Abstract

We present evidence of random lasing from the fluorescent protein DsRed2 embedded in a random one-dimensional cavity. Lasing is achieved when a purified protein solution, placed inside a layered random medium, is optically excited with a femtosecond pump pulse in the direction perpendicular to the plane of random layers. We demonstrate that pumping with ultrashort pulses resulted in a lasing threshold two orders of magnitude lower than that found for nanosecond excitation.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Lasing from Escherichia coli bacteria genetically programmed to express green fluorescent protein

Malte C. Gather and Seok Hyun Yun
Opt. Lett. 36(16) 3299-3301 (2011)

Lasing from fluorescent protein crystals

Heon Jeong Oh, Malte C. Gather, Ji-Joon Song, and Seok Hyun Yun
Opt. Express 22(25) 31411-31416 (2014)

Gold nanostars for random lasing enhancement

Johannes Ziegler, Martin Djiango, Cynthia Vidal, Calin Hrelescu, and Thomas A. Klar
Opt. Express 23(12) 15152-15159 (2015)

References

  • View by:
  • |
  • |
  • |

  1. D. J. Pikas, S. M. Kirkpatrick, E. Tewksbury, L. L. Brott, R. R. Naik, M. O. Stone, and W. M. Dennis, “Nonlinear Saturation and Lasing Characteristics of Green Fluorescent Protein,” J. Phys. Chem. B 106, 4831–4837 (2002).
    [Crossref]
  2. M. C. Gather and S. H. Yun, “Single-cell biological lasers,” Nat. Photonics 5, 406–410 (2011).
    [Crossref]
  3. M. C. Gather and S. H. Yun, “Lasing from Escherichia coli bacteria genetically programmed to express green fluorescent protein,” Opt. Lett. 36, 3299–3301 (2011).
    [Crossref] [PubMed]
  4. D. Wiersma, “The physics and applications of random lasers,” Nat. Phys. 4, 359–367 (2008).
    [Crossref]
  5. H. Cao, J. Xu, S. Chang, and S. Ho, “Transition from amplified spontaneous emission to laser action in strongly scattering media,” Phys. Rev. E. Stat. Phys. Plasmas. Fluids. Relat. Interdiscip. Topics 61, 1985–1989 (2000).
    [PubMed]
  6. A. Smuk, E. Lazaro, L. P. Olson, and N. Lawandy, “Random laser action in bovine semen,” Opt. Commun. 284, 1257–1258 (2011).
    [Crossref]
  7. R. C. Polson and Z. V. Vardeny, “Random lasing in human tissues,” Appl. Phys. Lett. 85, 1289–1291 (2004).
    [Crossref]
  8. Q. Song, S. Xiao, Z. Xu, J. Liu, X. Sun, V. Drachev, V. M. Shalaev, O. Akkus, and Y. L. Kim, “Random lasing in bone tissue,” Opt. Lett. 35, 1425–1427 (2010).
    [Crossref] [PubMed]
  9. M. V. Matz, a. F. Fradkov, Y. a. Labas, a. P. Savitsky, a. G. Zaraisky, M. L. Markelov, and S. a. Lukyanov, “Fluorescent proteins from nonbioluminescent Anthozoa species,” Nat. Biotechnol. 17, 969–973 (1999).
    [Crossref] [PubMed]
  10. L. A. Gross, G. S. Baird, R. C. Hoffman, K. K. Baldridge, and R. Y. Tsien, “The structure of the chromophore within DsRed, a red fluorescent protein from coral,” Proc. Natl. Acad. Sci. U. S. A. 97, 11990–11995 (2000).
    [Crossref] [PubMed]
  11. A. Chabanov, M. Stoytchev, and A. Genack, “Statistical signatures of photon localization,” Nature 404, 850–853 (2000).
    [Crossref] [PubMed]
  12. V. Milner and A. Genack, “Photon Localization Laser: Low-Threshold Lasing in a Random Amplifying Layered Medium via Wave Localization,” Phys. Rev. Lett. 94, 073901 (2005).
    [Crossref] [PubMed]
  13. S. Zhang, J. Park, V. Milner, and A. Genack, “Photon Delocalization Transition in Dimensional Crossover in Layered Media,” Phys. Rev. Lett. 101, 183901 (2008).
    [Crossref] [PubMed]
  14. M. V. Berry and S. Klein, “Transparent mirrors: rays, waves and localization,” Eur. J. Phys. 18, 222–228 (1997).
    [Crossref]
  15. P. Sheng and A. Z. Genack, Directions in Condensed Matter Physics (World Scientific, Singapore, 1990), p. 207.
  16. A. Burin, M. Ratner, H. Cao, and S. Chang, “Random Laser in One Dimension,” Phys. Rev. Lett. 88, 093904 (2002).
    [Crossref] [PubMed]
  17. S.-h. Chang and H. Cao, “Cavity formation and light propagation in partially ordered and completely random one-dimensional systems,” IEEE J. Quantum Electron. 39, 364–374 (2003).
    [Crossref]
  18. A. Monguzzi, F. Scotognella, F. Meinardi, and R. Tubino, “Lasing in one dimensional dye-doped random multilayer,” Phys. Chem. Chem. Phys. 12, 12947–12950 (2010).
    [Crossref] [PubMed]
  19. N. Bachelard, J. Andreasen, S. Gigan, and P. Sebbah, “Taming random lasers through active spatial control of the pump,” Phys. Rev. Lett. 109, 033903 (2012).
    [Crossref] [PubMed]
  20. N. Bachelard, S. Gigan, X. Noblin, and P. Sebbah, “Adaptive pumping for spectral control of random lasers,” Nat. Phys. 10, 426–431 (2014).
    [Crossref]
  21. T. Drane, J. Hepburn, and V. Milner, “Coherent Raman spectroscopy through one-dimensional random scattering medium,” J. Mod. Opt. 57, 1928–1935 (2010).
    [Crossref]
  22. M. Drobizhev, T. E. Hughes, Y. Stepanenko, P. Wnuk, K. O’Donnell, J. N. Scott, P. R. Callis, A. Mikhaylov, L. Dokken, and A. Rebane, “Primary role of the chromophore bond length alternation in reversible photoconversion of red fluorescence proteins,” Sci. Rep. 2, 688 (2012).
    [Crossref] [PubMed]
  23. B. Lounis, J. Deich, and F. Rosell, “Photophysics of Ds Red, a Red Fluorescent Protein, from the Ensemble to the Single-Molecule Level,” J. Phys. Chem. B 105, 5048–5054 (2001).
    [Crossref]
  24. M. Sauer, J. Hofkens, and J. Enderlein, Handbook of Fluorescence Spectroscopy and Imaging: From Ensemble to Single Molecules (Wiley, 2010).
  25. P. W. Milonni and J. H. Eberly, Laser Physics (Wiley, 2010).
    [Crossref]
  26. E. W. Castner, M. Maroncelli, and G. R. Fleming, “Subpicosecond resolution studies of solvation dynamics in polar aprotic and alcohol solvents,” J. Chem. Phys. 86, 1090–1097 (1987).
    [Crossref]
  27. N. Shaner, M. Lin, and M. McKeown, “Improving the photostability of bright monomeric orange and red fluorescent proteins,” Nat. Methods 5, 545–551 (2008).
    [Crossref] [PubMed]
  28. N. C. Shaner, R. E. Campbell, P. a. Steinbach, B. N. G. Giepmans, A. E. Palmer, and R. Y. Tsien, “Improved monomeric red, orange and yellow fluorescent proteins derived from Discosoma sp. red fluorescent protein,” Nat. Biotechnol. 22, 1567–1572 (2004).
    [Crossref] [PubMed]
  29. H. Bach, K. G. Papavinasasundaram, D. Wong, Z. Hmama, and Y. Av-Gay, “Mycobacterium tuberculosis virulence is mediated by PtpA dephosphorylation of human vacuolar protein sorting 33B,” Cell Host Microbe 3, 316–322 (2008).
    [Crossref] [PubMed]

2014 (1)

N. Bachelard, S. Gigan, X. Noblin, and P. Sebbah, “Adaptive pumping for spectral control of random lasers,” Nat. Phys. 10, 426–431 (2014).
[Crossref]

2012 (2)

N. Bachelard, J. Andreasen, S. Gigan, and P. Sebbah, “Taming random lasers through active spatial control of the pump,” Phys. Rev. Lett. 109, 033903 (2012).
[Crossref] [PubMed]

M. Drobizhev, T. E. Hughes, Y. Stepanenko, P. Wnuk, K. O’Donnell, J. N. Scott, P. R. Callis, A. Mikhaylov, L. Dokken, and A. Rebane, “Primary role of the chromophore bond length alternation in reversible photoconversion of red fluorescence proteins,” Sci. Rep. 2, 688 (2012).
[Crossref] [PubMed]

2011 (3)

A. Smuk, E. Lazaro, L. P. Olson, and N. Lawandy, “Random laser action in bovine semen,” Opt. Commun. 284, 1257–1258 (2011).
[Crossref]

M. C. Gather and S. H. Yun, “Single-cell biological lasers,” Nat. Photonics 5, 406–410 (2011).
[Crossref]

M. C. Gather and S. H. Yun, “Lasing from Escherichia coli bacteria genetically programmed to express green fluorescent protein,” Opt. Lett. 36, 3299–3301 (2011).
[Crossref] [PubMed]

2010 (3)

Q. Song, S. Xiao, Z. Xu, J. Liu, X. Sun, V. Drachev, V. M. Shalaev, O. Akkus, and Y. L. Kim, “Random lasing in bone tissue,” Opt. Lett. 35, 1425–1427 (2010).
[Crossref] [PubMed]

A. Monguzzi, F. Scotognella, F. Meinardi, and R. Tubino, “Lasing in one dimensional dye-doped random multilayer,” Phys. Chem. Chem. Phys. 12, 12947–12950 (2010).
[Crossref] [PubMed]

T. Drane, J. Hepburn, and V. Milner, “Coherent Raman spectroscopy through one-dimensional random scattering medium,” J. Mod. Opt. 57, 1928–1935 (2010).
[Crossref]

2008 (4)

N. Shaner, M. Lin, and M. McKeown, “Improving the photostability of bright monomeric orange and red fluorescent proteins,” Nat. Methods 5, 545–551 (2008).
[Crossref] [PubMed]

S. Zhang, J. Park, V. Milner, and A. Genack, “Photon Delocalization Transition in Dimensional Crossover in Layered Media,” Phys. Rev. Lett. 101, 183901 (2008).
[Crossref] [PubMed]

H. Bach, K. G. Papavinasasundaram, D. Wong, Z. Hmama, and Y. Av-Gay, “Mycobacterium tuberculosis virulence is mediated by PtpA dephosphorylation of human vacuolar protein sorting 33B,” Cell Host Microbe 3, 316–322 (2008).
[Crossref] [PubMed]

D. Wiersma, “The physics and applications of random lasers,” Nat. Phys. 4, 359–367 (2008).
[Crossref]

2005 (1)

V. Milner and A. Genack, “Photon Localization Laser: Low-Threshold Lasing in a Random Amplifying Layered Medium via Wave Localization,” Phys. Rev. Lett. 94, 073901 (2005).
[Crossref] [PubMed]

2004 (2)

N. C. Shaner, R. E. Campbell, P. a. Steinbach, B. N. G. Giepmans, A. E. Palmer, and R. Y. Tsien, “Improved monomeric red, orange and yellow fluorescent proteins derived from Discosoma sp. red fluorescent protein,” Nat. Biotechnol. 22, 1567–1572 (2004).
[Crossref] [PubMed]

R. C. Polson and Z. V. Vardeny, “Random lasing in human tissues,” Appl. Phys. Lett. 85, 1289–1291 (2004).
[Crossref]

2003 (1)

S.-h. Chang and H. Cao, “Cavity formation and light propagation in partially ordered and completely random one-dimensional systems,” IEEE J. Quantum Electron. 39, 364–374 (2003).
[Crossref]

2002 (2)

A. Burin, M. Ratner, H. Cao, and S. Chang, “Random Laser in One Dimension,” Phys. Rev. Lett. 88, 093904 (2002).
[Crossref] [PubMed]

D. J. Pikas, S. M. Kirkpatrick, E. Tewksbury, L. L. Brott, R. R. Naik, M. O. Stone, and W. M. Dennis, “Nonlinear Saturation and Lasing Characteristics of Green Fluorescent Protein,” J. Phys. Chem. B 106, 4831–4837 (2002).
[Crossref]

2001 (1)

B. Lounis, J. Deich, and F. Rosell, “Photophysics of Ds Red, a Red Fluorescent Protein, from the Ensemble to the Single-Molecule Level,” J. Phys. Chem. B 105, 5048–5054 (2001).
[Crossref]

2000 (3)

L. A. Gross, G. S. Baird, R. C. Hoffman, K. K. Baldridge, and R. Y. Tsien, “The structure of the chromophore within DsRed, a red fluorescent protein from coral,” Proc. Natl. Acad. Sci. U. S. A. 97, 11990–11995 (2000).
[Crossref] [PubMed]

A. Chabanov, M. Stoytchev, and A. Genack, “Statistical signatures of photon localization,” Nature 404, 850–853 (2000).
[Crossref] [PubMed]

H. Cao, J. Xu, S. Chang, and S. Ho, “Transition from amplified spontaneous emission to laser action in strongly scattering media,” Phys. Rev. E. Stat. Phys. Plasmas. Fluids. Relat. Interdiscip. Topics 61, 1985–1989 (2000).
[PubMed]

1999 (1)

M. V. Matz, a. F. Fradkov, Y. a. Labas, a. P. Savitsky, a. G. Zaraisky, M. L. Markelov, and S. a. Lukyanov, “Fluorescent proteins from nonbioluminescent Anthozoa species,” Nat. Biotechnol. 17, 969–973 (1999).
[Crossref] [PubMed]

1997 (1)

M. V. Berry and S. Klein, “Transparent mirrors: rays, waves and localization,” Eur. J. Phys. 18, 222–228 (1997).
[Crossref]

1987 (1)

E. W. Castner, M. Maroncelli, and G. R. Fleming, “Subpicosecond resolution studies of solvation dynamics in polar aprotic and alcohol solvents,” J. Chem. Phys. 86, 1090–1097 (1987).
[Crossref]

Akkus, O.

Andreasen, J.

N. Bachelard, J. Andreasen, S. Gigan, and P. Sebbah, “Taming random lasers through active spatial control of the pump,” Phys. Rev. Lett. 109, 033903 (2012).
[Crossref] [PubMed]

Av-Gay, Y.

H. Bach, K. G. Papavinasasundaram, D. Wong, Z. Hmama, and Y. Av-Gay, “Mycobacterium tuberculosis virulence is mediated by PtpA dephosphorylation of human vacuolar protein sorting 33B,” Cell Host Microbe 3, 316–322 (2008).
[Crossref] [PubMed]

Bach, H.

H. Bach, K. G. Papavinasasundaram, D. Wong, Z. Hmama, and Y. Av-Gay, “Mycobacterium tuberculosis virulence is mediated by PtpA dephosphorylation of human vacuolar protein sorting 33B,” Cell Host Microbe 3, 316–322 (2008).
[Crossref] [PubMed]

Bachelard, N.

N. Bachelard, S. Gigan, X. Noblin, and P. Sebbah, “Adaptive pumping for spectral control of random lasers,” Nat. Phys. 10, 426–431 (2014).
[Crossref]

N. Bachelard, J. Andreasen, S. Gigan, and P. Sebbah, “Taming random lasers through active spatial control of the pump,” Phys. Rev. Lett. 109, 033903 (2012).
[Crossref] [PubMed]

Baird, G. S.

L. A. Gross, G. S. Baird, R. C. Hoffman, K. K. Baldridge, and R. Y. Tsien, “The structure of the chromophore within DsRed, a red fluorescent protein from coral,” Proc. Natl. Acad. Sci. U. S. A. 97, 11990–11995 (2000).
[Crossref] [PubMed]

Baldridge, K. K.

L. A. Gross, G. S. Baird, R. C. Hoffman, K. K. Baldridge, and R. Y. Tsien, “The structure of the chromophore within DsRed, a red fluorescent protein from coral,” Proc. Natl. Acad. Sci. U. S. A. 97, 11990–11995 (2000).
[Crossref] [PubMed]

Berry, M. V.

M. V. Berry and S. Klein, “Transparent mirrors: rays, waves and localization,” Eur. J. Phys. 18, 222–228 (1997).
[Crossref]

Brott, L. L.

D. J. Pikas, S. M. Kirkpatrick, E. Tewksbury, L. L. Brott, R. R. Naik, M. O. Stone, and W. M. Dennis, “Nonlinear Saturation and Lasing Characteristics of Green Fluorescent Protein,” J. Phys. Chem. B 106, 4831–4837 (2002).
[Crossref]

Burin, A.

A. Burin, M. Ratner, H. Cao, and S. Chang, “Random Laser in One Dimension,” Phys. Rev. Lett. 88, 093904 (2002).
[Crossref] [PubMed]

Callis, P. R.

M. Drobizhev, T. E. Hughes, Y. Stepanenko, P. Wnuk, K. O’Donnell, J. N. Scott, P. R. Callis, A. Mikhaylov, L. Dokken, and A. Rebane, “Primary role of the chromophore bond length alternation in reversible photoconversion of red fluorescence proteins,” Sci. Rep. 2, 688 (2012).
[Crossref] [PubMed]

Campbell, R. E.

N. C. Shaner, R. E. Campbell, P. a. Steinbach, B. N. G. Giepmans, A. E. Palmer, and R. Y. Tsien, “Improved monomeric red, orange and yellow fluorescent proteins derived from Discosoma sp. red fluorescent protein,” Nat. Biotechnol. 22, 1567–1572 (2004).
[Crossref] [PubMed]

Cao, H.

S.-h. Chang and H. Cao, “Cavity formation and light propagation in partially ordered and completely random one-dimensional systems,” IEEE J. Quantum Electron. 39, 364–374 (2003).
[Crossref]

A. Burin, M. Ratner, H. Cao, and S. Chang, “Random Laser in One Dimension,” Phys. Rev. Lett. 88, 093904 (2002).
[Crossref] [PubMed]

H. Cao, J. Xu, S. Chang, and S. Ho, “Transition from amplified spontaneous emission to laser action in strongly scattering media,” Phys. Rev. E. Stat. Phys. Plasmas. Fluids. Relat. Interdiscip. Topics 61, 1985–1989 (2000).
[PubMed]

Castner, E. W.

E. W. Castner, M. Maroncelli, and G. R. Fleming, “Subpicosecond resolution studies of solvation dynamics in polar aprotic and alcohol solvents,” J. Chem. Phys. 86, 1090–1097 (1987).
[Crossref]

Chabanov, A.

A. Chabanov, M. Stoytchev, and A. Genack, “Statistical signatures of photon localization,” Nature 404, 850–853 (2000).
[Crossref] [PubMed]

Chang, S.

A. Burin, M. Ratner, H. Cao, and S. Chang, “Random Laser in One Dimension,” Phys. Rev. Lett. 88, 093904 (2002).
[Crossref] [PubMed]

H. Cao, J. Xu, S. Chang, and S. Ho, “Transition from amplified spontaneous emission to laser action in strongly scattering media,” Phys. Rev. E. Stat. Phys. Plasmas. Fluids. Relat. Interdiscip. Topics 61, 1985–1989 (2000).
[PubMed]

Chang, S.-h.

S.-h. Chang and H. Cao, “Cavity formation and light propagation in partially ordered and completely random one-dimensional systems,” IEEE J. Quantum Electron. 39, 364–374 (2003).
[Crossref]

Deich, J.

B. Lounis, J. Deich, and F. Rosell, “Photophysics of Ds Red, a Red Fluorescent Protein, from the Ensemble to the Single-Molecule Level,” J. Phys. Chem. B 105, 5048–5054 (2001).
[Crossref]

Dennis, W. M.

D. J. Pikas, S. M. Kirkpatrick, E. Tewksbury, L. L. Brott, R. R. Naik, M. O. Stone, and W. M. Dennis, “Nonlinear Saturation and Lasing Characteristics of Green Fluorescent Protein,” J. Phys. Chem. B 106, 4831–4837 (2002).
[Crossref]

Dokken, L.

M. Drobizhev, T. E. Hughes, Y. Stepanenko, P. Wnuk, K. O’Donnell, J. N. Scott, P. R. Callis, A. Mikhaylov, L. Dokken, and A. Rebane, “Primary role of the chromophore bond length alternation in reversible photoconversion of red fluorescence proteins,” Sci. Rep. 2, 688 (2012).
[Crossref] [PubMed]

Drachev, V.

Drane, T.

T. Drane, J. Hepburn, and V. Milner, “Coherent Raman spectroscopy through one-dimensional random scattering medium,” J. Mod. Opt. 57, 1928–1935 (2010).
[Crossref]

Drobizhev, M.

M. Drobizhev, T. E. Hughes, Y. Stepanenko, P. Wnuk, K. O’Donnell, J. N. Scott, P. R. Callis, A. Mikhaylov, L. Dokken, and A. Rebane, “Primary role of the chromophore bond length alternation in reversible photoconversion of red fluorescence proteins,” Sci. Rep. 2, 688 (2012).
[Crossref] [PubMed]

Eberly, J. H.

P. W. Milonni and J. H. Eberly, Laser Physics (Wiley, 2010).
[Crossref]

Enderlein, J.

M. Sauer, J. Hofkens, and J. Enderlein, Handbook of Fluorescence Spectroscopy and Imaging: From Ensemble to Single Molecules (Wiley, 2010).

Fleming, G. R.

E. W. Castner, M. Maroncelli, and G. R. Fleming, “Subpicosecond resolution studies of solvation dynamics in polar aprotic and alcohol solvents,” J. Chem. Phys. 86, 1090–1097 (1987).
[Crossref]

Fradkov, a. F.

M. V. Matz, a. F. Fradkov, Y. a. Labas, a. P. Savitsky, a. G. Zaraisky, M. L. Markelov, and S. a. Lukyanov, “Fluorescent proteins from nonbioluminescent Anthozoa species,” Nat. Biotechnol. 17, 969–973 (1999).
[Crossref] [PubMed]

Gather, M. C.

Genack, A.

S. Zhang, J. Park, V. Milner, and A. Genack, “Photon Delocalization Transition in Dimensional Crossover in Layered Media,” Phys. Rev. Lett. 101, 183901 (2008).
[Crossref] [PubMed]

V. Milner and A. Genack, “Photon Localization Laser: Low-Threshold Lasing in a Random Amplifying Layered Medium via Wave Localization,” Phys. Rev. Lett. 94, 073901 (2005).
[Crossref] [PubMed]

A. Chabanov, M. Stoytchev, and A. Genack, “Statistical signatures of photon localization,” Nature 404, 850–853 (2000).
[Crossref] [PubMed]

Genack, A. Z.

P. Sheng and A. Z. Genack, Directions in Condensed Matter Physics (World Scientific, Singapore, 1990), p. 207.

Giepmans, B. N. G.

N. C. Shaner, R. E. Campbell, P. a. Steinbach, B. N. G. Giepmans, A. E. Palmer, and R. Y. Tsien, “Improved monomeric red, orange and yellow fluorescent proteins derived from Discosoma sp. red fluorescent protein,” Nat. Biotechnol. 22, 1567–1572 (2004).
[Crossref] [PubMed]

Gigan, S.

N. Bachelard, S. Gigan, X. Noblin, and P. Sebbah, “Adaptive pumping for spectral control of random lasers,” Nat. Phys. 10, 426–431 (2014).
[Crossref]

N. Bachelard, J. Andreasen, S. Gigan, and P. Sebbah, “Taming random lasers through active spatial control of the pump,” Phys. Rev. Lett. 109, 033903 (2012).
[Crossref] [PubMed]

Gross, L. A.

L. A. Gross, G. S. Baird, R. C. Hoffman, K. K. Baldridge, and R. Y. Tsien, “The structure of the chromophore within DsRed, a red fluorescent protein from coral,” Proc. Natl. Acad. Sci. U. S. A. 97, 11990–11995 (2000).
[Crossref] [PubMed]

Hepburn, J.

T. Drane, J. Hepburn, and V. Milner, “Coherent Raman spectroscopy through one-dimensional random scattering medium,” J. Mod. Opt. 57, 1928–1935 (2010).
[Crossref]

Hmama, Z.

H. Bach, K. G. Papavinasasundaram, D. Wong, Z. Hmama, and Y. Av-Gay, “Mycobacterium tuberculosis virulence is mediated by PtpA dephosphorylation of human vacuolar protein sorting 33B,” Cell Host Microbe 3, 316–322 (2008).
[Crossref] [PubMed]

Ho, S.

H. Cao, J. Xu, S. Chang, and S. Ho, “Transition from amplified spontaneous emission to laser action in strongly scattering media,” Phys. Rev. E. Stat. Phys. Plasmas. Fluids. Relat. Interdiscip. Topics 61, 1985–1989 (2000).
[PubMed]

Hoffman, R. C.

L. A. Gross, G. S. Baird, R. C. Hoffman, K. K. Baldridge, and R. Y. Tsien, “The structure of the chromophore within DsRed, a red fluorescent protein from coral,” Proc. Natl. Acad. Sci. U. S. A. 97, 11990–11995 (2000).
[Crossref] [PubMed]

Hofkens, J.

M. Sauer, J. Hofkens, and J. Enderlein, Handbook of Fluorescence Spectroscopy and Imaging: From Ensemble to Single Molecules (Wiley, 2010).

Hughes, T. E.

M. Drobizhev, T. E. Hughes, Y. Stepanenko, P. Wnuk, K. O’Donnell, J. N. Scott, P. R. Callis, A. Mikhaylov, L. Dokken, and A. Rebane, “Primary role of the chromophore bond length alternation in reversible photoconversion of red fluorescence proteins,” Sci. Rep. 2, 688 (2012).
[Crossref] [PubMed]

Kim, Y. L.

Kirkpatrick, S. M.

D. J. Pikas, S. M. Kirkpatrick, E. Tewksbury, L. L. Brott, R. R. Naik, M. O. Stone, and W. M. Dennis, “Nonlinear Saturation and Lasing Characteristics of Green Fluorescent Protein,” J. Phys. Chem. B 106, 4831–4837 (2002).
[Crossref]

Klein, S.

M. V. Berry and S. Klein, “Transparent mirrors: rays, waves and localization,” Eur. J. Phys. 18, 222–228 (1997).
[Crossref]

Labas, Y. a.

M. V. Matz, a. F. Fradkov, Y. a. Labas, a. P. Savitsky, a. G. Zaraisky, M. L. Markelov, and S. a. Lukyanov, “Fluorescent proteins from nonbioluminescent Anthozoa species,” Nat. Biotechnol. 17, 969–973 (1999).
[Crossref] [PubMed]

Lawandy, N.

A. Smuk, E. Lazaro, L. P. Olson, and N. Lawandy, “Random laser action in bovine semen,” Opt. Commun. 284, 1257–1258 (2011).
[Crossref]

Lazaro, E.

A. Smuk, E. Lazaro, L. P. Olson, and N. Lawandy, “Random laser action in bovine semen,” Opt. Commun. 284, 1257–1258 (2011).
[Crossref]

Lin, M.

N. Shaner, M. Lin, and M. McKeown, “Improving the photostability of bright monomeric orange and red fluorescent proteins,” Nat. Methods 5, 545–551 (2008).
[Crossref] [PubMed]

Liu, J.

Lounis, B.

B. Lounis, J. Deich, and F. Rosell, “Photophysics of Ds Red, a Red Fluorescent Protein, from the Ensemble to the Single-Molecule Level,” J. Phys. Chem. B 105, 5048–5054 (2001).
[Crossref]

Lukyanov, S. a.

M. V. Matz, a. F. Fradkov, Y. a. Labas, a. P. Savitsky, a. G. Zaraisky, M. L. Markelov, and S. a. Lukyanov, “Fluorescent proteins from nonbioluminescent Anthozoa species,” Nat. Biotechnol. 17, 969–973 (1999).
[Crossref] [PubMed]

Markelov, M. L.

M. V. Matz, a. F. Fradkov, Y. a. Labas, a. P. Savitsky, a. G. Zaraisky, M. L. Markelov, and S. a. Lukyanov, “Fluorescent proteins from nonbioluminescent Anthozoa species,” Nat. Biotechnol. 17, 969–973 (1999).
[Crossref] [PubMed]

Maroncelli, M.

E. W. Castner, M. Maroncelli, and G. R. Fleming, “Subpicosecond resolution studies of solvation dynamics in polar aprotic and alcohol solvents,” J. Chem. Phys. 86, 1090–1097 (1987).
[Crossref]

Matz, M. V.

M. V. Matz, a. F. Fradkov, Y. a. Labas, a. P. Savitsky, a. G. Zaraisky, M. L. Markelov, and S. a. Lukyanov, “Fluorescent proteins from nonbioluminescent Anthozoa species,” Nat. Biotechnol. 17, 969–973 (1999).
[Crossref] [PubMed]

McKeown, M.

N. Shaner, M. Lin, and M. McKeown, “Improving the photostability of bright monomeric orange and red fluorescent proteins,” Nat. Methods 5, 545–551 (2008).
[Crossref] [PubMed]

Meinardi, F.

A. Monguzzi, F. Scotognella, F. Meinardi, and R. Tubino, “Lasing in one dimensional dye-doped random multilayer,” Phys. Chem. Chem. Phys. 12, 12947–12950 (2010).
[Crossref] [PubMed]

Mikhaylov, A.

M. Drobizhev, T. E. Hughes, Y. Stepanenko, P. Wnuk, K. O’Donnell, J. N. Scott, P. R. Callis, A. Mikhaylov, L. Dokken, and A. Rebane, “Primary role of the chromophore bond length alternation in reversible photoconversion of red fluorescence proteins,” Sci. Rep. 2, 688 (2012).
[Crossref] [PubMed]

Milner, V.

T. Drane, J. Hepburn, and V. Milner, “Coherent Raman spectroscopy through one-dimensional random scattering medium,” J. Mod. Opt. 57, 1928–1935 (2010).
[Crossref]

S. Zhang, J. Park, V. Milner, and A. Genack, “Photon Delocalization Transition in Dimensional Crossover in Layered Media,” Phys. Rev. Lett. 101, 183901 (2008).
[Crossref] [PubMed]

V. Milner and A. Genack, “Photon Localization Laser: Low-Threshold Lasing in a Random Amplifying Layered Medium via Wave Localization,” Phys. Rev. Lett. 94, 073901 (2005).
[Crossref] [PubMed]

Milonni, P. W.

P. W. Milonni and J. H. Eberly, Laser Physics (Wiley, 2010).
[Crossref]

Monguzzi, A.

A. Monguzzi, F. Scotognella, F. Meinardi, and R. Tubino, “Lasing in one dimensional dye-doped random multilayer,” Phys. Chem. Chem. Phys. 12, 12947–12950 (2010).
[Crossref] [PubMed]

Naik, R. R.

D. J. Pikas, S. M. Kirkpatrick, E. Tewksbury, L. L. Brott, R. R. Naik, M. O. Stone, and W. M. Dennis, “Nonlinear Saturation and Lasing Characteristics of Green Fluorescent Protein,” J. Phys. Chem. B 106, 4831–4837 (2002).
[Crossref]

Noblin, X.

N. Bachelard, S. Gigan, X. Noblin, and P. Sebbah, “Adaptive pumping for spectral control of random lasers,” Nat. Phys. 10, 426–431 (2014).
[Crossref]

O’Donnell, K.

M. Drobizhev, T. E. Hughes, Y. Stepanenko, P. Wnuk, K. O’Donnell, J. N. Scott, P. R. Callis, A. Mikhaylov, L. Dokken, and A. Rebane, “Primary role of the chromophore bond length alternation in reversible photoconversion of red fluorescence proteins,” Sci. Rep. 2, 688 (2012).
[Crossref] [PubMed]

Olson, L. P.

A. Smuk, E. Lazaro, L. P. Olson, and N. Lawandy, “Random laser action in bovine semen,” Opt. Commun. 284, 1257–1258 (2011).
[Crossref]

Palmer, A. E.

N. C. Shaner, R. E. Campbell, P. a. Steinbach, B. N. G. Giepmans, A. E. Palmer, and R. Y. Tsien, “Improved monomeric red, orange and yellow fluorescent proteins derived from Discosoma sp. red fluorescent protein,” Nat. Biotechnol. 22, 1567–1572 (2004).
[Crossref] [PubMed]

Papavinasasundaram, K. G.

H. Bach, K. G. Papavinasasundaram, D. Wong, Z. Hmama, and Y. Av-Gay, “Mycobacterium tuberculosis virulence is mediated by PtpA dephosphorylation of human vacuolar protein sorting 33B,” Cell Host Microbe 3, 316–322 (2008).
[Crossref] [PubMed]

Park, J.

S. Zhang, J. Park, V. Milner, and A. Genack, “Photon Delocalization Transition in Dimensional Crossover in Layered Media,” Phys. Rev. Lett. 101, 183901 (2008).
[Crossref] [PubMed]

Pikas, D. J.

D. J. Pikas, S. M. Kirkpatrick, E. Tewksbury, L. L. Brott, R. R. Naik, M. O. Stone, and W. M. Dennis, “Nonlinear Saturation and Lasing Characteristics of Green Fluorescent Protein,” J. Phys. Chem. B 106, 4831–4837 (2002).
[Crossref]

Polson, R. C.

R. C. Polson and Z. V. Vardeny, “Random lasing in human tissues,” Appl. Phys. Lett. 85, 1289–1291 (2004).
[Crossref]

Ratner, M.

A. Burin, M. Ratner, H. Cao, and S. Chang, “Random Laser in One Dimension,” Phys. Rev. Lett. 88, 093904 (2002).
[Crossref] [PubMed]

Rebane, A.

M. Drobizhev, T. E. Hughes, Y. Stepanenko, P. Wnuk, K. O’Donnell, J. N. Scott, P. R. Callis, A. Mikhaylov, L. Dokken, and A. Rebane, “Primary role of the chromophore bond length alternation in reversible photoconversion of red fluorescence proteins,” Sci. Rep. 2, 688 (2012).
[Crossref] [PubMed]

Rosell, F.

B. Lounis, J. Deich, and F. Rosell, “Photophysics of Ds Red, a Red Fluorescent Protein, from the Ensemble to the Single-Molecule Level,” J. Phys. Chem. B 105, 5048–5054 (2001).
[Crossref]

Sauer, M.

M. Sauer, J. Hofkens, and J. Enderlein, Handbook of Fluorescence Spectroscopy and Imaging: From Ensemble to Single Molecules (Wiley, 2010).

Savitsky, a. P.

M. V. Matz, a. F. Fradkov, Y. a. Labas, a. P. Savitsky, a. G. Zaraisky, M. L. Markelov, and S. a. Lukyanov, “Fluorescent proteins from nonbioluminescent Anthozoa species,” Nat. Biotechnol. 17, 969–973 (1999).
[Crossref] [PubMed]

Scotognella, F.

A. Monguzzi, F. Scotognella, F. Meinardi, and R. Tubino, “Lasing in one dimensional dye-doped random multilayer,” Phys. Chem. Chem. Phys. 12, 12947–12950 (2010).
[Crossref] [PubMed]

Scott, J. N.

M. Drobizhev, T. E. Hughes, Y. Stepanenko, P. Wnuk, K. O’Donnell, J. N. Scott, P. R. Callis, A. Mikhaylov, L. Dokken, and A. Rebane, “Primary role of the chromophore bond length alternation in reversible photoconversion of red fluorescence proteins,” Sci. Rep. 2, 688 (2012).
[Crossref] [PubMed]

Sebbah, P.

N. Bachelard, S. Gigan, X. Noblin, and P. Sebbah, “Adaptive pumping for spectral control of random lasers,” Nat. Phys. 10, 426–431 (2014).
[Crossref]

N. Bachelard, J. Andreasen, S. Gigan, and P. Sebbah, “Taming random lasers through active spatial control of the pump,” Phys. Rev. Lett. 109, 033903 (2012).
[Crossref] [PubMed]

Shalaev, V. M.

Shaner, N.

N. Shaner, M. Lin, and M. McKeown, “Improving the photostability of bright monomeric orange and red fluorescent proteins,” Nat. Methods 5, 545–551 (2008).
[Crossref] [PubMed]

Shaner, N. C.

N. C. Shaner, R. E. Campbell, P. a. Steinbach, B. N. G. Giepmans, A. E. Palmer, and R. Y. Tsien, “Improved monomeric red, orange and yellow fluorescent proteins derived from Discosoma sp. red fluorescent protein,” Nat. Biotechnol. 22, 1567–1572 (2004).
[Crossref] [PubMed]

Sheng, P.

P. Sheng and A. Z. Genack, Directions in Condensed Matter Physics (World Scientific, Singapore, 1990), p. 207.

Smuk, A.

A. Smuk, E. Lazaro, L. P. Olson, and N. Lawandy, “Random laser action in bovine semen,” Opt. Commun. 284, 1257–1258 (2011).
[Crossref]

Song, Q.

Steinbach, P. a.

N. C. Shaner, R. E. Campbell, P. a. Steinbach, B. N. G. Giepmans, A. E. Palmer, and R. Y. Tsien, “Improved monomeric red, orange and yellow fluorescent proteins derived from Discosoma sp. red fluorescent protein,” Nat. Biotechnol. 22, 1567–1572 (2004).
[Crossref] [PubMed]

Stepanenko, Y.

M. Drobizhev, T. E. Hughes, Y. Stepanenko, P. Wnuk, K. O’Donnell, J. N. Scott, P. R. Callis, A. Mikhaylov, L. Dokken, and A. Rebane, “Primary role of the chromophore bond length alternation in reversible photoconversion of red fluorescence proteins,” Sci. Rep. 2, 688 (2012).
[Crossref] [PubMed]

Stone, M. O.

D. J. Pikas, S. M. Kirkpatrick, E. Tewksbury, L. L. Brott, R. R. Naik, M. O. Stone, and W. M. Dennis, “Nonlinear Saturation and Lasing Characteristics of Green Fluorescent Protein,” J. Phys. Chem. B 106, 4831–4837 (2002).
[Crossref]

Stoytchev, M.

A. Chabanov, M. Stoytchev, and A. Genack, “Statistical signatures of photon localization,” Nature 404, 850–853 (2000).
[Crossref] [PubMed]

Sun, X.

Tewksbury, E.

D. J. Pikas, S. M. Kirkpatrick, E. Tewksbury, L. L. Brott, R. R. Naik, M. O. Stone, and W. M. Dennis, “Nonlinear Saturation and Lasing Characteristics of Green Fluorescent Protein,” J. Phys. Chem. B 106, 4831–4837 (2002).
[Crossref]

Tsien, R. Y.

N. C. Shaner, R. E. Campbell, P. a. Steinbach, B. N. G. Giepmans, A. E. Palmer, and R. Y. Tsien, “Improved monomeric red, orange and yellow fluorescent proteins derived from Discosoma sp. red fluorescent protein,” Nat. Biotechnol. 22, 1567–1572 (2004).
[Crossref] [PubMed]

L. A. Gross, G. S. Baird, R. C. Hoffman, K. K. Baldridge, and R. Y. Tsien, “The structure of the chromophore within DsRed, a red fluorescent protein from coral,” Proc. Natl. Acad. Sci. U. S. A. 97, 11990–11995 (2000).
[Crossref] [PubMed]

Tubino, R.

A. Monguzzi, F. Scotognella, F. Meinardi, and R. Tubino, “Lasing in one dimensional dye-doped random multilayer,” Phys. Chem. Chem. Phys. 12, 12947–12950 (2010).
[Crossref] [PubMed]

Vardeny, Z. V.

R. C. Polson and Z. V. Vardeny, “Random lasing in human tissues,” Appl. Phys. Lett. 85, 1289–1291 (2004).
[Crossref]

Wiersma, D.

D. Wiersma, “The physics and applications of random lasers,” Nat. Phys. 4, 359–367 (2008).
[Crossref]

Wnuk, P.

M. Drobizhev, T. E. Hughes, Y. Stepanenko, P. Wnuk, K. O’Donnell, J. N. Scott, P. R. Callis, A. Mikhaylov, L. Dokken, and A. Rebane, “Primary role of the chromophore bond length alternation in reversible photoconversion of red fluorescence proteins,” Sci. Rep. 2, 688 (2012).
[Crossref] [PubMed]

Wong, D.

H. Bach, K. G. Papavinasasundaram, D. Wong, Z. Hmama, and Y. Av-Gay, “Mycobacterium tuberculosis virulence is mediated by PtpA dephosphorylation of human vacuolar protein sorting 33B,” Cell Host Microbe 3, 316–322 (2008).
[Crossref] [PubMed]

Xiao, S.

Xu, J.

H. Cao, J. Xu, S. Chang, and S. Ho, “Transition from amplified spontaneous emission to laser action in strongly scattering media,” Phys. Rev. E. Stat. Phys. Plasmas. Fluids. Relat. Interdiscip. Topics 61, 1985–1989 (2000).
[PubMed]

Xu, Z.

Yun, S. H.

Zaraisky, a. G.

M. V. Matz, a. F. Fradkov, Y. a. Labas, a. P. Savitsky, a. G. Zaraisky, M. L. Markelov, and S. a. Lukyanov, “Fluorescent proteins from nonbioluminescent Anthozoa species,” Nat. Biotechnol. 17, 969–973 (1999).
[Crossref] [PubMed]

Zhang, S.

S. Zhang, J. Park, V. Milner, and A. Genack, “Photon Delocalization Transition in Dimensional Crossover in Layered Media,” Phys. Rev. Lett. 101, 183901 (2008).
[Crossref] [PubMed]

Appl. Phys. Lett. (1)

R. C. Polson and Z. V. Vardeny, “Random lasing in human tissues,” Appl. Phys. Lett. 85, 1289–1291 (2004).
[Crossref]

Cell Host Microbe (1)

H. Bach, K. G. Papavinasasundaram, D. Wong, Z. Hmama, and Y. Av-Gay, “Mycobacterium tuberculosis virulence is mediated by PtpA dephosphorylation of human vacuolar protein sorting 33B,” Cell Host Microbe 3, 316–322 (2008).
[Crossref] [PubMed]

Eur. J. Phys. (1)

M. V. Berry and S. Klein, “Transparent mirrors: rays, waves and localization,” Eur. J. Phys. 18, 222–228 (1997).
[Crossref]

IEEE J. Quantum Electron. (1)

S.-h. Chang and H. Cao, “Cavity formation and light propagation in partially ordered and completely random one-dimensional systems,” IEEE J. Quantum Electron. 39, 364–374 (2003).
[Crossref]

J. Chem. Phys. (1)

E. W. Castner, M. Maroncelli, and G. R. Fleming, “Subpicosecond resolution studies of solvation dynamics in polar aprotic and alcohol solvents,” J. Chem. Phys. 86, 1090–1097 (1987).
[Crossref]

J. Mod. Opt. (1)

T. Drane, J. Hepburn, and V. Milner, “Coherent Raman spectroscopy through one-dimensional random scattering medium,” J. Mod. Opt. 57, 1928–1935 (2010).
[Crossref]

J. Phys. Chem. B (2)

B. Lounis, J. Deich, and F. Rosell, “Photophysics of Ds Red, a Red Fluorescent Protein, from the Ensemble to the Single-Molecule Level,” J. Phys. Chem. B 105, 5048–5054 (2001).
[Crossref]

D. J. Pikas, S. M. Kirkpatrick, E. Tewksbury, L. L. Brott, R. R. Naik, M. O. Stone, and W. M. Dennis, “Nonlinear Saturation and Lasing Characteristics of Green Fluorescent Protein,” J. Phys. Chem. B 106, 4831–4837 (2002).
[Crossref]

Nat. Biotechnol. (2)

M. V. Matz, a. F. Fradkov, Y. a. Labas, a. P. Savitsky, a. G. Zaraisky, M. L. Markelov, and S. a. Lukyanov, “Fluorescent proteins from nonbioluminescent Anthozoa species,” Nat. Biotechnol. 17, 969–973 (1999).
[Crossref] [PubMed]

N. C. Shaner, R. E. Campbell, P. a. Steinbach, B. N. G. Giepmans, A. E. Palmer, and R. Y. Tsien, “Improved monomeric red, orange and yellow fluorescent proteins derived from Discosoma sp. red fluorescent protein,” Nat. Biotechnol. 22, 1567–1572 (2004).
[Crossref] [PubMed]

Nat. Methods (1)

N. Shaner, M. Lin, and M. McKeown, “Improving the photostability of bright monomeric orange and red fluorescent proteins,” Nat. Methods 5, 545–551 (2008).
[Crossref] [PubMed]

Nat. Photonics (1)

M. C. Gather and S. H. Yun, “Single-cell biological lasers,” Nat. Photonics 5, 406–410 (2011).
[Crossref]

Nat. Phys. (2)

D. Wiersma, “The physics and applications of random lasers,” Nat. Phys. 4, 359–367 (2008).
[Crossref]

N. Bachelard, S. Gigan, X. Noblin, and P. Sebbah, “Adaptive pumping for spectral control of random lasers,” Nat. Phys. 10, 426–431 (2014).
[Crossref]

Nature (1)

A. Chabanov, M. Stoytchev, and A. Genack, “Statistical signatures of photon localization,” Nature 404, 850–853 (2000).
[Crossref] [PubMed]

Opt. Commun. (1)

A. Smuk, E. Lazaro, L. P. Olson, and N. Lawandy, “Random laser action in bovine semen,” Opt. Commun. 284, 1257–1258 (2011).
[Crossref]

Opt. Lett. (2)

Phys. Chem. Chem. Phys. (1)

A. Monguzzi, F. Scotognella, F. Meinardi, and R. Tubino, “Lasing in one dimensional dye-doped random multilayer,” Phys. Chem. Chem. Phys. 12, 12947–12950 (2010).
[Crossref] [PubMed]

Phys. Rev. E. Stat. Phys. Plasmas. Fluids. Relat. Interdiscip. Topics (1)

H. Cao, J. Xu, S. Chang, and S. Ho, “Transition from amplified spontaneous emission to laser action in strongly scattering media,” Phys. Rev. E. Stat. Phys. Plasmas. Fluids. Relat. Interdiscip. Topics 61, 1985–1989 (2000).
[PubMed]

Phys. Rev. Lett. (4)

N. Bachelard, J. Andreasen, S. Gigan, and P. Sebbah, “Taming random lasers through active spatial control of the pump,” Phys. Rev. Lett. 109, 033903 (2012).
[Crossref] [PubMed]

A. Burin, M. Ratner, H. Cao, and S. Chang, “Random Laser in One Dimension,” Phys. Rev. Lett. 88, 093904 (2002).
[Crossref] [PubMed]

V. Milner and A. Genack, “Photon Localization Laser: Low-Threshold Lasing in a Random Amplifying Layered Medium via Wave Localization,” Phys. Rev. Lett. 94, 073901 (2005).
[Crossref] [PubMed]

S. Zhang, J. Park, V. Milner, and A. Genack, “Photon Delocalization Transition in Dimensional Crossover in Layered Media,” Phys. Rev. Lett. 101, 183901 (2008).
[Crossref] [PubMed]

Proc. Natl. Acad. Sci. U. S. A. (1)

L. A. Gross, G. S. Baird, R. C. Hoffman, K. K. Baldridge, and R. Y. Tsien, “The structure of the chromophore within DsRed, a red fluorescent protein from coral,” Proc. Natl. Acad. Sci. U. S. A. 97, 11990–11995 (2000).
[Crossref] [PubMed]

Sci. Rep. (1)

M. Drobizhev, T. E. Hughes, Y. Stepanenko, P. Wnuk, K. O’Donnell, J. N. Scott, P. R. Callis, A. Mikhaylov, L. Dokken, and A. Rebane, “Primary role of the chromophore bond length alternation in reversible photoconversion of red fluorescence proteins,” Sci. Rep. 2, 688 (2012).
[Crossref] [PubMed]

Other (3)

M. Sauer, J. Hofkens, and J. Enderlein, Handbook of Fluorescence Spectroscopy and Imaging: From Ensemble to Single Molecules (Wiley, 2010).

P. W. Milonni and J. H. Eberly, Laser Physics (Wiley, 2010).
[Crossref]

P. Sheng and A. Z. Genack, Directions in Condensed Matter Physics (World Scientific, Singapore, 1990), p. 207.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 Experimental setup. Nd:YLF, nanosecond source; OPA, femtosecond source; L1, 400 mm focussing lens; Stack, glass coverslip and protein medium assembly mounted on translation stage; SF, iris; L2, L3 collimation & fiber coupling lenses; F, dichroic mirror. The stack assembly is tilted relative to the pump beam axis to spatially separate the resonant lasing output from the unabsorbed pump beam and any amplified spontaneous emission. The stack was scanned in the plane transverse to the pump beam in order to illuminate different cavity configurations arising from the inhomogeneity of both the coverslip and the air gap thickness.
Fig. 2
Fig. 2 Typical spectra of DsRed emission under nanosecond (a, c) and femtosecond (b, d) pumping. Below the lasing threshold (a, b) the emission spectrum is broad (> 40 nm FWHM) and shows the quasi-periodic modulation resulting from the ∼100 μm coverslip thickness. Above the lasing threshold (c, d) narrow lasing modes appear above the spontaneous emission background. Inset (d): Profile of the emitted beam approximately 5 cm from the output face of the random stack.
Fig. 3
Fig. 3 (a) Luminescent output vs. pump intensity under femtosecond pumping for both DsRed2 (○) and Rhodamine B (+) at a single lasing region. Each point is the average of ten single-shot spectra. (b) Average lasing threshold of 76 lasing regions for Rhodamine B under femtosecond pumping vs. number of layers in the input half of the random stack (the “input coupler”) compared to the mean transmission of the input coupler. It is clear that the increase in measured lasing threshold results from the increasing rejection of pump energy with the greater number of layers.
Fig. 4
Fig. 4 Pulse train generated by the femtosecond pump pulse traversing the coverslip stack and cuvette assembly, measured by optical cross correlation (a) and calculated by means of the transfer matrix analysis (b) for a 1D system with a similar layer number, thickness, and refractive index. The observed (c) and calculated (d) transmission spectra of the random stack. The irregular mode structure, apparent in the bottom plot, is obscured by the limited spectrometer resolution (note the difference in the wavelength range between the two plots).
Fig. 5
Fig. 5 Mean photoluminescent (PL) output from a 30 layer stack containing the short τsp dye LDS 750 in acetonitrile and ethanol pumped via femtosecond (a) or nanosecond (b) pulses. The 30 layer average outputs for Rhodamine B are provided for comparison.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

τ fs τ c τ sp τ ns ,
Δ N fs R fs τ fs ,
Δ N ns R ns R sp = R ns τ ns × τ sp τ ns .
1 τ sp = 1.06 + 1.90 η ,

Metrics