Abstract

By mimicking the variable resolution of the human eye, a newly designed foveated endomicroscopic objective shows the potential to improve current endoscopic based techniques of identifying abnormal tissue in the esophagus and colon. The prototype miniature foveated objective is imaged with a confocal microscope to provide large field of view images combined with a high resolution central region to rapidly observe morphological structures associated with cancer development in a mouse model.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Fluorescence-guided optical coherence tomography imaging for colon cancer screening: a preliminary mouse study

Nicusor Iftimia, Arun K. Iyer, Daniel X. Hammer, Niyom Lue, Mircea Mujat, Martha Pitman, R. Daniel Ferguson, and Mansoor Amiji
Biomed. Opt. Express 3(1) 178-191 (2012)

Targeted vertical cross-sectional imaging with handheld near-infrared dual axes confocal fluorescence endomicroscope

Zhen Qiu, Zhongyao Liu, Xiyu Duan, Supang Khondee, Bishnu Joshi, Michael J. Mandella, Kenn Oldham, Katsuo Kurabayashi, and Thomas D. Wang
Biomed. Opt. Express 4(2) 322-330 (2013)

Achromatized endomicroscope objective for optical biopsy

Matthew Kyrish and Tomasz S. Tkaczyk
Biomed. Opt. Express 4(2) 287-297 (2013)

References

  • View by:
  • |
  • |
  • |

  1. R. J. Mayer, A. P. Venook, and R. L. Schilsky, “Progress against GI cancer during the American Society of Clinical Oncology’s first 50 years,” J. Clin. Oncol. 32(15), 1521–1530 (2014).
    [Crossref] [PubMed]
  2. H. Pohl, B. Sirovich, and H. G. Welch, “Esophageal adenocarcinoma incidence: are we reaching the peak?” Cancer Epidemiol. Biomarkers Prev. 19(6), 1468–1470 (2010).
    [Crossref] [PubMed]
  3. N. J. Shaheen, “Advances in Barrett’s esophagus and esophageal adenocarcinoma,” Gastroenterology 128(6), 1554–1566 (2005).
    [Crossref] [PubMed]
  4. G. W. Falk, “Risk factors for esophageal cancer development,” Surg. Oncol. Clin. N. Am. 18(3), 469–485 (2009).
    [Crossref] [PubMed]
  5. F. Hvid-Jensen, L. Pedersen, A. M. Drewes, H. T. Sørensen, and P. Funch-Jensen, “Incidence of adenocarcinoma among patients with Barrett’s esophagus,” N. Engl. J. Med. 365(15), 1375–1383 (2011).
    [Crossref] [PubMed]
  6. R. Kariv, T. P. Plesec, J. R. Goldblum, M. Bronner, M. Oldenburgh, T. W. Rice, and G. W. Falk, “The Seattle protocol does not more reliably predict the detection of cancer at the time of esophagectomy than a less intensive surveillance protocol,” Clin. Gastroenterol. Hepatol. 7(6), 653–658 (2009).
    [Crossref] [PubMed]
  7. R. Shukla, “Endoscopic imaging: How far are we from real-time histology?,” WJGE 3(10), 183 Baishideng Publishing Group Co., Ltd. (2011).
  8. R. Haidry and L. Lovat, Medical Imaging in Clinical Practice, O. F. Erondu, ed. (InTech, 2013), Chap. 7.
  9. P. Sharma, R. H. Hawes, A. Bansal, N. Gupta, W. Curvers, A. Rastogi, M. Singh, M. Hall, S. C. Mathur, S. B. Wani, B. Hoffman, S. Gaddam, P. Fockens, and J. J. Bergman, “Standard endoscopy with random biopsies versus narrow band imaging targeted biopsies in Barrett’s oesophagus: a prospective, international, randomised controlled trial,” Gut 62(1), 15–21 (2013).
    [Crossref] [PubMed]
  10. N. Hagen and T. S. Tkaczyk, “Foveated endoscopic lens,” J. Biomed. Opt. 17(2), 021104 (2012).
    [Crossref] [PubMed]
  11. J. Van der Spiegel, G. Kreider, C. Claeys, I. Debusschere, G. Sandini, P. Dario, F. Fantini, P. Bellutti, and G. Soncini, The Kluwer International Series in Engineering and Computer Science, J. Allen, C. Mead, and M. Ismail, Eds. (Springer, (1989), Chapt. 8, pp. 189–211.
  12. P. L. McCarley, M. A. Massie, and J. P. Curzan, “Infrared Systems and Photoelectronic Technology II,” in Photonic Devices + Applications 6660, R. E. Longshore, A. K. Sood, E. L. Dereniak, and J. P. Hartke, eds. (SPIE, 2007) pp. 666002.
  13. H. Hua and S. Liu, “Dual-sensor foveated imaging system,” Appl. Opt. 47(3), 317–327 (2008).
    [Crossref] [PubMed]
  14. Y. Qin, H. Hua, and M. Nguyen, “Characterization and in-vivo evaluation of a multi-resolution foveated laparoscope for minimally invasive surgery,” Biomed. Opt. Express 5(8), 2548–2562 (2014).
    [Crossref] [PubMed]
  15. S. Shimizu, Y. Suematsu, and S. Yahata, “Proceedings of the 1996 IEEE IECON. 22nd International Conference on Industrial Electronics, Control, and Instrumentation,” in IECON-96 3, pp. 1600–1605, IEEE.
  16. K. Wakamiya, T. Senga, K. Isagi, N. Yamamura, Y. Ushio, and N. Kita, “Optomechatronic machine vision,” in Optomechatronic Technologies 2005 6051, K. Sumi, Ed. (SPIE, 2005), p. 605107.
  17. A. P. Tzannes and J. M. Mooney, “Measurement of the modulation transfer function of infrared cameras,” Opt. Eng. 34(6), 1808 (1995).
    [Crossref]
  18. Acgih, TLVs and BEIs (American Conference of Governmental Industrial Hygenists 2010), p. 254.
  19. M. De Robertis, E. Massi, M. L. Poeta, S. Carotti, S. Morini, L. Cecchetelli, E. Signori, and V. M. Fazio, “The AOM/DSS murine model for the study of colon carcinogenesis: from pathways to diagnosis and therapy studies,” J. Carcinog. 10(1), 9 (2011).
    [Crossref] [PubMed]

2014 (2)

R. J. Mayer, A. P. Venook, and R. L. Schilsky, “Progress against GI cancer during the American Society of Clinical Oncology’s first 50 years,” J. Clin. Oncol. 32(15), 1521–1530 (2014).
[Crossref] [PubMed]

Y. Qin, H. Hua, and M. Nguyen, “Characterization and in-vivo evaluation of a multi-resolution foveated laparoscope for minimally invasive surgery,” Biomed. Opt. Express 5(8), 2548–2562 (2014).
[Crossref] [PubMed]

2013 (1)

P. Sharma, R. H. Hawes, A. Bansal, N. Gupta, W. Curvers, A. Rastogi, M. Singh, M. Hall, S. C. Mathur, S. B. Wani, B. Hoffman, S. Gaddam, P. Fockens, and J. J. Bergman, “Standard endoscopy with random biopsies versus narrow band imaging targeted biopsies in Barrett’s oesophagus: a prospective, international, randomised controlled trial,” Gut 62(1), 15–21 (2013).
[Crossref] [PubMed]

2012 (1)

N. Hagen and T. S. Tkaczyk, “Foveated endoscopic lens,” J. Biomed. Opt. 17(2), 021104 (2012).
[Crossref] [PubMed]

2011 (2)

M. De Robertis, E. Massi, M. L. Poeta, S. Carotti, S. Morini, L. Cecchetelli, E. Signori, and V. M. Fazio, “The AOM/DSS murine model for the study of colon carcinogenesis: from pathways to diagnosis and therapy studies,” J. Carcinog. 10(1), 9 (2011).
[Crossref] [PubMed]

F. Hvid-Jensen, L. Pedersen, A. M. Drewes, H. T. Sørensen, and P. Funch-Jensen, “Incidence of adenocarcinoma among patients with Barrett’s esophagus,” N. Engl. J. Med. 365(15), 1375–1383 (2011).
[Crossref] [PubMed]

2010 (1)

H. Pohl, B. Sirovich, and H. G. Welch, “Esophageal adenocarcinoma incidence: are we reaching the peak?” Cancer Epidemiol. Biomarkers Prev. 19(6), 1468–1470 (2010).
[Crossref] [PubMed]

2009 (2)

R. Kariv, T. P. Plesec, J. R. Goldblum, M. Bronner, M. Oldenburgh, T. W. Rice, and G. W. Falk, “The Seattle protocol does not more reliably predict the detection of cancer at the time of esophagectomy than a less intensive surveillance protocol,” Clin. Gastroenterol. Hepatol. 7(6), 653–658 (2009).
[Crossref] [PubMed]

G. W. Falk, “Risk factors for esophageal cancer development,” Surg. Oncol. Clin. N. Am. 18(3), 469–485 (2009).
[Crossref] [PubMed]

2008 (1)

2005 (1)

N. J. Shaheen, “Advances in Barrett’s esophagus and esophageal adenocarcinoma,” Gastroenterology 128(6), 1554–1566 (2005).
[Crossref] [PubMed]

1995 (1)

A. P. Tzannes and J. M. Mooney, “Measurement of the modulation transfer function of infrared cameras,” Opt. Eng. 34(6), 1808 (1995).
[Crossref]

Bansal, A.

P. Sharma, R. H. Hawes, A. Bansal, N. Gupta, W. Curvers, A. Rastogi, M. Singh, M. Hall, S. C. Mathur, S. B. Wani, B. Hoffman, S. Gaddam, P. Fockens, and J. J. Bergman, “Standard endoscopy with random biopsies versus narrow band imaging targeted biopsies in Barrett’s oesophagus: a prospective, international, randomised controlled trial,” Gut 62(1), 15–21 (2013).
[Crossref] [PubMed]

Bergman, J. J.

P. Sharma, R. H. Hawes, A. Bansal, N. Gupta, W. Curvers, A. Rastogi, M. Singh, M. Hall, S. C. Mathur, S. B. Wani, B. Hoffman, S. Gaddam, P. Fockens, and J. J. Bergman, “Standard endoscopy with random biopsies versus narrow band imaging targeted biopsies in Barrett’s oesophagus: a prospective, international, randomised controlled trial,” Gut 62(1), 15–21 (2013).
[Crossref] [PubMed]

Bronner, M.

R. Kariv, T. P. Plesec, J. R. Goldblum, M. Bronner, M. Oldenburgh, T. W. Rice, and G. W. Falk, “The Seattle protocol does not more reliably predict the detection of cancer at the time of esophagectomy than a less intensive surveillance protocol,” Clin. Gastroenterol. Hepatol. 7(6), 653–658 (2009).
[Crossref] [PubMed]

Carotti, S.

M. De Robertis, E. Massi, M. L. Poeta, S. Carotti, S. Morini, L. Cecchetelli, E. Signori, and V. M. Fazio, “The AOM/DSS murine model for the study of colon carcinogenesis: from pathways to diagnosis and therapy studies,” J. Carcinog. 10(1), 9 (2011).
[Crossref] [PubMed]

Cecchetelli, L.

M. De Robertis, E. Massi, M. L. Poeta, S. Carotti, S. Morini, L. Cecchetelli, E. Signori, and V. M. Fazio, “The AOM/DSS murine model for the study of colon carcinogenesis: from pathways to diagnosis and therapy studies,” J. Carcinog. 10(1), 9 (2011).
[Crossref] [PubMed]

Curvers, W.

P. Sharma, R. H. Hawes, A. Bansal, N. Gupta, W. Curvers, A. Rastogi, M. Singh, M. Hall, S. C. Mathur, S. B. Wani, B. Hoffman, S. Gaddam, P. Fockens, and J. J. Bergman, “Standard endoscopy with random biopsies versus narrow band imaging targeted biopsies in Barrett’s oesophagus: a prospective, international, randomised controlled trial,” Gut 62(1), 15–21 (2013).
[Crossref] [PubMed]

De Robertis, M.

M. De Robertis, E. Massi, M. L. Poeta, S. Carotti, S. Morini, L. Cecchetelli, E. Signori, and V. M. Fazio, “The AOM/DSS murine model for the study of colon carcinogenesis: from pathways to diagnosis and therapy studies,” J. Carcinog. 10(1), 9 (2011).
[Crossref] [PubMed]

Drewes, A. M.

F. Hvid-Jensen, L. Pedersen, A. M. Drewes, H. T. Sørensen, and P. Funch-Jensen, “Incidence of adenocarcinoma among patients with Barrett’s esophagus,” N. Engl. J. Med. 365(15), 1375–1383 (2011).
[Crossref] [PubMed]

Falk, G. W.

R. Kariv, T. P. Plesec, J. R. Goldblum, M. Bronner, M. Oldenburgh, T. W. Rice, and G. W. Falk, “The Seattle protocol does not more reliably predict the detection of cancer at the time of esophagectomy than a less intensive surveillance protocol,” Clin. Gastroenterol. Hepatol. 7(6), 653–658 (2009).
[Crossref] [PubMed]

G. W. Falk, “Risk factors for esophageal cancer development,” Surg. Oncol. Clin. N. Am. 18(3), 469–485 (2009).
[Crossref] [PubMed]

Fazio, V. M.

M. De Robertis, E. Massi, M. L. Poeta, S. Carotti, S. Morini, L. Cecchetelli, E. Signori, and V. M. Fazio, “The AOM/DSS murine model for the study of colon carcinogenesis: from pathways to diagnosis and therapy studies,” J. Carcinog. 10(1), 9 (2011).
[Crossref] [PubMed]

Fockens, P.

P. Sharma, R. H. Hawes, A. Bansal, N. Gupta, W. Curvers, A. Rastogi, M. Singh, M. Hall, S. C. Mathur, S. B. Wani, B. Hoffman, S. Gaddam, P. Fockens, and J. J. Bergman, “Standard endoscopy with random biopsies versus narrow band imaging targeted biopsies in Barrett’s oesophagus: a prospective, international, randomised controlled trial,” Gut 62(1), 15–21 (2013).
[Crossref] [PubMed]

Funch-Jensen, P.

F. Hvid-Jensen, L. Pedersen, A. M. Drewes, H. T. Sørensen, and P. Funch-Jensen, “Incidence of adenocarcinoma among patients with Barrett’s esophagus,” N. Engl. J. Med. 365(15), 1375–1383 (2011).
[Crossref] [PubMed]

Gaddam, S.

P. Sharma, R. H. Hawes, A. Bansal, N. Gupta, W. Curvers, A. Rastogi, M. Singh, M. Hall, S. C. Mathur, S. B. Wani, B. Hoffman, S. Gaddam, P. Fockens, and J. J. Bergman, “Standard endoscopy with random biopsies versus narrow band imaging targeted biopsies in Barrett’s oesophagus: a prospective, international, randomised controlled trial,” Gut 62(1), 15–21 (2013).
[Crossref] [PubMed]

Goldblum, J. R.

R. Kariv, T. P. Plesec, J. R. Goldblum, M. Bronner, M. Oldenburgh, T. W. Rice, and G. W. Falk, “The Seattle protocol does not more reliably predict the detection of cancer at the time of esophagectomy than a less intensive surveillance protocol,” Clin. Gastroenterol. Hepatol. 7(6), 653–658 (2009).
[Crossref] [PubMed]

Gupta, N.

P. Sharma, R. H. Hawes, A. Bansal, N. Gupta, W. Curvers, A. Rastogi, M. Singh, M. Hall, S. C. Mathur, S. B. Wani, B. Hoffman, S. Gaddam, P. Fockens, and J. J. Bergman, “Standard endoscopy with random biopsies versus narrow band imaging targeted biopsies in Barrett’s oesophagus: a prospective, international, randomised controlled trial,” Gut 62(1), 15–21 (2013).
[Crossref] [PubMed]

Hagen, N.

N. Hagen and T. S. Tkaczyk, “Foveated endoscopic lens,” J. Biomed. Opt. 17(2), 021104 (2012).
[Crossref] [PubMed]

Hall, M.

P. Sharma, R. H. Hawes, A. Bansal, N. Gupta, W. Curvers, A. Rastogi, M. Singh, M. Hall, S. C. Mathur, S. B. Wani, B. Hoffman, S. Gaddam, P. Fockens, and J. J. Bergman, “Standard endoscopy with random biopsies versus narrow band imaging targeted biopsies in Barrett’s oesophagus: a prospective, international, randomised controlled trial,” Gut 62(1), 15–21 (2013).
[Crossref] [PubMed]

Hawes, R. H.

P. Sharma, R. H. Hawes, A. Bansal, N. Gupta, W. Curvers, A. Rastogi, M. Singh, M. Hall, S. C. Mathur, S. B. Wani, B. Hoffman, S. Gaddam, P. Fockens, and J. J. Bergman, “Standard endoscopy with random biopsies versus narrow band imaging targeted biopsies in Barrett’s oesophagus: a prospective, international, randomised controlled trial,” Gut 62(1), 15–21 (2013).
[Crossref] [PubMed]

Hoffman, B.

P. Sharma, R. H. Hawes, A. Bansal, N. Gupta, W. Curvers, A. Rastogi, M. Singh, M. Hall, S. C. Mathur, S. B. Wani, B. Hoffman, S. Gaddam, P. Fockens, and J. J. Bergman, “Standard endoscopy with random biopsies versus narrow band imaging targeted biopsies in Barrett’s oesophagus: a prospective, international, randomised controlled trial,” Gut 62(1), 15–21 (2013).
[Crossref] [PubMed]

Hua, H.

Hvid-Jensen, F.

F. Hvid-Jensen, L. Pedersen, A. M. Drewes, H. T. Sørensen, and P. Funch-Jensen, “Incidence of adenocarcinoma among patients with Barrett’s esophagus,” N. Engl. J. Med. 365(15), 1375–1383 (2011).
[Crossref] [PubMed]

Kariv, R.

R. Kariv, T. P. Plesec, J. R. Goldblum, M. Bronner, M. Oldenburgh, T. W. Rice, and G. W. Falk, “The Seattle protocol does not more reliably predict the detection of cancer at the time of esophagectomy than a less intensive surveillance protocol,” Clin. Gastroenterol. Hepatol. 7(6), 653–658 (2009).
[Crossref] [PubMed]

Liu, S.

Massi, E.

M. De Robertis, E. Massi, M. L. Poeta, S. Carotti, S. Morini, L. Cecchetelli, E. Signori, and V. M. Fazio, “The AOM/DSS murine model for the study of colon carcinogenesis: from pathways to diagnosis and therapy studies,” J. Carcinog. 10(1), 9 (2011).
[Crossref] [PubMed]

Mathur, S. C.

P. Sharma, R. H. Hawes, A. Bansal, N. Gupta, W. Curvers, A. Rastogi, M. Singh, M. Hall, S. C. Mathur, S. B. Wani, B. Hoffman, S. Gaddam, P. Fockens, and J. J. Bergman, “Standard endoscopy with random biopsies versus narrow band imaging targeted biopsies in Barrett’s oesophagus: a prospective, international, randomised controlled trial,” Gut 62(1), 15–21 (2013).
[Crossref] [PubMed]

Mayer, R. J.

R. J. Mayer, A. P. Venook, and R. L. Schilsky, “Progress against GI cancer during the American Society of Clinical Oncology’s first 50 years,” J. Clin. Oncol. 32(15), 1521–1530 (2014).
[Crossref] [PubMed]

Mooney, J. M.

A. P. Tzannes and J. M. Mooney, “Measurement of the modulation transfer function of infrared cameras,” Opt. Eng. 34(6), 1808 (1995).
[Crossref]

Morini, S.

M. De Robertis, E. Massi, M. L. Poeta, S. Carotti, S. Morini, L. Cecchetelli, E. Signori, and V. M. Fazio, “The AOM/DSS murine model for the study of colon carcinogenesis: from pathways to diagnosis and therapy studies,” J. Carcinog. 10(1), 9 (2011).
[Crossref] [PubMed]

Nguyen, M.

Oldenburgh, M.

R. Kariv, T. P. Plesec, J. R. Goldblum, M. Bronner, M. Oldenburgh, T. W. Rice, and G. W. Falk, “The Seattle protocol does not more reliably predict the detection of cancer at the time of esophagectomy than a less intensive surveillance protocol,” Clin. Gastroenterol. Hepatol. 7(6), 653–658 (2009).
[Crossref] [PubMed]

Pedersen, L.

F. Hvid-Jensen, L. Pedersen, A. M. Drewes, H. T. Sørensen, and P. Funch-Jensen, “Incidence of adenocarcinoma among patients with Barrett’s esophagus,” N. Engl. J. Med. 365(15), 1375–1383 (2011).
[Crossref] [PubMed]

Plesec, T. P.

R. Kariv, T. P. Plesec, J. R. Goldblum, M. Bronner, M. Oldenburgh, T. W. Rice, and G. W. Falk, “The Seattle protocol does not more reliably predict the detection of cancer at the time of esophagectomy than a less intensive surveillance protocol,” Clin. Gastroenterol. Hepatol. 7(6), 653–658 (2009).
[Crossref] [PubMed]

Poeta, M. L.

M. De Robertis, E. Massi, M. L. Poeta, S. Carotti, S. Morini, L. Cecchetelli, E. Signori, and V. M. Fazio, “The AOM/DSS murine model for the study of colon carcinogenesis: from pathways to diagnosis and therapy studies,” J. Carcinog. 10(1), 9 (2011).
[Crossref] [PubMed]

Pohl, H.

H. Pohl, B. Sirovich, and H. G. Welch, “Esophageal adenocarcinoma incidence: are we reaching the peak?” Cancer Epidemiol. Biomarkers Prev. 19(6), 1468–1470 (2010).
[Crossref] [PubMed]

Qin, Y.

Rastogi, A.

P. Sharma, R. H. Hawes, A. Bansal, N. Gupta, W. Curvers, A. Rastogi, M. Singh, M. Hall, S. C. Mathur, S. B. Wani, B. Hoffman, S. Gaddam, P. Fockens, and J. J. Bergman, “Standard endoscopy with random biopsies versus narrow band imaging targeted biopsies in Barrett’s oesophagus: a prospective, international, randomised controlled trial,” Gut 62(1), 15–21 (2013).
[Crossref] [PubMed]

Rice, T. W.

R. Kariv, T. P. Plesec, J. R. Goldblum, M. Bronner, M. Oldenburgh, T. W. Rice, and G. W. Falk, “The Seattle protocol does not more reliably predict the detection of cancer at the time of esophagectomy than a less intensive surveillance protocol,” Clin. Gastroenterol. Hepatol. 7(6), 653–658 (2009).
[Crossref] [PubMed]

Schilsky, R. L.

R. J. Mayer, A. P. Venook, and R. L. Schilsky, “Progress against GI cancer during the American Society of Clinical Oncology’s first 50 years,” J. Clin. Oncol. 32(15), 1521–1530 (2014).
[Crossref] [PubMed]

Shaheen, N. J.

N. J. Shaheen, “Advances in Barrett’s esophagus and esophageal adenocarcinoma,” Gastroenterology 128(6), 1554–1566 (2005).
[Crossref] [PubMed]

Sharma, P.

P. Sharma, R. H. Hawes, A. Bansal, N. Gupta, W. Curvers, A. Rastogi, M. Singh, M. Hall, S. C. Mathur, S. B. Wani, B. Hoffman, S. Gaddam, P. Fockens, and J. J. Bergman, “Standard endoscopy with random biopsies versus narrow band imaging targeted biopsies in Barrett’s oesophagus: a prospective, international, randomised controlled trial,” Gut 62(1), 15–21 (2013).
[Crossref] [PubMed]

Signori, E.

M. De Robertis, E. Massi, M. L. Poeta, S. Carotti, S. Morini, L. Cecchetelli, E. Signori, and V. M. Fazio, “The AOM/DSS murine model for the study of colon carcinogenesis: from pathways to diagnosis and therapy studies,” J. Carcinog. 10(1), 9 (2011).
[Crossref] [PubMed]

Singh, M.

P. Sharma, R. H. Hawes, A. Bansal, N. Gupta, W. Curvers, A. Rastogi, M. Singh, M. Hall, S. C. Mathur, S. B. Wani, B. Hoffman, S. Gaddam, P. Fockens, and J. J. Bergman, “Standard endoscopy with random biopsies versus narrow band imaging targeted biopsies in Barrett’s oesophagus: a prospective, international, randomised controlled trial,” Gut 62(1), 15–21 (2013).
[Crossref] [PubMed]

Sirovich, B.

H. Pohl, B. Sirovich, and H. G. Welch, “Esophageal adenocarcinoma incidence: are we reaching the peak?” Cancer Epidemiol. Biomarkers Prev. 19(6), 1468–1470 (2010).
[Crossref] [PubMed]

Sørensen, H. T.

F. Hvid-Jensen, L. Pedersen, A. M. Drewes, H. T. Sørensen, and P. Funch-Jensen, “Incidence of adenocarcinoma among patients with Barrett’s esophagus,” N. Engl. J. Med. 365(15), 1375–1383 (2011).
[Crossref] [PubMed]

Tkaczyk, T. S.

N. Hagen and T. S. Tkaczyk, “Foveated endoscopic lens,” J. Biomed. Opt. 17(2), 021104 (2012).
[Crossref] [PubMed]

Tzannes, A. P.

A. P. Tzannes and J. M. Mooney, “Measurement of the modulation transfer function of infrared cameras,” Opt. Eng. 34(6), 1808 (1995).
[Crossref]

Venook, A. P.

R. J. Mayer, A. P. Venook, and R. L. Schilsky, “Progress against GI cancer during the American Society of Clinical Oncology’s first 50 years,” J. Clin. Oncol. 32(15), 1521–1530 (2014).
[Crossref] [PubMed]

Wani, S. B.

P. Sharma, R. H. Hawes, A. Bansal, N. Gupta, W. Curvers, A. Rastogi, M. Singh, M. Hall, S. C. Mathur, S. B. Wani, B. Hoffman, S. Gaddam, P. Fockens, and J. J. Bergman, “Standard endoscopy with random biopsies versus narrow band imaging targeted biopsies in Barrett’s oesophagus: a prospective, international, randomised controlled trial,” Gut 62(1), 15–21 (2013).
[Crossref] [PubMed]

Welch, H. G.

H. Pohl, B. Sirovich, and H. G. Welch, “Esophageal adenocarcinoma incidence: are we reaching the peak?” Cancer Epidemiol. Biomarkers Prev. 19(6), 1468–1470 (2010).
[Crossref] [PubMed]

Appl. Opt. (1)

Biomed. Opt. Express (1)

Cancer Epidemiol. Biomarkers Prev. (1)

H. Pohl, B. Sirovich, and H. G. Welch, “Esophageal adenocarcinoma incidence: are we reaching the peak?” Cancer Epidemiol. Biomarkers Prev. 19(6), 1468–1470 (2010).
[Crossref] [PubMed]

Clin. Gastroenterol. Hepatol. (1)

R. Kariv, T. P. Plesec, J. R. Goldblum, M. Bronner, M. Oldenburgh, T. W. Rice, and G. W. Falk, “The Seattle protocol does not more reliably predict the detection of cancer at the time of esophagectomy than a less intensive surveillance protocol,” Clin. Gastroenterol. Hepatol. 7(6), 653–658 (2009).
[Crossref] [PubMed]

Gastroenterology (1)

N. J. Shaheen, “Advances in Barrett’s esophagus and esophageal adenocarcinoma,” Gastroenterology 128(6), 1554–1566 (2005).
[Crossref] [PubMed]

Gut (1)

P. Sharma, R. H. Hawes, A. Bansal, N. Gupta, W. Curvers, A. Rastogi, M. Singh, M. Hall, S. C. Mathur, S. B. Wani, B. Hoffman, S. Gaddam, P. Fockens, and J. J. Bergman, “Standard endoscopy with random biopsies versus narrow band imaging targeted biopsies in Barrett’s oesophagus: a prospective, international, randomised controlled trial,” Gut 62(1), 15–21 (2013).
[Crossref] [PubMed]

J. Biomed. Opt. (1)

N. Hagen and T. S. Tkaczyk, “Foveated endoscopic lens,” J. Biomed. Opt. 17(2), 021104 (2012).
[Crossref] [PubMed]

J. Carcinog. (1)

M. De Robertis, E. Massi, M. L. Poeta, S. Carotti, S. Morini, L. Cecchetelli, E. Signori, and V. M. Fazio, “The AOM/DSS murine model for the study of colon carcinogenesis: from pathways to diagnosis and therapy studies,” J. Carcinog. 10(1), 9 (2011).
[Crossref] [PubMed]

J. Clin. Oncol. (1)

R. J. Mayer, A. P. Venook, and R. L. Schilsky, “Progress against GI cancer during the American Society of Clinical Oncology’s first 50 years,” J. Clin. Oncol. 32(15), 1521–1530 (2014).
[Crossref] [PubMed]

N. Engl. J. Med. (1)

F. Hvid-Jensen, L. Pedersen, A. M. Drewes, H. T. Sørensen, and P. Funch-Jensen, “Incidence of adenocarcinoma among patients with Barrett’s esophagus,” N. Engl. J. Med. 365(15), 1375–1383 (2011).
[Crossref] [PubMed]

Opt. Eng. (1)

A. P. Tzannes and J. M. Mooney, “Measurement of the modulation transfer function of infrared cameras,” Opt. Eng. 34(6), 1808 (1995).
[Crossref]

Surg. Oncol. Clin. N. Am. (1)

G. W. Falk, “Risk factors for esophageal cancer development,” Surg. Oncol. Clin. N. Am. 18(3), 469–485 (2009).
[Crossref] [PubMed]

Other (7)

J. Van der Spiegel, G. Kreider, C. Claeys, I. Debusschere, G. Sandini, P. Dario, F. Fantini, P. Bellutti, and G. Soncini, The Kluwer International Series in Engineering and Computer Science, J. Allen, C. Mead, and M. Ismail, Eds. (Springer, (1989), Chapt. 8, pp. 189–211.

P. L. McCarley, M. A. Massie, and J. P. Curzan, “Infrared Systems and Photoelectronic Technology II,” in Photonic Devices + Applications 6660, R. E. Longshore, A. K. Sood, E. L. Dereniak, and J. P. Hartke, eds. (SPIE, 2007) pp. 666002.

Acgih, TLVs and BEIs (American Conference of Governmental Industrial Hygenists 2010), p. 254.

R. Shukla, “Endoscopic imaging: How far are we from real-time histology?,” WJGE 3(10), 183 Baishideng Publishing Group Co., Ltd. (2011).

R. Haidry and L. Lovat, Medical Imaging in Clinical Practice, O. F. Erondu, ed. (InTech, 2013), Chap. 7.

S. Shimizu, Y. Suematsu, and S. Yahata, “Proceedings of the 1996 IEEE IECON. 22nd International Conference on Industrial Electronics, Control, and Instrumentation,” in IECON-96 3, pp. 1600–1605, IEEE.

K. Wakamiya, T. Senga, K. Isagi, N. Yamamura, Y. Ushio, and N. Kita, “Optomechatronic machine vision,” in Optomechatronic Technologies 2005 6051, K. Sumi, Ed. (SPIE, 2005), p. 605107.

Supplementary Material (1)

» Media 1: MOV (9649 KB)     

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (13)

Fig. 1
Fig. 1 Optical layout of foveated design.
Fig. 2
Fig. 2 The modulation transfer function of the foveated design.
Fig. 3
Fig. 3 NanoCAM 2D drawing of the face cutting to be performed by the diamond turning machines of one surface of one of the lenses in the objective. The central axis of the lens is on the far left at point 0.00, 0.00. The red spherical surface is the optical surface. The pink surface and blue surfaces are covered with an acrylic marker in order to clearly define the clear aperture and reduce unwanted scattering of the light.
Fig. 4
Fig. 4 (A) Image of 1951 resolution target imaged through the objective showing the full field (5 mm) with red box indicating the higher resolution features. (B) Close up of resolution target with red box indicating the highest resolution features. (C) Close up of the highest resolved features, with the ability to resolve group 8, element 4 in red box.
Fig. 5
Fig. 5 (A) Image of resolution target imaged through the objective after translating the target 0.5 mm from the center of the FOV. The red box indicating the higher resolution features, with blue and green boxes highlighting the expected tangential and sagittal resolvable features (group 8, element 3 for both), respectively. (B) Image of target translated 1 mm from the center, resolving group 8, element 2 and group 8, element 1. (C) Image of target translated 2.5 mm from the center, resolving group 7, element 5 and at least group 6, element 2.
Fig. 6
Fig. 6 (A) Image taken with 0.1 NA commercial objective of Cartesian grid pattern of dots of 0.0625 mm with a spacing of 0.125 mm between dots. (B) Image of Cartesian pattern taken through the foveated objective with comparable field to the commercial objective.
Fig. 7
Fig. 7 Comparison of the commercial 0.1 NA objective (left) with the foveated objective (center) and penny for scale (right).
Fig. 8
Fig. 8 (A) Foveated image of resolution target. (B) Corrected foveated image with distortion removed.
Fig. 9
Fig. 9 (A) Close up fluorescence image of normal ex vivo mouse esophageal tissue taken through foveated objective. (B) Close up confocal image of ex vivo mouse esophageal tissue dyed with proflavine taken through the foveated objective.
Fig. 10
Fig. 10 (A) Slightly cropped fluorescence image of normal ex vivo mouse esophageal tissue dyed with proflavine taken through commercial 0.1 NA objective. (B) Same tissue imaged through foveated objective, with high resolution region in the center of the field.
Fig. 11
Fig. 11 Series of confocal images taken through the foveated objective of ex vivo mouse colon 4 weeks after AOM/DSS treatment and dyed with proflavine. The hair in the top left image is the fur near the anus. Normal columnar cells can then be observed in the next images until the bottom right image, where the elongated crypts can be viewed (white arrow). The scale bar is 700 μm. Video of these frames can be found in supplemental information (Media 1).
Fig. 12
Fig. 12 (A) Slightly zoomed in confocal image taken through the foveated objective of ex vivo mouse colon dyed with proflavine 4 weeks after AOM/DSS treatment. Asymmetrical elongated crypts associated with the beginning of neoplasia can be viewed in this image (Point 1). (B) Hematoxylin and eosin (H&E) stained histology section from a mouse colon exhibiting distorted crypts after undergoing AOM/DSS treatment for 4 weeks.
Fig. 13
Fig. 13 Confocal images taken through the foveated objective of ex vivo mouse colon dyed with proflavine ten weeks after AOM/DSS treatment. (A) The normal region (1) abruptly transitions into the large abnormal crypts associated adenocarcinoma (2) as defined by the added white border. (B) Full field mage of the tumor with crypt observed at point 3. (C) H&E stained histology section from a mouse colon segment transitioning from normal pathology (left) into large abnormal crypts (right) after undergoing AOM/DSS treatment for 10 weeks. (D) Standard H&E stained histology cross section from an area similar to the transition shown in C.

Tables (3)

Tables Icon

Table 1 Optical prescription of the foveated objective

Tables Icon

Table 2 Design parameters across the field

Tables Icon

Table 3 Expected fabrication tolerances for lenses

Metrics