Abstract

We characterized image quality in optical coherence angiography (OCA) en face planes of mouse cortical capillary network in terms of signal-to-noise ratio (SNR) and Weber contrast (Wc) through a novel mask-based segmentation method. The method was used to compare two adjacent B-scan processing algorithms, (1) average absolute difference (AAD) and (2) standard deviation (SD), while varying the number of lateral cross-sections acquired (also known as the gate length, N). AAD and SD are identical at N = 2 and exhibited similar image quality for N<10. However, AAD is relatively less susceptible to bulk tissue motion artifact than SD. SNR and Wc were 15% and 35% higher for AAD from N = 25 to 100. In addition data sets were acquired with two objective lenses with different magnifications to quantify the effect of lateral resolution on fine capillary detection. The lower power objective yielded a significant mean broadening of 17% in Full Width Half Maximum (FWHM) diameter. These results may guide study and device designs for OCA capillary and blood flow quantification.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Regression-based algorithm for bulk motion subtraction in optical coherence tomography angiography

Acner Camino, Yali Jia, Gangjun Liu, Jie Wang, and David Huang
Biomed. Opt. Express 8(6) 3053-3066 (2017)

Quantitative quality-control metrics for in vivo oximetry in small vessels by visible light optical coherence tomography angiography

Rongrong Liu, Weiye Song, Vadim Backman, and Ji Yi
Biomed. Opt. Express 10(2) 465-486 (2019)

References

  • View by:
  • |
  • |
  • |

  1. Y. Jia, O. Tan, J. Tokayer, B. Potsaid, Y. Wang, J. J. Liu, M. F. Kraus, H. Subhash, J. G. Fujimoto, J. Hornegger, and D. Huang, “Split-spectrum amplitude-decorrelation angiography with optical coherence tomography,” Opt. Express 20(4), 4710–4725 (2012).
    [Crossref] [PubMed]
  2. D. Y. Kim, J. Fingler, J. S. Werner, D. M. Schwartz, S. E. Fraser, and R. J. Zawadzki, “In vivo volumetric imaging of human retinal circulation with phase-variance optical coherence tomography,” Biomed. Opt. Express 2(6), 1504–1513 (2011).
    [Crossref] [PubMed]
  3. G. Liu, W. Qi, L. Yu, and Z. Chen, “Real-time bulk-motion-correction free Doppler variance optical coherence tomography for choroidal capillary vasculature imaging,” Opt. Express 19(4), 3657–3666 (2011).
    [PubMed]
  4. B. Braaf, K. A. Vermeer, K. V. Vienola, and J. F. de Boer, “Angiography of the retina and the choroid with phase-resolved OCT using interval-optimized backstitched B-scans,” Opt. Express 20(18), 20516–20534 (2012).
    [Crossref] [PubMed]
  5. Z. Zhi, X. Yin, S. Dziennis, T. Wietecha, K. L. Hudkins, C. E. Alpers, and R. K. Wang, “Optical microangiography of retina and choroid and measurement of total retinal blood flow in mice,” Biomed. Opt. Express 3(11), 2976–2986 (2012).
    [Crossref] [PubMed]
  6. H. C. Hendargo, R. Estrada, S. J. Chiu, C. Tomasi, S. Farsiu, and J. A. Izatt, “Automated non-rigid registration and mosaicing for robust imaging of distinct retinal capillary beds using speckle variance optical coherence tomography,” Biomed. Opt. Express 4(6), 803–821 (2013).
    [Crossref] [PubMed]
  7. V. J. Srinivasan, J. Y. Jiang, M. A. Yaseen, H. Radhakrishnan, W. Wu, S. Barry, A. E. Cable, and D. A. Boas, “Rapid volumetric angiography of cortical microvasculature with optical coherence tomography,” Opt. Lett. 35(1), 43–45 (2010).
    [Crossref] [PubMed]
  8. V. J. Srinivasan, H. Radhakrishnan, E. H. Lo, E. T. Mandeville, J. Y. Jiang, S. Barry, and A. E. Cable, “OCT methods for capillary velocimetry,” Biomed. Opt. Express 3(3), 612–629 (2012).
    [Crossref] [PubMed]
  9. D. X. Hammer, A. Lozzi, E. Abliz, N. Greenbaum, A. Agrawal, V. Krauthamer, and C. G. Welle, “Longitudinal vascular dynamics following cranial window and electrode implantation measured with speckle variance optical coherence angiography,” Biomed. Opt. Express 5(8), 2823–2836 (2014).
    [Crossref] [PubMed]
  10. A. S. Nam, I. Chico-Calero, and B. J. Vakoc, “Complex differential variance algorithm for optical coherence tomography angiography,” Biomed. Opt. Express 5(11), 3822–3832 (2014).
    [Crossref] [PubMed]
  11. H. Radhakrishnan and V. J. Srinivasan, “Compartment-resolved imaging of cortical functional hyperemia with OCT angiography,” Biomed. Opt. Express 4(8), 1255–1268 (2013).
    [Crossref] [PubMed]
  12. V. J. Srinivasan, E. T. Mandeville, A. Can, F. Blasi, M. Climov, A. Daneshmand, J. H. Lee, E. Yu, H. Radhakrishnan, E. H. Lo, S. Sakadžić, K. Eikermann-Haerter, and C. Ayata, “Multiparametric, Logitudinal Optical Coherence Tomography Imaging Reveals Acute Injury and Chronic Recovery in Experimental Ischemic Stroke,” PLoS ONE 8(8), e71748 (2013).
    [Crossref] [PubMed]
  13. A. Mariampillai, M. K. Leung, M. Jarvi, B. A. Standish, K. Lee, B. C. Wilson, A. Vitkin, and V. X. Yang, “Optimized speckle variance OCT imaging of microvasculature,” Opt. Lett. 35(8), 1257–1259 (2010).
    [Crossref] [PubMed]
  14. M. S. Mahmud, D. W. Cadotte, B. Vuong, C. Sun, T. W. Luk, A. Mariampillai, and V. X. Yang, “Review of speckle and phase variance optical coherence tomography to visualize microvascular networks,” J. Biomed. Opt. 18(5), 050901 (2013).
    [Crossref] [PubMed]
  15. G. Liu, A. J. Lin, B. J. Tromberg, and Z. Chen, “A comparison of Doppler optical coherence tomography methods,” Biomed. Opt. Express 3(10), 2669–2680 (2012).
    [Crossref] [PubMed]
  16. D. M. Stein, H. Ishikawa, R. Hariprasad, G. Wollstein, R. J. Noecker, J. G. Fujimoto, and J. S. Schuman, “A new quality assessment parameter for optical coherence tomography,” Br. J. Ophthalmol. 90(2), 186–190 (2006).
    [Crossref] [PubMed]
  17. Y. Huang, S. Gangaputra, K. E. Lee, A. R. Narkar, R. Klein, B. E. Klein, S. M. Meuer, and R. P. Danis, “Signal quality assessment of retinal optical coherence tomography images,” Invest. Ophthalmol. Vis. Sci. 53(4), 2133–2141 (2012).
    [Crossref] [PubMed]
  18. J. W. Goodman, Statistical Optics (Wiley, 1985).
  19. B. Karamata, K. Hassler, M. Laubscher, and T. Lasser, “Speckle statistics in optical coherence tomography,” J. Opt. Soc. Am. A 22(4), 593–596 (2005).
    [Crossref] [PubMed]
  20. K. H. Y. Cheng, A. Mariampillai, K. K. C. Lee, B. Vuong, T. W. H. Luk, J. Ramjist, A. Curtis, H. Jakubovic, P. Kertes, M. Letarte, M. E. Faughnan, V. X. D. Yang, and Brain Vascular Malformation Consortium HHT Investigator Group, “Histogram flow mapping with optical coherence tomography for in vivo skin angiography of hereditary hemorrhagic telangiectasia,” J. Biomed. Opt. 19(8), 086015 (2014).
    [PubMed]
  21. X. Liu, K. Zhang, Y. Huang, and J. U. Kang, “Spectroscopic-speckle variance OCT for microvasculature detection and analysis,” Biomed. Opt. Express 2(11), 2995–3009 (2011).
    [Crossref] [PubMed]
  22. K. K. C. Lee, A. Mariampillai, J. X. Z. Yu, D. W. Cadotte, B. C. Wilson, B. A. Standish, and V. X. D. Yang, “Real-time speckle variance swept-source optical coherence tomography using a graphics processing unit,” Biomed. Opt. Express 3(7), 1557–1564 (2012).
    [Crossref] [PubMed]
  23. A. Agrawal, M. Connors, A. Beylin, C. P. Liang, D. Barton, Y. Chen, R. A. Drezek, and T. J. Pfefer, “Characterizing the point spread function of retinal OCT devices with a model eye-based phantom,” Biomed. Opt. Express 3(5), 1116–1126 (2012).
    [Crossref] [PubMed]
  24. W. Draxler and J. G. Fujimoto, Optical Coherence Tomography (Springer 2008), Chap. 2.
  25. J. Lee, J. Y. Jiang, W. Wu, F. Lesage, and D. A. Boas, “Statistical intensity variation analysis for rapid volumetric imaging of capillary network flux,” Biomed. Opt. Express 5(4), 1160–1172 (2014).
    [Crossref] [PubMed]

2014 (4)

2013 (4)

H. C. Hendargo, R. Estrada, S. J. Chiu, C. Tomasi, S. Farsiu, and J. A. Izatt, “Automated non-rigid registration and mosaicing for robust imaging of distinct retinal capillary beds using speckle variance optical coherence tomography,” Biomed. Opt. Express 4(6), 803–821 (2013).
[Crossref] [PubMed]

H. Radhakrishnan and V. J. Srinivasan, “Compartment-resolved imaging of cortical functional hyperemia with OCT angiography,” Biomed. Opt. Express 4(8), 1255–1268 (2013).
[Crossref] [PubMed]

V. J. Srinivasan, E. T. Mandeville, A. Can, F. Blasi, M. Climov, A. Daneshmand, J. H. Lee, E. Yu, H. Radhakrishnan, E. H. Lo, S. Sakadžić, K. Eikermann-Haerter, and C. Ayata, “Multiparametric, Logitudinal Optical Coherence Tomography Imaging Reveals Acute Injury and Chronic Recovery in Experimental Ischemic Stroke,” PLoS ONE 8(8), e71748 (2013).
[Crossref] [PubMed]

M. S. Mahmud, D. W. Cadotte, B. Vuong, C. Sun, T. W. Luk, A. Mariampillai, and V. X. Yang, “Review of speckle and phase variance optical coherence tomography to visualize microvascular networks,” J. Biomed. Opt. 18(5), 050901 (2013).
[Crossref] [PubMed]

2012 (8)

Y. Jia, O. Tan, J. Tokayer, B. Potsaid, Y. Wang, J. J. Liu, M. F. Kraus, H. Subhash, J. G. Fujimoto, J. Hornegger, and D. Huang, “Split-spectrum amplitude-decorrelation angiography with optical coherence tomography,” Opt. Express 20(4), 4710–4725 (2012).
[Crossref] [PubMed]

V. J. Srinivasan, H. Radhakrishnan, E. H. Lo, E. T. Mandeville, J. Y. Jiang, S. Barry, and A. E. Cable, “OCT methods for capillary velocimetry,” Biomed. Opt. Express 3(3), 612–629 (2012).
[Crossref] [PubMed]

A. Agrawal, M. Connors, A. Beylin, C. P. Liang, D. Barton, Y. Chen, R. A. Drezek, and T. J. Pfefer, “Characterizing the point spread function of retinal OCT devices with a model eye-based phantom,” Biomed. Opt. Express 3(5), 1116–1126 (2012).
[Crossref] [PubMed]

K. K. C. Lee, A. Mariampillai, J. X. Z. Yu, D. W. Cadotte, B. C. Wilson, B. A. Standish, and V. X. D. Yang, “Real-time speckle variance swept-source optical coherence tomography using a graphics processing unit,” Biomed. Opt. Express 3(7), 1557–1564 (2012).
[Crossref] [PubMed]

B. Braaf, K. A. Vermeer, K. V. Vienola, and J. F. de Boer, “Angiography of the retina and the choroid with phase-resolved OCT using interval-optimized backstitched B-scans,” Opt. Express 20(18), 20516–20534 (2012).
[Crossref] [PubMed]

G. Liu, A. J. Lin, B. J. Tromberg, and Z. Chen, “A comparison of Doppler optical coherence tomography methods,” Biomed. Opt. Express 3(10), 2669–2680 (2012).
[Crossref] [PubMed]

Z. Zhi, X. Yin, S. Dziennis, T. Wietecha, K. L. Hudkins, C. E. Alpers, and R. K. Wang, “Optical microangiography of retina and choroid and measurement of total retinal blood flow in mice,” Biomed. Opt. Express 3(11), 2976–2986 (2012).
[Crossref] [PubMed]

Y. Huang, S. Gangaputra, K. E. Lee, A. R. Narkar, R. Klein, B. E. Klein, S. M. Meuer, and R. P. Danis, “Signal quality assessment of retinal optical coherence tomography images,” Invest. Ophthalmol. Vis. Sci. 53(4), 2133–2141 (2012).
[Crossref] [PubMed]

2011 (3)

2010 (2)

2006 (1)

D. M. Stein, H. Ishikawa, R. Hariprasad, G. Wollstein, R. J. Noecker, J. G. Fujimoto, and J. S. Schuman, “A new quality assessment parameter for optical coherence tomography,” Br. J. Ophthalmol. 90(2), 186–190 (2006).
[Crossref] [PubMed]

2005 (1)

Abliz, E.

Agrawal, A.

Alpers, C. E.

Ayata, C.

V. J. Srinivasan, E. T. Mandeville, A. Can, F. Blasi, M. Climov, A. Daneshmand, J. H. Lee, E. Yu, H. Radhakrishnan, E. H. Lo, S. Sakadžić, K. Eikermann-Haerter, and C. Ayata, “Multiparametric, Logitudinal Optical Coherence Tomography Imaging Reveals Acute Injury and Chronic Recovery in Experimental Ischemic Stroke,” PLoS ONE 8(8), e71748 (2013).
[Crossref] [PubMed]

Barry, S.

Barton, D.

Beylin, A.

Blasi, F.

V. J. Srinivasan, E. T. Mandeville, A. Can, F. Blasi, M. Climov, A. Daneshmand, J. H. Lee, E. Yu, H. Radhakrishnan, E. H. Lo, S. Sakadžić, K. Eikermann-Haerter, and C. Ayata, “Multiparametric, Logitudinal Optical Coherence Tomography Imaging Reveals Acute Injury and Chronic Recovery in Experimental Ischemic Stroke,” PLoS ONE 8(8), e71748 (2013).
[Crossref] [PubMed]

Boas, D. A.

Braaf, B.

Cable, A. E.

Cadotte, D. W.

M. S. Mahmud, D. W. Cadotte, B. Vuong, C. Sun, T. W. Luk, A. Mariampillai, and V. X. Yang, “Review of speckle and phase variance optical coherence tomography to visualize microvascular networks,” J. Biomed. Opt. 18(5), 050901 (2013).
[Crossref] [PubMed]

K. K. C. Lee, A. Mariampillai, J. X. Z. Yu, D. W. Cadotte, B. C. Wilson, B. A. Standish, and V. X. D. Yang, “Real-time speckle variance swept-source optical coherence tomography using a graphics processing unit,” Biomed. Opt. Express 3(7), 1557–1564 (2012).
[Crossref] [PubMed]

Can, A.

V. J. Srinivasan, E. T. Mandeville, A. Can, F. Blasi, M. Climov, A. Daneshmand, J. H. Lee, E. Yu, H. Radhakrishnan, E. H. Lo, S. Sakadžić, K. Eikermann-Haerter, and C. Ayata, “Multiparametric, Logitudinal Optical Coherence Tomography Imaging Reveals Acute Injury and Chronic Recovery in Experimental Ischemic Stroke,” PLoS ONE 8(8), e71748 (2013).
[Crossref] [PubMed]

Chen, Y.

Chen, Z.

Cheng, K. H. Y.

K. H. Y. Cheng, A. Mariampillai, K. K. C. Lee, B. Vuong, T. W. H. Luk, J. Ramjist, A. Curtis, H. Jakubovic, P. Kertes, M. Letarte, M. E. Faughnan, V. X. D. Yang, and Brain Vascular Malformation Consortium HHT Investigator Group, “Histogram flow mapping with optical coherence tomography for in vivo skin angiography of hereditary hemorrhagic telangiectasia,” J. Biomed. Opt. 19(8), 086015 (2014).
[PubMed]

Chico-Calero, I.

Chiu, S. J.

Climov, M.

V. J. Srinivasan, E. T. Mandeville, A. Can, F. Blasi, M. Climov, A. Daneshmand, J. H. Lee, E. Yu, H. Radhakrishnan, E. H. Lo, S. Sakadžić, K. Eikermann-Haerter, and C. Ayata, “Multiparametric, Logitudinal Optical Coherence Tomography Imaging Reveals Acute Injury and Chronic Recovery in Experimental Ischemic Stroke,” PLoS ONE 8(8), e71748 (2013).
[Crossref] [PubMed]

Connors, M.

Curtis, A.

K. H. Y. Cheng, A. Mariampillai, K. K. C. Lee, B. Vuong, T. W. H. Luk, J. Ramjist, A. Curtis, H. Jakubovic, P. Kertes, M. Letarte, M. E. Faughnan, V. X. D. Yang, and Brain Vascular Malformation Consortium HHT Investigator Group, “Histogram flow mapping with optical coherence tomography for in vivo skin angiography of hereditary hemorrhagic telangiectasia,” J. Biomed. Opt. 19(8), 086015 (2014).
[PubMed]

Daneshmand, A.

V. J. Srinivasan, E. T. Mandeville, A. Can, F. Blasi, M. Climov, A. Daneshmand, J. H. Lee, E. Yu, H. Radhakrishnan, E. H. Lo, S. Sakadžić, K. Eikermann-Haerter, and C. Ayata, “Multiparametric, Logitudinal Optical Coherence Tomography Imaging Reveals Acute Injury and Chronic Recovery in Experimental Ischemic Stroke,” PLoS ONE 8(8), e71748 (2013).
[Crossref] [PubMed]

Danis, R. P.

Y. Huang, S. Gangaputra, K. E. Lee, A. R. Narkar, R. Klein, B. E. Klein, S. M. Meuer, and R. P. Danis, “Signal quality assessment of retinal optical coherence tomography images,” Invest. Ophthalmol. Vis. Sci. 53(4), 2133–2141 (2012).
[Crossref] [PubMed]

de Boer, J. F.

Drezek, R. A.

Dziennis, S.

Eikermann-Haerter, K.

V. J. Srinivasan, E. T. Mandeville, A. Can, F. Blasi, M. Climov, A. Daneshmand, J. H. Lee, E. Yu, H. Radhakrishnan, E. H. Lo, S. Sakadžić, K. Eikermann-Haerter, and C. Ayata, “Multiparametric, Logitudinal Optical Coherence Tomography Imaging Reveals Acute Injury and Chronic Recovery in Experimental Ischemic Stroke,” PLoS ONE 8(8), e71748 (2013).
[Crossref] [PubMed]

Estrada, R.

Farsiu, S.

Faughnan, M. E.

K. H. Y. Cheng, A. Mariampillai, K. K. C. Lee, B. Vuong, T. W. H. Luk, J. Ramjist, A. Curtis, H. Jakubovic, P. Kertes, M. Letarte, M. E. Faughnan, V. X. D. Yang, and Brain Vascular Malformation Consortium HHT Investigator Group, “Histogram flow mapping with optical coherence tomography for in vivo skin angiography of hereditary hemorrhagic telangiectasia,” J. Biomed. Opt. 19(8), 086015 (2014).
[PubMed]

Fingler, J.

Fraser, S. E.

Fujimoto, J. G.

Y. Jia, O. Tan, J. Tokayer, B. Potsaid, Y. Wang, J. J. Liu, M. F. Kraus, H. Subhash, J. G. Fujimoto, J. Hornegger, and D. Huang, “Split-spectrum amplitude-decorrelation angiography with optical coherence tomography,” Opt. Express 20(4), 4710–4725 (2012).
[Crossref] [PubMed]

D. M. Stein, H. Ishikawa, R. Hariprasad, G. Wollstein, R. J. Noecker, J. G. Fujimoto, and J. S. Schuman, “A new quality assessment parameter for optical coherence tomography,” Br. J. Ophthalmol. 90(2), 186–190 (2006).
[Crossref] [PubMed]

Gangaputra, S.

Y. Huang, S. Gangaputra, K. E. Lee, A. R. Narkar, R. Klein, B. E. Klein, S. M. Meuer, and R. P. Danis, “Signal quality assessment of retinal optical coherence tomography images,” Invest. Ophthalmol. Vis. Sci. 53(4), 2133–2141 (2012).
[Crossref] [PubMed]

Greenbaum, N.

Hammer, D. X.

Hariprasad, R.

D. M. Stein, H. Ishikawa, R. Hariprasad, G. Wollstein, R. J. Noecker, J. G. Fujimoto, and J. S. Schuman, “A new quality assessment parameter for optical coherence tomography,” Br. J. Ophthalmol. 90(2), 186–190 (2006).
[Crossref] [PubMed]

Hassler, K.

Hendargo, H. C.

Hornegger, J.

Huang, D.

Huang, Y.

Y. Huang, S. Gangaputra, K. E. Lee, A. R. Narkar, R. Klein, B. E. Klein, S. M. Meuer, and R. P. Danis, “Signal quality assessment of retinal optical coherence tomography images,” Invest. Ophthalmol. Vis. Sci. 53(4), 2133–2141 (2012).
[Crossref] [PubMed]

X. Liu, K. Zhang, Y. Huang, and J. U. Kang, “Spectroscopic-speckle variance OCT for microvasculature detection and analysis,” Biomed. Opt. Express 2(11), 2995–3009 (2011).
[Crossref] [PubMed]

Hudkins, K. L.

Ishikawa, H.

D. M. Stein, H. Ishikawa, R. Hariprasad, G. Wollstein, R. J. Noecker, J. G. Fujimoto, and J. S. Schuman, “A new quality assessment parameter for optical coherence tomography,” Br. J. Ophthalmol. 90(2), 186–190 (2006).
[Crossref] [PubMed]

Izatt, J. A.

Jakubovic, H.

K. H. Y. Cheng, A. Mariampillai, K. K. C. Lee, B. Vuong, T. W. H. Luk, J. Ramjist, A. Curtis, H. Jakubovic, P. Kertes, M. Letarte, M. E. Faughnan, V. X. D. Yang, and Brain Vascular Malformation Consortium HHT Investigator Group, “Histogram flow mapping with optical coherence tomography for in vivo skin angiography of hereditary hemorrhagic telangiectasia,” J. Biomed. Opt. 19(8), 086015 (2014).
[PubMed]

Jarvi, M.

Jia, Y.

Jiang, J. Y.

Kang, J. U.

Karamata, B.

Kertes, P.

K. H. Y. Cheng, A. Mariampillai, K. K. C. Lee, B. Vuong, T. W. H. Luk, J. Ramjist, A. Curtis, H. Jakubovic, P. Kertes, M. Letarte, M. E. Faughnan, V. X. D. Yang, and Brain Vascular Malformation Consortium HHT Investigator Group, “Histogram flow mapping with optical coherence tomography for in vivo skin angiography of hereditary hemorrhagic telangiectasia,” J. Biomed. Opt. 19(8), 086015 (2014).
[PubMed]

Kim, D. Y.

Klein, B. E.

Y. Huang, S. Gangaputra, K. E. Lee, A. R. Narkar, R. Klein, B. E. Klein, S. M. Meuer, and R. P. Danis, “Signal quality assessment of retinal optical coherence tomography images,” Invest. Ophthalmol. Vis. Sci. 53(4), 2133–2141 (2012).
[Crossref] [PubMed]

Klein, R.

Y. Huang, S. Gangaputra, K. E. Lee, A. R. Narkar, R. Klein, B. E. Klein, S. M. Meuer, and R. P. Danis, “Signal quality assessment of retinal optical coherence tomography images,” Invest. Ophthalmol. Vis. Sci. 53(4), 2133–2141 (2012).
[Crossref] [PubMed]

Kraus, M. F.

Krauthamer, V.

Lasser, T.

Laubscher, M.

Lee, J.

Lee, J. H.

V. J. Srinivasan, E. T. Mandeville, A. Can, F. Blasi, M. Climov, A. Daneshmand, J. H. Lee, E. Yu, H. Radhakrishnan, E. H. Lo, S. Sakadžić, K. Eikermann-Haerter, and C. Ayata, “Multiparametric, Logitudinal Optical Coherence Tomography Imaging Reveals Acute Injury and Chronic Recovery in Experimental Ischemic Stroke,” PLoS ONE 8(8), e71748 (2013).
[Crossref] [PubMed]

Lee, K.

Lee, K. E.

Y. Huang, S. Gangaputra, K. E. Lee, A. R. Narkar, R. Klein, B. E. Klein, S. M. Meuer, and R. P. Danis, “Signal quality assessment of retinal optical coherence tomography images,” Invest. Ophthalmol. Vis. Sci. 53(4), 2133–2141 (2012).
[Crossref] [PubMed]

Lee, K. K. C.

K. H. Y. Cheng, A. Mariampillai, K. K. C. Lee, B. Vuong, T. W. H. Luk, J. Ramjist, A. Curtis, H. Jakubovic, P. Kertes, M. Letarte, M. E. Faughnan, V. X. D. Yang, and Brain Vascular Malformation Consortium HHT Investigator Group, “Histogram flow mapping with optical coherence tomography for in vivo skin angiography of hereditary hemorrhagic telangiectasia,” J. Biomed. Opt. 19(8), 086015 (2014).
[PubMed]

K. K. C. Lee, A. Mariampillai, J. X. Z. Yu, D. W. Cadotte, B. C. Wilson, B. A. Standish, and V. X. D. Yang, “Real-time speckle variance swept-source optical coherence tomography using a graphics processing unit,” Biomed. Opt. Express 3(7), 1557–1564 (2012).
[Crossref] [PubMed]

Lesage, F.

Letarte, M.

K. H. Y. Cheng, A. Mariampillai, K. K. C. Lee, B. Vuong, T. W. H. Luk, J. Ramjist, A. Curtis, H. Jakubovic, P. Kertes, M. Letarte, M. E. Faughnan, V. X. D. Yang, and Brain Vascular Malformation Consortium HHT Investigator Group, “Histogram flow mapping with optical coherence tomography for in vivo skin angiography of hereditary hemorrhagic telangiectasia,” J. Biomed. Opt. 19(8), 086015 (2014).
[PubMed]

Leung, M. K.

Liang, C. P.

Lin, A. J.

Liu, G.

Liu, J. J.

Liu, X.

Lo, E. H.

V. J. Srinivasan, E. T. Mandeville, A. Can, F. Blasi, M. Climov, A. Daneshmand, J. H. Lee, E. Yu, H. Radhakrishnan, E. H. Lo, S. Sakadžić, K. Eikermann-Haerter, and C. Ayata, “Multiparametric, Logitudinal Optical Coherence Tomography Imaging Reveals Acute Injury and Chronic Recovery in Experimental Ischemic Stroke,” PLoS ONE 8(8), e71748 (2013).
[Crossref] [PubMed]

V. J. Srinivasan, H. Radhakrishnan, E. H. Lo, E. T. Mandeville, J. Y. Jiang, S. Barry, and A. E. Cable, “OCT methods for capillary velocimetry,” Biomed. Opt. Express 3(3), 612–629 (2012).
[Crossref] [PubMed]

Lozzi, A.

Luk, T. W.

M. S. Mahmud, D. W. Cadotte, B. Vuong, C. Sun, T. W. Luk, A. Mariampillai, and V. X. Yang, “Review of speckle and phase variance optical coherence tomography to visualize microvascular networks,” J. Biomed. Opt. 18(5), 050901 (2013).
[Crossref] [PubMed]

Luk, T. W. H.

K. H. Y. Cheng, A. Mariampillai, K. K. C. Lee, B. Vuong, T. W. H. Luk, J. Ramjist, A. Curtis, H. Jakubovic, P. Kertes, M. Letarte, M. E. Faughnan, V. X. D. Yang, and Brain Vascular Malformation Consortium HHT Investigator Group, “Histogram flow mapping with optical coherence tomography for in vivo skin angiography of hereditary hemorrhagic telangiectasia,” J. Biomed. Opt. 19(8), 086015 (2014).
[PubMed]

Mahmud, M. S.

M. S. Mahmud, D. W. Cadotte, B. Vuong, C. Sun, T. W. Luk, A. Mariampillai, and V. X. Yang, “Review of speckle and phase variance optical coherence tomography to visualize microvascular networks,” J. Biomed. Opt. 18(5), 050901 (2013).
[Crossref] [PubMed]

Mandeville, E. T.

V. J. Srinivasan, E. T. Mandeville, A. Can, F. Blasi, M. Climov, A. Daneshmand, J. H. Lee, E. Yu, H. Radhakrishnan, E. H. Lo, S. Sakadžić, K. Eikermann-Haerter, and C. Ayata, “Multiparametric, Logitudinal Optical Coherence Tomography Imaging Reveals Acute Injury and Chronic Recovery in Experimental Ischemic Stroke,” PLoS ONE 8(8), e71748 (2013).
[Crossref] [PubMed]

V. J. Srinivasan, H. Radhakrishnan, E. H. Lo, E. T. Mandeville, J. Y. Jiang, S. Barry, and A. E. Cable, “OCT methods for capillary velocimetry,” Biomed. Opt. Express 3(3), 612–629 (2012).
[Crossref] [PubMed]

Mariampillai, A.

K. H. Y. Cheng, A. Mariampillai, K. K. C. Lee, B. Vuong, T. W. H. Luk, J. Ramjist, A. Curtis, H. Jakubovic, P. Kertes, M. Letarte, M. E. Faughnan, V. X. D. Yang, and Brain Vascular Malformation Consortium HHT Investigator Group, “Histogram flow mapping with optical coherence tomography for in vivo skin angiography of hereditary hemorrhagic telangiectasia,” J. Biomed. Opt. 19(8), 086015 (2014).
[PubMed]

M. S. Mahmud, D. W. Cadotte, B. Vuong, C. Sun, T. W. Luk, A. Mariampillai, and V. X. Yang, “Review of speckle and phase variance optical coherence tomography to visualize microvascular networks,” J. Biomed. Opt. 18(5), 050901 (2013).
[Crossref] [PubMed]

K. K. C. Lee, A. Mariampillai, J. X. Z. Yu, D. W. Cadotte, B. C. Wilson, B. A. Standish, and V. X. D. Yang, “Real-time speckle variance swept-source optical coherence tomography using a graphics processing unit,” Biomed. Opt. Express 3(7), 1557–1564 (2012).
[Crossref] [PubMed]

A. Mariampillai, M. K. Leung, M. Jarvi, B. A. Standish, K. Lee, B. C. Wilson, A. Vitkin, and V. X. Yang, “Optimized speckle variance OCT imaging of microvasculature,” Opt. Lett. 35(8), 1257–1259 (2010).
[Crossref] [PubMed]

Meuer, S. M.

Y. Huang, S. Gangaputra, K. E. Lee, A. R. Narkar, R. Klein, B. E. Klein, S. M. Meuer, and R. P. Danis, “Signal quality assessment of retinal optical coherence tomography images,” Invest. Ophthalmol. Vis. Sci. 53(4), 2133–2141 (2012).
[Crossref] [PubMed]

Nam, A. S.

Narkar, A. R.

Y. Huang, S. Gangaputra, K. E. Lee, A. R. Narkar, R. Klein, B. E. Klein, S. M. Meuer, and R. P. Danis, “Signal quality assessment of retinal optical coherence tomography images,” Invest. Ophthalmol. Vis. Sci. 53(4), 2133–2141 (2012).
[Crossref] [PubMed]

Noecker, R. J.

D. M. Stein, H. Ishikawa, R. Hariprasad, G. Wollstein, R. J. Noecker, J. G. Fujimoto, and J. S. Schuman, “A new quality assessment parameter for optical coherence tomography,” Br. J. Ophthalmol. 90(2), 186–190 (2006).
[Crossref] [PubMed]

Pfefer, T. J.

Potsaid, B.

Qi, W.

Radhakrishnan, H.

Ramjist, J.

K. H. Y. Cheng, A. Mariampillai, K. K. C. Lee, B. Vuong, T. W. H. Luk, J. Ramjist, A. Curtis, H. Jakubovic, P. Kertes, M. Letarte, M. E. Faughnan, V. X. D. Yang, and Brain Vascular Malformation Consortium HHT Investigator Group, “Histogram flow mapping with optical coherence tomography for in vivo skin angiography of hereditary hemorrhagic telangiectasia,” J. Biomed. Opt. 19(8), 086015 (2014).
[PubMed]

Sakadžic, S.

V. J. Srinivasan, E. T. Mandeville, A. Can, F. Blasi, M. Climov, A. Daneshmand, J. H. Lee, E. Yu, H. Radhakrishnan, E. H. Lo, S. Sakadžić, K. Eikermann-Haerter, and C. Ayata, “Multiparametric, Logitudinal Optical Coherence Tomography Imaging Reveals Acute Injury and Chronic Recovery in Experimental Ischemic Stroke,” PLoS ONE 8(8), e71748 (2013).
[Crossref] [PubMed]

Schuman, J. S.

D. M. Stein, H. Ishikawa, R. Hariprasad, G. Wollstein, R. J. Noecker, J. G. Fujimoto, and J. S. Schuman, “A new quality assessment parameter for optical coherence tomography,” Br. J. Ophthalmol. 90(2), 186–190 (2006).
[Crossref] [PubMed]

Schwartz, D. M.

Srinivasan, V. J.

Standish, B. A.

Stein, D. M.

D. M. Stein, H. Ishikawa, R. Hariprasad, G. Wollstein, R. J. Noecker, J. G. Fujimoto, and J. S. Schuman, “A new quality assessment parameter for optical coherence tomography,” Br. J. Ophthalmol. 90(2), 186–190 (2006).
[Crossref] [PubMed]

Subhash, H.

Sun, C.

M. S. Mahmud, D. W. Cadotte, B. Vuong, C. Sun, T. W. Luk, A. Mariampillai, and V. X. Yang, “Review of speckle and phase variance optical coherence tomography to visualize microvascular networks,” J. Biomed. Opt. 18(5), 050901 (2013).
[Crossref] [PubMed]

Tan, O.

Tokayer, J.

Tomasi, C.

Tromberg, B. J.

Vakoc, B. J.

Vermeer, K. A.

Vienola, K. V.

Vitkin, A.

Vuong, B.

K. H. Y. Cheng, A. Mariampillai, K. K. C. Lee, B. Vuong, T. W. H. Luk, J. Ramjist, A. Curtis, H. Jakubovic, P. Kertes, M. Letarte, M. E. Faughnan, V. X. D. Yang, and Brain Vascular Malformation Consortium HHT Investigator Group, “Histogram flow mapping with optical coherence tomography for in vivo skin angiography of hereditary hemorrhagic telangiectasia,” J. Biomed. Opt. 19(8), 086015 (2014).
[PubMed]

M. S. Mahmud, D. W. Cadotte, B. Vuong, C. Sun, T. W. Luk, A. Mariampillai, and V. X. Yang, “Review of speckle and phase variance optical coherence tomography to visualize microvascular networks,” J. Biomed. Opt. 18(5), 050901 (2013).
[Crossref] [PubMed]

Wang, R. K.

Wang, Y.

Welle, C. G.

Werner, J. S.

Wietecha, T.

Wilson, B. C.

Wollstein, G.

D. M. Stein, H. Ishikawa, R. Hariprasad, G. Wollstein, R. J. Noecker, J. G. Fujimoto, and J. S. Schuman, “A new quality assessment parameter for optical coherence tomography,” Br. J. Ophthalmol. 90(2), 186–190 (2006).
[Crossref] [PubMed]

Wu, W.

Yang, V. X.

M. S. Mahmud, D. W. Cadotte, B. Vuong, C. Sun, T. W. Luk, A. Mariampillai, and V. X. Yang, “Review of speckle and phase variance optical coherence tomography to visualize microvascular networks,” J. Biomed. Opt. 18(5), 050901 (2013).
[Crossref] [PubMed]

A. Mariampillai, M. K. Leung, M. Jarvi, B. A. Standish, K. Lee, B. C. Wilson, A. Vitkin, and V. X. Yang, “Optimized speckle variance OCT imaging of microvasculature,” Opt. Lett. 35(8), 1257–1259 (2010).
[Crossref] [PubMed]

Yang, V. X. D.

K. H. Y. Cheng, A. Mariampillai, K. K. C. Lee, B. Vuong, T. W. H. Luk, J. Ramjist, A. Curtis, H. Jakubovic, P. Kertes, M. Letarte, M. E. Faughnan, V. X. D. Yang, and Brain Vascular Malformation Consortium HHT Investigator Group, “Histogram flow mapping with optical coherence tomography for in vivo skin angiography of hereditary hemorrhagic telangiectasia,” J. Biomed. Opt. 19(8), 086015 (2014).
[PubMed]

K. K. C. Lee, A. Mariampillai, J. X. Z. Yu, D. W. Cadotte, B. C. Wilson, B. A. Standish, and V. X. D. Yang, “Real-time speckle variance swept-source optical coherence tomography using a graphics processing unit,” Biomed. Opt. Express 3(7), 1557–1564 (2012).
[Crossref] [PubMed]

Yaseen, M. A.

Yin, X.

Yu, E.

V. J. Srinivasan, E. T. Mandeville, A. Can, F. Blasi, M. Climov, A. Daneshmand, J. H. Lee, E. Yu, H. Radhakrishnan, E. H. Lo, S. Sakadžić, K. Eikermann-Haerter, and C. Ayata, “Multiparametric, Logitudinal Optical Coherence Tomography Imaging Reveals Acute Injury and Chronic Recovery in Experimental Ischemic Stroke,” PLoS ONE 8(8), e71748 (2013).
[Crossref] [PubMed]

Yu, J. X. Z.

Yu, L.

Zawadzki, R. J.

Zhang, K.

Zhi, Z.

Biomed. Opt. Express (12)

D. Y. Kim, J. Fingler, J. S. Werner, D. M. Schwartz, S. E. Fraser, and R. J. Zawadzki, “In vivo volumetric imaging of human retinal circulation with phase-variance optical coherence tomography,” Biomed. Opt. Express 2(6), 1504–1513 (2011).
[Crossref] [PubMed]

Z. Zhi, X. Yin, S. Dziennis, T. Wietecha, K. L. Hudkins, C. E. Alpers, and R. K. Wang, “Optical microangiography of retina and choroid and measurement of total retinal blood flow in mice,” Biomed. Opt. Express 3(11), 2976–2986 (2012).
[Crossref] [PubMed]

H. C. Hendargo, R. Estrada, S. J. Chiu, C. Tomasi, S. Farsiu, and J. A. Izatt, “Automated non-rigid registration and mosaicing for robust imaging of distinct retinal capillary beds using speckle variance optical coherence tomography,” Biomed. Opt. Express 4(6), 803–821 (2013).
[Crossref] [PubMed]

V. J. Srinivasan, H. Radhakrishnan, E. H. Lo, E. T. Mandeville, J. Y. Jiang, S. Barry, and A. E. Cable, “OCT methods for capillary velocimetry,” Biomed. Opt. Express 3(3), 612–629 (2012).
[Crossref] [PubMed]

D. X. Hammer, A. Lozzi, E. Abliz, N. Greenbaum, A. Agrawal, V. Krauthamer, and C. G. Welle, “Longitudinal vascular dynamics following cranial window and electrode implantation measured with speckle variance optical coherence angiography,” Biomed. Opt. Express 5(8), 2823–2836 (2014).
[Crossref] [PubMed]

A. S. Nam, I. Chico-Calero, and B. J. Vakoc, “Complex differential variance algorithm for optical coherence tomography angiography,” Biomed. Opt. Express 5(11), 3822–3832 (2014).
[Crossref] [PubMed]

H. Radhakrishnan and V. J. Srinivasan, “Compartment-resolved imaging of cortical functional hyperemia with OCT angiography,” Biomed. Opt. Express 4(8), 1255–1268 (2013).
[Crossref] [PubMed]

G. Liu, A. J. Lin, B. J. Tromberg, and Z. Chen, “A comparison of Doppler optical coherence tomography methods,” Biomed. Opt. Express 3(10), 2669–2680 (2012).
[Crossref] [PubMed]

X. Liu, K. Zhang, Y. Huang, and J. U. Kang, “Spectroscopic-speckle variance OCT for microvasculature detection and analysis,” Biomed. Opt. Express 2(11), 2995–3009 (2011).
[Crossref] [PubMed]

K. K. C. Lee, A. Mariampillai, J. X. Z. Yu, D. W. Cadotte, B. C. Wilson, B. A. Standish, and V. X. D. Yang, “Real-time speckle variance swept-source optical coherence tomography using a graphics processing unit,” Biomed. Opt. Express 3(7), 1557–1564 (2012).
[Crossref] [PubMed]

A. Agrawal, M. Connors, A. Beylin, C. P. Liang, D. Barton, Y. Chen, R. A. Drezek, and T. J. Pfefer, “Characterizing the point spread function of retinal OCT devices with a model eye-based phantom,” Biomed. Opt. Express 3(5), 1116–1126 (2012).
[Crossref] [PubMed]

J. Lee, J. Y. Jiang, W. Wu, F. Lesage, and D. A. Boas, “Statistical intensity variation analysis for rapid volumetric imaging of capillary network flux,” Biomed. Opt. Express 5(4), 1160–1172 (2014).
[Crossref] [PubMed]

Br. J. Ophthalmol. (1)

D. M. Stein, H. Ishikawa, R. Hariprasad, G. Wollstein, R. J. Noecker, J. G. Fujimoto, and J. S. Schuman, “A new quality assessment parameter for optical coherence tomography,” Br. J. Ophthalmol. 90(2), 186–190 (2006).
[Crossref] [PubMed]

Invest. Ophthalmol. Vis. Sci. (1)

Y. Huang, S. Gangaputra, K. E. Lee, A. R. Narkar, R. Klein, B. E. Klein, S. M. Meuer, and R. P. Danis, “Signal quality assessment of retinal optical coherence tomography images,” Invest. Ophthalmol. Vis. Sci. 53(4), 2133–2141 (2012).
[Crossref] [PubMed]

J. Biomed. Opt. (2)

M. S. Mahmud, D. W. Cadotte, B. Vuong, C. Sun, T. W. Luk, A. Mariampillai, and V. X. Yang, “Review of speckle and phase variance optical coherence tomography to visualize microvascular networks,” J. Biomed. Opt. 18(5), 050901 (2013).
[Crossref] [PubMed]

K. H. Y. Cheng, A. Mariampillai, K. K. C. Lee, B. Vuong, T. W. H. Luk, J. Ramjist, A. Curtis, H. Jakubovic, P. Kertes, M. Letarte, M. E. Faughnan, V. X. D. Yang, and Brain Vascular Malformation Consortium HHT Investigator Group, “Histogram flow mapping with optical coherence tomography for in vivo skin angiography of hereditary hemorrhagic telangiectasia,” J. Biomed. Opt. 19(8), 086015 (2014).
[PubMed]

J. Opt. Soc. Am. A (1)

Opt. Express (3)

Opt. Lett. (2)

PLoS ONE (1)

V. J. Srinivasan, E. T. Mandeville, A. Can, F. Blasi, M. Climov, A. Daneshmand, J. H. Lee, E. Yu, H. Radhakrishnan, E. H. Lo, S. Sakadžić, K. Eikermann-Haerter, and C. Ayata, “Multiparametric, Logitudinal Optical Coherence Tomography Imaging Reveals Acute Injury and Chronic Recovery in Experimental Ischemic Stroke,” PLoS ONE 8(8), e71748 (2013).
[Crossref] [PubMed]

Other (2)

J. W. Goodman, Statistical Optics (Wiley, 1985).

W. Draxler and J. G. Fujimoto, Optical Coherence Tomography (Springer 2008), Chap. 2.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 OCT angiograms of mouse cortical tissue. Single cross-sectional images acquired using 5 × (a) and 10 × (b) objective lenses. White lines indicate the integrated depth. En face images of one slice (4 µm) for 5 × (c) and 10 × (d). En face images obtained through MIP of 40 µm for 5 × (e) and 10 × (f) and of 100 µm for 5 × (g) and 10 × (h). Note how capillary networks appear disconnected in single slices. Yellow arrowheads indicate capillaries used as a reference for depth registration.
Fig. 2
Fig. 2 Representative capillary network of mouse primary motor cortex using a 10 × objective lens 370 µm below the window, at the center of the focus. Each set was processed using average absolute difference (a-e) and standard deviation algorithm (f-l). En face images were obtained for increasing gate length. For each region a zoomed image (2 × ) is presented for qualitative comparisons.
Fig. 3
Fig. 3 (a) Histogram of pixel intensity values from an en face angiogram. (b) SNR as a function of N obtained via histogram fit. (c) OCA region of interest (125 × 125 pixels) used to demonstrate segmentation. (d) Four profiles indicated by numbered ROIs were used to obtain a mean full width half maximum (FWHM) profile for the mask. The segmentation steps include: (e) local adaptive thresholding using a Niblack algorithm, (f) particle filtering, (g) skeletonization, and (h) dilation.
Fig. 4
Fig. 4 SNR (a-b) and Weber contrast (c-d) in OCA en face images of capillaries as function of gate length, objective lens, and algorithm. Each data point represents an average of four measurements in different regions of the same en face image (error bars = ± SD).
Fig. 5
Fig. 5 Profiles of the same capillary in data sets acquired using different objective lenses. (a,b)Example ROI for 5 × (a) and 10 × (b) data sets. (c) Profile of the capillary indicated in (a) and (b), continuous line (5 × ) and dashed line (10 × ). Symbols indicate FWHM values. (d) Bar chart showing mean diameter (error bars = ± SD) in capillaries grouped by diameter size. Two groups were separated by the lateral resolution using 5 × objective (6.5 µm). Statistical significance is shown for each group.
Fig. 6
Fig. 6 Acquisition time as function of the gate length. The acquisition time is split into scan time (dark grey) and GPU processing time (light grey). They account for the total time needed to obtain a processed B-scan. Two dashed blue lines delineate the approximate range of mouse respiration (100-120 breathes per minute).

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

p x A A D = n = 0 N 1   | A n A n + 1 | N 1
p x S D = n = 0 N ( A n A ¯ )   2 N
S N R = μ s μ b σ s 2 + σ b 2
W c = μ s μ b μ b

Metrics