Abstract

Both polarization sensitive optical coherence tomography (PS-OCT) and second harmonic generation (SHG) microscopy are 3D optical imaging methods providing information related to collagen in the skin. PS-OCT provides birefringence information which is due to the collagen composition of the skin. SHG microscopy visualizes collagen fibers in the skin based on their SHG property. These two modalities have been applied to the same skin pathologies associated with collagen changes, but their relationship has not been examined. In this study, we tried to find the relationship by imaging the same skin samples with both modalities. Various parts of the normal rat skin and burn damaged skin were imaged ex vivo, and their images were analyzed both qualitatively and quantitatively. PS-OCT images were analyzed to obtain tissue birefringence. SHG images were analyzed to obtain collagen orientation indices by applying 2D Fourier transform. The skin samples having higher birefringence values had higher collagen orientation indices, and a linear correlation was found between them. Burn damaged skin showed decreases in both parameters compared to the control skins. This relationship between the bulk and microscopic properties of skin may be useful for further skin studies.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Combined reflectance confocal microscopy/optical coherence tomography imaging for skin burn assessment

Nicusor Iftimia, R. Daniel Ferguson, Mircea Mujat, Ankit H. Patel, Ellen Ziyi Zhang, William Fox, and Milind Rajadhyaksha
Biomed. Opt. Express 4(5) 680-695 (2013)

Observation of dermal collagen fiber in wrinkled skin using polarization-resolved second-harmonic-generation microscopy

Takeshi Yasui, Yu Takahashi, Shuichiro Fukushima, Yuki Ogura, Toyonobu Yamashita, Tomohiro Kuwahara, Tetsuji Hirao, and Tsutomu Araki
Opt. Express 17(2) 912-923 (2009)

Quantitative analysis of intrinsic skin aging in dermal papillae by in vivo harmonic generation microscopy

Yi-Hua Liao, Wei-Cheng Kuo, Sin-Yo Chou, Cheng-Shiun Tsai, Guan-Liang Lin, Ming-Rung Tsai, Yuan-Ta Shih, Gwo-Giun Lee, and Chi-Kuang Sun
Biomed. Opt. Express 5(9) 3266-3279 (2014)

References

  • View by:
  • |
  • |
  • |

  1. J. F. de Boer and T. E. Milner, “Review of polarization sensitive optical coherence tomography and Stokes vector determination,” J. Biomed. Opt. 7(3), 359–371 (2002).
    [Crossref] [PubMed]
  2. K. H. Kim, B. H. Park, Y. Tu, T. Hasan, B. Lee, J. Li, and J. F. de Boer, “Polarization-sensitive optical frequency domain imaging based on unpolarized light,” Opt. Express 19(2), 552–561 (2011).
    [Crossref] [PubMed]
  3. J. F. de Boer, T. E. Milner, M. J. C. van Gemert, and J. S. Nelson, “Two-dimensional birefringence imaging in biological tissue by polarization-sensitive optical coherence tomography,” Opt. Lett. 22(12), 934–936 (1997).
    [Crossref] [PubMed]
  4. K. H. Kim, M. C. Pierce, G. Maguluri, B. H. Park, S. J. Yoon, M. Lydon, R. Sheridan, and J. F. de Boer, “In vivo imaging of human burn injuries with polarization-sensitive optical coherence tomography,” J. Biomed. Opt. 17(6), 066012 (2012).
    [Crossref] [PubMed]
  5. B. H. Park, C. Saxer, S. M. Srinivas, J. S. Nelson, and J. F. de Boer, “In vivo burn depth determination by high-speed fiber-based polarization sensitive optical coherence tomography,” J. Biomed. Opt. 6(4), 474–479 (2001).
    [Crossref] [PubMed]
  6. M. C. Pierce, R. L. Sheridan, B. Hyle Park, B. Cense, and J. F. de Boer, “Collagen denaturation can be quantified in burned human skin using polarization-sensitive optical coherence tomography,” Burns 30(6), 511–517 (2004).
    [Crossref] [PubMed]
  7. S. M. Srinivas, J. F. de Boer, H. Park, K. Keikhanzadeh, H. E. Huang, J. Zhang, W. Q. Jung, Z. Chen, and J. S. Nelson, “Determination of burn depth by polarization-sensitive optical coherence tomography,” J. Biomed. Opt. 9(1), 207–212 (2004).
    [Crossref] [PubMed]
  8. S. Sakai, N. Nakagawa, M. Yamanari, A. Miyazawa, Y. Yasuno, and M. Matsumoto, “Relationship between dermal birefringence and the skin surface roughness of photoaged human skin,” J. Biomed. Opt. 14(4), 044032 (2009).
    [Crossref] [PubMed]
  9. S. Sakai, M. Yamanari, A. Miyazawa, M. Matsumoto, N. Nakagawa, T. Sugawara, K. Kawabata, T. Yatagai, and Y. Yasuno, “In vivo three-dimensional birefringence analysis shows collagen differences between young and old photo-aged human skin,” J. Invest. Dermatol. 128(7), 1641–1647 (2008).
    [Crossref] [PubMed]
  10. P. J. Campagnola and L. M. Loew, “Second-harmonic imaging microscopy for visualizing biomolecular arrays in cells, tissues and organisms,” Nat. Biotechnol. 21(11), 1356–1360 (2003).
    [Crossref] [PubMed]
  11. T. Yasui, M. Yonetsu, R. Tanaka, Y. Tanaka, S. Fukushima, T. Yamashita, Y. Ogura, T. Hirao, H. Murota, and T. Araki, “In vivo observation of age-related structural changes of dermal collagen in human facial skin using collagen-sensitive second harmonic generation microscope equipped with 1250-nm mode-locked Cr:Forsterite laser,” J. Biomed. Opt. 18(3), 031108 (2013).
    [Crossref] [PubMed]
  12. S. Zhuo, X. Zhu, J. Chen, and S. Xie, “Quantitative biomarkers of human skin photoaging based on intrinsic second harmonic generation signal,” Scanning 35(4), 273–276 (2013).
    [Crossref] [PubMed]
  13. Y.-H. Liao, W.-C. Kuo, S.-Y. Chou, C.-S. Tsai, G.-L. Lin, M.-R. Tsai, Y.-T. Shih, G.-G. Lee, and C.-K. Sun, “Quantitative analysis of intrinsic skin aging in dermal papillae by in vivo harmonic generation microscopy,” Biomed. Opt. Express 5(9), 3266–3279 (2014).
    [Crossref] [PubMed]
  14. S. J. Lin, S. H. Jee, C. J. Kuo, R. J. Wu, W. C. Lin, J. S. Chen, Y. H. Liao, C. J. Hsu, T. F. Tsai, Y. F. Chen, and C. Y. Dong, “Discrimination of basal cell carcinoma from normal dermal stroma by quantitative multiphoton imaging,” Opt. Lett. 31(18), 2756–2758 (2006).
    [Crossref] [PubMed]
  15. R. LaComb, O. Nadiarnykh, and P. J. Campagnola, “Quantitative Second Harmonic Generation Imaging of the Diseased State Osteogenesis Imperfecta: Experiment and Simulation,” Biophys. J. 94(11), 4504–4514 (2008).
    [Crossref] [PubMed]
  16. R. Tanaka, S. Fukushima, K. Sasaki, Y. Tanaka, H. Murota, T. Matsumoto, T. Araki, and T. Yasui, “In vivo visualization of dermal collagen fiber in skin burn by collagen-sensitive second-harmonic-generation microscopy,” J. Biomed. Opt. 18(6), 061231 (2013).
    [Crossref] [PubMed]
  17. S. L. Wu, H. Li, X. M. Zhang, W. R. Chen, and Y. X. Wang, “Character of skin on photo-thermal response and its regeneration process using second-harmonic generation microscopy,” Lasers Med. Sci. 29(1), 141–146 (2014).
    [Crossref] [PubMed]
  18. S.-Y. Chen, C. Shee-Uan, W. Hai-Yin, L. Wen-Jeng, Y.-H. Liao, and C.-K. Sun, “In vivo virtual biopsy of human skin by using noninvasive higher harmonic generation microscopy,” IEEE J. Sel. Top. Quantum Electron. 16(3), 478–492 (2010).
    [Crossref]
  19. N. Vogler, A. Medyukhina, I. Latka, S. Kemper, M. Böhm, B. Dietzek, and J. Popp, “Towards multimodal nonlinear optical tomography – experimental methodology,” Laser Phys. Lett. 8(8), 617–624 (2011).
    [Crossref]
  20. M.-G. Lin, T.-L. Yang, C.-T. Chiang, H.-C. Kao, J.-N. Lee, W. Lo, S.-H. Jee, Y.-F. Chen, C.-Y. Dong, and S.-J. Lin, “Evaluation of dermal thermal damage by multiphoton autofluorescence and second-harmonic-generation microscopy,” J. Biomed. Opt. 11(6), 064006 (2006).
    [Crossref] [PubMed]
  21. P. Matteini, F. Ratto, F. Rossi, R. Cicchi, C. Stringari, D. Kapsokalyvas, F. S. Pavone, and R. Pini, “Photothermally-induced disordered patterns of corneal collagen revealed by SHG imaging,” Opt. Express 17(6), 4868–4878 (2009).
    [Crossref] [PubMed]
  22. S. Wu, H. Li, H. Yang, X. Zhang, Z. Li, and S. Xu, “Quantitative analysis on collagen morphology in aging skin based on multiphoton microscopy,” J. Biomed. Opt. 16(4), 040502 (2011).
    [Crossref] [PubMed]
  23. R. M. Aspden, Y. E. Yarker, and D. W. Hukins, “Collagen orientations in the meniscus of the knee joint,” J. Anat. 140(Pt 3), 371–380 (1985).
    [PubMed]
  24. A. Aparecida de Aro, B. C. Vidal, and E. R. Pimentel, “Biochemical and anisotropical properties of tendons,” Micron 43(2-3), 205–214 (2012).
    [Crossref] [PubMed]
  25. H. J. C. de Vries, D. N. Enomoto, J. van Marle, P. P. van Zuijlen, J. R. Mekkes, and J. D. Bos, “Dermal organization in Scleroderma: The Fast Fourier Transform and the laser scatter method objectify fibrosis in nonlesional as well as lesional skin,” Lab. Invest. 80(8), 1281–1289 (2000).
    [Crossref] [PubMed]
  26. S. Brasselet, “Polarization-resolved nonlinear microscopy: application to structural molecular and biological imaging,” Adv. Opt. Photon. 3(3), 205–271 (2011).
    [Crossref]
  27. T. Yasui, K. Sasaki, Y. Tohno, and T. Araki, “Tomographic Imaging of Collagen Fiber Orientation in Human Tissue Using Depth-Resolved Polarimetry of Second-Harmonic-Generation Light,” Opt. Quantum Electron. 37(13-15), 1397–1408 (2005).
    [Crossref]
  28. V. A. Hovhannisyan, P.-S. Hu, H.-Y. Tan, S.-J. Chen, and C.-Y. Dong, “Spatial orientation mapping of fibers using polarization-sensitive second harmonic generation microscopy,” J. Biophotonics 5(10), 768–776 (2012).
    [Crossref] [PubMed]
  29. A. Erikson, J. Örtegren, T. Hompland, C. de Lange Davies, and M. Lindgren, “Quantification of the second-order nonlinear susceptibility of collagen I using a laser scanning microscope,” J. Biomed. Opt. 12(4), 044002 (2007).
    [Crossref] [PubMed]
  30. S. Psilodimitrakopoulos, V. Petegnief, G. Soria, I. Amat-Roldan, D. Artigas, A. M. Planas, and P. Loza-Alvarez, “Estimation of the effective orientation of the SHG source in primary cortical neurons,” Opt. Express 17(16), 14418–14425 (2009).
    [Crossref] [PubMed]
  31. B. Baumann, W. Choi, B. Potsaid, D. Huang, J. S. Duker, and J. G. Fujimoto, “Swept source/Fourier domain polarization sensitive optical coherence tomography with a passive polarization delay unit,” Opt. Express 20(9), 10229–10241 (2012).
    [Crossref] [PubMed]
  32. B. Jeong, B. Lee, M. S. Jang, H. Nam, S. J. Yoon, T. Wang, J. Doh, B.-G. Yang, M. H. Jang, and K. H. Kim, “Combined two-photon microscopy and optical coherence tomography using individually optimized sources,” Opt. Express 19(14), 13089–13096 (2011).
    [Crossref] [PubMed]
  33. X. Chen, O. Nadiarynkh, S. Plotnikov, and P. J. Campagnola, “Second harmonic generation microscopy for quantitative analysis of collagen fibrillar structure,” Nat. Protoc. 7(4), 654–669 (2012).
    [Crossref] [PubMed]
  34. E. F. Bernstein, Y. Q. Chen, J. B. Kopp, L. Fisher, D. B. Brown, P. J. Hahn, F. A. Robey, J. Lakkakorpi, and J. Uitto, “Long-term sun exposure alters the collagen of the papillary dermis. Comparison of sun-protected and photoaged skin by Northern analysis, immunohistochemical staining, and confocal laser scanning microscopy,” J. Am. Acad. Dermatol. 34(2 Pt 1), 209–218 (1996).
    [Crossref] [PubMed]
  35. S. P. Chong, T. Lai, Y. Zhou, and S. Tang, “Tri-modal microscopy with multiphoton and optical coherence microscopy/tomography for multi-scale and multi-contrast imaging,” Biomed. Opt. Express 4(9), 1584–1594 (2013).
    [Crossref] [PubMed]
  36. S. Tang, Y. Zhou, K. K. H. Chan, and T. Lai, “Multiscale multimodal imaging with multiphoton microscopy and optical coherence tomography,” Opt. Lett. 36(24), 4800–4802 (2011).
    [Crossref] [PubMed]
  37. G. Liu and Z. Chen, “Fiber-based combined optical coherence and multiphoton endomicroscopy,” J. Biomed. Opt. 16(3), 036010 (2011).
    [Crossref] [PubMed]
  38. J. Xi, Y. Chen, Y. Zhang, K. Murari, M.-J. Li, and X. Li, “Integrated multimodal endomicroscopy platform for simultaneous en face optical coherence and two-photon fluorescence imaging,” Opt. Lett. 37(3), 362–364 (2012).
    [Crossref] [PubMed]

2014 (2)

S. L. Wu, H. Li, X. M. Zhang, W. R. Chen, and Y. X. Wang, “Character of skin on photo-thermal response and its regeneration process using second-harmonic generation microscopy,” Lasers Med. Sci. 29(1), 141–146 (2014).
[Crossref] [PubMed]

Y.-H. Liao, W.-C. Kuo, S.-Y. Chou, C.-S. Tsai, G.-L. Lin, M.-R. Tsai, Y.-T. Shih, G.-G. Lee, and C.-K. Sun, “Quantitative analysis of intrinsic skin aging in dermal papillae by in vivo harmonic generation microscopy,” Biomed. Opt. Express 5(9), 3266–3279 (2014).
[Crossref] [PubMed]

2013 (4)

S. P. Chong, T. Lai, Y. Zhou, and S. Tang, “Tri-modal microscopy with multiphoton and optical coherence microscopy/tomography for multi-scale and multi-contrast imaging,” Biomed. Opt. Express 4(9), 1584–1594 (2013).
[Crossref] [PubMed]

R. Tanaka, S. Fukushima, K. Sasaki, Y. Tanaka, H. Murota, T. Matsumoto, T. Araki, and T. Yasui, “In vivo visualization of dermal collagen fiber in skin burn by collagen-sensitive second-harmonic-generation microscopy,” J. Biomed. Opt. 18(6), 061231 (2013).
[Crossref] [PubMed]

T. Yasui, M. Yonetsu, R. Tanaka, Y. Tanaka, S. Fukushima, T. Yamashita, Y. Ogura, T. Hirao, H. Murota, and T. Araki, “In vivo observation of age-related structural changes of dermal collagen in human facial skin using collagen-sensitive second harmonic generation microscope equipped with 1250-nm mode-locked Cr:Forsterite laser,” J. Biomed. Opt. 18(3), 031108 (2013).
[Crossref] [PubMed]

S. Zhuo, X. Zhu, J. Chen, and S. Xie, “Quantitative biomarkers of human skin photoaging based on intrinsic second harmonic generation signal,” Scanning 35(4), 273–276 (2013).
[Crossref] [PubMed]

2012 (6)

K. H. Kim, M. C. Pierce, G. Maguluri, B. H. Park, S. J. Yoon, M. Lydon, R. Sheridan, and J. F. de Boer, “In vivo imaging of human burn injuries with polarization-sensitive optical coherence tomography,” J. Biomed. Opt. 17(6), 066012 (2012).
[Crossref] [PubMed]

A. Aparecida de Aro, B. C. Vidal, and E. R. Pimentel, “Biochemical and anisotropical properties of tendons,” Micron 43(2-3), 205–214 (2012).
[Crossref] [PubMed]

V. A. Hovhannisyan, P.-S. Hu, H.-Y. Tan, S.-J. Chen, and C.-Y. Dong, “Spatial orientation mapping of fibers using polarization-sensitive second harmonic generation microscopy,” J. Biophotonics 5(10), 768–776 (2012).
[Crossref] [PubMed]

X. Chen, O. Nadiarynkh, S. Plotnikov, and P. J. Campagnola, “Second harmonic generation microscopy for quantitative analysis of collagen fibrillar structure,” Nat. Protoc. 7(4), 654–669 (2012).
[Crossref] [PubMed]

J. Xi, Y. Chen, Y. Zhang, K. Murari, M.-J. Li, and X. Li, “Integrated multimodal endomicroscopy platform for simultaneous en face optical coherence and two-photon fluorescence imaging,” Opt. Lett. 37(3), 362–364 (2012).
[Crossref] [PubMed]

B. Baumann, W. Choi, B. Potsaid, D. Huang, J. S. Duker, and J. G. Fujimoto, “Swept source/Fourier domain polarization sensitive optical coherence tomography with a passive polarization delay unit,” Opt. Express 20(9), 10229–10241 (2012).
[Crossref] [PubMed]

2011 (7)

2010 (1)

S.-Y. Chen, C. Shee-Uan, W. Hai-Yin, L. Wen-Jeng, Y.-H. Liao, and C.-K. Sun, “In vivo virtual biopsy of human skin by using noninvasive higher harmonic generation microscopy,” IEEE J. Sel. Top. Quantum Electron. 16(3), 478–492 (2010).
[Crossref]

2009 (3)

2008 (2)

S. Sakai, M. Yamanari, A. Miyazawa, M. Matsumoto, N. Nakagawa, T. Sugawara, K. Kawabata, T. Yatagai, and Y. Yasuno, “In vivo three-dimensional birefringence analysis shows collagen differences between young and old photo-aged human skin,” J. Invest. Dermatol. 128(7), 1641–1647 (2008).
[Crossref] [PubMed]

R. LaComb, O. Nadiarnykh, and P. J. Campagnola, “Quantitative Second Harmonic Generation Imaging of the Diseased State Osteogenesis Imperfecta: Experiment and Simulation,” Biophys. J. 94(11), 4504–4514 (2008).
[Crossref] [PubMed]

2007 (1)

A. Erikson, J. Örtegren, T. Hompland, C. de Lange Davies, and M. Lindgren, “Quantification of the second-order nonlinear susceptibility of collagen I using a laser scanning microscope,” J. Biomed. Opt. 12(4), 044002 (2007).
[Crossref] [PubMed]

2006 (2)

S. J. Lin, S. H. Jee, C. J. Kuo, R. J. Wu, W. C. Lin, J. S. Chen, Y. H. Liao, C. J. Hsu, T. F. Tsai, Y. F. Chen, and C. Y. Dong, “Discrimination of basal cell carcinoma from normal dermal stroma by quantitative multiphoton imaging,” Opt. Lett. 31(18), 2756–2758 (2006).
[Crossref] [PubMed]

M.-G. Lin, T.-L. Yang, C.-T. Chiang, H.-C. Kao, J.-N. Lee, W. Lo, S.-H. Jee, Y.-F. Chen, C.-Y. Dong, and S.-J. Lin, “Evaluation of dermal thermal damage by multiphoton autofluorescence and second-harmonic-generation microscopy,” J. Biomed. Opt. 11(6), 064006 (2006).
[Crossref] [PubMed]

2005 (1)

T. Yasui, K. Sasaki, Y. Tohno, and T. Araki, “Tomographic Imaging of Collagen Fiber Orientation in Human Tissue Using Depth-Resolved Polarimetry of Second-Harmonic-Generation Light,” Opt. Quantum Electron. 37(13-15), 1397–1408 (2005).
[Crossref]

2004 (2)

M. C. Pierce, R. L. Sheridan, B. Hyle Park, B. Cense, and J. F. de Boer, “Collagen denaturation can be quantified in burned human skin using polarization-sensitive optical coherence tomography,” Burns 30(6), 511–517 (2004).
[Crossref] [PubMed]

S. M. Srinivas, J. F. de Boer, H. Park, K. Keikhanzadeh, H. E. Huang, J. Zhang, W. Q. Jung, Z. Chen, and J. S. Nelson, “Determination of burn depth by polarization-sensitive optical coherence tomography,” J. Biomed. Opt. 9(1), 207–212 (2004).
[Crossref] [PubMed]

2003 (1)

P. J. Campagnola and L. M. Loew, “Second-harmonic imaging microscopy for visualizing biomolecular arrays in cells, tissues and organisms,” Nat. Biotechnol. 21(11), 1356–1360 (2003).
[Crossref] [PubMed]

2002 (1)

J. F. de Boer and T. E. Milner, “Review of polarization sensitive optical coherence tomography and Stokes vector determination,” J. Biomed. Opt. 7(3), 359–371 (2002).
[Crossref] [PubMed]

2001 (1)

B. H. Park, C. Saxer, S. M. Srinivas, J. S. Nelson, and J. F. de Boer, “In vivo burn depth determination by high-speed fiber-based polarization sensitive optical coherence tomography,” J. Biomed. Opt. 6(4), 474–479 (2001).
[Crossref] [PubMed]

2000 (1)

H. J. C. de Vries, D. N. Enomoto, J. van Marle, P. P. van Zuijlen, J. R. Mekkes, and J. D. Bos, “Dermal organization in Scleroderma: The Fast Fourier Transform and the laser scatter method objectify fibrosis in nonlesional as well as lesional skin,” Lab. Invest. 80(8), 1281–1289 (2000).
[Crossref] [PubMed]

1997 (1)

1996 (1)

E. F. Bernstein, Y. Q. Chen, J. B. Kopp, L. Fisher, D. B. Brown, P. J. Hahn, F. A. Robey, J. Lakkakorpi, and J. Uitto, “Long-term sun exposure alters the collagen of the papillary dermis. Comparison of sun-protected and photoaged skin by Northern analysis, immunohistochemical staining, and confocal laser scanning microscopy,” J. Am. Acad. Dermatol. 34(2 Pt 1), 209–218 (1996).
[Crossref] [PubMed]

1985 (1)

R. M. Aspden, Y. E. Yarker, and D. W. Hukins, “Collagen orientations in the meniscus of the knee joint,” J. Anat. 140(Pt 3), 371–380 (1985).
[PubMed]

Amat-Roldan, I.

Aparecida de Aro, A.

A. Aparecida de Aro, B. C. Vidal, and E. R. Pimentel, “Biochemical and anisotropical properties of tendons,” Micron 43(2-3), 205–214 (2012).
[Crossref] [PubMed]

Araki, T.

T. Yasui, M. Yonetsu, R. Tanaka, Y. Tanaka, S. Fukushima, T. Yamashita, Y. Ogura, T. Hirao, H. Murota, and T. Araki, “In vivo observation of age-related structural changes of dermal collagen in human facial skin using collagen-sensitive second harmonic generation microscope equipped with 1250-nm mode-locked Cr:Forsterite laser,” J. Biomed. Opt. 18(3), 031108 (2013).
[Crossref] [PubMed]

R. Tanaka, S. Fukushima, K. Sasaki, Y. Tanaka, H. Murota, T. Matsumoto, T. Araki, and T. Yasui, “In vivo visualization of dermal collagen fiber in skin burn by collagen-sensitive second-harmonic-generation microscopy,” J. Biomed. Opt. 18(6), 061231 (2013).
[Crossref] [PubMed]

T. Yasui, K. Sasaki, Y. Tohno, and T. Araki, “Tomographic Imaging of Collagen Fiber Orientation in Human Tissue Using Depth-Resolved Polarimetry of Second-Harmonic-Generation Light,” Opt. Quantum Electron. 37(13-15), 1397–1408 (2005).
[Crossref]

Artigas, D.

Aspden, R. M.

R. M. Aspden, Y. E. Yarker, and D. W. Hukins, “Collagen orientations in the meniscus of the knee joint,” J. Anat. 140(Pt 3), 371–380 (1985).
[PubMed]

Baumann, B.

Bernstein, E. F.

E. F. Bernstein, Y. Q. Chen, J. B. Kopp, L. Fisher, D. B. Brown, P. J. Hahn, F. A. Robey, J. Lakkakorpi, and J. Uitto, “Long-term sun exposure alters the collagen of the papillary dermis. Comparison of sun-protected and photoaged skin by Northern analysis, immunohistochemical staining, and confocal laser scanning microscopy,” J. Am. Acad. Dermatol. 34(2 Pt 1), 209–218 (1996).
[Crossref] [PubMed]

Böhm, M.

N. Vogler, A. Medyukhina, I. Latka, S. Kemper, M. Böhm, B. Dietzek, and J. Popp, “Towards multimodal nonlinear optical tomography – experimental methodology,” Laser Phys. Lett. 8(8), 617–624 (2011).
[Crossref]

Bos, J. D.

H. J. C. de Vries, D. N. Enomoto, J. van Marle, P. P. van Zuijlen, J. R. Mekkes, and J. D. Bos, “Dermal organization in Scleroderma: The Fast Fourier Transform and the laser scatter method objectify fibrosis in nonlesional as well as lesional skin,” Lab. Invest. 80(8), 1281–1289 (2000).
[Crossref] [PubMed]

Brasselet, S.

Brown, D. B.

E. F. Bernstein, Y. Q. Chen, J. B. Kopp, L. Fisher, D. B. Brown, P. J. Hahn, F. A. Robey, J. Lakkakorpi, and J. Uitto, “Long-term sun exposure alters the collagen of the papillary dermis. Comparison of sun-protected and photoaged skin by Northern analysis, immunohistochemical staining, and confocal laser scanning microscopy,” J. Am. Acad. Dermatol. 34(2 Pt 1), 209–218 (1996).
[Crossref] [PubMed]

Campagnola, P. J.

X. Chen, O. Nadiarynkh, S. Plotnikov, and P. J. Campagnola, “Second harmonic generation microscopy for quantitative analysis of collagen fibrillar structure,” Nat. Protoc. 7(4), 654–669 (2012).
[Crossref] [PubMed]

R. LaComb, O. Nadiarnykh, and P. J. Campagnola, “Quantitative Second Harmonic Generation Imaging of the Diseased State Osteogenesis Imperfecta: Experiment and Simulation,” Biophys. J. 94(11), 4504–4514 (2008).
[Crossref] [PubMed]

P. J. Campagnola and L. M. Loew, “Second-harmonic imaging microscopy for visualizing biomolecular arrays in cells, tissues and organisms,” Nat. Biotechnol. 21(11), 1356–1360 (2003).
[Crossref] [PubMed]

Cense, B.

M. C. Pierce, R. L. Sheridan, B. Hyle Park, B. Cense, and J. F. de Boer, “Collagen denaturation can be quantified in burned human skin using polarization-sensitive optical coherence tomography,” Burns 30(6), 511–517 (2004).
[Crossref] [PubMed]

Chan, K. K. H.

Chen, J.

S. Zhuo, X. Zhu, J. Chen, and S. Xie, “Quantitative biomarkers of human skin photoaging based on intrinsic second harmonic generation signal,” Scanning 35(4), 273–276 (2013).
[Crossref] [PubMed]

Chen, J. S.

Chen, S.-J.

V. A. Hovhannisyan, P.-S. Hu, H.-Y. Tan, S.-J. Chen, and C.-Y. Dong, “Spatial orientation mapping of fibers using polarization-sensitive second harmonic generation microscopy,” J. Biophotonics 5(10), 768–776 (2012).
[Crossref] [PubMed]

Chen, S.-Y.

S.-Y. Chen, C. Shee-Uan, W. Hai-Yin, L. Wen-Jeng, Y.-H. Liao, and C.-K. Sun, “In vivo virtual biopsy of human skin by using noninvasive higher harmonic generation microscopy,” IEEE J. Sel. Top. Quantum Electron. 16(3), 478–492 (2010).
[Crossref]

Chen, W. R.

S. L. Wu, H. Li, X. M. Zhang, W. R. Chen, and Y. X. Wang, “Character of skin on photo-thermal response and its regeneration process using second-harmonic generation microscopy,” Lasers Med. Sci. 29(1), 141–146 (2014).
[Crossref] [PubMed]

Chen, X.

X. Chen, O. Nadiarynkh, S. Plotnikov, and P. J. Campagnola, “Second harmonic generation microscopy for quantitative analysis of collagen fibrillar structure,” Nat. Protoc. 7(4), 654–669 (2012).
[Crossref] [PubMed]

Chen, Y.

Chen, Y. F.

Chen, Y. Q.

E. F. Bernstein, Y. Q. Chen, J. B. Kopp, L. Fisher, D. B. Brown, P. J. Hahn, F. A. Robey, J. Lakkakorpi, and J. Uitto, “Long-term sun exposure alters the collagen of the papillary dermis. Comparison of sun-protected and photoaged skin by Northern analysis, immunohistochemical staining, and confocal laser scanning microscopy,” J. Am. Acad. Dermatol. 34(2 Pt 1), 209–218 (1996).
[Crossref] [PubMed]

Chen, Y.-F.

M.-G. Lin, T.-L. Yang, C.-T. Chiang, H.-C. Kao, J.-N. Lee, W. Lo, S.-H. Jee, Y.-F. Chen, C.-Y. Dong, and S.-J. Lin, “Evaluation of dermal thermal damage by multiphoton autofluorescence and second-harmonic-generation microscopy,” J. Biomed. Opt. 11(6), 064006 (2006).
[Crossref] [PubMed]

Chen, Z.

G. Liu and Z. Chen, “Fiber-based combined optical coherence and multiphoton endomicroscopy,” J. Biomed. Opt. 16(3), 036010 (2011).
[Crossref] [PubMed]

S. M. Srinivas, J. F. de Boer, H. Park, K. Keikhanzadeh, H. E. Huang, J. Zhang, W. Q. Jung, Z. Chen, and J. S. Nelson, “Determination of burn depth by polarization-sensitive optical coherence tomography,” J. Biomed. Opt. 9(1), 207–212 (2004).
[Crossref] [PubMed]

Chiang, C.-T.

M.-G. Lin, T.-L. Yang, C.-T. Chiang, H.-C. Kao, J.-N. Lee, W. Lo, S.-H. Jee, Y.-F. Chen, C.-Y. Dong, and S.-J. Lin, “Evaluation of dermal thermal damage by multiphoton autofluorescence and second-harmonic-generation microscopy,” J. Biomed. Opt. 11(6), 064006 (2006).
[Crossref] [PubMed]

Choi, W.

Chong, S. P.

Chou, S.-Y.

Cicchi, R.

de Boer, J. F.

K. H. Kim, M. C. Pierce, G. Maguluri, B. H. Park, S. J. Yoon, M. Lydon, R. Sheridan, and J. F. de Boer, “In vivo imaging of human burn injuries with polarization-sensitive optical coherence tomography,” J. Biomed. Opt. 17(6), 066012 (2012).
[Crossref] [PubMed]

K. H. Kim, B. H. Park, Y. Tu, T. Hasan, B. Lee, J. Li, and J. F. de Boer, “Polarization-sensitive optical frequency domain imaging based on unpolarized light,” Opt. Express 19(2), 552–561 (2011).
[Crossref] [PubMed]

M. C. Pierce, R. L. Sheridan, B. Hyle Park, B. Cense, and J. F. de Boer, “Collagen denaturation can be quantified in burned human skin using polarization-sensitive optical coherence tomography,” Burns 30(6), 511–517 (2004).
[Crossref] [PubMed]

S. M. Srinivas, J. F. de Boer, H. Park, K. Keikhanzadeh, H. E. Huang, J. Zhang, W. Q. Jung, Z. Chen, and J. S. Nelson, “Determination of burn depth by polarization-sensitive optical coherence tomography,” J. Biomed. Opt. 9(1), 207–212 (2004).
[Crossref] [PubMed]

J. F. de Boer and T. E. Milner, “Review of polarization sensitive optical coherence tomography and Stokes vector determination,” J. Biomed. Opt. 7(3), 359–371 (2002).
[Crossref] [PubMed]

B. H. Park, C. Saxer, S. M. Srinivas, J. S. Nelson, and J. F. de Boer, “In vivo burn depth determination by high-speed fiber-based polarization sensitive optical coherence tomography,” J. Biomed. Opt. 6(4), 474–479 (2001).
[Crossref] [PubMed]

J. F. de Boer, T. E. Milner, M. J. C. van Gemert, and J. S. Nelson, “Two-dimensional birefringence imaging in biological tissue by polarization-sensitive optical coherence tomography,” Opt. Lett. 22(12), 934–936 (1997).
[Crossref] [PubMed]

de Lange Davies, C.

A. Erikson, J. Örtegren, T. Hompland, C. de Lange Davies, and M. Lindgren, “Quantification of the second-order nonlinear susceptibility of collagen I using a laser scanning microscope,” J. Biomed. Opt. 12(4), 044002 (2007).
[Crossref] [PubMed]

de Vries, H. J. C.

H. J. C. de Vries, D. N. Enomoto, J. van Marle, P. P. van Zuijlen, J. R. Mekkes, and J. D. Bos, “Dermal organization in Scleroderma: The Fast Fourier Transform and the laser scatter method objectify fibrosis in nonlesional as well as lesional skin,” Lab. Invest. 80(8), 1281–1289 (2000).
[Crossref] [PubMed]

Dietzek, B.

N. Vogler, A. Medyukhina, I. Latka, S. Kemper, M. Böhm, B. Dietzek, and J. Popp, “Towards multimodal nonlinear optical tomography – experimental methodology,” Laser Phys. Lett. 8(8), 617–624 (2011).
[Crossref]

Doh, J.

Dong, C. Y.

Dong, C.-Y.

V. A. Hovhannisyan, P.-S. Hu, H.-Y. Tan, S.-J. Chen, and C.-Y. Dong, “Spatial orientation mapping of fibers using polarization-sensitive second harmonic generation microscopy,” J. Biophotonics 5(10), 768–776 (2012).
[Crossref] [PubMed]

M.-G. Lin, T.-L. Yang, C.-T. Chiang, H.-C. Kao, J.-N. Lee, W. Lo, S.-H. Jee, Y.-F. Chen, C.-Y. Dong, and S.-J. Lin, “Evaluation of dermal thermal damage by multiphoton autofluorescence and second-harmonic-generation microscopy,” J. Biomed. Opt. 11(6), 064006 (2006).
[Crossref] [PubMed]

Duker, J. S.

Enomoto, D. N.

H. J. C. de Vries, D. N. Enomoto, J. van Marle, P. P. van Zuijlen, J. R. Mekkes, and J. D. Bos, “Dermal organization in Scleroderma: The Fast Fourier Transform and the laser scatter method objectify fibrosis in nonlesional as well as lesional skin,” Lab. Invest. 80(8), 1281–1289 (2000).
[Crossref] [PubMed]

Erikson, A.

A. Erikson, J. Örtegren, T. Hompland, C. de Lange Davies, and M. Lindgren, “Quantification of the second-order nonlinear susceptibility of collagen I using a laser scanning microscope,” J. Biomed. Opt. 12(4), 044002 (2007).
[Crossref] [PubMed]

Fisher, L.

E. F. Bernstein, Y. Q. Chen, J. B. Kopp, L. Fisher, D. B. Brown, P. J. Hahn, F. A. Robey, J. Lakkakorpi, and J. Uitto, “Long-term sun exposure alters the collagen of the papillary dermis. Comparison of sun-protected and photoaged skin by Northern analysis, immunohistochemical staining, and confocal laser scanning microscopy,” J. Am. Acad. Dermatol. 34(2 Pt 1), 209–218 (1996).
[Crossref] [PubMed]

Fujimoto, J. G.

Fukushima, S.

R. Tanaka, S. Fukushima, K. Sasaki, Y. Tanaka, H. Murota, T. Matsumoto, T. Araki, and T. Yasui, “In vivo visualization of dermal collagen fiber in skin burn by collagen-sensitive second-harmonic-generation microscopy,” J. Biomed. Opt. 18(6), 061231 (2013).
[Crossref] [PubMed]

T. Yasui, M. Yonetsu, R. Tanaka, Y. Tanaka, S. Fukushima, T. Yamashita, Y. Ogura, T. Hirao, H. Murota, and T. Araki, “In vivo observation of age-related structural changes of dermal collagen in human facial skin using collagen-sensitive second harmonic generation microscope equipped with 1250-nm mode-locked Cr:Forsterite laser,” J. Biomed. Opt. 18(3), 031108 (2013).
[Crossref] [PubMed]

Hahn, P. J.

E. F. Bernstein, Y. Q. Chen, J. B. Kopp, L. Fisher, D. B. Brown, P. J. Hahn, F. A. Robey, J. Lakkakorpi, and J. Uitto, “Long-term sun exposure alters the collagen of the papillary dermis. Comparison of sun-protected and photoaged skin by Northern analysis, immunohistochemical staining, and confocal laser scanning microscopy,” J. Am. Acad. Dermatol. 34(2 Pt 1), 209–218 (1996).
[Crossref] [PubMed]

Hai-Yin, W.

S.-Y. Chen, C. Shee-Uan, W. Hai-Yin, L. Wen-Jeng, Y.-H. Liao, and C.-K. Sun, “In vivo virtual biopsy of human skin by using noninvasive higher harmonic generation microscopy,” IEEE J. Sel. Top. Quantum Electron. 16(3), 478–492 (2010).
[Crossref]

Hasan, T.

Hirao, T.

T. Yasui, M. Yonetsu, R. Tanaka, Y. Tanaka, S. Fukushima, T. Yamashita, Y. Ogura, T. Hirao, H. Murota, and T. Araki, “In vivo observation of age-related structural changes of dermal collagen in human facial skin using collagen-sensitive second harmonic generation microscope equipped with 1250-nm mode-locked Cr:Forsterite laser,” J. Biomed. Opt. 18(3), 031108 (2013).
[Crossref] [PubMed]

Hompland, T.

A. Erikson, J. Örtegren, T. Hompland, C. de Lange Davies, and M. Lindgren, “Quantification of the second-order nonlinear susceptibility of collagen I using a laser scanning microscope,” J. Biomed. Opt. 12(4), 044002 (2007).
[Crossref] [PubMed]

Hovhannisyan, V. A.

V. A. Hovhannisyan, P.-S. Hu, H.-Y. Tan, S.-J. Chen, and C.-Y. Dong, “Spatial orientation mapping of fibers using polarization-sensitive second harmonic generation microscopy,” J. Biophotonics 5(10), 768–776 (2012).
[Crossref] [PubMed]

Hsu, C. J.

Hu, P.-S.

V. A. Hovhannisyan, P.-S. Hu, H.-Y. Tan, S.-J. Chen, and C.-Y. Dong, “Spatial orientation mapping of fibers using polarization-sensitive second harmonic generation microscopy,” J. Biophotonics 5(10), 768–776 (2012).
[Crossref] [PubMed]

Huang, D.

Huang, H. E.

S. M. Srinivas, J. F. de Boer, H. Park, K. Keikhanzadeh, H. E. Huang, J. Zhang, W. Q. Jung, Z. Chen, and J. S. Nelson, “Determination of burn depth by polarization-sensitive optical coherence tomography,” J. Biomed. Opt. 9(1), 207–212 (2004).
[Crossref] [PubMed]

Hukins, D. W.

R. M. Aspden, Y. E. Yarker, and D. W. Hukins, “Collagen orientations in the meniscus of the knee joint,” J. Anat. 140(Pt 3), 371–380 (1985).
[PubMed]

Hyle Park, B.

M. C. Pierce, R. L. Sheridan, B. Hyle Park, B. Cense, and J. F. de Boer, “Collagen denaturation can be quantified in burned human skin using polarization-sensitive optical coherence tomography,” Burns 30(6), 511–517 (2004).
[Crossref] [PubMed]

Jang, M. H.

Jang, M. S.

Jee, S. H.

Jee, S.-H.

M.-G. Lin, T.-L. Yang, C.-T. Chiang, H.-C. Kao, J.-N. Lee, W. Lo, S.-H. Jee, Y.-F. Chen, C.-Y. Dong, and S.-J. Lin, “Evaluation of dermal thermal damage by multiphoton autofluorescence and second-harmonic-generation microscopy,” J. Biomed. Opt. 11(6), 064006 (2006).
[Crossref] [PubMed]

Jeong, B.

Jung, W. Q.

S. M. Srinivas, J. F. de Boer, H. Park, K. Keikhanzadeh, H. E. Huang, J. Zhang, W. Q. Jung, Z. Chen, and J. S. Nelson, “Determination of burn depth by polarization-sensitive optical coherence tomography,” J. Biomed. Opt. 9(1), 207–212 (2004).
[Crossref] [PubMed]

Kao, H.-C.

M.-G. Lin, T.-L. Yang, C.-T. Chiang, H.-C. Kao, J.-N. Lee, W. Lo, S.-H. Jee, Y.-F. Chen, C.-Y. Dong, and S.-J. Lin, “Evaluation of dermal thermal damage by multiphoton autofluorescence and second-harmonic-generation microscopy,” J. Biomed. Opt. 11(6), 064006 (2006).
[Crossref] [PubMed]

Kapsokalyvas, D.

Kawabata, K.

S. Sakai, M. Yamanari, A. Miyazawa, M. Matsumoto, N. Nakagawa, T. Sugawara, K. Kawabata, T. Yatagai, and Y. Yasuno, “In vivo three-dimensional birefringence analysis shows collagen differences between young and old photo-aged human skin,” J. Invest. Dermatol. 128(7), 1641–1647 (2008).
[Crossref] [PubMed]

Keikhanzadeh, K.

S. M. Srinivas, J. F. de Boer, H. Park, K. Keikhanzadeh, H. E. Huang, J. Zhang, W. Q. Jung, Z. Chen, and J. S. Nelson, “Determination of burn depth by polarization-sensitive optical coherence tomography,” J. Biomed. Opt. 9(1), 207–212 (2004).
[Crossref] [PubMed]

Kemper, S.

N. Vogler, A. Medyukhina, I. Latka, S. Kemper, M. Böhm, B. Dietzek, and J. Popp, “Towards multimodal nonlinear optical tomography – experimental methodology,” Laser Phys. Lett. 8(8), 617–624 (2011).
[Crossref]

Kim, K. H.

Kopp, J. B.

E. F. Bernstein, Y. Q. Chen, J. B. Kopp, L. Fisher, D. B. Brown, P. J. Hahn, F. A. Robey, J. Lakkakorpi, and J. Uitto, “Long-term sun exposure alters the collagen of the papillary dermis. Comparison of sun-protected and photoaged skin by Northern analysis, immunohistochemical staining, and confocal laser scanning microscopy,” J. Am. Acad. Dermatol. 34(2 Pt 1), 209–218 (1996).
[Crossref] [PubMed]

Kuo, C. J.

Kuo, W.-C.

LaComb, R.

R. LaComb, O. Nadiarnykh, and P. J. Campagnola, “Quantitative Second Harmonic Generation Imaging of the Diseased State Osteogenesis Imperfecta: Experiment and Simulation,” Biophys. J. 94(11), 4504–4514 (2008).
[Crossref] [PubMed]

Lai, T.

Lakkakorpi, J.

E. F. Bernstein, Y. Q. Chen, J. B. Kopp, L. Fisher, D. B. Brown, P. J. Hahn, F. A. Robey, J. Lakkakorpi, and J. Uitto, “Long-term sun exposure alters the collagen of the papillary dermis. Comparison of sun-protected and photoaged skin by Northern analysis, immunohistochemical staining, and confocal laser scanning microscopy,” J. Am. Acad. Dermatol. 34(2 Pt 1), 209–218 (1996).
[Crossref] [PubMed]

Latka, I.

N. Vogler, A. Medyukhina, I. Latka, S. Kemper, M. Böhm, B. Dietzek, and J. Popp, “Towards multimodal nonlinear optical tomography – experimental methodology,” Laser Phys. Lett. 8(8), 617–624 (2011).
[Crossref]

Lee, B.

Lee, G.-G.

Lee, J.-N.

M.-G. Lin, T.-L. Yang, C.-T. Chiang, H.-C. Kao, J.-N. Lee, W. Lo, S.-H. Jee, Y.-F. Chen, C.-Y. Dong, and S.-J. Lin, “Evaluation of dermal thermal damage by multiphoton autofluorescence and second-harmonic-generation microscopy,” J. Biomed. Opt. 11(6), 064006 (2006).
[Crossref] [PubMed]

Li, H.

S. L. Wu, H. Li, X. M. Zhang, W. R. Chen, and Y. X. Wang, “Character of skin on photo-thermal response and its regeneration process using second-harmonic generation microscopy,” Lasers Med. Sci. 29(1), 141–146 (2014).
[Crossref] [PubMed]

S. Wu, H. Li, H. Yang, X. Zhang, Z. Li, and S. Xu, “Quantitative analysis on collagen morphology in aging skin based on multiphoton microscopy,” J. Biomed. Opt. 16(4), 040502 (2011).
[Crossref] [PubMed]

Li, J.

Li, M.-J.

Li, X.

Li, Z.

S. Wu, H. Li, H. Yang, X. Zhang, Z. Li, and S. Xu, “Quantitative analysis on collagen morphology in aging skin based on multiphoton microscopy,” J. Biomed. Opt. 16(4), 040502 (2011).
[Crossref] [PubMed]

Liao, Y. H.

Liao, Y.-H.

Y.-H. Liao, W.-C. Kuo, S.-Y. Chou, C.-S. Tsai, G.-L. Lin, M.-R. Tsai, Y.-T. Shih, G.-G. Lee, and C.-K. Sun, “Quantitative analysis of intrinsic skin aging in dermal papillae by in vivo harmonic generation microscopy,” Biomed. Opt. Express 5(9), 3266–3279 (2014).
[Crossref] [PubMed]

S.-Y. Chen, C. Shee-Uan, W. Hai-Yin, L. Wen-Jeng, Y.-H. Liao, and C.-K. Sun, “In vivo virtual biopsy of human skin by using noninvasive higher harmonic generation microscopy,” IEEE J. Sel. Top. Quantum Electron. 16(3), 478–492 (2010).
[Crossref]

Lin, G.-L.

Lin, M.-G.

M.-G. Lin, T.-L. Yang, C.-T. Chiang, H.-C. Kao, J.-N. Lee, W. Lo, S.-H. Jee, Y.-F. Chen, C.-Y. Dong, and S.-J. Lin, “Evaluation of dermal thermal damage by multiphoton autofluorescence and second-harmonic-generation microscopy,” J. Biomed. Opt. 11(6), 064006 (2006).
[Crossref] [PubMed]

Lin, S. J.

Lin, S.-J.

M.-G. Lin, T.-L. Yang, C.-T. Chiang, H.-C. Kao, J.-N. Lee, W. Lo, S.-H. Jee, Y.-F. Chen, C.-Y. Dong, and S.-J. Lin, “Evaluation of dermal thermal damage by multiphoton autofluorescence and second-harmonic-generation microscopy,” J. Biomed. Opt. 11(6), 064006 (2006).
[Crossref] [PubMed]

Lin, W. C.

Lindgren, M.

A. Erikson, J. Örtegren, T. Hompland, C. de Lange Davies, and M. Lindgren, “Quantification of the second-order nonlinear susceptibility of collagen I using a laser scanning microscope,” J. Biomed. Opt. 12(4), 044002 (2007).
[Crossref] [PubMed]

Liu, G.

G. Liu and Z. Chen, “Fiber-based combined optical coherence and multiphoton endomicroscopy,” J. Biomed. Opt. 16(3), 036010 (2011).
[Crossref] [PubMed]

Lo, W.

M.-G. Lin, T.-L. Yang, C.-T. Chiang, H.-C. Kao, J.-N. Lee, W. Lo, S.-H. Jee, Y.-F. Chen, C.-Y. Dong, and S.-J. Lin, “Evaluation of dermal thermal damage by multiphoton autofluorescence and second-harmonic-generation microscopy,” J. Biomed. Opt. 11(6), 064006 (2006).
[Crossref] [PubMed]

Loew, L. M.

P. J. Campagnola and L. M. Loew, “Second-harmonic imaging microscopy for visualizing biomolecular arrays in cells, tissues and organisms,” Nat. Biotechnol. 21(11), 1356–1360 (2003).
[Crossref] [PubMed]

Loza-Alvarez, P.

Lydon, M.

K. H. Kim, M. C. Pierce, G. Maguluri, B. H. Park, S. J. Yoon, M. Lydon, R. Sheridan, and J. F. de Boer, “In vivo imaging of human burn injuries with polarization-sensitive optical coherence tomography,” J. Biomed. Opt. 17(6), 066012 (2012).
[Crossref] [PubMed]

Maguluri, G.

K. H. Kim, M. C. Pierce, G. Maguluri, B. H. Park, S. J. Yoon, M. Lydon, R. Sheridan, and J. F. de Boer, “In vivo imaging of human burn injuries with polarization-sensitive optical coherence tomography,” J. Biomed. Opt. 17(6), 066012 (2012).
[Crossref] [PubMed]

Matsumoto, M.

S. Sakai, N. Nakagawa, M. Yamanari, A. Miyazawa, Y. Yasuno, and M. Matsumoto, “Relationship between dermal birefringence and the skin surface roughness of photoaged human skin,” J. Biomed. Opt. 14(4), 044032 (2009).
[Crossref] [PubMed]

S. Sakai, M. Yamanari, A. Miyazawa, M. Matsumoto, N. Nakagawa, T. Sugawara, K. Kawabata, T. Yatagai, and Y. Yasuno, “In vivo three-dimensional birefringence analysis shows collagen differences between young and old photo-aged human skin,” J. Invest. Dermatol. 128(7), 1641–1647 (2008).
[Crossref] [PubMed]

Matsumoto, T.

R. Tanaka, S. Fukushima, K. Sasaki, Y. Tanaka, H. Murota, T. Matsumoto, T. Araki, and T. Yasui, “In vivo visualization of dermal collagen fiber in skin burn by collagen-sensitive second-harmonic-generation microscopy,” J. Biomed. Opt. 18(6), 061231 (2013).
[Crossref] [PubMed]

Matteini, P.

Medyukhina, A.

N. Vogler, A. Medyukhina, I. Latka, S. Kemper, M. Böhm, B. Dietzek, and J. Popp, “Towards multimodal nonlinear optical tomography – experimental methodology,” Laser Phys. Lett. 8(8), 617–624 (2011).
[Crossref]

Mekkes, J. R.

H. J. C. de Vries, D. N. Enomoto, J. van Marle, P. P. van Zuijlen, J. R. Mekkes, and J. D. Bos, “Dermal organization in Scleroderma: The Fast Fourier Transform and the laser scatter method objectify fibrosis in nonlesional as well as lesional skin,” Lab. Invest. 80(8), 1281–1289 (2000).
[Crossref] [PubMed]

Milner, T. E.

Miyazawa, A.

S. Sakai, N. Nakagawa, M. Yamanari, A. Miyazawa, Y. Yasuno, and M. Matsumoto, “Relationship between dermal birefringence and the skin surface roughness of photoaged human skin,” J. Biomed. Opt. 14(4), 044032 (2009).
[Crossref] [PubMed]

S. Sakai, M. Yamanari, A. Miyazawa, M. Matsumoto, N. Nakagawa, T. Sugawara, K. Kawabata, T. Yatagai, and Y. Yasuno, “In vivo three-dimensional birefringence analysis shows collagen differences between young and old photo-aged human skin,” J. Invest. Dermatol. 128(7), 1641–1647 (2008).
[Crossref] [PubMed]

Murari, K.

Murota, H.

T. Yasui, M. Yonetsu, R. Tanaka, Y. Tanaka, S. Fukushima, T. Yamashita, Y. Ogura, T. Hirao, H. Murota, and T. Araki, “In vivo observation of age-related structural changes of dermal collagen in human facial skin using collagen-sensitive second harmonic generation microscope equipped with 1250-nm mode-locked Cr:Forsterite laser,” J. Biomed. Opt. 18(3), 031108 (2013).
[Crossref] [PubMed]

R. Tanaka, S. Fukushima, K. Sasaki, Y. Tanaka, H. Murota, T. Matsumoto, T. Araki, and T. Yasui, “In vivo visualization of dermal collagen fiber in skin burn by collagen-sensitive second-harmonic-generation microscopy,” J. Biomed. Opt. 18(6), 061231 (2013).
[Crossref] [PubMed]

Nadiarnykh, O.

R. LaComb, O. Nadiarnykh, and P. J. Campagnola, “Quantitative Second Harmonic Generation Imaging of the Diseased State Osteogenesis Imperfecta: Experiment and Simulation,” Biophys. J. 94(11), 4504–4514 (2008).
[Crossref] [PubMed]

Nadiarynkh, O.

X. Chen, O. Nadiarynkh, S. Plotnikov, and P. J. Campagnola, “Second harmonic generation microscopy for quantitative analysis of collagen fibrillar structure,” Nat. Protoc. 7(4), 654–669 (2012).
[Crossref] [PubMed]

Nakagawa, N.

S. Sakai, N. Nakagawa, M. Yamanari, A. Miyazawa, Y. Yasuno, and M. Matsumoto, “Relationship between dermal birefringence and the skin surface roughness of photoaged human skin,” J. Biomed. Opt. 14(4), 044032 (2009).
[Crossref] [PubMed]

S. Sakai, M. Yamanari, A. Miyazawa, M. Matsumoto, N. Nakagawa, T. Sugawara, K. Kawabata, T. Yatagai, and Y. Yasuno, “In vivo three-dimensional birefringence analysis shows collagen differences between young and old photo-aged human skin,” J. Invest. Dermatol. 128(7), 1641–1647 (2008).
[Crossref] [PubMed]

Nam, H.

Nelson, J. S.

S. M. Srinivas, J. F. de Boer, H. Park, K. Keikhanzadeh, H. E. Huang, J. Zhang, W. Q. Jung, Z. Chen, and J. S. Nelson, “Determination of burn depth by polarization-sensitive optical coherence tomography,” J. Biomed. Opt. 9(1), 207–212 (2004).
[Crossref] [PubMed]

B. H. Park, C. Saxer, S. M. Srinivas, J. S. Nelson, and J. F. de Boer, “In vivo burn depth determination by high-speed fiber-based polarization sensitive optical coherence tomography,” J. Biomed. Opt. 6(4), 474–479 (2001).
[Crossref] [PubMed]

J. F. de Boer, T. E. Milner, M. J. C. van Gemert, and J. S. Nelson, “Two-dimensional birefringence imaging in biological tissue by polarization-sensitive optical coherence tomography,” Opt. Lett. 22(12), 934–936 (1997).
[Crossref] [PubMed]

Ogura, Y.

T. Yasui, M. Yonetsu, R. Tanaka, Y. Tanaka, S. Fukushima, T. Yamashita, Y. Ogura, T. Hirao, H. Murota, and T. Araki, “In vivo observation of age-related structural changes of dermal collagen in human facial skin using collagen-sensitive second harmonic generation microscope equipped with 1250-nm mode-locked Cr:Forsterite laser,” J. Biomed. Opt. 18(3), 031108 (2013).
[Crossref] [PubMed]

Örtegren, J.

A. Erikson, J. Örtegren, T. Hompland, C. de Lange Davies, and M. Lindgren, “Quantification of the second-order nonlinear susceptibility of collagen I using a laser scanning microscope,” J. Biomed. Opt. 12(4), 044002 (2007).
[Crossref] [PubMed]

Park, B. H.

K. H. Kim, M. C. Pierce, G. Maguluri, B. H. Park, S. J. Yoon, M. Lydon, R. Sheridan, and J. F. de Boer, “In vivo imaging of human burn injuries with polarization-sensitive optical coherence tomography,” J. Biomed. Opt. 17(6), 066012 (2012).
[Crossref] [PubMed]

K. H. Kim, B. H. Park, Y. Tu, T. Hasan, B. Lee, J. Li, and J. F. de Boer, “Polarization-sensitive optical frequency domain imaging based on unpolarized light,” Opt. Express 19(2), 552–561 (2011).
[Crossref] [PubMed]

B. H. Park, C. Saxer, S. M. Srinivas, J. S. Nelson, and J. F. de Boer, “In vivo burn depth determination by high-speed fiber-based polarization sensitive optical coherence tomography,” J. Biomed. Opt. 6(4), 474–479 (2001).
[Crossref] [PubMed]

Park, H.

S. M. Srinivas, J. F. de Boer, H. Park, K. Keikhanzadeh, H. E. Huang, J. Zhang, W. Q. Jung, Z. Chen, and J. S. Nelson, “Determination of burn depth by polarization-sensitive optical coherence tomography,” J. Biomed. Opt. 9(1), 207–212 (2004).
[Crossref] [PubMed]

Pavone, F. S.

Petegnief, V.

Pierce, M. C.

K. H. Kim, M. C. Pierce, G. Maguluri, B. H. Park, S. J. Yoon, M. Lydon, R. Sheridan, and J. F. de Boer, “In vivo imaging of human burn injuries with polarization-sensitive optical coherence tomography,” J. Biomed. Opt. 17(6), 066012 (2012).
[Crossref] [PubMed]

M. C. Pierce, R. L. Sheridan, B. Hyle Park, B. Cense, and J. F. de Boer, “Collagen denaturation can be quantified in burned human skin using polarization-sensitive optical coherence tomography,” Burns 30(6), 511–517 (2004).
[Crossref] [PubMed]

Pimentel, E. R.

A. Aparecida de Aro, B. C. Vidal, and E. R. Pimentel, “Biochemical and anisotropical properties of tendons,” Micron 43(2-3), 205–214 (2012).
[Crossref] [PubMed]

Pini, R.

Planas, A. M.

Plotnikov, S.

X. Chen, O. Nadiarynkh, S. Plotnikov, and P. J. Campagnola, “Second harmonic generation microscopy for quantitative analysis of collagen fibrillar structure,” Nat. Protoc. 7(4), 654–669 (2012).
[Crossref] [PubMed]

Popp, J.

N. Vogler, A. Medyukhina, I. Latka, S. Kemper, M. Böhm, B. Dietzek, and J. Popp, “Towards multimodal nonlinear optical tomography – experimental methodology,” Laser Phys. Lett. 8(8), 617–624 (2011).
[Crossref]

Potsaid, B.

Psilodimitrakopoulos, S.

Ratto, F.

Robey, F. A.

E. F. Bernstein, Y. Q. Chen, J. B. Kopp, L. Fisher, D. B. Brown, P. J. Hahn, F. A. Robey, J. Lakkakorpi, and J. Uitto, “Long-term sun exposure alters the collagen of the papillary dermis. Comparison of sun-protected and photoaged skin by Northern analysis, immunohistochemical staining, and confocal laser scanning microscopy,” J. Am. Acad. Dermatol. 34(2 Pt 1), 209–218 (1996).
[Crossref] [PubMed]

Rossi, F.

Sakai, S.

S. Sakai, N. Nakagawa, M. Yamanari, A. Miyazawa, Y. Yasuno, and M. Matsumoto, “Relationship between dermal birefringence and the skin surface roughness of photoaged human skin,” J. Biomed. Opt. 14(4), 044032 (2009).
[Crossref] [PubMed]

S. Sakai, M. Yamanari, A. Miyazawa, M. Matsumoto, N. Nakagawa, T. Sugawara, K. Kawabata, T. Yatagai, and Y. Yasuno, “In vivo three-dimensional birefringence analysis shows collagen differences between young and old photo-aged human skin,” J. Invest. Dermatol. 128(7), 1641–1647 (2008).
[Crossref] [PubMed]

Sasaki, K.

R. Tanaka, S. Fukushima, K. Sasaki, Y. Tanaka, H. Murota, T. Matsumoto, T. Araki, and T. Yasui, “In vivo visualization of dermal collagen fiber in skin burn by collagen-sensitive second-harmonic-generation microscopy,” J. Biomed. Opt. 18(6), 061231 (2013).
[Crossref] [PubMed]

T. Yasui, K. Sasaki, Y. Tohno, and T. Araki, “Tomographic Imaging of Collagen Fiber Orientation in Human Tissue Using Depth-Resolved Polarimetry of Second-Harmonic-Generation Light,” Opt. Quantum Electron. 37(13-15), 1397–1408 (2005).
[Crossref]

Saxer, C.

B. H. Park, C. Saxer, S. M. Srinivas, J. S. Nelson, and J. F. de Boer, “In vivo burn depth determination by high-speed fiber-based polarization sensitive optical coherence tomography,” J. Biomed. Opt. 6(4), 474–479 (2001).
[Crossref] [PubMed]

Shee-Uan, C.

S.-Y. Chen, C. Shee-Uan, W. Hai-Yin, L. Wen-Jeng, Y.-H. Liao, and C.-K. Sun, “In vivo virtual biopsy of human skin by using noninvasive higher harmonic generation microscopy,” IEEE J. Sel. Top. Quantum Electron. 16(3), 478–492 (2010).
[Crossref]

Sheridan, R.

K. H. Kim, M. C. Pierce, G. Maguluri, B. H. Park, S. J. Yoon, M. Lydon, R. Sheridan, and J. F. de Boer, “In vivo imaging of human burn injuries with polarization-sensitive optical coherence tomography,” J. Biomed. Opt. 17(6), 066012 (2012).
[Crossref] [PubMed]

Sheridan, R. L.

M. C. Pierce, R. L. Sheridan, B. Hyle Park, B. Cense, and J. F. de Boer, “Collagen denaturation can be quantified in burned human skin using polarization-sensitive optical coherence tomography,” Burns 30(6), 511–517 (2004).
[Crossref] [PubMed]

Shih, Y.-T.

Soria, G.

Srinivas, S. M.

S. M. Srinivas, J. F. de Boer, H. Park, K. Keikhanzadeh, H. E. Huang, J. Zhang, W. Q. Jung, Z. Chen, and J. S. Nelson, “Determination of burn depth by polarization-sensitive optical coherence tomography,” J. Biomed. Opt. 9(1), 207–212 (2004).
[Crossref] [PubMed]

B. H. Park, C. Saxer, S. M. Srinivas, J. S. Nelson, and J. F. de Boer, “In vivo burn depth determination by high-speed fiber-based polarization sensitive optical coherence tomography,” J. Biomed. Opt. 6(4), 474–479 (2001).
[Crossref] [PubMed]

Stringari, C.

Sugawara, T.

S. Sakai, M. Yamanari, A. Miyazawa, M. Matsumoto, N. Nakagawa, T. Sugawara, K. Kawabata, T. Yatagai, and Y. Yasuno, “In vivo three-dimensional birefringence analysis shows collagen differences between young and old photo-aged human skin,” J. Invest. Dermatol. 128(7), 1641–1647 (2008).
[Crossref] [PubMed]

Sun, C.-K.

Y.-H. Liao, W.-C. Kuo, S.-Y. Chou, C.-S. Tsai, G.-L. Lin, M.-R. Tsai, Y.-T. Shih, G.-G. Lee, and C.-K. Sun, “Quantitative analysis of intrinsic skin aging in dermal papillae by in vivo harmonic generation microscopy,” Biomed. Opt. Express 5(9), 3266–3279 (2014).
[Crossref] [PubMed]

S.-Y. Chen, C. Shee-Uan, W. Hai-Yin, L. Wen-Jeng, Y.-H. Liao, and C.-K. Sun, “In vivo virtual biopsy of human skin by using noninvasive higher harmonic generation microscopy,” IEEE J. Sel. Top. Quantum Electron. 16(3), 478–492 (2010).
[Crossref]

Tan, H.-Y.

V. A. Hovhannisyan, P.-S. Hu, H.-Y. Tan, S.-J. Chen, and C.-Y. Dong, “Spatial orientation mapping of fibers using polarization-sensitive second harmonic generation microscopy,” J. Biophotonics 5(10), 768–776 (2012).
[Crossref] [PubMed]

Tanaka, R.

R. Tanaka, S. Fukushima, K. Sasaki, Y. Tanaka, H. Murota, T. Matsumoto, T. Araki, and T. Yasui, “In vivo visualization of dermal collagen fiber in skin burn by collagen-sensitive second-harmonic-generation microscopy,” J. Biomed. Opt. 18(6), 061231 (2013).
[Crossref] [PubMed]

T. Yasui, M. Yonetsu, R. Tanaka, Y. Tanaka, S. Fukushima, T. Yamashita, Y. Ogura, T. Hirao, H. Murota, and T. Araki, “In vivo observation of age-related structural changes of dermal collagen in human facial skin using collagen-sensitive second harmonic generation microscope equipped with 1250-nm mode-locked Cr:Forsterite laser,” J. Biomed. Opt. 18(3), 031108 (2013).
[Crossref] [PubMed]

Tanaka, Y.

T. Yasui, M. Yonetsu, R. Tanaka, Y. Tanaka, S. Fukushima, T. Yamashita, Y. Ogura, T. Hirao, H. Murota, and T. Araki, “In vivo observation of age-related structural changes of dermal collagen in human facial skin using collagen-sensitive second harmonic generation microscope equipped with 1250-nm mode-locked Cr:Forsterite laser,” J. Biomed. Opt. 18(3), 031108 (2013).
[Crossref] [PubMed]

R. Tanaka, S. Fukushima, K. Sasaki, Y. Tanaka, H. Murota, T. Matsumoto, T. Araki, and T. Yasui, “In vivo visualization of dermal collagen fiber in skin burn by collagen-sensitive second-harmonic-generation microscopy,” J. Biomed. Opt. 18(6), 061231 (2013).
[Crossref] [PubMed]

Tang, S.

Tohno, Y.

T. Yasui, K. Sasaki, Y. Tohno, and T. Araki, “Tomographic Imaging of Collagen Fiber Orientation in Human Tissue Using Depth-Resolved Polarimetry of Second-Harmonic-Generation Light,” Opt. Quantum Electron. 37(13-15), 1397–1408 (2005).
[Crossref]

Tsai, C.-S.

Tsai, M.-R.

Tsai, T. F.

Tu, Y.

Uitto, J.

E. F. Bernstein, Y. Q. Chen, J. B. Kopp, L. Fisher, D. B. Brown, P. J. Hahn, F. A. Robey, J. Lakkakorpi, and J. Uitto, “Long-term sun exposure alters the collagen of the papillary dermis. Comparison of sun-protected and photoaged skin by Northern analysis, immunohistochemical staining, and confocal laser scanning microscopy,” J. Am. Acad. Dermatol. 34(2 Pt 1), 209–218 (1996).
[Crossref] [PubMed]

van Gemert, M. J. C.

van Marle, J.

H. J. C. de Vries, D. N. Enomoto, J. van Marle, P. P. van Zuijlen, J. R. Mekkes, and J. D. Bos, “Dermal organization in Scleroderma: The Fast Fourier Transform and the laser scatter method objectify fibrosis in nonlesional as well as lesional skin,” Lab. Invest. 80(8), 1281–1289 (2000).
[Crossref] [PubMed]

van Zuijlen, P. P.

H. J. C. de Vries, D. N. Enomoto, J. van Marle, P. P. van Zuijlen, J. R. Mekkes, and J. D. Bos, “Dermal organization in Scleroderma: The Fast Fourier Transform and the laser scatter method objectify fibrosis in nonlesional as well as lesional skin,” Lab. Invest. 80(8), 1281–1289 (2000).
[Crossref] [PubMed]

Vidal, B. C.

A. Aparecida de Aro, B. C. Vidal, and E. R. Pimentel, “Biochemical and anisotropical properties of tendons,” Micron 43(2-3), 205–214 (2012).
[Crossref] [PubMed]

Vogler, N.

N. Vogler, A. Medyukhina, I. Latka, S. Kemper, M. Böhm, B. Dietzek, and J. Popp, “Towards multimodal nonlinear optical tomography – experimental methodology,” Laser Phys. Lett. 8(8), 617–624 (2011).
[Crossref]

Wang, T.

Wang, Y. X.

S. L. Wu, H. Li, X. M. Zhang, W. R. Chen, and Y. X. Wang, “Character of skin on photo-thermal response and its regeneration process using second-harmonic generation microscopy,” Lasers Med. Sci. 29(1), 141–146 (2014).
[Crossref] [PubMed]

Wen-Jeng, L.

S.-Y. Chen, C. Shee-Uan, W. Hai-Yin, L. Wen-Jeng, Y.-H. Liao, and C.-K. Sun, “In vivo virtual biopsy of human skin by using noninvasive higher harmonic generation microscopy,” IEEE J. Sel. Top. Quantum Electron. 16(3), 478–492 (2010).
[Crossref]

Wu, R. J.

Wu, S.

S. Wu, H. Li, H. Yang, X. Zhang, Z. Li, and S. Xu, “Quantitative analysis on collagen morphology in aging skin based on multiphoton microscopy,” J. Biomed. Opt. 16(4), 040502 (2011).
[Crossref] [PubMed]

Wu, S. L.

S. L. Wu, H. Li, X. M. Zhang, W. R. Chen, and Y. X. Wang, “Character of skin on photo-thermal response and its regeneration process using second-harmonic generation microscopy,” Lasers Med. Sci. 29(1), 141–146 (2014).
[Crossref] [PubMed]

Xi, J.

Xie, S.

S. Zhuo, X. Zhu, J. Chen, and S. Xie, “Quantitative biomarkers of human skin photoaging based on intrinsic second harmonic generation signal,” Scanning 35(4), 273–276 (2013).
[Crossref] [PubMed]

Xu, S.

S. Wu, H. Li, H. Yang, X. Zhang, Z. Li, and S. Xu, “Quantitative analysis on collagen morphology in aging skin based on multiphoton microscopy,” J. Biomed. Opt. 16(4), 040502 (2011).
[Crossref] [PubMed]

Yamanari, M.

S. Sakai, N. Nakagawa, M. Yamanari, A. Miyazawa, Y. Yasuno, and M. Matsumoto, “Relationship between dermal birefringence and the skin surface roughness of photoaged human skin,” J. Biomed. Opt. 14(4), 044032 (2009).
[Crossref] [PubMed]

S. Sakai, M. Yamanari, A. Miyazawa, M. Matsumoto, N. Nakagawa, T. Sugawara, K. Kawabata, T. Yatagai, and Y. Yasuno, “In vivo three-dimensional birefringence analysis shows collagen differences between young and old photo-aged human skin,” J. Invest. Dermatol. 128(7), 1641–1647 (2008).
[Crossref] [PubMed]

Yamashita, T.

T. Yasui, M. Yonetsu, R. Tanaka, Y. Tanaka, S. Fukushima, T. Yamashita, Y. Ogura, T. Hirao, H. Murota, and T. Araki, “In vivo observation of age-related structural changes of dermal collagen in human facial skin using collagen-sensitive second harmonic generation microscope equipped with 1250-nm mode-locked Cr:Forsterite laser,” J. Biomed. Opt. 18(3), 031108 (2013).
[Crossref] [PubMed]

Yang, B.-G.

Yang, H.

S. Wu, H. Li, H. Yang, X. Zhang, Z. Li, and S. Xu, “Quantitative analysis on collagen morphology in aging skin based on multiphoton microscopy,” J. Biomed. Opt. 16(4), 040502 (2011).
[Crossref] [PubMed]

Yang, T.-L.

M.-G. Lin, T.-L. Yang, C.-T. Chiang, H.-C. Kao, J.-N. Lee, W. Lo, S.-H. Jee, Y.-F. Chen, C.-Y. Dong, and S.-J. Lin, “Evaluation of dermal thermal damage by multiphoton autofluorescence and second-harmonic-generation microscopy,” J. Biomed. Opt. 11(6), 064006 (2006).
[Crossref] [PubMed]

Yarker, Y. E.

R. M. Aspden, Y. E. Yarker, and D. W. Hukins, “Collagen orientations in the meniscus of the knee joint,” J. Anat. 140(Pt 3), 371–380 (1985).
[PubMed]

Yasui, T.

T. Yasui, M. Yonetsu, R. Tanaka, Y. Tanaka, S. Fukushima, T. Yamashita, Y. Ogura, T. Hirao, H. Murota, and T. Araki, “In vivo observation of age-related structural changes of dermal collagen in human facial skin using collagen-sensitive second harmonic generation microscope equipped with 1250-nm mode-locked Cr:Forsterite laser,” J. Biomed. Opt. 18(3), 031108 (2013).
[Crossref] [PubMed]

R. Tanaka, S. Fukushima, K. Sasaki, Y. Tanaka, H. Murota, T. Matsumoto, T. Araki, and T. Yasui, “In vivo visualization of dermal collagen fiber in skin burn by collagen-sensitive second-harmonic-generation microscopy,” J. Biomed. Opt. 18(6), 061231 (2013).
[Crossref] [PubMed]

T. Yasui, K. Sasaki, Y. Tohno, and T. Araki, “Tomographic Imaging of Collagen Fiber Orientation in Human Tissue Using Depth-Resolved Polarimetry of Second-Harmonic-Generation Light,” Opt. Quantum Electron. 37(13-15), 1397–1408 (2005).
[Crossref]

Yasuno, Y.

S. Sakai, N. Nakagawa, M. Yamanari, A. Miyazawa, Y. Yasuno, and M. Matsumoto, “Relationship between dermal birefringence and the skin surface roughness of photoaged human skin,” J. Biomed. Opt. 14(4), 044032 (2009).
[Crossref] [PubMed]

S. Sakai, M. Yamanari, A. Miyazawa, M. Matsumoto, N. Nakagawa, T. Sugawara, K. Kawabata, T. Yatagai, and Y. Yasuno, “In vivo three-dimensional birefringence analysis shows collagen differences between young and old photo-aged human skin,” J. Invest. Dermatol. 128(7), 1641–1647 (2008).
[Crossref] [PubMed]

Yatagai, T.

S. Sakai, M. Yamanari, A. Miyazawa, M. Matsumoto, N. Nakagawa, T. Sugawara, K. Kawabata, T. Yatagai, and Y. Yasuno, “In vivo three-dimensional birefringence analysis shows collagen differences between young and old photo-aged human skin,” J. Invest. Dermatol. 128(7), 1641–1647 (2008).
[Crossref] [PubMed]

Yonetsu, M.

T. Yasui, M. Yonetsu, R. Tanaka, Y. Tanaka, S. Fukushima, T. Yamashita, Y. Ogura, T. Hirao, H. Murota, and T. Araki, “In vivo observation of age-related structural changes of dermal collagen in human facial skin using collagen-sensitive second harmonic generation microscope equipped with 1250-nm mode-locked Cr:Forsterite laser,” J. Biomed. Opt. 18(3), 031108 (2013).
[Crossref] [PubMed]

Yoon, S. J.

K. H. Kim, M. C. Pierce, G. Maguluri, B. H. Park, S. J. Yoon, M. Lydon, R. Sheridan, and J. F. de Boer, “In vivo imaging of human burn injuries with polarization-sensitive optical coherence tomography,” J. Biomed. Opt. 17(6), 066012 (2012).
[Crossref] [PubMed]

B. Jeong, B. Lee, M. S. Jang, H. Nam, S. J. Yoon, T. Wang, J. Doh, B.-G. Yang, M. H. Jang, and K. H. Kim, “Combined two-photon microscopy and optical coherence tomography using individually optimized sources,” Opt. Express 19(14), 13089–13096 (2011).
[Crossref] [PubMed]

Zhang, J.

S. M. Srinivas, J. F. de Boer, H. Park, K. Keikhanzadeh, H. E. Huang, J. Zhang, W. Q. Jung, Z. Chen, and J. S. Nelson, “Determination of burn depth by polarization-sensitive optical coherence tomography,” J. Biomed. Opt. 9(1), 207–212 (2004).
[Crossref] [PubMed]

Zhang, X.

S. Wu, H. Li, H. Yang, X. Zhang, Z. Li, and S. Xu, “Quantitative analysis on collagen morphology in aging skin based on multiphoton microscopy,” J. Biomed. Opt. 16(4), 040502 (2011).
[Crossref] [PubMed]

Zhang, X. M.

S. L. Wu, H. Li, X. M. Zhang, W. R. Chen, and Y. X. Wang, “Character of skin on photo-thermal response and its regeneration process using second-harmonic generation microscopy,” Lasers Med. Sci. 29(1), 141–146 (2014).
[Crossref] [PubMed]

Zhang, Y.

Zhou, Y.

Zhu, X.

S. Zhuo, X. Zhu, J. Chen, and S. Xie, “Quantitative biomarkers of human skin photoaging based on intrinsic second harmonic generation signal,” Scanning 35(4), 273–276 (2013).
[Crossref] [PubMed]

Zhuo, S.

S. Zhuo, X. Zhu, J. Chen, and S. Xie, “Quantitative biomarkers of human skin photoaging based on intrinsic second harmonic generation signal,” Scanning 35(4), 273–276 (2013).
[Crossref] [PubMed]

Adv. Opt. Photon. (1)

Biomed. Opt. Express (2)

Biophys. J. (1)

R. LaComb, O. Nadiarnykh, and P. J. Campagnola, “Quantitative Second Harmonic Generation Imaging of the Diseased State Osteogenesis Imperfecta: Experiment and Simulation,” Biophys. J. 94(11), 4504–4514 (2008).
[Crossref] [PubMed]

Burns (1)

M. C. Pierce, R. L. Sheridan, B. Hyle Park, B. Cense, and J. F. de Boer, “Collagen denaturation can be quantified in burned human skin using polarization-sensitive optical coherence tomography,” Burns 30(6), 511–517 (2004).
[Crossref] [PubMed]

IEEE J. Sel. Top. Quantum Electron. (1)

S.-Y. Chen, C. Shee-Uan, W. Hai-Yin, L. Wen-Jeng, Y.-H. Liao, and C.-K. Sun, “In vivo virtual biopsy of human skin by using noninvasive higher harmonic generation microscopy,” IEEE J. Sel. Top. Quantum Electron. 16(3), 478–492 (2010).
[Crossref]

J. Am. Acad. Dermatol. (1)

E. F. Bernstein, Y. Q. Chen, J. B. Kopp, L. Fisher, D. B. Brown, P. J. Hahn, F. A. Robey, J. Lakkakorpi, and J. Uitto, “Long-term sun exposure alters the collagen of the papillary dermis. Comparison of sun-protected and photoaged skin by Northern analysis, immunohistochemical staining, and confocal laser scanning microscopy,” J. Am. Acad. Dermatol. 34(2 Pt 1), 209–218 (1996).
[Crossref] [PubMed]

J. Anat. (1)

R. M. Aspden, Y. E. Yarker, and D. W. Hukins, “Collagen orientations in the meniscus of the knee joint,” J. Anat. 140(Pt 3), 371–380 (1985).
[PubMed]

J. Biomed. Opt. (11)

M.-G. Lin, T.-L. Yang, C.-T. Chiang, H.-C. Kao, J.-N. Lee, W. Lo, S.-H. Jee, Y.-F. Chen, C.-Y. Dong, and S.-J. Lin, “Evaluation of dermal thermal damage by multiphoton autofluorescence and second-harmonic-generation microscopy,” J. Biomed. Opt. 11(6), 064006 (2006).
[Crossref] [PubMed]

S. Wu, H. Li, H. Yang, X. Zhang, Z. Li, and S. Xu, “Quantitative analysis on collagen morphology in aging skin based on multiphoton microscopy,” J. Biomed. Opt. 16(4), 040502 (2011).
[Crossref] [PubMed]

A. Erikson, J. Örtegren, T. Hompland, C. de Lange Davies, and M. Lindgren, “Quantification of the second-order nonlinear susceptibility of collagen I using a laser scanning microscope,” J. Biomed. Opt. 12(4), 044002 (2007).
[Crossref] [PubMed]

R. Tanaka, S. Fukushima, K. Sasaki, Y. Tanaka, H. Murota, T. Matsumoto, T. Araki, and T. Yasui, “In vivo visualization of dermal collagen fiber in skin burn by collagen-sensitive second-harmonic-generation microscopy,” J. Biomed. Opt. 18(6), 061231 (2013).
[Crossref] [PubMed]

T. Yasui, M. Yonetsu, R. Tanaka, Y. Tanaka, S. Fukushima, T. Yamashita, Y. Ogura, T. Hirao, H. Murota, and T. Araki, “In vivo observation of age-related structural changes of dermal collagen in human facial skin using collagen-sensitive second harmonic generation microscope equipped with 1250-nm mode-locked Cr:Forsterite laser,” J. Biomed. Opt. 18(3), 031108 (2013).
[Crossref] [PubMed]

S. M. Srinivas, J. F. de Boer, H. Park, K. Keikhanzadeh, H. E. Huang, J. Zhang, W. Q. Jung, Z. Chen, and J. S. Nelson, “Determination of burn depth by polarization-sensitive optical coherence tomography,” J. Biomed. Opt. 9(1), 207–212 (2004).
[Crossref] [PubMed]

S. Sakai, N. Nakagawa, M. Yamanari, A. Miyazawa, Y. Yasuno, and M. Matsumoto, “Relationship between dermal birefringence and the skin surface roughness of photoaged human skin,” J. Biomed. Opt. 14(4), 044032 (2009).
[Crossref] [PubMed]

J. F. de Boer and T. E. Milner, “Review of polarization sensitive optical coherence tomography and Stokes vector determination,” J. Biomed. Opt. 7(3), 359–371 (2002).
[Crossref] [PubMed]

K. H. Kim, M. C. Pierce, G. Maguluri, B. H. Park, S. J. Yoon, M. Lydon, R. Sheridan, and J. F. de Boer, “In vivo imaging of human burn injuries with polarization-sensitive optical coherence tomography,” J. Biomed. Opt. 17(6), 066012 (2012).
[Crossref] [PubMed]

B. H. Park, C. Saxer, S. M. Srinivas, J. S. Nelson, and J. F. de Boer, “In vivo burn depth determination by high-speed fiber-based polarization sensitive optical coherence tomography,” J. Biomed. Opt. 6(4), 474–479 (2001).
[Crossref] [PubMed]

G. Liu and Z. Chen, “Fiber-based combined optical coherence and multiphoton endomicroscopy,” J. Biomed. Opt. 16(3), 036010 (2011).
[Crossref] [PubMed]

J. Biophotonics (1)

V. A. Hovhannisyan, P.-S. Hu, H.-Y. Tan, S.-J. Chen, and C.-Y. Dong, “Spatial orientation mapping of fibers using polarization-sensitive second harmonic generation microscopy,” J. Biophotonics 5(10), 768–776 (2012).
[Crossref] [PubMed]

J. Invest. Dermatol. (1)

S. Sakai, M. Yamanari, A. Miyazawa, M. Matsumoto, N. Nakagawa, T. Sugawara, K. Kawabata, T. Yatagai, and Y. Yasuno, “In vivo three-dimensional birefringence analysis shows collagen differences between young and old photo-aged human skin,” J. Invest. Dermatol. 128(7), 1641–1647 (2008).
[Crossref] [PubMed]

Lab. Invest. (1)

H. J. C. de Vries, D. N. Enomoto, J. van Marle, P. P. van Zuijlen, J. R. Mekkes, and J. D. Bos, “Dermal organization in Scleroderma: The Fast Fourier Transform and the laser scatter method objectify fibrosis in nonlesional as well as lesional skin,” Lab. Invest. 80(8), 1281–1289 (2000).
[Crossref] [PubMed]

Laser Phys. Lett. (1)

N. Vogler, A. Medyukhina, I. Latka, S. Kemper, M. Böhm, B. Dietzek, and J. Popp, “Towards multimodal nonlinear optical tomography – experimental methodology,” Laser Phys. Lett. 8(8), 617–624 (2011).
[Crossref]

Lasers Med. Sci. (1)

S. L. Wu, H. Li, X. M. Zhang, W. R. Chen, and Y. X. Wang, “Character of skin on photo-thermal response and its regeneration process using second-harmonic generation microscopy,” Lasers Med. Sci. 29(1), 141–146 (2014).
[Crossref] [PubMed]

Micron (1)

A. Aparecida de Aro, B. C. Vidal, and E. R. Pimentel, “Biochemical and anisotropical properties of tendons,” Micron 43(2-3), 205–214 (2012).
[Crossref] [PubMed]

Nat. Biotechnol. (1)

P. J. Campagnola and L. M. Loew, “Second-harmonic imaging microscopy for visualizing biomolecular arrays in cells, tissues and organisms,” Nat. Biotechnol. 21(11), 1356–1360 (2003).
[Crossref] [PubMed]

Nat. Protoc. (1)

X. Chen, O. Nadiarynkh, S. Plotnikov, and P. J. Campagnola, “Second harmonic generation microscopy for quantitative analysis of collagen fibrillar structure,” Nat. Protoc. 7(4), 654–669 (2012).
[Crossref] [PubMed]

Opt. Express (5)

Opt. Lett. (4)

Opt. Quantum Electron. (1)

T. Yasui, K. Sasaki, Y. Tohno, and T. Araki, “Tomographic Imaging of Collagen Fiber Orientation in Human Tissue Using Depth-Resolved Polarimetry of Second-Harmonic-Generation Light,” Opt. Quantum Electron. 37(13-15), 1397–1408 (2005).
[Crossref]

Scanning (1)

S. Zhuo, X. Zhu, J. Chen, and S. Xie, “Quantitative biomarkers of human skin photoaging based on intrinsic second harmonic generation signal,” Scanning 35(4), 273–276 (2013).
[Crossref] [PubMed]

Supplementary Material (8)

NameDescription
» Visualization 1: AVI (14492 KB)     
» Visualization 2: AVI (14493 KB)     
» Visualization 3: AVI (2296 KB)     
» Visualization 4: AVI (2194 KB)     
» Visualization 5: AVI (14949 KB)     
» Visualization 6: AVI (14705 KB)     
» Visualization 7: AVI (4069 KB)     
» Visualization 8: AVI (2968 KB)     

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 PS-OCT images of the rat rear leg and dorsal skin. (a) and (b): intensity and PS images of rat rear leg skin respectively (Visualization 1). (c) and (d): intensity and PS images of rat back skin respectively (Visualization 2). (e) Average accumulated phase retardation with depth of the leg skin (red) and back skin (blue). Scale bar: 500 μm.
Fig. 2
Fig. 2 SHG images of the rat rear leg and back skin at several depths of the dermis and their FFT power plots. (a-d): SHG images of the rear leg skin at depths of 10 μm, 20 μm, 30 μm and 40 μm (Visualization 3). (e-h): SHG images of the back skin at depths of 30 μm, 40 μm, 50 μm and 70 μm (Visualization 4). (i) and (j) are power plots of FFT of the projected SHG images of rat rear leg and back skin respectively. Scale bar: 30 μm.
Fig. 3
Fig. 3 Histological images of skin specimens with Masson’s trichrome staining: (a) rat leg skin; (b) rat back skin. Scale bar: 50μm.
Fig. 4
Fig. 4 Correlation between phase retardation slope (x) and collagen orientation index (y) of rat skin. Regression: y = 0.92*x + 0.12, r2 = 0.725. p < 0.001.
Fig. 5
Fig. 5 PS-OCT and SHG images of control and burn skin. (a) (b) Intensity OCT and PS OCT images of control skin respectively (Visualization 5). (c) (d) intensity OCT and PS OCT of burn damaged skin respectively (Visualization 6). (e-h) SHG images of control skin at depths of 30 μm, 40 μm, 50 μm and 70 μm respectively (Visualization 7). (i-l) SHG images of burn damaged skin at depths of 30 μm, 40 μm, 50 μm and 70 μm respectively (Visualization 8). Scale bar: 500 μm in OCT images, 30 μm in SHG images.

Metrics