Abstract

Loss of articular cartilage surface integrity is considered the earliest sign of osteoarthritis; however, its reliable detection has not been established by clinical routine diagnostics. This study comprehensively assesses a set of 11 algorithm-based 2-D Optical Coherence Tomography roughness parameters and investigates their clinical impact. Histology and manual irregularity quantification of 105 human cartilage samples with variable degeneration served as reference. The majority of parameters revealed a close-to-linear correlation with the entire spectrum of degeneration. Surface integrity should therefore be assessed by a combination of parameters to improve current diagnostic accuracy in the determination of cartilage degeneration.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Polarized reflectance from articular cartilage depends upon superficial zone collagen network microstructure

R. N. Huynh, B. Pesante, G. Nehmetallah, and C. B. Raub
Biomed. Opt. Express 10(11) 5518-5534 (2019)

Nonlinear optical microscopy of early stage (ICRS Grade-I) osteoarthritic human cartilage

Rajesh Kumar, Kirsten M. Grønhaug, Catharina L. Davies, Jon O. Drogset, and Magnus B. Lilledahl
Biomed. Opt. Express 6(5) 1895-1903 (2015)

Optical spectral reflectance of human articular cartilage – relationships with tissue structure, composition and mechanical properties

Jussi Kinnunen, Simo Saarakkala, Markku Hauta-Kasari, Pasi Vahimaa, and Jukka S. Jurvelin
Biomed. Opt. Express 2(5) 1394-1402 (2011)

References

  • View by:
  • |
  • |
  • |

  1. R. W. Moskowitz, “The burden of osteoarthritis: clinical and quality-of-life issues,” Am. J. Manag. Care 15(8Suppl), S223–S229 (2009).
    [PubMed]
  2. K. P. Pritzker, S. Gay, S. A. Jimenez, K. Ostergaard, J. P. Pelletier, P. A. Revell, D. Salter, and W. B. van den Berg, “Osteoarthritis cartilage histopathology: grading and staging,” Osteoarthritis Cartilage 14(1), 13–29 (2006).
    [Crossref] [PubMed]
  3. H. E. Panula, M. M. Hyttinen, J. P. Arokoski, T. K. Långsjö, A. Pelttari, I. Kiviranta, and H. J. Helminen, “Articular cartilage superficial zone collagen birefringence reduced and cartilage thickness increased before surface fibrillation in experimental osteoarthritis,” Ann. Rheum. Dis. 57(4), 237–245 (1998).
    [Crossref] [PubMed]
  4. J. A. Buckwalter and H. J. Mankin, “Articular cartilage: degeneration and osteoarthritis, repair, regeneration, and transplantation,” Instr. Course Lect. 47, 487–504 (1998).
    [PubMed]
  5. A. C. Bay-Jensen, S. Hoegh-Madsen, E. Dam, K. Henriksen, B. C. Sondergaard, P. Pastoureau, P. Qvist, and M. A. Karsdal, “Which elements are involved in reversible and irreversible cartilage degradation in osteoarthritis?” Rheumatol. Int. 30(4), 435–442 (2010).
    [Crossref] [PubMed]
  6. B. J. Moa-Anderson, K. D. Costa, C. T. Hung, and G. A. Ateshian, “Bovine articular cartilage surface topography and roughness in fresh versus frozen tissue samples using atomic force microscopy.,” in Summer Bioengineering Conference., (Key Biscayne, Florida, 2003).
  7. P. A. Smyth, R. E. Rifkin, R. L. Jackson, and R. R. Hanson, “A surface roughness comparison of cartilage in different types of synovial joints,” J. Biomech. Eng. 134(2), 021006 (2012).
    [Crossref] [PubMed]
  8. H. Forster and J. Fisher, “The influence of continuous sliding and subsequent surface wear on the friction of articular cartilage,” Proc. Inst. Mech. Eng. H 213(4), 329–345 (1999).
    [Crossref] [PubMed]
  9. R. D. Bloebaum and K. M. Radley, “Three-dimensional surface analysis of young adult human articular cartilage,” J. Anat. 187(Pt 2), 293–301 (1995).
    [PubMed]
  10. S. Saarakkala, M. S. Laasanen, J. S. Jurvelin, and J. Töyräs, “Quantitative ultrasound imaging detects degenerative changes in articular cartilage surface and subchondral bone,” Phys. Med. Biol. 51(20), 5333–5346 (2006).
    [Crossref] [PubMed]
  11. S. Ghosh, J. Bowen, K. Jiang, D. M. Espino, and D. E. Shepherd, “Investigation of techniques for the measurement of articular cartilage surface roughness,” Micron 44, 179–184 (2013).
    [Crossref] [PubMed]
  12. W. Krampla, M. Roesel, K. Svoboda, A. Nachbagauer, M. Gschwantler, and W. Hruby, “MRI of the knee: how do field strength and radiologist’s experience influence diagnostic accuracy and interobserver correlation in assessing chondral and meniscal lesions and the integrity of the anterior cruciate ligament?” Eur. Radiol. 19(6), 1519–1528 (2009).
    [Crossref] [PubMed]
  13. C. R. Chu, D. Lin, J. L. Geisler, C. T. Chu, F. H. Fu, and Y. Pan, “Arthroscopic microscopy of articular cartilage using optical coherence tomography,” Am. J. Sports Med. 32(3), 699–709 (2004).
    [Crossref] [PubMed]
  14. X. Li, S. Martin, C. Pitris, R. Ghanta, D. L. Stamper, M. Harman, J. G. Fujimoto, and M. E. Brezinski, “High-resolution optical coherence tomographic imaging of osteoarthritic cartilage during open knee surgery,” Arthritis Res. Ther. 7(2), R318–R323 (2005).
    [Crossref] [PubMed]
  15. T. Xie, S. Guo, J. Zhang, Z. Chen, and G. M. Peavy, “Determination of characteristics of degenerative joint disease using optical coherence tomography and polarization sensitive optical coherence tomography,” Lasers Surg. Med. 38(9), 852–865 (2006).
    [Crossref] [PubMed]
  16. T. Virén, Y. P. Huang, S. Saarakkala, H. Pulkkinen, V. Tiitu, A. Linjama, I. Kiviranta, M. J. Lammi, A. Brünott, H. Brommer, R. Van Weeren, P. A. Brama, Y. P. Zheng, J. S. Jurvelin, and J. Töyräs, “Comparison of ultrasound and optical coherence tomography techniques for evaluation of integrity of spontaneously repaired horse cartilage,” J. Med. Eng. Technol. 36(3), 185–192 (2012).
    [Crossref] [PubMed]
  17. S. Saarakkala, S. Z. Wang, Y. P. Huang, and Y. P. Zheng, “Quantification of the optical surface reflection and surface roughness of articular cartilage using optical coherence tomography,” Phys. Med. Biol. 54(22), 6837–6852 (2009).
    [Crossref] [PubMed]
  18. S. Nebelung, U. Marx, N. Brill, D. Arbab, V. Quack, H. Jahr, M. Tingart, B. Zhou, M. Stoffel, R. Schmitt, and B. Rath, “Morphometric grading of osteoarthritis by optical coherence tomography--an ex vivo study,” J. Orthop. Res. 32(10), 1381–1388 (2014).
    [Crossref] [PubMed]
  19. P. Cernohorsky, A. C. Kok, D. M. Bruin, M. J. Brandt, D. J. Faber, G. J. Tuijthof, G. M. Kerkhoffs, S. D. Strackee, and T. G. van Leeuwen, “Comparison of optical coherence tomography and histopathology in quantitative assessment of goat talus articular cartilage,” Acta Orthop. 86(2), 257–263 (2015).
    [PubMed]
  20. Y. P. Huang, S. Saarakkala, J. Toyras, L. K. Wang, J. S. Jurvelin, and Y. P. Zheng, “Effects of optical beam angle on quantitative optical coherence tomography (OCT) in normal and surface degenerated bovine articular cartilage,” Phys. Med. Biol. 56(2), 491–509 (2011).
    [Crossref] [PubMed]
  21. M. Terukina, H. Fujioka, S. Yoshiya, M. Kurosaka, T. Makino, N. Matsui, and J. Tanaka, “Analysis of the thickness and curvature of articular cartilage of the femoral condyle,” Arthroscopy 19(9), 969–973 (2003).
    [Crossref] [PubMed]
  22. U. Marx, R. Schmitt, S. Nebelung, M. Tingart, C. Luring, and B. Rath, “In-vitro observation of cartilage-degeneration progression by Fourier-domain OCT,” in Advanced Biomedical and Clinical Diagnostic Systems, T. Vo-Dinh, ed. (Society of Photo-Optical Instrumentation Engineers -SPIE-, San Francisco, California, United States, 2012), pp. 1–7.
  23. Z. Peng and M. Wang, “Three dimensional surface characterization of human cartilages at a micron and nanometre scale,” Wear 301(1-2), 210–217 (2013).
    [Crossref]
  24. H. J. Mankin, H. Dorfman, L. Lippiello, and A. Zarins, “Biochemical and metabolic abnormalities in articular cartilage from osteo-arthritic human hips. II. Correlation of morphology with biochemical and metabolic data,” J. Bone Joint Surg. Am. 53(3), 523–537 (1971).
    [PubMed]
  25. B. L. Wong, W. C. Bae, J. Chun, K. R. Gratz, M. Lotz, and R. L. Sah, “Biomechanics of cartilage articulation: effects of lubrication and degeneration on shear deformation,” Arthritis Rheum. 58(7), 2065–2074 (2008).
    [Crossref] [PubMed]
  26. R. U. Kleemann, D. Krocker, A. Cedraro, J. Tuischer, and G. N. Duda, “Altered cartilage mechanics and histology in knee osteoarthritis: relation to clinical assessment (ICRS Grade),” Osteoarthritis Cartilage 13(11), 958–963 (2005).
    [Crossref] [PubMed]
  27. J. Meister, R. Franzen, K. Gavenis, M. Zaum, S. Stanzel, N. Gutknecht, and B. Schmidt-Rohlfing, “Ablation of articular cartilage with an erbium:YAG laser: an ex vivo study using porcine models under real conditions-ablation measurement and histological examination,” Lasers Surg. Med. 41(9), 674–685 (2009).
    [Crossref] [PubMed]
  28. G. R. Squires, S. Okouneff, M. Ionescu, and A. R. Poole, “The pathobiology of focal lesion development in aging human articular cartilage and molecular matrix changes characteristic of osteoarthritis,” Arthritis Rheum. 48(5), 1261–1270 (2003).
    [Crossref] [PubMed]
  29. S. Nebelung, N. Brill, U. Marx, V. Quack, M. Tingart, R. Schmitt, B. Rath, and H. Jahr, “Three-dimensional imaging and analysis of human cartilage degeneration using Optical Coherence Tomography,” J. Orthop. Res. 33(5), 651–659 (2015).
    [Crossref] [PubMed]
  30. P. H. Puhakka, J. H. Ylärinne, M. J. Lammi, S. Saarakkala, V. Tiitu, H. Kröger, T. Virén, J. S. Jurvelin, and J. Töyräs, “Dependence of light attenuation and backscattering on collagen concentration and chondrocyte density in agarose scaffolds,” Phys. Med. Biol. 59(21), 6537–6548 (2014).
    [Crossref] [PubMed]
  31. D. M. Bear, M. Szczodry, S. Kramer, C. H. Coyle, P. Smolinski, and C. R. Chu, “Optical coherence tomography detection of subclinical traumatic cartilage injury,” J. Orthop. Trauma 24(9), 577–582 (2010).
    [Crossref] [PubMed]
  32. D. K. Kasaragod, Z. Lu, and S. J. Matcher, “Comparative study of the angle-resolved backscattering properties of collagen fibers in bovine tendon and cartilage,” J. Biomed. Opt. 16(8), 080501 (2011).
    [Crossref] [PubMed]
  33. V. Jaedicke, S. Agcaer, F. E. Robles, M. Steinert, D. Jones, S. Goebel, N. C. Gerhardt, H. Welp, and M. R. Hofmann, “Comparison of different metrics for analysis and visualization in spectroscopic optical coherence tomography,” Biomed. Opt. Express 4(12), 2945–2961 (2013).
    [Crossref] [PubMed]

2015 (2)

P. Cernohorsky, A. C. Kok, D. M. Bruin, M. J. Brandt, D. J. Faber, G. J. Tuijthof, G. M. Kerkhoffs, S. D. Strackee, and T. G. van Leeuwen, “Comparison of optical coherence tomography and histopathology in quantitative assessment of goat talus articular cartilage,” Acta Orthop. 86(2), 257–263 (2015).
[PubMed]

S. Nebelung, N. Brill, U. Marx, V. Quack, M. Tingart, R. Schmitt, B. Rath, and H. Jahr, “Three-dimensional imaging and analysis of human cartilage degeneration using Optical Coherence Tomography,” J. Orthop. Res. 33(5), 651–659 (2015).
[Crossref] [PubMed]

2014 (2)

P. H. Puhakka, J. H. Ylärinne, M. J. Lammi, S. Saarakkala, V. Tiitu, H. Kröger, T. Virén, J. S. Jurvelin, and J. Töyräs, “Dependence of light attenuation and backscattering on collagen concentration and chondrocyte density in agarose scaffolds,” Phys. Med. Biol. 59(21), 6537–6548 (2014).
[Crossref] [PubMed]

S. Nebelung, U. Marx, N. Brill, D. Arbab, V. Quack, H. Jahr, M. Tingart, B. Zhou, M. Stoffel, R. Schmitt, and B. Rath, “Morphometric grading of osteoarthritis by optical coherence tomography--an ex vivo study,” J. Orthop. Res. 32(10), 1381–1388 (2014).
[Crossref] [PubMed]

2013 (3)

V. Jaedicke, S. Agcaer, F. E. Robles, M. Steinert, D. Jones, S. Goebel, N. C. Gerhardt, H. Welp, and M. R. Hofmann, “Comparison of different metrics for analysis and visualization in spectroscopic optical coherence tomography,” Biomed. Opt. Express 4(12), 2945–2961 (2013).
[Crossref] [PubMed]

Z. Peng and M. Wang, “Three dimensional surface characterization of human cartilages at a micron and nanometre scale,” Wear 301(1-2), 210–217 (2013).
[Crossref]

S. Ghosh, J. Bowen, K. Jiang, D. M. Espino, and D. E. Shepherd, “Investigation of techniques for the measurement of articular cartilage surface roughness,” Micron 44, 179–184 (2013).
[Crossref] [PubMed]

2012 (2)

T. Virén, Y. P. Huang, S. Saarakkala, H. Pulkkinen, V. Tiitu, A. Linjama, I. Kiviranta, M. J. Lammi, A. Brünott, H. Brommer, R. Van Weeren, P. A. Brama, Y. P. Zheng, J. S. Jurvelin, and J. Töyräs, “Comparison of ultrasound and optical coherence tomography techniques for evaluation of integrity of spontaneously repaired horse cartilage,” J. Med. Eng. Technol. 36(3), 185–192 (2012).
[Crossref] [PubMed]

P. A. Smyth, R. E. Rifkin, R. L. Jackson, and R. R. Hanson, “A surface roughness comparison of cartilage in different types of synovial joints,” J. Biomech. Eng. 134(2), 021006 (2012).
[Crossref] [PubMed]

2011 (2)

Y. P. Huang, S. Saarakkala, J. Toyras, L. K. Wang, J. S. Jurvelin, and Y. P. Zheng, “Effects of optical beam angle on quantitative optical coherence tomography (OCT) in normal and surface degenerated bovine articular cartilage,” Phys. Med. Biol. 56(2), 491–509 (2011).
[Crossref] [PubMed]

D. K. Kasaragod, Z. Lu, and S. J. Matcher, “Comparative study of the angle-resolved backscattering properties of collagen fibers in bovine tendon and cartilage,” J. Biomed. Opt. 16(8), 080501 (2011).
[Crossref] [PubMed]

2010 (2)

D. M. Bear, M. Szczodry, S. Kramer, C. H. Coyle, P. Smolinski, and C. R. Chu, “Optical coherence tomography detection of subclinical traumatic cartilage injury,” J. Orthop. Trauma 24(9), 577–582 (2010).
[Crossref] [PubMed]

A. C. Bay-Jensen, S. Hoegh-Madsen, E. Dam, K. Henriksen, B. C. Sondergaard, P. Pastoureau, P. Qvist, and M. A. Karsdal, “Which elements are involved in reversible and irreversible cartilage degradation in osteoarthritis?” Rheumatol. Int. 30(4), 435–442 (2010).
[Crossref] [PubMed]

2009 (4)

R. W. Moskowitz, “The burden of osteoarthritis: clinical and quality-of-life issues,” Am. J. Manag. Care 15(8Suppl), S223–S229 (2009).
[PubMed]

S. Saarakkala, S. Z. Wang, Y. P. Huang, and Y. P. Zheng, “Quantification of the optical surface reflection and surface roughness of articular cartilage using optical coherence tomography,” Phys. Med. Biol. 54(22), 6837–6852 (2009).
[Crossref] [PubMed]

W. Krampla, M. Roesel, K. Svoboda, A. Nachbagauer, M. Gschwantler, and W. Hruby, “MRI of the knee: how do field strength and radiologist’s experience influence diagnostic accuracy and interobserver correlation in assessing chondral and meniscal lesions and the integrity of the anterior cruciate ligament?” Eur. Radiol. 19(6), 1519–1528 (2009).
[Crossref] [PubMed]

J. Meister, R. Franzen, K. Gavenis, M. Zaum, S. Stanzel, N. Gutknecht, and B. Schmidt-Rohlfing, “Ablation of articular cartilage with an erbium:YAG laser: an ex vivo study using porcine models under real conditions-ablation measurement and histological examination,” Lasers Surg. Med. 41(9), 674–685 (2009).
[Crossref] [PubMed]

2008 (1)

B. L. Wong, W. C. Bae, J. Chun, K. R. Gratz, M. Lotz, and R. L. Sah, “Biomechanics of cartilage articulation: effects of lubrication and degeneration on shear deformation,” Arthritis Rheum. 58(7), 2065–2074 (2008).
[Crossref] [PubMed]

2006 (3)

T. Xie, S. Guo, J. Zhang, Z. Chen, and G. M. Peavy, “Determination of characteristics of degenerative joint disease using optical coherence tomography and polarization sensitive optical coherence tomography,” Lasers Surg. Med. 38(9), 852–865 (2006).
[Crossref] [PubMed]

K. P. Pritzker, S. Gay, S. A. Jimenez, K. Ostergaard, J. P. Pelletier, P. A. Revell, D. Salter, and W. B. van den Berg, “Osteoarthritis cartilage histopathology: grading and staging,” Osteoarthritis Cartilage 14(1), 13–29 (2006).
[Crossref] [PubMed]

S. Saarakkala, M. S. Laasanen, J. S. Jurvelin, and J. Töyräs, “Quantitative ultrasound imaging detects degenerative changes in articular cartilage surface and subchondral bone,” Phys. Med. Biol. 51(20), 5333–5346 (2006).
[Crossref] [PubMed]

2005 (2)

X. Li, S. Martin, C. Pitris, R. Ghanta, D. L. Stamper, M. Harman, J. G. Fujimoto, and M. E. Brezinski, “High-resolution optical coherence tomographic imaging of osteoarthritic cartilage during open knee surgery,” Arthritis Res. Ther. 7(2), R318–R323 (2005).
[Crossref] [PubMed]

R. U. Kleemann, D. Krocker, A. Cedraro, J. Tuischer, and G. N. Duda, “Altered cartilage mechanics and histology in knee osteoarthritis: relation to clinical assessment (ICRS Grade),” Osteoarthritis Cartilage 13(11), 958–963 (2005).
[Crossref] [PubMed]

2004 (1)

C. R. Chu, D. Lin, J. L. Geisler, C. T. Chu, F. H. Fu, and Y. Pan, “Arthroscopic microscopy of articular cartilage using optical coherence tomography,” Am. J. Sports Med. 32(3), 699–709 (2004).
[Crossref] [PubMed]

2003 (2)

M. Terukina, H. Fujioka, S. Yoshiya, M. Kurosaka, T. Makino, N. Matsui, and J. Tanaka, “Analysis of the thickness and curvature of articular cartilage of the femoral condyle,” Arthroscopy 19(9), 969–973 (2003).
[Crossref] [PubMed]

G. R. Squires, S. Okouneff, M. Ionescu, and A. R. Poole, “The pathobiology of focal lesion development in aging human articular cartilage and molecular matrix changes characteristic of osteoarthritis,” Arthritis Rheum. 48(5), 1261–1270 (2003).
[Crossref] [PubMed]

1999 (1)

H. Forster and J. Fisher, “The influence of continuous sliding and subsequent surface wear on the friction of articular cartilage,” Proc. Inst. Mech. Eng. H 213(4), 329–345 (1999).
[Crossref] [PubMed]

1998 (2)

H. E. Panula, M. M. Hyttinen, J. P. Arokoski, T. K. Långsjö, A. Pelttari, I. Kiviranta, and H. J. Helminen, “Articular cartilage superficial zone collagen birefringence reduced and cartilage thickness increased before surface fibrillation in experimental osteoarthritis,” Ann. Rheum. Dis. 57(4), 237–245 (1998).
[Crossref] [PubMed]

J. A. Buckwalter and H. J. Mankin, “Articular cartilage: degeneration and osteoarthritis, repair, regeneration, and transplantation,” Instr. Course Lect. 47, 487–504 (1998).
[PubMed]

1995 (1)

R. D. Bloebaum and K. M. Radley, “Three-dimensional surface analysis of young adult human articular cartilage,” J. Anat. 187(Pt 2), 293–301 (1995).
[PubMed]

1971 (1)

H. J. Mankin, H. Dorfman, L. Lippiello, and A. Zarins, “Biochemical and metabolic abnormalities in articular cartilage from osteo-arthritic human hips. II. Correlation of morphology with biochemical and metabolic data,” J. Bone Joint Surg. Am. 53(3), 523–537 (1971).
[PubMed]

Agcaer, S.

Arbab, D.

S. Nebelung, U. Marx, N. Brill, D. Arbab, V. Quack, H. Jahr, M. Tingart, B. Zhou, M. Stoffel, R. Schmitt, and B. Rath, “Morphometric grading of osteoarthritis by optical coherence tomography--an ex vivo study,” J. Orthop. Res. 32(10), 1381–1388 (2014).
[Crossref] [PubMed]

Arokoski, J. P.

H. E. Panula, M. M. Hyttinen, J. P. Arokoski, T. K. Långsjö, A. Pelttari, I. Kiviranta, and H. J. Helminen, “Articular cartilage superficial zone collagen birefringence reduced and cartilage thickness increased before surface fibrillation in experimental osteoarthritis,” Ann. Rheum. Dis. 57(4), 237–245 (1998).
[Crossref] [PubMed]

Ateshian, G. A.

B. J. Moa-Anderson, K. D. Costa, C. T. Hung, and G. A. Ateshian, “Bovine articular cartilage surface topography and roughness in fresh versus frozen tissue samples using atomic force microscopy.,” in Summer Bioengineering Conference., (Key Biscayne, Florida, 2003).

Bae, W. C.

B. L. Wong, W. C. Bae, J. Chun, K. R. Gratz, M. Lotz, and R. L. Sah, “Biomechanics of cartilage articulation: effects of lubrication and degeneration on shear deformation,” Arthritis Rheum. 58(7), 2065–2074 (2008).
[Crossref] [PubMed]

Bay-Jensen, A. C.

A. C. Bay-Jensen, S. Hoegh-Madsen, E. Dam, K. Henriksen, B. C. Sondergaard, P. Pastoureau, P. Qvist, and M. A. Karsdal, “Which elements are involved in reversible and irreversible cartilage degradation in osteoarthritis?” Rheumatol. Int. 30(4), 435–442 (2010).
[Crossref] [PubMed]

Bear, D. M.

D. M. Bear, M. Szczodry, S. Kramer, C. H. Coyle, P. Smolinski, and C. R. Chu, “Optical coherence tomography detection of subclinical traumatic cartilage injury,” J. Orthop. Trauma 24(9), 577–582 (2010).
[Crossref] [PubMed]

Bloebaum, R. D.

R. D. Bloebaum and K. M. Radley, “Three-dimensional surface analysis of young adult human articular cartilage,” J. Anat. 187(Pt 2), 293–301 (1995).
[PubMed]

Bowen, J.

S. Ghosh, J. Bowen, K. Jiang, D. M. Espino, and D. E. Shepherd, “Investigation of techniques for the measurement of articular cartilage surface roughness,” Micron 44, 179–184 (2013).
[Crossref] [PubMed]

Brama, P. A.

T. Virén, Y. P. Huang, S. Saarakkala, H. Pulkkinen, V. Tiitu, A. Linjama, I. Kiviranta, M. J. Lammi, A. Brünott, H. Brommer, R. Van Weeren, P. A. Brama, Y. P. Zheng, J. S. Jurvelin, and J. Töyräs, “Comparison of ultrasound and optical coherence tomography techniques for evaluation of integrity of spontaneously repaired horse cartilage,” J. Med. Eng. Technol. 36(3), 185–192 (2012).
[Crossref] [PubMed]

Brandt, M. J.

P. Cernohorsky, A. C. Kok, D. M. Bruin, M. J. Brandt, D. J. Faber, G. J. Tuijthof, G. M. Kerkhoffs, S. D. Strackee, and T. G. van Leeuwen, “Comparison of optical coherence tomography and histopathology in quantitative assessment of goat talus articular cartilage,” Acta Orthop. 86(2), 257–263 (2015).
[PubMed]

Brezinski, M. E.

X. Li, S. Martin, C. Pitris, R. Ghanta, D. L. Stamper, M. Harman, J. G. Fujimoto, and M. E. Brezinski, “High-resolution optical coherence tomographic imaging of osteoarthritic cartilage during open knee surgery,” Arthritis Res. Ther. 7(2), R318–R323 (2005).
[Crossref] [PubMed]

Brill, N.

S. Nebelung, N. Brill, U. Marx, V. Quack, M. Tingart, R. Schmitt, B. Rath, and H. Jahr, “Three-dimensional imaging and analysis of human cartilage degeneration using Optical Coherence Tomography,” J. Orthop. Res. 33(5), 651–659 (2015).
[Crossref] [PubMed]

S. Nebelung, U. Marx, N. Brill, D. Arbab, V. Quack, H. Jahr, M. Tingart, B. Zhou, M. Stoffel, R. Schmitt, and B. Rath, “Morphometric grading of osteoarthritis by optical coherence tomography--an ex vivo study,” J. Orthop. Res. 32(10), 1381–1388 (2014).
[Crossref] [PubMed]

Brommer, H.

T. Virén, Y. P. Huang, S. Saarakkala, H. Pulkkinen, V. Tiitu, A. Linjama, I. Kiviranta, M. J. Lammi, A. Brünott, H. Brommer, R. Van Weeren, P. A. Brama, Y. P. Zheng, J. S. Jurvelin, and J. Töyräs, “Comparison of ultrasound and optical coherence tomography techniques for evaluation of integrity of spontaneously repaired horse cartilage,” J. Med. Eng. Technol. 36(3), 185–192 (2012).
[Crossref] [PubMed]

Bruin, D. M.

P. Cernohorsky, A. C. Kok, D. M. Bruin, M. J. Brandt, D. J. Faber, G. J. Tuijthof, G. M. Kerkhoffs, S. D. Strackee, and T. G. van Leeuwen, “Comparison of optical coherence tomography and histopathology in quantitative assessment of goat talus articular cartilage,” Acta Orthop. 86(2), 257–263 (2015).
[PubMed]

Brünott, A.

T. Virén, Y. P. Huang, S. Saarakkala, H. Pulkkinen, V. Tiitu, A. Linjama, I. Kiviranta, M. J. Lammi, A. Brünott, H. Brommer, R. Van Weeren, P. A. Brama, Y. P. Zheng, J. S. Jurvelin, and J. Töyräs, “Comparison of ultrasound and optical coherence tomography techniques for evaluation of integrity of spontaneously repaired horse cartilage,” J. Med. Eng. Technol. 36(3), 185–192 (2012).
[Crossref] [PubMed]

Buckwalter, J. A.

J. A. Buckwalter and H. J. Mankin, “Articular cartilage: degeneration and osteoarthritis, repair, regeneration, and transplantation,” Instr. Course Lect. 47, 487–504 (1998).
[PubMed]

Cedraro, A.

R. U. Kleemann, D. Krocker, A. Cedraro, J. Tuischer, and G. N. Duda, “Altered cartilage mechanics and histology in knee osteoarthritis: relation to clinical assessment (ICRS Grade),” Osteoarthritis Cartilage 13(11), 958–963 (2005).
[Crossref] [PubMed]

Cernohorsky, P.

P. Cernohorsky, A. C. Kok, D. M. Bruin, M. J. Brandt, D. J. Faber, G. J. Tuijthof, G. M. Kerkhoffs, S. D. Strackee, and T. G. van Leeuwen, “Comparison of optical coherence tomography and histopathology in quantitative assessment of goat talus articular cartilage,” Acta Orthop. 86(2), 257–263 (2015).
[PubMed]

Chen, Z.

T. Xie, S. Guo, J. Zhang, Z. Chen, and G. M. Peavy, “Determination of characteristics of degenerative joint disease using optical coherence tomography and polarization sensitive optical coherence tomography,” Lasers Surg. Med. 38(9), 852–865 (2006).
[Crossref] [PubMed]

Chu, C. R.

D. M. Bear, M. Szczodry, S. Kramer, C. H. Coyle, P. Smolinski, and C. R. Chu, “Optical coherence tomography detection of subclinical traumatic cartilage injury,” J. Orthop. Trauma 24(9), 577–582 (2010).
[Crossref] [PubMed]

C. R. Chu, D. Lin, J. L. Geisler, C. T. Chu, F. H. Fu, and Y. Pan, “Arthroscopic microscopy of articular cartilage using optical coherence tomography,” Am. J. Sports Med. 32(3), 699–709 (2004).
[Crossref] [PubMed]

Chu, C. T.

C. R. Chu, D. Lin, J. L. Geisler, C. T. Chu, F. H. Fu, and Y. Pan, “Arthroscopic microscopy of articular cartilage using optical coherence tomography,” Am. J. Sports Med. 32(3), 699–709 (2004).
[Crossref] [PubMed]

Chun, J.

B. L. Wong, W. C. Bae, J. Chun, K. R. Gratz, M. Lotz, and R. L. Sah, “Biomechanics of cartilage articulation: effects of lubrication and degeneration on shear deformation,” Arthritis Rheum. 58(7), 2065–2074 (2008).
[Crossref] [PubMed]

Costa, K. D.

B. J. Moa-Anderson, K. D. Costa, C. T. Hung, and G. A. Ateshian, “Bovine articular cartilage surface topography and roughness in fresh versus frozen tissue samples using atomic force microscopy.,” in Summer Bioengineering Conference., (Key Biscayne, Florida, 2003).

Coyle, C. H.

D. M. Bear, M. Szczodry, S. Kramer, C. H. Coyle, P. Smolinski, and C. R. Chu, “Optical coherence tomography detection of subclinical traumatic cartilage injury,” J. Orthop. Trauma 24(9), 577–582 (2010).
[Crossref] [PubMed]

Dam, E.

A. C. Bay-Jensen, S. Hoegh-Madsen, E. Dam, K. Henriksen, B. C. Sondergaard, P. Pastoureau, P. Qvist, and M. A. Karsdal, “Which elements are involved in reversible and irreversible cartilage degradation in osteoarthritis?” Rheumatol. Int. 30(4), 435–442 (2010).
[Crossref] [PubMed]

Dorfman, H.

H. J. Mankin, H. Dorfman, L. Lippiello, and A. Zarins, “Biochemical and metabolic abnormalities in articular cartilage from osteo-arthritic human hips. II. Correlation of morphology with biochemical and metabolic data,” J. Bone Joint Surg. Am. 53(3), 523–537 (1971).
[PubMed]

Duda, G. N.

R. U. Kleemann, D. Krocker, A. Cedraro, J. Tuischer, and G. N. Duda, “Altered cartilage mechanics and histology in knee osteoarthritis: relation to clinical assessment (ICRS Grade),” Osteoarthritis Cartilage 13(11), 958–963 (2005).
[Crossref] [PubMed]

Espino, D. M.

S. Ghosh, J. Bowen, K. Jiang, D. M. Espino, and D. E. Shepherd, “Investigation of techniques for the measurement of articular cartilage surface roughness,” Micron 44, 179–184 (2013).
[Crossref] [PubMed]

Faber, D. J.

P. Cernohorsky, A. C. Kok, D. M. Bruin, M. J. Brandt, D. J. Faber, G. J. Tuijthof, G. M. Kerkhoffs, S. D. Strackee, and T. G. van Leeuwen, “Comparison of optical coherence tomography and histopathology in quantitative assessment of goat talus articular cartilage,” Acta Orthop. 86(2), 257–263 (2015).
[PubMed]

Fisher, J.

H. Forster and J. Fisher, “The influence of continuous sliding and subsequent surface wear on the friction of articular cartilage,” Proc. Inst. Mech. Eng. H 213(4), 329–345 (1999).
[Crossref] [PubMed]

Forster, H.

H. Forster and J. Fisher, “The influence of continuous sliding and subsequent surface wear on the friction of articular cartilage,” Proc. Inst. Mech. Eng. H 213(4), 329–345 (1999).
[Crossref] [PubMed]

Franzen, R.

J. Meister, R. Franzen, K. Gavenis, M. Zaum, S. Stanzel, N. Gutknecht, and B. Schmidt-Rohlfing, “Ablation of articular cartilage with an erbium:YAG laser: an ex vivo study using porcine models under real conditions-ablation measurement and histological examination,” Lasers Surg. Med. 41(9), 674–685 (2009).
[Crossref] [PubMed]

Fu, F. H.

C. R. Chu, D. Lin, J. L. Geisler, C. T. Chu, F. H. Fu, and Y. Pan, “Arthroscopic microscopy of articular cartilage using optical coherence tomography,” Am. J. Sports Med. 32(3), 699–709 (2004).
[Crossref] [PubMed]

Fujimoto, J. G.

X. Li, S. Martin, C. Pitris, R. Ghanta, D. L. Stamper, M. Harman, J. G. Fujimoto, and M. E. Brezinski, “High-resolution optical coherence tomographic imaging of osteoarthritic cartilage during open knee surgery,” Arthritis Res. Ther. 7(2), R318–R323 (2005).
[Crossref] [PubMed]

Fujioka, H.

M. Terukina, H. Fujioka, S. Yoshiya, M. Kurosaka, T. Makino, N. Matsui, and J. Tanaka, “Analysis of the thickness and curvature of articular cartilage of the femoral condyle,” Arthroscopy 19(9), 969–973 (2003).
[Crossref] [PubMed]

Gavenis, K.

J. Meister, R. Franzen, K. Gavenis, M. Zaum, S. Stanzel, N. Gutknecht, and B. Schmidt-Rohlfing, “Ablation of articular cartilage with an erbium:YAG laser: an ex vivo study using porcine models under real conditions-ablation measurement and histological examination,” Lasers Surg. Med. 41(9), 674–685 (2009).
[Crossref] [PubMed]

Gay, S.

K. P. Pritzker, S. Gay, S. A. Jimenez, K. Ostergaard, J. P. Pelletier, P. A. Revell, D. Salter, and W. B. van den Berg, “Osteoarthritis cartilage histopathology: grading and staging,” Osteoarthritis Cartilage 14(1), 13–29 (2006).
[Crossref] [PubMed]

Geisler, J. L.

C. R. Chu, D. Lin, J. L. Geisler, C. T. Chu, F. H. Fu, and Y. Pan, “Arthroscopic microscopy of articular cartilage using optical coherence tomography,” Am. J. Sports Med. 32(3), 699–709 (2004).
[Crossref] [PubMed]

Gerhardt, N. C.

Ghanta, R.

X. Li, S. Martin, C. Pitris, R. Ghanta, D. L. Stamper, M. Harman, J. G. Fujimoto, and M. E. Brezinski, “High-resolution optical coherence tomographic imaging of osteoarthritic cartilage during open knee surgery,” Arthritis Res. Ther. 7(2), R318–R323 (2005).
[Crossref] [PubMed]

Ghosh, S.

S. Ghosh, J. Bowen, K. Jiang, D. M. Espino, and D. E. Shepherd, “Investigation of techniques for the measurement of articular cartilage surface roughness,” Micron 44, 179–184 (2013).
[Crossref] [PubMed]

Goebel, S.

Gratz, K. R.

B. L. Wong, W. C. Bae, J. Chun, K. R. Gratz, M. Lotz, and R. L. Sah, “Biomechanics of cartilage articulation: effects of lubrication and degeneration on shear deformation,” Arthritis Rheum. 58(7), 2065–2074 (2008).
[Crossref] [PubMed]

Gschwantler, M.

W. Krampla, M. Roesel, K. Svoboda, A. Nachbagauer, M. Gschwantler, and W. Hruby, “MRI of the knee: how do field strength and radiologist’s experience influence diagnostic accuracy and interobserver correlation in assessing chondral and meniscal lesions and the integrity of the anterior cruciate ligament?” Eur. Radiol. 19(6), 1519–1528 (2009).
[Crossref] [PubMed]

Guo, S.

T. Xie, S. Guo, J. Zhang, Z. Chen, and G. M. Peavy, “Determination of characteristics of degenerative joint disease using optical coherence tomography and polarization sensitive optical coherence tomography,” Lasers Surg. Med. 38(9), 852–865 (2006).
[Crossref] [PubMed]

Gutknecht, N.

J. Meister, R. Franzen, K. Gavenis, M. Zaum, S. Stanzel, N. Gutknecht, and B. Schmidt-Rohlfing, “Ablation of articular cartilage with an erbium:YAG laser: an ex vivo study using porcine models under real conditions-ablation measurement and histological examination,” Lasers Surg. Med. 41(9), 674–685 (2009).
[Crossref] [PubMed]

Hanson, R. R.

P. A. Smyth, R. E. Rifkin, R. L. Jackson, and R. R. Hanson, “A surface roughness comparison of cartilage in different types of synovial joints,” J. Biomech. Eng. 134(2), 021006 (2012).
[Crossref] [PubMed]

Harman, M.

X. Li, S. Martin, C. Pitris, R. Ghanta, D. L. Stamper, M. Harman, J. G. Fujimoto, and M. E. Brezinski, “High-resolution optical coherence tomographic imaging of osteoarthritic cartilage during open knee surgery,” Arthritis Res. Ther. 7(2), R318–R323 (2005).
[Crossref] [PubMed]

Helminen, H. J.

H. E. Panula, M. M. Hyttinen, J. P. Arokoski, T. K. Långsjö, A. Pelttari, I. Kiviranta, and H. J. Helminen, “Articular cartilage superficial zone collagen birefringence reduced and cartilage thickness increased before surface fibrillation in experimental osteoarthritis,” Ann. Rheum. Dis. 57(4), 237–245 (1998).
[Crossref] [PubMed]

Henriksen, K.

A. C. Bay-Jensen, S. Hoegh-Madsen, E. Dam, K. Henriksen, B. C. Sondergaard, P. Pastoureau, P. Qvist, and M. A. Karsdal, “Which elements are involved in reversible and irreversible cartilage degradation in osteoarthritis?” Rheumatol. Int. 30(4), 435–442 (2010).
[Crossref] [PubMed]

Hoegh-Madsen, S.

A. C. Bay-Jensen, S. Hoegh-Madsen, E. Dam, K. Henriksen, B. C. Sondergaard, P. Pastoureau, P. Qvist, and M. A. Karsdal, “Which elements are involved in reversible and irreversible cartilage degradation in osteoarthritis?” Rheumatol. Int. 30(4), 435–442 (2010).
[Crossref] [PubMed]

Hofmann, M. R.

Hruby, W.

W. Krampla, M. Roesel, K. Svoboda, A. Nachbagauer, M. Gschwantler, and W. Hruby, “MRI of the knee: how do field strength and radiologist’s experience influence diagnostic accuracy and interobserver correlation in assessing chondral and meniscal lesions and the integrity of the anterior cruciate ligament?” Eur. Radiol. 19(6), 1519–1528 (2009).
[Crossref] [PubMed]

Huang, Y. P.

T. Virén, Y. P. Huang, S. Saarakkala, H. Pulkkinen, V. Tiitu, A. Linjama, I. Kiviranta, M. J. Lammi, A. Brünott, H. Brommer, R. Van Weeren, P. A. Brama, Y. P. Zheng, J. S. Jurvelin, and J. Töyräs, “Comparison of ultrasound and optical coherence tomography techniques for evaluation of integrity of spontaneously repaired horse cartilage,” J. Med. Eng. Technol. 36(3), 185–192 (2012).
[Crossref] [PubMed]

Y. P. Huang, S. Saarakkala, J. Toyras, L. K. Wang, J. S. Jurvelin, and Y. P. Zheng, “Effects of optical beam angle on quantitative optical coherence tomography (OCT) in normal and surface degenerated bovine articular cartilage,” Phys. Med. Biol. 56(2), 491–509 (2011).
[Crossref] [PubMed]

S. Saarakkala, S. Z. Wang, Y. P. Huang, and Y. P. Zheng, “Quantification of the optical surface reflection and surface roughness of articular cartilage using optical coherence tomography,” Phys. Med. Biol. 54(22), 6837–6852 (2009).
[Crossref] [PubMed]

Hung, C. T.

B. J. Moa-Anderson, K. D. Costa, C. T. Hung, and G. A. Ateshian, “Bovine articular cartilage surface topography and roughness in fresh versus frozen tissue samples using atomic force microscopy.,” in Summer Bioengineering Conference., (Key Biscayne, Florida, 2003).

Hyttinen, M. M.

H. E. Panula, M. M. Hyttinen, J. P. Arokoski, T. K. Långsjö, A. Pelttari, I. Kiviranta, and H. J. Helminen, “Articular cartilage superficial zone collagen birefringence reduced and cartilage thickness increased before surface fibrillation in experimental osteoarthritis,” Ann. Rheum. Dis. 57(4), 237–245 (1998).
[Crossref] [PubMed]

Ionescu, M.

G. R. Squires, S. Okouneff, M. Ionescu, and A. R. Poole, “The pathobiology of focal lesion development in aging human articular cartilage and molecular matrix changes characteristic of osteoarthritis,” Arthritis Rheum. 48(5), 1261–1270 (2003).
[Crossref] [PubMed]

Jackson, R. L.

P. A. Smyth, R. E. Rifkin, R. L. Jackson, and R. R. Hanson, “A surface roughness comparison of cartilage in different types of synovial joints,” J. Biomech. Eng. 134(2), 021006 (2012).
[Crossref] [PubMed]

Jaedicke, V.

Jahr, H.

S. Nebelung, N. Brill, U. Marx, V. Quack, M. Tingart, R. Schmitt, B. Rath, and H. Jahr, “Three-dimensional imaging and analysis of human cartilage degeneration using Optical Coherence Tomography,” J. Orthop. Res. 33(5), 651–659 (2015).
[Crossref] [PubMed]

S. Nebelung, U. Marx, N. Brill, D. Arbab, V. Quack, H. Jahr, M. Tingart, B. Zhou, M. Stoffel, R. Schmitt, and B. Rath, “Morphometric grading of osteoarthritis by optical coherence tomography--an ex vivo study,” J. Orthop. Res. 32(10), 1381–1388 (2014).
[Crossref] [PubMed]

Jiang, K.

S. Ghosh, J. Bowen, K. Jiang, D. M. Espino, and D. E. Shepherd, “Investigation of techniques for the measurement of articular cartilage surface roughness,” Micron 44, 179–184 (2013).
[Crossref] [PubMed]

Jimenez, S. A.

K. P. Pritzker, S. Gay, S. A. Jimenez, K. Ostergaard, J. P. Pelletier, P. A. Revell, D. Salter, and W. B. van den Berg, “Osteoarthritis cartilage histopathology: grading and staging,” Osteoarthritis Cartilage 14(1), 13–29 (2006).
[Crossref] [PubMed]

Jones, D.

Jurvelin, J. S.

P. H. Puhakka, J. H. Ylärinne, M. J. Lammi, S. Saarakkala, V. Tiitu, H. Kröger, T. Virén, J. S. Jurvelin, and J. Töyräs, “Dependence of light attenuation and backscattering on collagen concentration and chondrocyte density in agarose scaffolds,” Phys. Med. Biol. 59(21), 6537–6548 (2014).
[Crossref] [PubMed]

T. Virén, Y. P. Huang, S. Saarakkala, H. Pulkkinen, V. Tiitu, A. Linjama, I. Kiviranta, M. J. Lammi, A. Brünott, H. Brommer, R. Van Weeren, P. A. Brama, Y. P. Zheng, J. S. Jurvelin, and J. Töyräs, “Comparison of ultrasound and optical coherence tomography techniques for evaluation of integrity of spontaneously repaired horse cartilage,” J. Med. Eng. Technol. 36(3), 185–192 (2012).
[Crossref] [PubMed]

Y. P. Huang, S. Saarakkala, J. Toyras, L. K. Wang, J. S. Jurvelin, and Y. P. Zheng, “Effects of optical beam angle on quantitative optical coherence tomography (OCT) in normal and surface degenerated bovine articular cartilage,” Phys. Med. Biol. 56(2), 491–509 (2011).
[Crossref] [PubMed]

S. Saarakkala, M. S. Laasanen, J. S. Jurvelin, and J. Töyräs, “Quantitative ultrasound imaging detects degenerative changes in articular cartilage surface and subchondral bone,” Phys. Med. Biol. 51(20), 5333–5346 (2006).
[Crossref] [PubMed]

Karsdal, M. A.

A. C. Bay-Jensen, S. Hoegh-Madsen, E. Dam, K. Henriksen, B. C. Sondergaard, P. Pastoureau, P. Qvist, and M. A. Karsdal, “Which elements are involved in reversible and irreversible cartilage degradation in osteoarthritis?” Rheumatol. Int. 30(4), 435–442 (2010).
[Crossref] [PubMed]

Kasaragod, D. K.

D. K. Kasaragod, Z. Lu, and S. J. Matcher, “Comparative study of the angle-resolved backscattering properties of collagen fibers in bovine tendon and cartilage,” J. Biomed. Opt. 16(8), 080501 (2011).
[Crossref] [PubMed]

Kerkhoffs, G. M.

P. Cernohorsky, A. C. Kok, D. M. Bruin, M. J. Brandt, D. J. Faber, G. J. Tuijthof, G. M. Kerkhoffs, S. D. Strackee, and T. G. van Leeuwen, “Comparison of optical coherence tomography and histopathology in quantitative assessment of goat talus articular cartilage,” Acta Orthop. 86(2), 257–263 (2015).
[PubMed]

Kiviranta, I.

T. Virén, Y. P. Huang, S. Saarakkala, H. Pulkkinen, V. Tiitu, A. Linjama, I. Kiviranta, M. J. Lammi, A. Brünott, H. Brommer, R. Van Weeren, P. A. Brama, Y. P. Zheng, J. S. Jurvelin, and J. Töyräs, “Comparison of ultrasound and optical coherence tomography techniques for evaluation of integrity of spontaneously repaired horse cartilage,” J. Med. Eng. Technol. 36(3), 185–192 (2012).
[Crossref] [PubMed]

H. E. Panula, M. M. Hyttinen, J. P. Arokoski, T. K. Långsjö, A. Pelttari, I. Kiviranta, and H. J. Helminen, “Articular cartilage superficial zone collagen birefringence reduced and cartilage thickness increased before surface fibrillation in experimental osteoarthritis,” Ann. Rheum. Dis. 57(4), 237–245 (1998).
[Crossref] [PubMed]

Kleemann, R. U.

R. U. Kleemann, D. Krocker, A. Cedraro, J. Tuischer, and G. N. Duda, “Altered cartilage mechanics and histology in knee osteoarthritis: relation to clinical assessment (ICRS Grade),” Osteoarthritis Cartilage 13(11), 958–963 (2005).
[Crossref] [PubMed]

Kok, A. C.

P. Cernohorsky, A. C. Kok, D. M. Bruin, M. J. Brandt, D. J. Faber, G. J. Tuijthof, G. M. Kerkhoffs, S. D. Strackee, and T. G. van Leeuwen, “Comparison of optical coherence tomography and histopathology in quantitative assessment of goat talus articular cartilage,” Acta Orthop. 86(2), 257–263 (2015).
[PubMed]

Kramer, S.

D. M. Bear, M. Szczodry, S. Kramer, C. H. Coyle, P. Smolinski, and C. R. Chu, “Optical coherence tomography detection of subclinical traumatic cartilage injury,” J. Orthop. Trauma 24(9), 577–582 (2010).
[Crossref] [PubMed]

Krampla, W.

W. Krampla, M. Roesel, K. Svoboda, A. Nachbagauer, M. Gschwantler, and W. Hruby, “MRI of the knee: how do field strength and radiologist’s experience influence diagnostic accuracy and interobserver correlation in assessing chondral and meniscal lesions and the integrity of the anterior cruciate ligament?” Eur. Radiol. 19(6), 1519–1528 (2009).
[Crossref] [PubMed]

Krocker, D.

R. U. Kleemann, D. Krocker, A. Cedraro, J. Tuischer, and G. N. Duda, “Altered cartilage mechanics and histology in knee osteoarthritis: relation to clinical assessment (ICRS Grade),” Osteoarthritis Cartilage 13(11), 958–963 (2005).
[Crossref] [PubMed]

Kröger, H.

P. H. Puhakka, J. H. Ylärinne, M. J. Lammi, S. Saarakkala, V. Tiitu, H. Kröger, T. Virén, J. S. Jurvelin, and J. Töyräs, “Dependence of light attenuation and backscattering on collagen concentration and chondrocyte density in agarose scaffolds,” Phys. Med. Biol. 59(21), 6537–6548 (2014).
[Crossref] [PubMed]

Kurosaka, M.

M. Terukina, H. Fujioka, S. Yoshiya, M. Kurosaka, T. Makino, N. Matsui, and J. Tanaka, “Analysis of the thickness and curvature of articular cartilage of the femoral condyle,” Arthroscopy 19(9), 969–973 (2003).
[Crossref] [PubMed]

Laasanen, M. S.

S. Saarakkala, M. S. Laasanen, J. S. Jurvelin, and J. Töyräs, “Quantitative ultrasound imaging detects degenerative changes in articular cartilage surface and subchondral bone,” Phys. Med. Biol. 51(20), 5333–5346 (2006).
[Crossref] [PubMed]

Lammi, M. J.

P. H. Puhakka, J. H. Ylärinne, M. J. Lammi, S. Saarakkala, V. Tiitu, H. Kröger, T. Virén, J. S. Jurvelin, and J. Töyräs, “Dependence of light attenuation and backscattering on collagen concentration and chondrocyte density in agarose scaffolds,” Phys. Med. Biol. 59(21), 6537–6548 (2014).
[Crossref] [PubMed]

T. Virén, Y. P. Huang, S. Saarakkala, H. Pulkkinen, V. Tiitu, A. Linjama, I. Kiviranta, M. J. Lammi, A. Brünott, H. Brommer, R. Van Weeren, P. A. Brama, Y. P. Zheng, J. S. Jurvelin, and J. Töyräs, “Comparison of ultrasound and optical coherence tomography techniques for evaluation of integrity of spontaneously repaired horse cartilage,” J. Med. Eng. Technol. 36(3), 185–192 (2012).
[Crossref] [PubMed]

Långsjö, T. K.

H. E. Panula, M. M. Hyttinen, J. P. Arokoski, T. K. Långsjö, A. Pelttari, I. Kiviranta, and H. J. Helminen, “Articular cartilage superficial zone collagen birefringence reduced and cartilage thickness increased before surface fibrillation in experimental osteoarthritis,” Ann. Rheum. Dis. 57(4), 237–245 (1998).
[Crossref] [PubMed]

Li, X.

X. Li, S. Martin, C. Pitris, R. Ghanta, D. L. Stamper, M. Harman, J. G. Fujimoto, and M. E. Brezinski, “High-resolution optical coherence tomographic imaging of osteoarthritic cartilage during open knee surgery,” Arthritis Res. Ther. 7(2), R318–R323 (2005).
[Crossref] [PubMed]

Lin, D.

C. R. Chu, D. Lin, J. L. Geisler, C. T. Chu, F. H. Fu, and Y. Pan, “Arthroscopic microscopy of articular cartilage using optical coherence tomography,” Am. J. Sports Med. 32(3), 699–709 (2004).
[Crossref] [PubMed]

Linjama, A.

T. Virén, Y. P. Huang, S. Saarakkala, H. Pulkkinen, V. Tiitu, A. Linjama, I. Kiviranta, M. J. Lammi, A. Brünott, H. Brommer, R. Van Weeren, P. A. Brama, Y. P. Zheng, J. S. Jurvelin, and J. Töyräs, “Comparison of ultrasound and optical coherence tomography techniques for evaluation of integrity of spontaneously repaired horse cartilage,” J. Med. Eng. Technol. 36(3), 185–192 (2012).
[Crossref] [PubMed]

Lippiello, L.

H. J. Mankin, H. Dorfman, L. Lippiello, and A. Zarins, “Biochemical and metabolic abnormalities in articular cartilage from osteo-arthritic human hips. II. Correlation of morphology with biochemical and metabolic data,” J. Bone Joint Surg. Am. 53(3), 523–537 (1971).
[PubMed]

Lotz, M.

B. L. Wong, W. C. Bae, J. Chun, K. R. Gratz, M. Lotz, and R. L. Sah, “Biomechanics of cartilage articulation: effects of lubrication and degeneration on shear deformation,” Arthritis Rheum. 58(7), 2065–2074 (2008).
[Crossref] [PubMed]

Lu, Z.

D. K. Kasaragod, Z. Lu, and S. J. Matcher, “Comparative study of the angle-resolved backscattering properties of collagen fibers in bovine tendon and cartilage,” J. Biomed. Opt. 16(8), 080501 (2011).
[Crossref] [PubMed]

Makino, T.

M. Terukina, H. Fujioka, S. Yoshiya, M. Kurosaka, T. Makino, N. Matsui, and J. Tanaka, “Analysis of the thickness and curvature of articular cartilage of the femoral condyle,” Arthroscopy 19(9), 969–973 (2003).
[Crossref] [PubMed]

Mankin, H. J.

J. A. Buckwalter and H. J. Mankin, “Articular cartilage: degeneration and osteoarthritis, repair, regeneration, and transplantation,” Instr. Course Lect. 47, 487–504 (1998).
[PubMed]

H. J. Mankin, H. Dorfman, L. Lippiello, and A. Zarins, “Biochemical and metabolic abnormalities in articular cartilage from osteo-arthritic human hips. II. Correlation of morphology with biochemical and metabolic data,” J. Bone Joint Surg. Am. 53(3), 523–537 (1971).
[PubMed]

Martin, S.

X. Li, S. Martin, C. Pitris, R. Ghanta, D. L. Stamper, M. Harman, J. G. Fujimoto, and M. E. Brezinski, “High-resolution optical coherence tomographic imaging of osteoarthritic cartilage during open knee surgery,” Arthritis Res. Ther. 7(2), R318–R323 (2005).
[Crossref] [PubMed]

Marx, U.

S. Nebelung, N. Brill, U. Marx, V. Quack, M. Tingart, R. Schmitt, B. Rath, and H. Jahr, “Three-dimensional imaging and analysis of human cartilage degeneration using Optical Coherence Tomography,” J. Orthop. Res. 33(5), 651–659 (2015).
[Crossref] [PubMed]

S. Nebelung, U. Marx, N. Brill, D. Arbab, V. Quack, H. Jahr, M. Tingart, B. Zhou, M. Stoffel, R. Schmitt, and B. Rath, “Morphometric grading of osteoarthritis by optical coherence tomography--an ex vivo study,” J. Orthop. Res. 32(10), 1381–1388 (2014).
[Crossref] [PubMed]

Matcher, S. J.

D. K. Kasaragod, Z. Lu, and S. J. Matcher, “Comparative study of the angle-resolved backscattering properties of collagen fibers in bovine tendon and cartilage,” J. Biomed. Opt. 16(8), 080501 (2011).
[Crossref] [PubMed]

Matsui, N.

M. Terukina, H. Fujioka, S. Yoshiya, M. Kurosaka, T. Makino, N. Matsui, and J. Tanaka, “Analysis of the thickness and curvature of articular cartilage of the femoral condyle,” Arthroscopy 19(9), 969–973 (2003).
[Crossref] [PubMed]

Meister, J.

J. Meister, R. Franzen, K. Gavenis, M. Zaum, S. Stanzel, N. Gutknecht, and B. Schmidt-Rohlfing, “Ablation of articular cartilage with an erbium:YAG laser: an ex vivo study using porcine models under real conditions-ablation measurement and histological examination,” Lasers Surg. Med. 41(9), 674–685 (2009).
[Crossref] [PubMed]

Moa-Anderson, B. J.

B. J. Moa-Anderson, K. D. Costa, C. T. Hung, and G. A. Ateshian, “Bovine articular cartilage surface topography and roughness in fresh versus frozen tissue samples using atomic force microscopy.,” in Summer Bioengineering Conference., (Key Biscayne, Florida, 2003).

Moskowitz, R. W.

R. W. Moskowitz, “The burden of osteoarthritis: clinical and quality-of-life issues,” Am. J. Manag. Care 15(8Suppl), S223–S229 (2009).
[PubMed]

Nachbagauer, A.

W. Krampla, M. Roesel, K. Svoboda, A. Nachbagauer, M. Gschwantler, and W. Hruby, “MRI of the knee: how do field strength and radiologist’s experience influence diagnostic accuracy and interobserver correlation in assessing chondral and meniscal lesions and the integrity of the anterior cruciate ligament?” Eur. Radiol. 19(6), 1519–1528 (2009).
[Crossref] [PubMed]

Nebelung, S.

S. Nebelung, N. Brill, U. Marx, V. Quack, M. Tingart, R. Schmitt, B. Rath, and H. Jahr, “Three-dimensional imaging and analysis of human cartilage degeneration using Optical Coherence Tomography,” J. Orthop. Res. 33(5), 651–659 (2015).
[Crossref] [PubMed]

S. Nebelung, U. Marx, N. Brill, D. Arbab, V. Quack, H. Jahr, M. Tingart, B. Zhou, M. Stoffel, R. Schmitt, and B. Rath, “Morphometric grading of osteoarthritis by optical coherence tomography--an ex vivo study,” J. Orthop. Res. 32(10), 1381–1388 (2014).
[Crossref] [PubMed]

Okouneff, S.

G. R. Squires, S. Okouneff, M. Ionescu, and A. R. Poole, “The pathobiology of focal lesion development in aging human articular cartilage and molecular matrix changes characteristic of osteoarthritis,” Arthritis Rheum. 48(5), 1261–1270 (2003).
[Crossref] [PubMed]

Ostergaard, K.

K. P. Pritzker, S. Gay, S. A. Jimenez, K. Ostergaard, J. P. Pelletier, P. A. Revell, D. Salter, and W. B. van den Berg, “Osteoarthritis cartilage histopathology: grading and staging,” Osteoarthritis Cartilage 14(1), 13–29 (2006).
[Crossref] [PubMed]

Pan, Y.

C. R. Chu, D. Lin, J. L. Geisler, C. T. Chu, F. H. Fu, and Y. Pan, “Arthroscopic microscopy of articular cartilage using optical coherence tomography,” Am. J. Sports Med. 32(3), 699–709 (2004).
[Crossref] [PubMed]

Panula, H. E.

H. E. Panula, M. M. Hyttinen, J. P. Arokoski, T. K. Långsjö, A. Pelttari, I. Kiviranta, and H. J. Helminen, “Articular cartilage superficial zone collagen birefringence reduced and cartilage thickness increased before surface fibrillation in experimental osteoarthritis,” Ann. Rheum. Dis. 57(4), 237–245 (1998).
[Crossref] [PubMed]

Pastoureau, P.

A. C. Bay-Jensen, S. Hoegh-Madsen, E. Dam, K. Henriksen, B. C. Sondergaard, P. Pastoureau, P. Qvist, and M. A. Karsdal, “Which elements are involved in reversible and irreversible cartilage degradation in osteoarthritis?” Rheumatol. Int. 30(4), 435–442 (2010).
[Crossref] [PubMed]

Peavy, G. M.

T. Xie, S. Guo, J. Zhang, Z. Chen, and G. M. Peavy, “Determination of characteristics of degenerative joint disease using optical coherence tomography and polarization sensitive optical coherence tomography,” Lasers Surg. Med. 38(9), 852–865 (2006).
[Crossref] [PubMed]

Pelletier, J. P.

K. P. Pritzker, S. Gay, S. A. Jimenez, K. Ostergaard, J. P. Pelletier, P. A. Revell, D. Salter, and W. B. van den Berg, “Osteoarthritis cartilage histopathology: grading and staging,” Osteoarthritis Cartilage 14(1), 13–29 (2006).
[Crossref] [PubMed]

Pelttari, A.

H. E. Panula, M. M. Hyttinen, J. P. Arokoski, T. K. Långsjö, A. Pelttari, I. Kiviranta, and H. J. Helminen, “Articular cartilage superficial zone collagen birefringence reduced and cartilage thickness increased before surface fibrillation in experimental osteoarthritis,” Ann. Rheum. Dis. 57(4), 237–245 (1998).
[Crossref] [PubMed]

Peng, Z.

Z. Peng and M. Wang, “Three dimensional surface characterization of human cartilages at a micron and nanometre scale,” Wear 301(1-2), 210–217 (2013).
[Crossref]

Pitris, C.

X. Li, S. Martin, C. Pitris, R. Ghanta, D. L. Stamper, M. Harman, J. G. Fujimoto, and M. E. Brezinski, “High-resolution optical coherence tomographic imaging of osteoarthritic cartilage during open knee surgery,” Arthritis Res. Ther. 7(2), R318–R323 (2005).
[Crossref] [PubMed]

Poole, A. R.

G. R. Squires, S. Okouneff, M. Ionescu, and A. R. Poole, “The pathobiology of focal lesion development in aging human articular cartilage and molecular matrix changes characteristic of osteoarthritis,” Arthritis Rheum. 48(5), 1261–1270 (2003).
[Crossref] [PubMed]

Pritzker, K. P.

K. P. Pritzker, S. Gay, S. A. Jimenez, K. Ostergaard, J. P. Pelletier, P. A. Revell, D. Salter, and W. B. van den Berg, “Osteoarthritis cartilage histopathology: grading and staging,” Osteoarthritis Cartilage 14(1), 13–29 (2006).
[Crossref] [PubMed]

Puhakka, P. H.

P. H. Puhakka, J. H. Ylärinne, M. J. Lammi, S. Saarakkala, V. Tiitu, H. Kröger, T. Virén, J. S. Jurvelin, and J. Töyräs, “Dependence of light attenuation and backscattering on collagen concentration and chondrocyte density in agarose scaffolds,” Phys. Med. Biol. 59(21), 6537–6548 (2014).
[Crossref] [PubMed]

Pulkkinen, H.

T. Virén, Y. P. Huang, S. Saarakkala, H. Pulkkinen, V. Tiitu, A. Linjama, I. Kiviranta, M. J. Lammi, A. Brünott, H. Brommer, R. Van Weeren, P. A. Brama, Y. P. Zheng, J. S. Jurvelin, and J. Töyräs, “Comparison of ultrasound and optical coherence tomography techniques for evaluation of integrity of spontaneously repaired horse cartilage,” J. Med. Eng. Technol. 36(3), 185–192 (2012).
[Crossref] [PubMed]

Quack, V.

S. Nebelung, N. Brill, U. Marx, V. Quack, M. Tingart, R. Schmitt, B. Rath, and H. Jahr, “Three-dimensional imaging and analysis of human cartilage degeneration using Optical Coherence Tomography,” J. Orthop. Res. 33(5), 651–659 (2015).
[Crossref] [PubMed]

S. Nebelung, U. Marx, N. Brill, D. Arbab, V. Quack, H. Jahr, M. Tingart, B. Zhou, M. Stoffel, R. Schmitt, and B. Rath, “Morphometric grading of osteoarthritis by optical coherence tomography--an ex vivo study,” J. Orthop. Res. 32(10), 1381–1388 (2014).
[Crossref] [PubMed]

Qvist, P.

A. C. Bay-Jensen, S. Hoegh-Madsen, E. Dam, K. Henriksen, B. C. Sondergaard, P. Pastoureau, P. Qvist, and M. A. Karsdal, “Which elements are involved in reversible and irreversible cartilage degradation in osteoarthritis?” Rheumatol. Int. 30(4), 435–442 (2010).
[Crossref] [PubMed]

Radley, K. M.

R. D. Bloebaum and K. M. Radley, “Three-dimensional surface analysis of young adult human articular cartilage,” J. Anat. 187(Pt 2), 293–301 (1995).
[PubMed]

Rath, B.

S. Nebelung, N. Brill, U. Marx, V. Quack, M. Tingart, R. Schmitt, B. Rath, and H. Jahr, “Three-dimensional imaging and analysis of human cartilage degeneration using Optical Coherence Tomography,” J. Orthop. Res. 33(5), 651–659 (2015).
[Crossref] [PubMed]

S. Nebelung, U. Marx, N. Brill, D. Arbab, V. Quack, H. Jahr, M. Tingart, B. Zhou, M. Stoffel, R. Schmitt, and B. Rath, “Morphometric grading of osteoarthritis by optical coherence tomography--an ex vivo study,” J. Orthop. Res. 32(10), 1381–1388 (2014).
[Crossref] [PubMed]

Revell, P. A.

K. P. Pritzker, S. Gay, S. A. Jimenez, K. Ostergaard, J. P. Pelletier, P. A. Revell, D. Salter, and W. B. van den Berg, “Osteoarthritis cartilage histopathology: grading and staging,” Osteoarthritis Cartilage 14(1), 13–29 (2006).
[Crossref] [PubMed]

Rifkin, R. E.

P. A. Smyth, R. E. Rifkin, R. L. Jackson, and R. R. Hanson, “A surface roughness comparison of cartilage in different types of synovial joints,” J. Biomech. Eng. 134(2), 021006 (2012).
[Crossref] [PubMed]

Robles, F. E.

Roesel, M.

W. Krampla, M. Roesel, K. Svoboda, A. Nachbagauer, M. Gschwantler, and W. Hruby, “MRI of the knee: how do field strength and radiologist’s experience influence diagnostic accuracy and interobserver correlation in assessing chondral and meniscal lesions and the integrity of the anterior cruciate ligament?” Eur. Radiol. 19(6), 1519–1528 (2009).
[Crossref] [PubMed]

Saarakkala, S.

P. H. Puhakka, J. H. Ylärinne, M. J. Lammi, S. Saarakkala, V. Tiitu, H. Kröger, T. Virén, J. S. Jurvelin, and J. Töyräs, “Dependence of light attenuation and backscattering on collagen concentration and chondrocyte density in agarose scaffolds,” Phys. Med. Biol. 59(21), 6537–6548 (2014).
[Crossref] [PubMed]

T. Virén, Y. P. Huang, S. Saarakkala, H. Pulkkinen, V. Tiitu, A. Linjama, I. Kiviranta, M. J. Lammi, A. Brünott, H. Brommer, R. Van Weeren, P. A. Brama, Y. P. Zheng, J. S. Jurvelin, and J. Töyräs, “Comparison of ultrasound and optical coherence tomography techniques for evaluation of integrity of spontaneously repaired horse cartilage,” J. Med. Eng. Technol. 36(3), 185–192 (2012).
[Crossref] [PubMed]

Y. P. Huang, S. Saarakkala, J. Toyras, L. K. Wang, J. S. Jurvelin, and Y. P. Zheng, “Effects of optical beam angle on quantitative optical coherence tomography (OCT) in normal and surface degenerated bovine articular cartilage,” Phys. Med. Biol. 56(2), 491–509 (2011).
[Crossref] [PubMed]

S. Saarakkala, S. Z. Wang, Y. P. Huang, and Y. P. Zheng, “Quantification of the optical surface reflection and surface roughness of articular cartilage using optical coherence tomography,” Phys. Med. Biol. 54(22), 6837–6852 (2009).
[Crossref] [PubMed]

S. Saarakkala, M. S. Laasanen, J. S. Jurvelin, and J. Töyräs, “Quantitative ultrasound imaging detects degenerative changes in articular cartilage surface and subchondral bone,” Phys. Med. Biol. 51(20), 5333–5346 (2006).
[Crossref] [PubMed]

Sah, R. L.

B. L. Wong, W. C. Bae, J. Chun, K. R. Gratz, M. Lotz, and R. L. Sah, “Biomechanics of cartilage articulation: effects of lubrication and degeneration on shear deformation,” Arthritis Rheum. 58(7), 2065–2074 (2008).
[Crossref] [PubMed]

Salter, D.

K. P. Pritzker, S. Gay, S. A. Jimenez, K. Ostergaard, J. P. Pelletier, P. A. Revell, D. Salter, and W. B. van den Berg, “Osteoarthritis cartilage histopathology: grading and staging,” Osteoarthritis Cartilage 14(1), 13–29 (2006).
[Crossref] [PubMed]

Schmidt-Rohlfing, B.

J. Meister, R. Franzen, K. Gavenis, M. Zaum, S. Stanzel, N. Gutknecht, and B. Schmidt-Rohlfing, “Ablation of articular cartilage with an erbium:YAG laser: an ex vivo study using porcine models under real conditions-ablation measurement and histological examination,” Lasers Surg. Med. 41(9), 674–685 (2009).
[Crossref] [PubMed]

Schmitt, R.

S. Nebelung, N. Brill, U. Marx, V. Quack, M. Tingart, R. Schmitt, B. Rath, and H. Jahr, “Three-dimensional imaging and analysis of human cartilage degeneration using Optical Coherence Tomography,” J. Orthop. Res. 33(5), 651–659 (2015).
[Crossref] [PubMed]

S. Nebelung, U. Marx, N. Brill, D. Arbab, V. Quack, H. Jahr, M. Tingart, B. Zhou, M. Stoffel, R. Schmitt, and B. Rath, “Morphometric grading of osteoarthritis by optical coherence tomography--an ex vivo study,” J. Orthop. Res. 32(10), 1381–1388 (2014).
[Crossref] [PubMed]

Shepherd, D. E.

S. Ghosh, J. Bowen, K. Jiang, D. M. Espino, and D. E. Shepherd, “Investigation of techniques for the measurement of articular cartilage surface roughness,” Micron 44, 179–184 (2013).
[Crossref] [PubMed]

Smolinski, P.

D. M. Bear, M. Szczodry, S. Kramer, C. H. Coyle, P. Smolinski, and C. R. Chu, “Optical coherence tomography detection of subclinical traumatic cartilage injury,” J. Orthop. Trauma 24(9), 577–582 (2010).
[Crossref] [PubMed]

Smyth, P. A.

P. A. Smyth, R. E. Rifkin, R. L. Jackson, and R. R. Hanson, “A surface roughness comparison of cartilage in different types of synovial joints,” J. Biomech. Eng. 134(2), 021006 (2012).
[Crossref] [PubMed]

Sondergaard, B. C.

A. C. Bay-Jensen, S. Hoegh-Madsen, E. Dam, K. Henriksen, B. C. Sondergaard, P. Pastoureau, P. Qvist, and M. A. Karsdal, “Which elements are involved in reversible and irreversible cartilage degradation in osteoarthritis?” Rheumatol. Int. 30(4), 435–442 (2010).
[Crossref] [PubMed]

Squires, G. R.

G. R. Squires, S. Okouneff, M. Ionescu, and A. R. Poole, “The pathobiology of focal lesion development in aging human articular cartilage and molecular matrix changes characteristic of osteoarthritis,” Arthritis Rheum. 48(5), 1261–1270 (2003).
[Crossref] [PubMed]

Stamper, D. L.

X. Li, S. Martin, C. Pitris, R. Ghanta, D. L. Stamper, M. Harman, J. G. Fujimoto, and M. E. Brezinski, “High-resolution optical coherence tomographic imaging of osteoarthritic cartilage during open knee surgery,” Arthritis Res. Ther. 7(2), R318–R323 (2005).
[Crossref] [PubMed]

Stanzel, S.

J. Meister, R. Franzen, K. Gavenis, M. Zaum, S. Stanzel, N. Gutknecht, and B. Schmidt-Rohlfing, “Ablation of articular cartilage with an erbium:YAG laser: an ex vivo study using porcine models under real conditions-ablation measurement and histological examination,” Lasers Surg. Med. 41(9), 674–685 (2009).
[Crossref] [PubMed]

Steinert, M.

Stoffel, M.

S. Nebelung, U. Marx, N. Brill, D. Arbab, V. Quack, H. Jahr, M. Tingart, B. Zhou, M. Stoffel, R. Schmitt, and B. Rath, “Morphometric grading of osteoarthritis by optical coherence tomography--an ex vivo study,” J. Orthop. Res. 32(10), 1381–1388 (2014).
[Crossref] [PubMed]

Strackee, S. D.

P. Cernohorsky, A. C. Kok, D. M. Bruin, M. J. Brandt, D. J. Faber, G. J. Tuijthof, G. M. Kerkhoffs, S. D. Strackee, and T. G. van Leeuwen, “Comparison of optical coherence tomography and histopathology in quantitative assessment of goat talus articular cartilage,” Acta Orthop. 86(2), 257–263 (2015).
[PubMed]

Svoboda, K.

W. Krampla, M. Roesel, K. Svoboda, A. Nachbagauer, M. Gschwantler, and W. Hruby, “MRI of the knee: how do field strength and radiologist’s experience influence diagnostic accuracy and interobserver correlation in assessing chondral and meniscal lesions and the integrity of the anterior cruciate ligament?” Eur. Radiol. 19(6), 1519–1528 (2009).
[Crossref] [PubMed]

Szczodry, M.

D. M. Bear, M. Szczodry, S. Kramer, C. H. Coyle, P. Smolinski, and C. R. Chu, “Optical coherence tomography detection of subclinical traumatic cartilage injury,” J. Orthop. Trauma 24(9), 577–582 (2010).
[Crossref] [PubMed]

Tanaka, J.

M. Terukina, H. Fujioka, S. Yoshiya, M. Kurosaka, T. Makino, N. Matsui, and J. Tanaka, “Analysis of the thickness and curvature of articular cartilage of the femoral condyle,” Arthroscopy 19(9), 969–973 (2003).
[Crossref] [PubMed]

Terukina, M.

M. Terukina, H. Fujioka, S. Yoshiya, M. Kurosaka, T. Makino, N. Matsui, and J. Tanaka, “Analysis of the thickness and curvature of articular cartilage of the femoral condyle,” Arthroscopy 19(9), 969–973 (2003).
[Crossref] [PubMed]

Tiitu, V.

P. H. Puhakka, J. H. Ylärinne, M. J. Lammi, S. Saarakkala, V. Tiitu, H. Kröger, T. Virén, J. S. Jurvelin, and J. Töyräs, “Dependence of light attenuation and backscattering on collagen concentration and chondrocyte density in agarose scaffolds,” Phys. Med. Biol. 59(21), 6537–6548 (2014).
[Crossref] [PubMed]

T. Virén, Y. P. Huang, S. Saarakkala, H. Pulkkinen, V. Tiitu, A. Linjama, I. Kiviranta, M. J. Lammi, A. Brünott, H. Brommer, R. Van Weeren, P. A. Brama, Y. P. Zheng, J. S. Jurvelin, and J. Töyräs, “Comparison of ultrasound and optical coherence tomography techniques for evaluation of integrity of spontaneously repaired horse cartilage,” J. Med. Eng. Technol. 36(3), 185–192 (2012).
[Crossref] [PubMed]

Tingart, M.

S. Nebelung, N. Brill, U. Marx, V. Quack, M. Tingart, R. Schmitt, B. Rath, and H. Jahr, “Three-dimensional imaging and analysis of human cartilage degeneration using Optical Coherence Tomography,” J. Orthop. Res. 33(5), 651–659 (2015).
[Crossref] [PubMed]

S. Nebelung, U. Marx, N. Brill, D. Arbab, V. Quack, H. Jahr, M. Tingart, B. Zhou, M. Stoffel, R. Schmitt, and B. Rath, “Morphometric grading of osteoarthritis by optical coherence tomography--an ex vivo study,” J. Orthop. Res. 32(10), 1381–1388 (2014).
[Crossref] [PubMed]

Toyras, J.

Y. P. Huang, S. Saarakkala, J. Toyras, L. K. Wang, J. S. Jurvelin, and Y. P. Zheng, “Effects of optical beam angle on quantitative optical coherence tomography (OCT) in normal and surface degenerated bovine articular cartilage,” Phys. Med. Biol. 56(2), 491–509 (2011).
[Crossref] [PubMed]

Töyräs, J.

P. H. Puhakka, J. H. Ylärinne, M. J. Lammi, S. Saarakkala, V. Tiitu, H. Kröger, T. Virén, J. S. Jurvelin, and J. Töyräs, “Dependence of light attenuation and backscattering on collagen concentration and chondrocyte density in agarose scaffolds,” Phys. Med. Biol. 59(21), 6537–6548 (2014).
[Crossref] [PubMed]

T. Virén, Y. P. Huang, S. Saarakkala, H. Pulkkinen, V. Tiitu, A. Linjama, I. Kiviranta, M. J. Lammi, A. Brünott, H. Brommer, R. Van Weeren, P. A. Brama, Y. P. Zheng, J. S. Jurvelin, and J. Töyräs, “Comparison of ultrasound and optical coherence tomography techniques for evaluation of integrity of spontaneously repaired horse cartilage,” J. Med. Eng. Technol. 36(3), 185–192 (2012).
[Crossref] [PubMed]

S. Saarakkala, M. S. Laasanen, J. S. Jurvelin, and J. Töyräs, “Quantitative ultrasound imaging detects degenerative changes in articular cartilage surface and subchondral bone,” Phys. Med. Biol. 51(20), 5333–5346 (2006).
[Crossref] [PubMed]

Tuijthof, G. J.

P. Cernohorsky, A. C. Kok, D. M. Bruin, M. J. Brandt, D. J. Faber, G. J. Tuijthof, G. M. Kerkhoffs, S. D. Strackee, and T. G. van Leeuwen, “Comparison of optical coherence tomography and histopathology in quantitative assessment of goat talus articular cartilage,” Acta Orthop. 86(2), 257–263 (2015).
[PubMed]

Tuischer, J.

R. U. Kleemann, D. Krocker, A. Cedraro, J. Tuischer, and G. N. Duda, “Altered cartilage mechanics and histology in knee osteoarthritis: relation to clinical assessment (ICRS Grade),” Osteoarthritis Cartilage 13(11), 958–963 (2005).
[Crossref] [PubMed]

van den Berg, W. B.

K. P. Pritzker, S. Gay, S. A. Jimenez, K. Ostergaard, J. P. Pelletier, P. A. Revell, D. Salter, and W. B. van den Berg, “Osteoarthritis cartilage histopathology: grading and staging,” Osteoarthritis Cartilage 14(1), 13–29 (2006).
[Crossref] [PubMed]

van Leeuwen, T. G.

P. Cernohorsky, A. C. Kok, D. M. Bruin, M. J. Brandt, D. J. Faber, G. J. Tuijthof, G. M. Kerkhoffs, S. D. Strackee, and T. G. van Leeuwen, “Comparison of optical coherence tomography and histopathology in quantitative assessment of goat talus articular cartilage,” Acta Orthop. 86(2), 257–263 (2015).
[PubMed]

Van Weeren, R.

T. Virén, Y. P. Huang, S. Saarakkala, H. Pulkkinen, V. Tiitu, A. Linjama, I. Kiviranta, M. J. Lammi, A. Brünott, H. Brommer, R. Van Weeren, P. A. Brama, Y. P. Zheng, J. S. Jurvelin, and J. Töyräs, “Comparison of ultrasound and optical coherence tomography techniques for evaluation of integrity of spontaneously repaired horse cartilage,” J. Med. Eng. Technol. 36(3), 185–192 (2012).
[Crossref] [PubMed]

Virén, T.

P. H. Puhakka, J. H. Ylärinne, M. J. Lammi, S. Saarakkala, V. Tiitu, H. Kröger, T. Virén, J. S. Jurvelin, and J. Töyräs, “Dependence of light attenuation and backscattering on collagen concentration and chondrocyte density in agarose scaffolds,” Phys. Med. Biol. 59(21), 6537–6548 (2014).
[Crossref] [PubMed]

T. Virén, Y. P. Huang, S. Saarakkala, H. Pulkkinen, V. Tiitu, A. Linjama, I. Kiviranta, M. J. Lammi, A. Brünott, H. Brommer, R. Van Weeren, P. A. Brama, Y. P. Zheng, J. S. Jurvelin, and J. Töyräs, “Comparison of ultrasound and optical coherence tomography techniques for evaluation of integrity of spontaneously repaired horse cartilage,” J. Med. Eng. Technol. 36(3), 185–192 (2012).
[Crossref] [PubMed]

Wang, L. K.

Y. P. Huang, S. Saarakkala, J. Toyras, L. K. Wang, J. S. Jurvelin, and Y. P. Zheng, “Effects of optical beam angle on quantitative optical coherence tomography (OCT) in normal and surface degenerated bovine articular cartilage,” Phys. Med. Biol. 56(2), 491–509 (2011).
[Crossref] [PubMed]

Wang, M.

Z. Peng and M. Wang, “Three dimensional surface characterization of human cartilages at a micron and nanometre scale,” Wear 301(1-2), 210–217 (2013).
[Crossref]

Wang, S. Z.

S. Saarakkala, S. Z. Wang, Y. P. Huang, and Y. P. Zheng, “Quantification of the optical surface reflection and surface roughness of articular cartilage using optical coherence tomography,” Phys. Med. Biol. 54(22), 6837–6852 (2009).
[Crossref] [PubMed]

Welp, H.

Wong, B. L.

B. L. Wong, W. C. Bae, J. Chun, K. R. Gratz, M. Lotz, and R. L. Sah, “Biomechanics of cartilage articulation: effects of lubrication and degeneration on shear deformation,” Arthritis Rheum. 58(7), 2065–2074 (2008).
[Crossref] [PubMed]

Xie, T.

T. Xie, S. Guo, J. Zhang, Z. Chen, and G. M. Peavy, “Determination of characteristics of degenerative joint disease using optical coherence tomography and polarization sensitive optical coherence tomography,” Lasers Surg. Med. 38(9), 852–865 (2006).
[Crossref] [PubMed]

Ylärinne, J. H.

P. H. Puhakka, J. H. Ylärinne, M. J. Lammi, S. Saarakkala, V. Tiitu, H. Kröger, T. Virén, J. S. Jurvelin, and J. Töyräs, “Dependence of light attenuation and backscattering on collagen concentration and chondrocyte density in agarose scaffolds,” Phys. Med. Biol. 59(21), 6537–6548 (2014).
[Crossref] [PubMed]

Yoshiya, S.

M. Terukina, H. Fujioka, S. Yoshiya, M. Kurosaka, T. Makino, N. Matsui, and J. Tanaka, “Analysis of the thickness and curvature of articular cartilage of the femoral condyle,” Arthroscopy 19(9), 969–973 (2003).
[Crossref] [PubMed]

Zarins, A.

H. J. Mankin, H. Dorfman, L. Lippiello, and A. Zarins, “Biochemical and metabolic abnormalities in articular cartilage from osteo-arthritic human hips. II. Correlation of morphology with biochemical and metabolic data,” J. Bone Joint Surg. Am. 53(3), 523–537 (1971).
[PubMed]

Zaum, M.

J. Meister, R. Franzen, K. Gavenis, M. Zaum, S. Stanzel, N. Gutknecht, and B. Schmidt-Rohlfing, “Ablation of articular cartilage with an erbium:YAG laser: an ex vivo study using porcine models under real conditions-ablation measurement and histological examination,” Lasers Surg. Med. 41(9), 674–685 (2009).
[Crossref] [PubMed]

Zhang, J.

T. Xie, S. Guo, J. Zhang, Z. Chen, and G. M. Peavy, “Determination of characteristics of degenerative joint disease using optical coherence tomography and polarization sensitive optical coherence tomography,” Lasers Surg. Med. 38(9), 852–865 (2006).
[Crossref] [PubMed]

Zheng, Y. P.

T. Virén, Y. P. Huang, S. Saarakkala, H. Pulkkinen, V. Tiitu, A. Linjama, I. Kiviranta, M. J. Lammi, A. Brünott, H. Brommer, R. Van Weeren, P. A. Brama, Y. P. Zheng, J. S. Jurvelin, and J. Töyräs, “Comparison of ultrasound and optical coherence tomography techniques for evaluation of integrity of spontaneously repaired horse cartilage,” J. Med. Eng. Technol. 36(3), 185–192 (2012).
[Crossref] [PubMed]

Y. P. Huang, S. Saarakkala, J. Toyras, L. K. Wang, J. S. Jurvelin, and Y. P. Zheng, “Effects of optical beam angle on quantitative optical coherence tomography (OCT) in normal and surface degenerated bovine articular cartilage,” Phys. Med. Biol. 56(2), 491–509 (2011).
[Crossref] [PubMed]

S. Saarakkala, S. Z. Wang, Y. P. Huang, and Y. P. Zheng, “Quantification of the optical surface reflection and surface roughness of articular cartilage using optical coherence tomography,” Phys. Med. Biol. 54(22), 6837–6852 (2009).
[Crossref] [PubMed]

Zhou, B.

S. Nebelung, U. Marx, N. Brill, D. Arbab, V. Quack, H. Jahr, M. Tingart, B. Zhou, M. Stoffel, R. Schmitt, and B. Rath, “Morphometric grading of osteoarthritis by optical coherence tomography--an ex vivo study,” J. Orthop. Res. 32(10), 1381–1388 (2014).
[Crossref] [PubMed]

Acta Orthop. (1)

P. Cernohorsky, A. C. Kok, D. M. Bruin, M. J. Brandt, D. J. Faber, G. J. Tuijthof, G. M. Kerkhoffs, S. D. Strackee, and T. G. van Leeuwen, “Comparison of optical coherence tomography and histopathology in quantitative assessment of goat talus articular cartilage,” Acta Orthop. 86(2), 257–263 (2015).
[PubMed]

Am. J. Manag. Care (1)

R. W. Moskowitz, “The burden of osteoarthritis: clinical and quality-of-life issues,” Am. J. Manag. Care 15(8Suppl), S223–S229 (2009).
[PubMed]

Am. J. Sports Med. (1)

C. R. Chu, D. Lin, J. L. Geisler, C. T. Chu, F. H. Fu, and Y. Pan, “Arthroscopic microscopy of articular cartilage using optical coherence tomography,” Am. J. Sports Med. 32(3), 699–709 (2004).
[Crossref] [PubMed]

Ann. Rheum. Dis. (1)

H. E. Panula, M. M. Hyttinen, J. P. Arokoski, T. K. Långsjö, A. Pelttari, I. Kiviranta, and H. J. Helminen, “Articular cartilage superficial zone collagen birefringence reduced and cartilage thickness increased before surface fibrillation in experimental osteoarthritis,” Ann. Rheum. Dis. 57(4), 237–245 (1998).
[Crossref] [PubMed]

Arthritis Res. Ther. (1)

X. Li, S. Martin, C. Pitris, R. Ghanta, D. L. Stamper, M. Harman, J. G. Fujimoto, and M. E. Brezinski, “High-resolution optical coherence tomographic imaging of osteoarthritic cartilage during open knee surgery,” Arthritis Res. Ther. 7(2), R318–R323 (2005).
[Crossref] [PubMed]

Arthritis Rheum. (2)

B. L. Wong, W. C. Bae, J. Chun, K. R. Gratz, M. Lotz, and R. L. Sah, “Biomechanics of cartilage articulation: effects of lubrication and degeneration on shear deformation,” Arthritis Rheum. 58(7), 2065–2074 (2008).
[Crossref] [PubMed]

G. R. Squires, S. Okouneff, M. Ionescu, and A. R. Poole, “The pathobiology of focal lesion development in aging human articular cartilage and molecular matrix changes characteristic of osteoarthritis,” Arthritis Rheum. 48(5), 1261–1270 (2003).
[Crossref] [PubMed]

Arthroscopy (1)

M. Terukina, H. Fujioka, S. Yoshiya, M. Kurosaka, T. Makino, N. Matsui, and J. Tanaka, “Analysis of the thickness and curvature of articular cartilage of the femoral condyle,” Arthroscopy 19(9), 969–973 (2003).
[Crossref] [PubMed]

Biomed. Opt. Express (1)

Eur. Radiol. (1)

W. Krampla, M. Roesel, K. Svoboda, A. Nachbagauer, M. Gschwantler, and W. Hruby, “MRI of the knee: how do field strength and radiologist’s experience influence diagnostic accuracy and interobserver correlation in assessing chondral and meniscal lesions and the integrity of the anterior cruciate ligament?” Eur. Radiol. 19(6), 1519–1528 (2009).
[Crossref] [PubMed]

Instr. Course Lect. (1)

J. A. Buckwalter and H. J. Mankin, “Articular cartilage: degeneration and osteoarthritis, repair, regeneration, and transplantation,” Instr. Course Lect. 47, 487–504 (1998).
[PubMed]

J. Anat. (1)

R. D. Bloebaum and K. M. Radley, “Three-dimensional surface analysis of young adult human articular cartilage,” J. Anat. 187(Pt 2), 293–301 (1995).
[PubMed]

J. Biomech. Eng. (1)

P. A. Smyth, R. E. Rifkin, R. L. Jackson, and R. R. Hanson, “A surface roughness comparison of cartilage in different types of synovial joints,” J. Biomech. Eng. 134(2), 021006 (2012).
[Crossref] [PubMed]

J. Biomed. Opt. (1)

D. K. Kasaragod, Z. Lu, and S. J. Matcher, “Comparative study of the angle-resolved backscattering properties of collagen fibers in bovine tendon and cartilage,” J. Biomed. Opt. 16(8), 080501 (2011).
[Crossref] [PubMed]

J. Bone Joint Surg. Am. (1)

H. J. Mankin, H. Dorfman, L. Lippiello, and A. Zarins, “Biochemical and metabolic abnormalities in articular cartilage from osteo-arthritic human hips. II. Correlation of morphology with biochemical and metabolic data,” J. Bone Joint Surg. Am. 53(3), 523–537 (1971).
[PubMed]

J. Med. Eng. Technol. (1)

T. Virén, Y. P. Huang, S. Saarakkala, H. Pulkkinen, V. Tiitu, A. Linjama, I. Kiviranta, M. J. Lammi, A. Brünott, H. Brommer, R. Van Weeren, P. A. Brama, Y. P. Zheng, J. S. Jurvelin, and J. Töyräs, “Comparison of ultrasound and optical coherence tomography techniques for evaluation of integrity of spontaneously repaired horse cartilage,” J. Med. Eng. Technol. 36(3), 185–192 (2012).
[Crossref] [PubMed]

J. Orthop. Res. (2)

S. Nebelung, N. Brill, U. Marx, V. Quack, M. Tingart, R. Schmitt, B. Rath, and H. Jahr, “Three-dimensional imaging and analysis of human cartilage degeneration using Optical Coherence Tomography,” J. Orthop. Res. 33(5), 651–659 (2015).
[Crossref] [PubMed]

S. Nebelung, U. Marx, N. Brill, D. Arbab, V. Quack, H. Jahr, M. Tingart, B. Zhou, M. Stoffel, R. Schmitt, and B. Rath, “Morphometric grading of osteoarthritis by optical coherence tomography--an ex vivo study,” J. Orthop. Res. 32(10), 1381–1388 (2014).
[Crossref] [PubMed]

J. Orthop. Trauma (1)

D. M. Bear, M. Szczodry, S. Kramer, C. H. Coyle, P. Smolinski, and C. R. Chu, “Optical coherence tomography detection of subclinical traumatic cartilage injury,” J. Orthop. Trauma 24(9), 577–582 (2010).
[Crossref] [PubMed]

Lasers Surg. Med. (2)

J. Meister, R. Franzen, K. Gavenis, M. Zaum, S. Stanzel, N. Gutknecht, and B. Schmidt-Rohlfing, “Ablation of articular cartilage with an erbium:YAG laser: an ex vivo study using porcine models under real conditions-ablation measurement and histological examination,” Lasers Surg. Med. 41(9), 674–685 (2009).
[Crossref] [PubMed]

T. Xie, S. Guo, J. Zhang, Z. Chen, and G. M. Peavy, “Determination of characteristics of degenerative joint disease using optical coherence tomography and polarization sensitive optical coherence tomography,” Lasers Surg. Med. 38(9), 852–865 (2006).
[Crossref] [PubMed]

Micron (1)

S. Ghosh, J. Bowen, K. Jiang, D. M. Espino, and D. E. Shepherd, “Investigation of techniques for the measurement of articular cartilage surface roughness,” Micron 44, 179–184 (2013).
[Crossref] [PubMed]

Osteoarthritis Cartilage (2)

K. P. Pritzker, S. Gay, S. A. Jimenez, K. Ostergaard, J. P. Pelletier, P. A. Revell, D. Salter, and W. B. van den Berg, “Osteoarthritis cartilage histopathology: grading and staging,” Osteoarthritis Cartilage 14(1), 13–29 (2006).
[Crossref] [PubMed]

R. U. Kleemann, D. Krocker, A. Cedraro, J. Tuischer, and G. N. Duda, “Altered cartilage mechanics and histology in knee osteoarthritis: relation to clinical assessment (ICRS Grade),” Osteoarthritis Cartilage 13(11), 958–963 (2005).
[Crossref] [PubMed]

Phys. Med. Biol. (4)

Y. P. Huang, S. Saarakkala, J. Toyras, L. K. Wang, J. S. Jurvelin, and Y. P. Zheng, “Effects of optical beam angle on quantitative optical coherence tomography (OCT) in normal and surface degenerated bovine articular cartilage,” Phys. Med. Biol. 56(2), 491–509 (2011).
[Crossref] [PubMed]

P. H. Puhakka, J. H. Ylärinne, M. J. Lammi, S. Saarakkala, V. Tiitu, H. Kröger, T. Virén, J. S. Jurvelin, and J. Töyräs, “Dependence of light attenuation and backscattering on collagen concentration and chondrocyte density in agarose scaffolds,” Phys. Med. Biol. 59(21), 6537–6548 (2014).
[Crossref] [PubMed]

S. Saarakkala, M. S. Laasanen, J. S. Jurvelin, and J. Töyräs, “Quantitative ultrasound imaging detects degenerative changes in articular cartilage surface and subchondral bone,” Phys. Med. Biol. 51(20), 5333–5346 (2006).
[Crossref] [PubMed]

S. Saarakkala, S. Z. Wang, Y. P. Huang, and Y. P. Zheng, “Quantification of the optical surface reflection and surface roughness of articular cartilage using optical coherence tomography,” Phys. Med. Biol. 54(22), 6837–6852 (2009).
[Crossref] [PubMed]

Proc. Inst. Mech. Eng. H (1)

H. Forster and J. Fisher, “The influence of continuous sliding and subsequent surface wear on the friction of articular cartilage,” Proc. Inst. Mech. Eng. H 213(4), 329–345 (1999).
[Crossref] [PubMed]

Rheumatol. Int. (1)

A. C. Bay-Jensen, S. Hoegh-Madsen, E. Dam, K. Henriksen, B. C. Sondergaard, P. Pastoureau, P. Qvist, and M. A. Karsdal, “Which elements are involved in reversible and irreversible cartilage degradation in osteoarthritis?” Rheumatol. Int. 30(4), 435–442 (2010).
[Crossref] [PubMed]

Wear (1)

Z. Peng and M. Wang, “Three dimensional surface characterization of human cartilages at a micron and nanometre scale,” Wear 301(1-2), 210–217 (2013).
[Crossref]

Other (2)

U. Marx, R. Schmitt, S. Nebelung, M. Tingart, C. Luring, and B. Rath, “In-vitro observation of cartilage-degeneration progression by Fourier-domain OCT,” in Advanced Biomedical and Clinical Diagnostic Systems, T. Vo-Dinh, ed. (Society of Photo-Optical Instrumentation Engineers -SPIE-, San Francisco, California, United States, 2012), pp. 1–7.

B. J. Moa-Anderson, K. D. Costa, C. T. Hung, and G. A. Ateshian, “Bovine articular cartilage surface topography and roughness in fresh versus frozen tissue samples using atomic force microscopy.,” in Summer Bioengineering Conference., (Key Biscayne, Florida, 2003).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1 Calculation of the roughness profile from a primary profile as exemplified by a moderate-to-severely diseased cartilage sample; notice the difference in the resulting roughness profiles when using different filter cut-off wavelengths. In the present study, a filter cut-off wavelength of λc = 800 µm as defined by EN ISO 4288 was used.
Fig. 2
Fig. 2 Examples of manually quantified tissue surface features using ImageJ® software and algorithm-based surface detection and processing. Tissue defects (a, g) or protrusions (d) were identified and measured in their respective depth (b, h) or height (e) using the rectangular measurement tool provided. Up to five representative tissue features were measured per image (h). The red line marks the detected surface (i.e. primary profile, c, f, i). Bar represents 1 mm.
Fig. 3
Fig. 3 The corresponding primary and roughness profiles as well as the underlying waviness of the human cartilage samples as displayed in Fig. 2. Here, Fig. 3(a)) corresponds to Fig. 2(a)-2(c)), Fig. 3(b)) to Fig. 2(d)-2(f)) and Fig. 3(c)) to Fig. 2(g)-2(i)).
Fig. 4
Fig. 4 Box plots of roughness parameters as a function of histological grading of cartilage degeneration (i.e. DJD grades). Medians are indicated by horizontal markers within the box plot, while boxes represent 25th to 75th percentiles. Whiskers (i.e. vertical markers outside the box plot) indicate the entire range of values. Ra (a), Rq (b), Rk (c), Rpk (d), Rvk (e), Rz (f), Rp (g), Rv (h), Rt (i), Rsk (j), Rku (k). Of note, Rsk and Rku are unit-less.

Tables (2)

Tables Icon

Table 1 Statistical analysis of degeneration-dependence of the roughness parameters plotted in Fig. 4. Differences between DJD 0 – 6 were assessed using the Kruskal Wallis test followed by Dunn’s post-hoc testing. Significant differences are bold; more specifically [***] denote p < 0.001, [**] denote 0.001 ≤ p ≤ 0.01 and [*] denote 0.01 ≤ p ≤ 0.05. [ns] - non significant.

Tables Icon

Table 2 Correlation of roughness parameters to histological degeneration grades and to manually quantified tissue features. Degenerative stages are grouped as DJD groups 0 - 6 (n = 105), 0 - 1 (n = 34) and 2 - 5 (n = 58), respectively. Data are presented as Spearman's correlation coefficient (p-value [level of significance]).

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

R a = 1 l 0 l | z ( x ) | d x
R q = 1 l 0 l | z 2 ( x ) | d x
R z = 1 10 [ i = 1 10 H i j = 1 10 L j ]
R t = R p + R v
R s k = 1 R q 3 ( 1 l 0 l Z 3 ( x ) d x )
R k u = 1 R q 4 ( 1 l 0 l Z 4 ( x ) d x )

Metrics