardiol. 107(3), 400–409 (2006).
[Crossref] [PubMed]

Davé, D. P.

de Boer, J.

de Boer, J. F.

W. Y. Oh, S. H. Yun, B. J. Vakoc, M. Shishkov, A. E. Desjardins, B. H. Park, J. F. de Boer, G. J. Tearney, and B. E. Bouma, “High-speed polarization sensitive optical frequency domain imaging with frequency multiplexing,” Opt. Express 16(2), 1096–1103 (2008).
[Crossref] [PubMed]

B. H. Park, M. C. Pierce, B. Cense, and J. F. de Boer, “Jones matrix analysis for a polarization-sensitive optical coherence tomography system using fiber-optic components,” Opt. Lett. 29(21), 2512–2514 (2004).
[Crossref] [PubMed]

J. F. de Boer and T. E. Milner, “Review of polarization sensitive optical coherence tomography and Stokes vector determination,” J. Biomed. Opt. 7(3), 359–371 (2002).
[Crossref] [PubMed]

B. H. Park, C. Saxer, S. M. Srinivas, J. S. Nelson, and J. F. de Boer, “In vivo burn depth determination by high-speed fiber-based polarization sensitive optical coherence tomography,” J. Biomed. Opt. 6(4), 474–479 (2001).
[Crossref] [PubMed]

Desjardins, A. E.

Duan, L.

Duker, J. S.

Eigenwillig, C.

Ellerbee, A. K.

et,

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and et, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref] [PubMed]

Fan, C.

Fercher, A.

Flotte, T.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and et, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref] [PubMed]

Fu, X.

Fujimoto, J. G.

Giattina, S. D.

S. D. Giattina, B. K. Courtney, P. R. Herz, M. Harman, S. Shortkroff, D. L. Stamper, B. Liu, J. G. Fujimoto, and M. E. Brezinski, “Assessment of coronary plaque collagen with polarization sensitive optical coherence tomography (PS-OCT),” Int. J. Cardiol. 107(3), 400–409 (2006).
[Crossref] [PubMed]

Goetzinger, E.

Götzinger, E.

Gregory, K.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and et, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref] [PubMed]

Grounds, M. D.

X. Yang, L. Chin, B. R. Klyen, T. Shavlakadze, R. A. McLaughlin, M. D. Grounds, and D. D. Sampson, “Quantitative assessment of muscle damage in the mdx mouse model of Duchenne muscular dystrophy using polarization-sensitive optical coherence tomography,” J. Appl. Physiol. 115(9), 1393–1401 (2013).
[Crossref] [PubMed]

Haindl, R.

Harman, M.

S. D. Giattina, B. K. Courtney, P. R. Herz, M. Harman, S. Shortkroff, D. L. Stamper, B. Liu, J. G. Fujimoto, and M. E. Brezinski, “Assessment of coronary plaque collagen with polarization sensitive optical coherence tomography (PS-OCT),” Int. J. Cardiol. 107(3), 400–409 (2006).
[Crossref] [PubMed]

Hebeda, K. M.

K. M. Hebeda, T. Menovsky, J. F. Beek, J. G. Wolbers, and M. J. van Gemert, “Light propagation in the brain depends on nerve fiber orientation,” Neurosurgery 35(4), 720–724 (1994).
[Crossref] [PubMed]

Hee, M. R.

M. R. Hee, D. Huang, E. A. Swanson, and J. G. Fujimoto, “Polarization-sensitive low-coherence reflectometer for birefringence characterization and ranging,” J. Opt. Soc. Am. B 9(6), 903–908 (1992).
[Crossref]

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and et, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref] [PubMed]

Herz, P. R.

S. D. Giattina, B. K. Courtney, P. R. Herz, M. Harman, S. Shortkroff, D. L. Stamper, B. Liu, J. G. Fujimoto, and M. E. Brezinski, “Assessment of coronary plaque collagen with polarization sensitive optical coherence tomography (PS-OCT),” Int. J. Cardiol. 107(3), 400–409 (2006).
[Crossref] [PubMed]

Hirose, F.

S. Zotter, M. Pircher, E. Götzinger, T. Torzicky, H. Yoshida, F. Hirose, S. Holzer, J. Kroisamer, C. Vass, U. Schmidt-Erfurth, and C. K. Hitzenberger, “Measuring retinal nerve fiber layer birefringence, retardation, and thickness using wide-field, high-speed polarization sensitive spectral domain OCT,” Invest. Ophthalmol. Vis. Sci. 54(1), 72–84 (2013).
[Crossref] [PubMed]

Hitzenberger, C.

Hitzenberger, C. K.

W. Trasischker, S. Zotter, T. Torzicky, B. Baumann, R. Haindl, M. Pircher, and C. K. Hitzenberger, “Single input state polarization sensitive swept source optical coherence tomography based on an all single mode fiber interferometer,” Biomed. Opt. Express 5(8), 2798–2809 (2014).
[Crossref] [PubMed]

S. Zotter, M. Pircher, E. Götzinger, T. Torzicky, H. Yoshida, F. Hirose, S. Holzer, J. Kroisamer, C. Vass, U. Schmidt-Erfurth, and C. K. Hitzenberger, “Measuring retinal nerve fiber layer birefringence, retardation, and thickness using wide-field, high-speed polarization sensitive spectral domain OCT,” Invest. Ophthalmol. Vis. Sci. 54(1), 72–84 (2013).
[Crossref] [PubMed]

M. Bonesi, H. Sattmann, T. Torzicky, S. Zotter, B. Baumann, M. Pircher, E. Götzinger, C. Eigenwillig, W. Wieser, R. Huber, and C. K. Hitzenberger, “High-speed polarization sensitive optical coherence tomography scan engine based on Fourier domain mode locked laser,” Biomed. Opt. Express 3(11), 2987–3000 (2012).
[Crossref] [PubMed]

E. Götzinger, B. Baumann, M. Pircher, and C. K. Hitzenberger, “Polarization maintaining fiber based ultra-high resolution spectral domain polarization sensitive optical coherence tomography,” Opt. Express 17(25), 22704–22717 (2009).
[Crossref] [PubMed]

E. Götzinger, M. Pircher, and C. K. Hitzenberger, “High speed spectral domain polarization sensitive optical coherence tomography of the human retina,” Opt. Express 13(25), 10217–10229 (2005).
[Crossref] [PubMed]

Holzer, S.

S. Zotter, M. Pircher, E. Götzinger, T. Torzicky, H. Yoshida, F. Hirose, S. Holzer, J. Kroisamer, C. Vass, U. Schmidt-Erfurth, and C. K. Hitzenberger, “Measuring retinal nerve fiber layer birefringence, retardation, and thickness using wide-field, high-speed polarization sensitive spectral domain OCT,” Invest. Ophthalmol. Vis. Sci. 54(1), 72–84 (2013).
[Crossref] [PubMed]

Hornegger, J.

Huang, D.

Huang, J.-C.

H. Lin, M.-C. Kao, C.-M. Lai, J.-C. Huang, and W.-C. Kuo, “All fiber optics circular-state swept source polarization-sensitive optical coherence tomography,” J. Biomed. Opt. 19(2), 021110 (2014).
[Crossref] [PubMed]

Huber, R.

Jayaraman, V.

Jenkins, M. W.

Jiao, S.

Kao, M.-C.

H. Lin, M.-C. Kao, C.-M. Lai, J.-C. Huang, and W.-C. Kuo, “All fiber optics circular-state swept source polarization-sensitive optical coherence tomography,” J. Biomed. Opt. 19(2), 021110 (2014).
[Crossref] [PubMed]

Klyen, B. R.

X. Yang, L. Chin, B. R. Klyen, T. Shavlakadze, R. A. McLaughlin, M. D. Grounds, and D. D. Sampson, “Quantitative assessment of muscle damage in the mdx mouse model of Duchenne muscular dystrophy using polarization-sensitive optical coherence tomography,” J. Appl. Physiol. 115(9), 1393–1401 (2013).
[Crossref] [PubMed]

Kraus, M. F.

Kroisamer, J.

S. Zotter, M. Pircher, E. Götzinger, T. Torzicky, H. Yoshida, F. Hirose, S. Holzer, J. Kroisamer, C. Vass, U. Schmidt-Erfurth, and C. K. Hitzenberger, “Measuring retinal nerve fiber layer birefringence, retardation, and thickness using wide-field, high-speed polarization sensitive spectral domain OCT,” Invest. Ophthalmol. Vis. Sci. 54(1), 72–84 (2013).
[Crossref] [PubMed]

Kuo, W.-C.

H. Lin, M.-C. Kao, C.-M. Lai, J.-C. Huang, and W.-C. Kuo, “All fiber optics circular-state swept source polarization-sensitive optical coherence tomography,” J. Biomed. Opt. 19(2), 021110 (2014).
[Crossref] [PubMed]

Lai, C.-M.

H. Lin, M.-C. Kao, C.-M. Lai, J.-C. Huang, and W.-C. Kuo, “All fiber optics circular-state swept source polarization-sensitive optical coherence tomography,” J. Biomed. Opt. 19(2), 021110 (2014).
[Crossref] [PubMed]

Lee, A.

Lee, B.

Lee, H.-C.

Liang, K.

Lin, C. P.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and et, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref] [PubMed]

Lin, H.

H. Lin, M.-C. Kao, C.-M. Lai, J.-C. Huang, and W.-C. Kuo, “All fiber optics circular-state swept source polarization-sensitive optical coherence tomography,” J. Biomed. Opt. 19(2), 021110 (2014).
[Crossref] [PubMed]

Liu, B.

S. D. Giattina, B. K. Courtney, P. R. Herz, M. Harman, S. Shortkroff, D. L. Stamper, B. Liu, J. G. Fujimoto, and M. E. Brezinski, “Assessment of coronary plaque collagen with polarization sensitive optical coherence tomography (PS-OCT),” Int. J. Cardiol. 107(3), 400–409 (2006).
[Crossref] [PubMed]

Liu, J.

Lurie, K. L.

Madjarova, V. D.

Makita, S.

Malekafzali, A.

Marvdashti, T.

McLaughlin, R. A.

X. Yang, L. Chin, B. R. Klyen, T. Shavlakadze, R. A. McLaughlin, M. D. Grounds, and D. D. Sampson, “Quantitative assessment of muscle damage in the mdx mouse model of Duchenne muscular dystrophy using polarization-sensitive optical coherence tomography,” J. Appl. Physiol. 115(9), 1393–1401 (2013).
[Crossref] [PubMed]

L. Chin, X. Yang, R. A. McLaughlin, P. B. Noble, and D. D. Sampson, “En face parametric imaging of tissue birefringence using polarization-sensitive optical coherence tomography,” J. Biomed. Opt. 18(6), 066005 (2013).
[Crossref] [PubMed]

Menovsky, T.

K. M. Hebeda, T. Menovsky, J. F. Beek, J. G. Wolbers, and M. J. van Gemert, “Light propagation in the brain depends on nerve fiber orientation,” Neurosurgery 35(4), 720–724 (1994).
[Crossref] [PubMed]

Milner, T. E.

D. P. Davé, T. Akkin, and T. E. Milner, “Polarization-maintaining fiber-based optical low-coherence reflectometer for characterization and ranging of birefringence,” Opt. Lett. 28(19), 1775–1777 (2003).
[Crossref] [PubMed]

J. F. de Boer and T. E. Milner, “Review of polarization sensitive optical coherence tomography and Stokes vector determination,” J. Biomed. Opt. 7(3), 359–371 (2002).
[Crossref] [PubMed]

Moritz, T. J.

Mujat, M.

Nelson, J.

Nelson, J. S.

B. H. Park, C. Saxer, S. M. Srinivas, J. S. Nelson, and J. F. de Boer, “In vivo burn depth determination by high-speed fiber-based polarization sensitive optical coherence tomography,” J. Biomed. Opt. 6(4), 474–479 (2001).
[Crossref] [PubMed]

Netoff, T. I.

H. Wang, A. J. Black, J. Zhu, T. W. Stigen, M. K. Al-Qaisi, T. I. Netoff, A. Abosch, and T. Akkin, “Reconstructing micrometer-scale fiber pathways in the brain: multi-contrast optical coherence tomography based tractography,” Neuroimage 58(4), 984–992 (2011).
[Crossref] [PubMed]

Noble, P. B.

L. Chin, X. Yang, R. A. McLaughlin, P. B. Noble, and D. D. Sampson, “En face parametric imaging of tissue birefringence using polarization-sensitive optical coherence tomography,” J. Biomed. Opt. 18(6), 066005 (2013).
[Crossref] [PubMed]

Oh, W. Y.

Park, B.

Park, B. H.

Pierce, M.

Pierce, M. C.

Pircher, M.

W. Trasischker, S. Zotter, T. Torzicky, B. Baumann, R. Haindl, M. Pircher, and C. K. Hitzenberger, “Single input state polarization sensitive swept source optical coherence tomography based on an all single mode fiber interferometer,” Biomed. Opt. Express 5(8), 2798–2809 (2014).
[Crossref] [PubMed]

S. Zotter, M. Pircher, E. Götzinger, T. Torzicky, H. Yoshida, F. Hirose, S. Holzer, J. Kroisamer, C. Vass, U. Schmidt-Erfurth, and C. K. Hitzenberger, “Measuring retinal nerve fiber layer birefringence, retardation, and thickness using wide-field, high-speed polarization sensitive spectral domain OCT,” Invest. Ophthalmol. Vis. Sci. 54(1), 72–84 (2013).
[Crossref] [PubMed]

M. Bonesi, H. Sattmann, T. Torzicky, S. Zotter, B. Baumann, M. Pircher, E. Götzinger, C. Eigenwillig, W. Wieser, R. Huber, and C. K. Hitzenberger, “High-speed polarization sensitive optical coherence tomography scan engine based on Fourier domain mode locked laser,” Biomed. Opt. Express 3(11), 2987–3000 (2012).
[Crossref] [PubMed]

E. Götzinger, B. Baumann, M. Pircher, and C. K. Hitzenberger, “Polarization maintaining fiber based ultra-high resolution spectral domain polarization sensitive optical coherence tomography,” Opt. Express 17(25), 22704–22717 (2009).
[Crossref] [PubMed]

E. Götzinger, M. Pircher, and C. K. Hitzenberger, “High speed spectral domain polarization sensitive optical coherence tomography of the human retina,” Opt. Express 13(25), 10217–10229 (2005).
[Crossref] [PubMed]

C. Hitzenberger, E. Goetzinger, M. Sticker, M. Pircher, and A. Fercher, “Measurement and imaging of birefringence and optic axis orientation by phase resolved polarization sensitive optical coherence tomography,” Opt. Express 9(13), 780–790 (2001).
[Crossref] [PubMed]

Potsaid, B.

Puliafito, C. A.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and et, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref] [PubMed]

Rollins, A. M.

Sampson, D. D.

L. Chin, X. Yang, R. A. McLaughlin, P. B. Noble, and D. D. Sampson, “En face parametric imaging of tissue birefringence using polarization-sensitive optical coherence tomography,” J. Biomed. Opt. 18(6), 066005 (2013).
[Crossref] [PubMed]

X. Yang, L. Chin, B. R. Klyen, T. Shavlakadze, R. A. McLaughlin, M. D. Grounds, and D. D. Sampson, “Quantitative assessment of muscle damage in the mdx mouse model of Duchenne muscular dystrophy using polarization-sensitive optical coherence tomography,” J. Appl. Physiol. 115(9), 1393–1401 (2013).
[Crossref] [PubMed]

Sattmann, H.

Saxer, C.

B. H. Park, C. Saxer, S. M. Srinivas, J. S. Nelson, and J. F. de Boer, “In vivo burn depth determination by high-speed fiber-based polarization sensitive optical coherence tomography,” J. Biomed. Opt. 6(4), 474–479 (2001).
[Crossref] [PubMed]

Schmidt-Erfurth, U.

S. Zotter, M. Pircher, E. Götzinger, T. Torzicky, H. Yoshida, F. Hirose, S. Holzer, J. Kroisamer, C. Vass, U. Schmidt-Erfurth, and C. K. Hitzenberger, “Measuring retinal nerve fiber layer birefringence, retardation, and thickness using wide-field, high-speed polarization sensitive spectral domain OCT,” Invest. Ophthalmol. Vis. Sci. 54(1), 72–84 (2013).
[Crossref] [PubMed]

Schuman, J. S.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and et, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref] [PubMed]

Shavlakadze, T.

X. Yang, L. Chin, B. R. Klyen, T. Shavlakadze, R. A. McLaughlin, M. D. Grounds, and D. D. Sampson, “Quantitative assessment of muscle damage in the mdx mouse model of Duchenne muscular dystrophy using polarization-sensitive optical coherence tomography,” J. Appl. Physiol. 115(9), 1393–1401 (2013).
[Crossref] [PubMed]

Shishkov, M.

Shortkroff, S.

S. D. Giattina, B. K. Courtney, P. R. Herz, M. Harman, S. Shortkroff, D. L. Stamper, B. Liu, J. G. Fujimoto, and M. E. Brezinski, “Assessment of coronary plaque collagen with polarization sensitive optical coherence tomography (PS-OCT),” Int. J. Cardiol. 107(3), 400–409 (2006).
[Crossref] [PubMed]

Srinivas, S.

Srinivas, S. M.

B. H. Park, C. Saxer, S. M. Srinivas, J. S. Nelson, and J. F. de Boer, “In vivo burn depth determination by high-speed fiber-based polarization sensitive optical coherence tomography,” J. Biomed. Opt. 6(4), 474–479 (2001).
[Crossref] [PubMed]

Stamper, D. L.

S. D. Giattina, B. K. Courtney, P. R. Herz, M. Harman, S. Shortkroff, D. L. Stamper, B. Liu, J. G. Fujimoto, and M. E. Brezinski, “Assessment of coronary plaque collagen with polarization sensitive optical coherence tomography (PS-OCT),” Int. J. Cardiol. 107(3), 400–409 (2006).
[Crossref] [PubMed]

Sticker, M.

Stigen, T. W.

H. Wang, A. J. Black, J. Zhu, T. W. Stigen, M. K. Al-Qaisi, T. I. Netoff, A. Abosch, and T. Akkin, “Reconstructing micrometer-scale fiber pathways in the brain: multi-contrast optical coherence tomography based tractography,” Neuroimage 58(4), 984–992 (2011).
[Crossref] [PubMed]

Stinson, W. G.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and et, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref] [PubMed]

Stoica, G.

Swanson, E. A.

M. R. Hee, D. Huang, E. A. Swanson, and J. G. Fujimoto, “Polarization-sensitive low-coherence reflectometer for birefringence characterization and ranging,” J. Opt. Soc. Am. B 9(6), 903–908 (1992).
[Crossref]

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and et, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref] [PubMed]

Tang, J. Y.

Tearney, G.

Tearney, G. J.

Torzicky, T.

Trasischker, W.

Vakoc, B. J.

van Gemert, M. J.

K. M. Hebeda, T. Menovsky, J. F. Beek, J. G. Wolbers, and M. J. van Gemert, “Light propagation in the brain depends on nerve fiber orientation,” Neurosurgery 35(4), 720–724 (1994).
[Crossref] [PubMed]

Vass, C.

S. Zotter, M. Pircher, E. Götzinger, T. Torzicky, H. Yoshida, F. Hirose, S. Holzer, J. Kroisamer, C. Vass, U. Schmidt-Erfurth, and C. K. Hitzenberger, “Measuring retinal nerve fiber layer birefringence, retardation, and thickness using wide-field, high-speed polarization sensitive spectral domain OCT,” Invest. Ophthalmol. Vis. Sci. 54(1), 72–84 (2013).
[Crossref] [PubMed]

Wang, H.

H. Wang, J. Zhu, and T. Akkin, “Serial optical coherence scanner for large-scale brain imaging at microscopic resolution,” Neuroimage 84(1), 1007–1017 (2014).
[Crossref] [PubMed]

X. Fu, Z. Wang, H. Wang, Y. T. Wang, M. W. Jenkins, and A. M. Rollins, “Fiber-optic catheter-based polarization-sensitive OCT for radio-frequency ablation monitoring,” Opt. Lett. 39(17), 5066–5069 (2014).
[Crossref] [PubMed]

H. Wang, A. J. Black, J. Zhu, T. W. Stigen, M. K. Al-Qaisi, T. I. Netoff, A. Abosch, and T. Akkin, “Reconstructing micrometer-scale fiber pathways in the brain: multi-contrast optical coherence tomography based tractography,” Neuroimage 58(4), 984–992 (2011).
[Crossref] [PubMed]

H. Wang, M. K. Al-Qaisi, and T. Akkin, “Polarization-maintaining fiber based polarization-sensitive optical coherence tomography in spectral domain,” Opt. Lett. 35(2), 154–156 (2010).
[Crossref] [PubMed]

Wang, L. V.

Wang, R. K.

Wang, Y.

Wang, Y. T.

Wang, Z.

Wieser, W.

Wolbers, J. G.

K. M. Hebeda, T. Menovsky, J. F. Beek, J. G. Wolbers, and M. J. van Gemert, “Light propagation in the brain depends on nerve fiber orientation,” Neurosurgery 35(4), 720–724 (1994).
[Crossref] [PubMed]

Yamanari, M.

Yang, X.

L. Chin, X. Yang, R. A. McLaughlin, P. B. Noble, and D. D. Sampson, “En face parametric imaging of tissue birefringence using polarization-sensitive optical coherence tomography,” J. Biomed. Opt. 18(6), 066005 (2013).
[Crossref] [PubMed]

X. Yang, L. Chin, B. R. Klyen, T. Shavlakadze, R. A. McLaughlin, M. D. Grounds, and D. D. Sampson, “Quantitative assessment of muscle damage in the mdx mouse model of Duchenne muscular dystrophy using polarization-sensitive optical coherence tomography,” J. Appl. Physiol. 115(9), 1393–1401 (2013).
[Crossref] [PubMed]

Yao, G.

Yasuno, Y.

Yatagai, T.

Yoshida, H.

S. Zotter, M. Pircher, E. Götzinger, T. Torzicky, H. Yoshida, F. Hirose, S. Holzer, J. Kroisamer, C. Vass, U. Schmidt-Erfurth, and C. K. Hitzenberger, “Measuring retinal nerve fiber layer birefringence, retardation, and thickness using wide-field, high-speed polarization sensitive spectral domain OCT,” Invest. Ophthalmol. Vis. Sci. 54(1), 72–84 (2013).
[Crossref] [PubMed]

Yu, W.

Yun, S. H.

Yun, S.-H.

Zhu, J.

H. Wang, J. Zhu, and T. Akkin, “Serial optical coherence scanner for large-scale brain imaging at microscopic resolution,” Neuroimage 84(1), 1007–1017 (2014).
[Crossref] [PubMed]

H. Wang, A. J. Black, J. Zhu, T. W. Stigen, M. K. Al-Qaisi, T. I. Netoff, A. Abosch, and T. Akkin, “Reconstructing micrometer-scale fiber pathways in the brain: multi-contrast optical coherence tomography based tractography,” Neuroimage 58(4), 984–992 (2011).
[Crossref] [PubMed]

Zotter, S.

Appl. Opt. (1)

Biomed. Opt. Express (5)

Int. J. Cardiol. (1)

S. D. Giattina, B. K. Courtney, P. R. Herz, M. Harman, S. Shortkroff, D. L. Stamper, B. Liu, J. G. Fujimoto, and M. E. Brezinski, “Assessment of coronary plaque collagen with polarization sensitive optical coherence tomography (PS-OCT),” Int. J. Cardiol. 107(3), 400–409 (2006).
[Crossref] [PubMed]

Invest. Ophthalmol. Vis. Sci. (1)

S. Zotter, M. Pircher, E. Götzinger, T. Torzicky, H. Yoshida, F. Hirose, S. Holzer, J. Kroisamer, C. Vass, U. Schmidt-Erfurth, and C. K. Hitzenberger, “Measuring retinal nerve fiber layer birefringence, retardation, and thickness using wide-field, high-speed polarization sensitive spectral domain OCT,” Invest. Ophthalmol. Vis. Sci. 54(1), 72–84 (2013).
[Crossref] [PubMed]

J. Appl. Physiol. (1)

X. Yang, L. Chin, B. R. Klyen, T. Shavlakadze, R. A. McLaughlin, M. D. Grounds, and D. D. Sampson, “Quantitative assessment of muscle damage in the mdx mouse model of Duchenne muscular dystrophy using polarization-sensitive optical coherence tomography,” J. Appl. Physiol. 115(9), 1393–1401 (2013).
[Crossref] [PubMed]

J. Biomed. Opt. (4)

L. Chin, X. Yang, R. A. McLaughlin, P. B. Noble, and D. D. Sampson, “En face parametric imaging of tissue birefringence using polarization-sensitive optical coherence tomography,” J. Biomed. Opt. 18(6), 066005 (2013).
[Crossref] [PubMed]

H. Lin, M.-C. Kao, C.-M. Lai, J.-C. Huang, and W.-C. Kuo, “All fiber optics circular-state swept source polarization-sensitive optical coherence tomography,” J. Biomed. Opt. 19(2), 021110 (2014).
[Crossref] [PubMed]

B. H. Park, C. Saxer, S. M. Srinivas, J. S. Nelson, and J. F. de Boer, “In vivo burn depth determination by high-speed fiber-based polarization sensitive optical coherence tomography,” J. Biomed. Opt. 6(4), 474–479 (2001).
[Crossref] [PubMed]

J. F. de Boer and T. E. Milner, “Review of polarization sensitive optical coherence tomography and Stokes vector determination,” J. Biomed. Opt. 7(3), 359–371 (2002).
[Crossref] [PubMed]

J. Opt. Soc. Am. B (1)

Neuroimage (2)

H. Wang, A. J. Black, J. Zhu, T. W. Stigen, M. K. Al-Qaisi, T. I. Netoff, A. Abosch, and T. Akkin, “Reconstructing micrometer-scale fiber pathways in the brain: multi-contrast optical coherence tomography based tractography,” Neuroimage 58(4), 984–992 (2011).
[Crossref] [PubMed]

H. Wang, J. Zhu, and T. Akkin, “Serial optical coherence scanner for large-scale brain imaging at microscopic resolution,” Neuroimage 84(1), 1007–1017 (2014).
[Crossref] [PubMed]

Neurosurgery (1)

K. M. Hebeda, T. Menovsky, J. F. Beek, J. G. Wolbers, and M. J. van Gemert, “Light propagation in the brain depends on nerve fiber orientation,” Neurosurgery 35(4), 720–724 (1994).
[Crossref] [PubMed]

Opt. Express (15)

C. Fan, Y. Wang, and R. K. Wang, “Spectral domain polarization sensitive optical coherence tomography achieved by single camera detection,” Opt. Express 15(13), 7950–7961 (2007).
[Crossref] [PubMed]

C. Fan and G. Yao, “Single camera spectral domain polarization-sensitive optical coherence tomography using offset B-scan modulation,” Opt. Express 18(7), 7281–7287 (2010).
[Crossref] [PubMed]

C. Fan and G. Yao, “Full-range spectral domain Jones matrix optical coherence tomography using a single spectral camera,” Opt. Express 20(20), 22360–22371 (2012).
[Crossref] [PubMed]

M. K. Al-Qaisi and T. Akkin, “Swept-source polarization-sensitive optical coherence tomography based on polarization-maintaining fiber,” Opt. Express 18(4), 3392–3403 (2010).
[Crossref] [PubMed]

M. Yamanari, S. Makita, and Y. Yasuno, “Polarization-sensitive swept-source optical coherence tomography with continuous source polarization modulation,” Opt. Express 16(8), 5892–5906 (2008).
[Crossref] [PubMed]

B. Park, M. Pierce, B. Cense, and J. de Boer, “Real-time multi-functional optical coherence tomography,” Opt. Express 11(7), 782–793 (2003).
[Crossref] [PubMed]

B. Park, M. C. Pierce, B. Cense, S.-H. Yun, M. Mujat, G. Tearney, B. Bouma, and J. de Boer, “Real-time fiber-based multi-functional spectral-domain optical coherence tomography at 1.3 µm,” Opt. Express 13(11), 3931–3944 (2005).
[Crossref] [PubMed]

M. Yamanari, S. Makita, V. D. Madjarova, T. Yatagai, and Y. Yasuno, “Fiber-based polarization-sensitive Fourier domain optical coherence tomography using B-scan-oriented polarization modulation method,” Opt. Express 14(14), 6502–6515 (2006).
[Crossref] [PubMed]

W. Y. Oh, S. H. Yun, B. J. Vakoc, M. Shishkov, A. E. Desjardins, B. H. Park, J. F. de Boer, G. J. Tearney, and B. E. Bouma, “High-speed polarization sensitive optical frequency domain imaging with frequency multiplexing,” Opt. Express 16(2), 1096–1103 (2008).
[Crossref] [PubMed]

B. Baumann, W. Choi, B. Potsaid, D. Huang, J. S. Duker, and J. G. Fujimoto, “Swept source/Fourier domain polarization sensitive optical coherence tomography with a passive polarization delay unit,” Opt. Express 20(9), 10229–10241 (2012).
[Crossref] [PubMed]

S. Makita, M. Yamanari, and Y. Yasuno, “Generalized Jones matrix optical coherence tomography: performance and local birefringence imaging,” Opt. Express 18(2), 854–876 (2010).
[Crossref] [PubMed]

E. Götzinger, M. Pircher, and C. K. Hitzenberger, “High speed spectral domain polarization sensitive optical coherence tomography of the human retina,” Opt. Express 13(25), 10217–10229 (2005).
[Crossref] [PubMed]

J. De Boer, S. Srinivas, A. Malekafzali, Z. Chen, and J. Nelson, “Imaging thermally damaged tissue by polarization sensitive optical coherence tomography,” Opt. Express 3(6), 212–218 (1998).
[Crossref] [PubMed]

C. Hitzenberger, E. Goetzinger, M. Sticker, M. Pircher, and A. Fercher, “Measurement and imaging of birefringence and optic axis orientation by phase resolved polarization sensitive optical coherence tomography,” Opt. Express 9(13), 780–790 (2001).
[Crossref] [PubMed]

E. Götzinger, B. Baumann, M. Pircher, and C. K. Hitzenberger, “Polarization maintaining fiber based ultra-high resolution spectral domain polarization sensitive optical coherence tomography,” Opt. Express 17(25), 22704–22717 (2009).
[Crossref] [PubMed]

Opt. Lett. (6)

Science (1)

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and et, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref] [PubMed]

Other (3)

PSOCT1300, Thorlabs, http://www.thorlabs.com/newgrouppage9.cfm?objectgroup_id=4406

Thorlabs INT-POL-1300-Manual, http://www.thorlabs.com/thorcat/19300/INT-POL-1300-Manual.pdf .

A. Kersey, M. Davis, and M. Marrone, “Statistical Properties of Fiber-Birefringence Models,” in Optical Fiber Sensors(Optical Society of America, 1992), P17.

Supplementary Material (3)

» Media 1: AVI (35201 KB)     
» Media 2: AVI (35201 KB)     
» Media 3: AVI (35201 KB)     

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 SMF-based PS-OCT schematic with a single IPS. SS, swept laser source; PC, polarization controller; BPD, balanced photo-detector; PBS, polarization beam splitter. DAQ, data acquisition. OBJ, objective; f-clock is a signal with uniformly spaced optical frequency to trigger the sampling of the OCT signal in DAQ.
Fig. 2
Fig. 2 The concept charts of SMF-based PS-OCT schematic with a single IPS.
Fig. 3
Fig. 3 (a) Verification results of different phase retardance range from 0 to 180°, when the optic axis is fixed; (b) different optic axis orientation range from 0 to 180°, when the phase retardance is fixed.
Fig. 4
Fig. 4 Schematic diagram of the tracking path on Poincaré sphere of the output Stokes vectors of verification results when δ of Mout is multiple π (a) and not multiple π (b). The red dash line is phase retardance changing and the blue dash line is optic axis changing.
Fig. 5
Fig. 5 Tracking path on Poincaré sphere of the output Stokes vectors of the measured results shown in Fig. 3. The red spots are the Stokes vector with a fixed optics axis but different phase retardance. The blue spots are the Stokes vector with a fixed phase retardance but different optics axis orientation.
Fig. 6
Fig. 6 Images of human foot nail (a)(b)(c), (d)(e)(f) human finger nail fold, (g)(h)(i) pig muscle, (j)(k)(l) chicken breast using SMF-based PS-OCT with single IPS; (a)(d)(g)(j) intensity in grayscale; (b)(e)(h)(k)round-trip phase retardance (bule, 0°; red, 180°); (c) (f)(i)(l) optic axis orientation (bule, 0°; red, 180°).
Fig. 7
Fig. 7 (a) Photograph of a coronal plane of a mouse brain, ROI is indicated by the red dashed line box. (b) 3D volumetric image of mouse brain, xz plane represents the cross-section, and xy plane represents the en face section. (c) En-face intensity image (Media 1). (d) En-face phase retardance image (Media 2). (e) En-face optic axis orientation image (Media 3). (f) Cross-sectional intensity image. (g) Cross-sectional phase retardance image. (h) Cross-sectional optic axis orientation image. The yellow line in (c) is the indication for the location of the cross-sectional images and the yellow line in (f) is the indication for the location of the en-face images.

Equations (28)

Equations on this page are rendered with MathJax. Learn more.

H(z)=2 H r H s exp[iψ(z)] V(z)=2 V r V s exp[iψ(z)+ φ s φ r ],
S out =[ S 1 S 2 S 3 ]=[ H(z) H * (z)V(z) V * (z) H(z) V * (z)+ H * (z)V(z) i[H(z) V * (z) H * (z)V(z)] ].
S out =[ S 1 S 2 S 3 ]=[ 4 H r 2 H s 2 4 V r 2 V s 2 4 H r H s V r V s 2cos( φ s φ r ) 4 H r H s V r V s 2sin( φ s φ r ) ].
S out =4 H r 2 [ H s 2 V s 2 2 H s V s cos( φ s φ r ) 2 H s V s sin( φ s φ r ) ].
S out =4 H r 2 [ 1 0 0 0 cos( φ r ) sin( φ r ) 0 sin( φ r ) cos( φ r ) ][ H s 2 V s 2 2 H s V s cos( φ s ) 2 H s V s sin( φ s ) ].
S out = M r S sample .
S sample = M SA M ST S in .
S out = M r M SA M ST S in .
S out = M out M ST S in .
S front = M out S in .
S out = M out M ST M out 1 S front .
M out = M C M L =[ cos2φ sin2φ 0 sin2φ cos2φ 0 0 0 1 ][ cos2θ sin2θ 0 sin2θ cos2θ 0 0 0 1 ][ 1 0 0 0 cosδ sinδ 0 sinδ cosδ ][ cos2θ sin2θ 0 sin2θ cos2θ 0 0 0 1 ],
S out = M out M ST M out T S front .
M ST =[ cos 2 2 θ S + sin 2 2 θ S cos δ ST cos2 θ S sin2 θ S (1cos δ ST ) sin2 θ S sin δ ST cos2 θ S sin2 θ S (1cos δ ST ) sin 2 2 θ S + cos 2 2 θ S cos δ ST cos2 θ S sin δ ST sin2 θ S sin δ ST cos2 θ S sin δ ST cos δ ST ],
S out =[ S 1 S 2 S 3 ]= M out M ST M out T [ 0 0 1 ]={ [ sin(2φ2 θ S )sin δ ST cos(2φ2 θ S )sin δ ST cos δ ST ], δ=2nπ,n=0,1,2... [ sin(2 θ S +2φ4θ)sin δ ST cos(2 θ S +2φ4θ)sin δ ST cos δ ST ], δ=(2n+1)π,n=0,1,2... .
δ ST =arccos( S 3 ).
θ S ={ 1 2 arctan( S 1 S 2 )+φ ,δ=2nπ,n=0,1,2,... 1 2 arctan( S 1 S 2 )-φ+2θ ,δ=(2n+1)π,n=0,1,2... .
[ 0 0 1 ] T = M out M QWP M out T [ 0 0 1 ] T .
M out T [ 0 0 1 ] T = M QWP M out T [ 0 0 1 ] T .
M QWP C 3 = C 3 ,
{ sinδsin(2θ4 θ q )=sin2θsinδ sinδcos(2θ4 θ q )=cos2θsinδ cosδ=cosδ .
M out =[ m 11 m 12 m 13 m 21 m 22 m 23 m 31 m 32 m 33 ]
m 11 =cos2φ( cos 2 2θ+ sin 2 2θcosδ)+sin2φcos2θsin2θ(1cosδ) m 12 =sin2φ( sin 2 2θ+ cos 2 2θcosδ)+cos2φcos2θsin2θ(1cosδ) m 13 =cos2φsin2θsinδ+sin2φcos2θsinδ m 21 =sin2φ( cos 2 2θ+ sin 2 2θcosδ)+cos2φcos2θsin2θ(1cosδ) m 22 =cos2φ( sin 2 2θ+ cos 2 2θcosδ)sin2φcos2θsin2θ(1cosδ) m 23 =sin2φsin2θsinδ+cos2φcos2θsinδ m 31 =sin2θsinδ m 32 =cos2θsinδ m 33 =cosδ
[ 0 0 1 ] T = M out M QWP M out T [ 0 0 -1 ] T .
S out =[ S 1 S 2 S 3 ]= M out M ST M out T [ 0 0 1 ]={ [ sin(2φ2 θ S )sin δ ST cos(2φ2 θ S )sin δ ST cos δ ST ], δ=2nπ,n=0,1,2... [ sin(2 θ S +2φ4θ)sin δ ST cos(2 θ S +2φ4θ)sin δ ST cos δ ST ], δ=(2n+1)π,n=0,1,2... .
δ ST =arccos(- S 3 ).
S in = M out -1 S front = M out T S front
M out T ={ [ cos2φ sin2φ 0 sin2φ cos2φ 0 0 0 1 ], δ=2nπ(n=1,2...) [ cos(2φ2θ) sin2θ2φ) 0 sin(2θ2φ) cos(2φ2θ) 0 0 0 1 ], δ=(2n+1)π(n=1,2...)

Metrics