Abstract

We perform subsurface ablation of atherosclerotic plaque using ultrafast pulses. Excised mouse aortas containing atherosclerotic plaque were ablated with ultrafast near-infrared (NIR) laser pulses. Optical coherence tomography (OCT) was used to observe the ablation result, while the physical damage was inspected in histological sections. We characterize the effects of incident pulse energy on surface damage, ablation hole size, and filament propagation. We find that it is possible to ablate plaque just below the surface without causing surface damage, which motivates further investigation of ultrafast ablation for subsurface atherosclerotic plaque removal.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Atherosclerotic plaque characterization by spatial and temporal speckle pattern analysis

Guillermo J. Tearney and Brett E. Bouma
Opt. Lett. 27(7) 533-535 (2002)

Multimodal characterization of compositional, structural and functional features of human atherosclerotic plaques

Yang Sun, Abhijit J. Chaudhari, Matthew Lam, Hongtao Xie, Diego R. Yankelevich, Jennifer Phipps, Jing Liu, Michael C. Fishbein, Jonathan M. Cannata, K. Kirk Shung, and Laura Marcu
Biomed. Opt. Express 2(8) 2288-2298 (2011)

Intravascular optical coherence tomography [Invited]

Brett E. Bouma, Martin Villiger, Kenichiro Otsuka, and Wang-Yuhl Oh
Biomed. Opt. Express 8(5) 2660-2686 (2017)

References

  • View by:
  • |
  • |
  • |

  1. J. A. Finegold, P. Asaria, and D. P. Francis, “Mortality from ischaemic heart disease by country, region, and age: Statistics from World Health Organisation and United Nations,” Int. J. Cardiol. 168(2), 934–945 (2013).
    [Crossref] [PubMed]
  2. V. Fuster, P. R. Moreno, Z. A. Fayad, R. Corti, and J. J. Badimon, “Atherothrombosis and High-Risk Plaque: Part I: Evolving Concepts,” J. Am. Coll. Cardiol. 46(6), 937–954 (2005).
    [Crossref] [PubMed]
  3. G. R. Mood, MD, J. Lee, MD, PhD, L. A. Garcia, MD, “Atherectomy in the Treatment of Lower-Extremity Peripheral Artery Disease: A Critical Review | Vascular Disease Management,” http://www.vasculardiseasemanagement.com/content/atherectomy-treatment-lower-extremity-peripheral-artery-disease-critical-review .
  4. P. C. Block, J. T. Fallon, and D. Elmer, “Experimental angioplasty: lessons from the laboratory,” AJR Am. J. Roentgenol. 135(5), 907–912 (1980).
    [Crossref] [PubMed]
  5. R. Ginsburg, L. Wexler, R. S. Mitchell, and D. Profitt, “Percutaneous transluminal laser angioplasty for treatment of peripheral vascular disease. Clinical experience with 16 patients,” Radiology 156(3), 619–624 (1985).
    [Crossref] [PubMed]
  6. J. A. Bittl, T. A. Sanborn, J. E. Tcheng, R. M. Siegel, and S. G. Ellis, “Clinical success, complications and restenosis rates with excimer laser coronary angioplasty,” Am. J. Cardiol. 70(20), 1533–1539 (1992).
    [Crossref] [PubMed]
  7. D. L. Singleton, G. Paraskevopoulos, R. Taylor, and L. Higginson, “Excimer laser angioplasty: Tissue ablation, arterial response, and fiber optic delivery,” IEEE J. Quantum Electron. 23(10), 1772–1782 (1987).
    [Crossref]
  8. S. L. Trokel, R. Srinivasan, and B. Braren, “Excimer laser surgery of the cornea,” Am. J. Ophthalmol. 96(6), 710–715 (1983).
    [Crossref] [PubMed]
  9. X. Liu, D. Du, and G. Mourou, “Laser ablation and micromachining with ultrashort laser pulses,” IEEE J. Quantum Electron. 33(10), 1706–1716 (1997).
    [Crossref]
  10. C. V. Gabel, “Femtosecond lasers in biology: nanoscale surgery with ultrafast optics,” Contemp. Phys. 49(6), 391–411 (2008).
    [Crossref]
  11. C. L. Hoy, O. Ferhanoglu, M. Yildirim, K. H. Kim, S. S. Karajanagi, K. M. C. Chan, J. B. Kobler, S. M. Zeitels, and A. Ben-Yakar, “Clinical Ultrafast Laser Surgery: Recent Advances and Future Directions,” IEEE J. Sel. Top. Quantum Electron. 20(2), 242–255 (2014).
    [Crossref]
  12. D. Du, X. Liu, G. Korn, J. Squier, and G. Mourou, “Laser‐induced breakdown by impact ionization in SiO2 with pulse widths from 7 ns to 150 fs,” Appl. Phys. Lett. 64(23), 3071–3073 (1994).
    [Crossref]
  13. A. Vogel, S. Busch, and U. Parlitz, “Shock wave emission and cavitation bubble generation by picosecond and nanosecond optical breakdown in water,” J. Acoust. Soc. Am. 100(1), 148–165 (1996).
    [Crossref]
  14. A. Vogel, J. Noack, G. Hüttman, and G. Paltauf, “Mechanisms of femtosecond laser nanosurgery of cells and tissues,” Appl. Phys. B 81(8), 1015–1047 (2005).
    [Crossref]
  15. M. Cilingiroglu, J. H. Oh, B. Sugunan, N. J. Kemp, J. Kim, S. Lee, H. N. Zaatari, D. Escobedo, S. Thomsen, T. E. Milner, and M. D. Feldman, “Detection of vulnerable plaque in a murine model of atherosclerosis with optical coherence tomography,” Catheter. Cardiovasc. Interv. 67(6), 915–923 (2006).
    [Crossref] [PubMed]
  16. K. S. Meir and E. Leitersdorf, “Atherosclerosis in the Apolipoprotein-E-Deficient Mouse: A Decade of Progress,” Arterioscler. Thromb. Vasc. Biol. 24(6), 1006–1014 (2004).
    [Crossref] [PubMed]
  17. Y. Nakashima, A. S. Plump, E. W. Raines, J. L. Breslow, and R. Ross, “ApoE-deficient mice develop lesions of all phases of atherosclerosis throughout the arterial tree,” Arterioscler. Thromb. 14(1), 133–140 (1994).
    [Crossref] [PubMed]
  18. M. H. Niemz, “Threshold dependence of laser‐induced optical breakdown on pulse duration,” Appl. Phys. Lett. 66(10), 1181–1183 (1995).
    [Crossref]
  19. J. Nguyen, J. Ferdman, M. Zhao, D. Huland, S. Saqqa, J. Ma, N. Nishimura, T. H. Schwartz, and C. B. Schaffer, “Sub-surface, micrometer-scale incisions produced in rodent cortex using tightly-focused femtosecond laser pulses,” Lasers Surg. Med. 43(5), 382–391 (2011).
    [Crossref] [PubMed]
  20. C. Xu, J. M. Schmitt, S. G. Carlier, and R. Virmani, “Characterization of atherosclerosis plaques by measuring both backscattering and attenuation coefficients in optical coherence tomography,” J. Biomed. Opt. 13(3), 034003 (2008).
    [Crossref] [PubMed]
  21. F. J. van der Meer, D. J. Faber, D. M. Baraznji Sassoon, M. C. Aalders, G. Pasterkamp, and T. G. van Leeuwen, “Localized measurement of optical attenuation coefficients of atherosclerotic plaque constituents by quantitative optical coherence tomography,” IEEE Trans. Med. Imaging 24(10), 1369–1376 (2005).
    [Crossref] [PubMed]
  22. J. L. Suhalim, C.-Y. Chung, M. B. Lilledahl, R. S. Lim, M. Levi, B. J. Tromberg, and E. O. Potma, “Characterization of Cholesterol Crystals in Atherosclerotic Plaques Using Stimulated Raman Scattering and Second-Harmonic Generation Microscopy,” Biophys. J. 102(8), 1988–1995 (2012).
    [Crossref] [PubMed]
  23. R. Kammel, R. Ackermann, A. Tünnermann, and S. Nolte, “Pump-probe investigation of fs-LIOB in water by simultaneous spatial and temporal focusing,” in (2013), Vol. 8611, p. 86110A–86110A–7.
  24. M. Miclea, U. Skrzypczak, S. Faust, F. Fankhauser, H. Graener, and G. Seifert, “Nonlinear refractive index of porcine cornea studied by z-scan and self-focusing during femtosecond laser processing,” Opt. Express 18(4), 3700–3707 (2010).
    [Crossref] [PubMed]
  25. H. Wisweh, U. Merkel, A.-K. Hüller, K. Lüerßen, and H. Lubatschowski, “Optical coherence tomography monitoring of vocal fold femtosecond laser microsurgery,” in (2007), Vol. 6632, pp. 663207–663207–7.
  26. W. M. Suh, A. H. Seto, R. J. P. Margey, I. Cruz-Gonzalez, and I.-K. Jang, “Intravascular Detection of the Vulnerable Plaque,” Circ Cardiovasc Imaging 4(2), 169–178 (2011).
    [Crossref] [PubMed]
  27. Y. Wang, M. Alharbi, T. D. Bradley, C. Fourcade-Dutin, B. Debord, B. Beaudou, F. Gerôme, and F. Benabid, “Hollow-core photonic crystal fibre for high power laser beam delivery,” High Power Laser Sci. Eng. 1(01), 17–28 (2013).
    [Crossref]
  28. Y. Y. Wang, X. Peng, M. Alharbi, C. F. Dutin, T. D. Bradley, F. Gérôme, M. Mielke, T. Booth, and F. Benabid, “Design and fabrication of hollow-core photonic crystal fibers for high-power ultrashort pulse transportation and pulse compression,” Opt. Lett. 37(15), 3111–3113 (2012).
    [Crossref] [PubMed]
  29. O. Ferhanoglu, M. Yildirim, K. Subramanian, and A. Ben-Yakar, “A 5-mm piezo-scanning fiber device for high speed ultrafast laser microsurgery,” Biomed. Opt. Express 5(7), 2023–2036 (2014).
    [Crossref] [PubMed]
  30. Z. Qian, A. Mordovanakis, J. E. Schoenly, A. Covarrubias, Y. Feng, L. Lilge, and R. S. Marjoribanks, “Pulsetrain-burst mode, ultrafast-laser interactions with 3D viable cell cultures as a model for soft biological tissues,” Biomed. Opt. Express 5(1), 208–222 (2014).
    [Crossref] [PubMed]

2014 (3)

2013 (2)

Y. Wang, M. Alharbi, T. D. Bradley, C. Fourcade-Dutin, B. Debord, B. Beaudou, F. Gerôme, and F. Benabid, “Hollow-core photonic crystal fibre for high power laser beam delivery,” High Power Laser Sci. Eng. 1(01), 17–28 (2013).
[Crossref]

J. A. Finegold, P. Asaria, and D. P. Francis, “Mortality from ischaemic heart disease by country, region, and age: Statistics from World Health Organisation and United Nations,” Int. J. Cardiol. 168(2), 934–945 (2013).
[Crossref] [PubMed]

2012 (2)

J. L. Suhalim, C.-Y. Chung, M. B. Lilledahl, R. S. Lim, M. Levi, B. J. Tromberg, and E. O. Potma, “Characterization of Cholesterol Crystals in Atherosclerotic Plaques Using Stimulated Raman Scattering and Second-Harmonic Generation Microscopy,” Biophys. J. 102(8), 1988–1995 (2012).
[Crossref] [PubMed]

Y. Y. Wang, X. Peng, M. Alharbi, C. F. Dutin, T. D. Bradley, F. Gérôme, M. Mielke, T. Booth, and F. Benabid, “Design and fabrication of hollow-core photonic crystal fibers for high-power ultrashort pulse transportation and pulse compression,” Opt. Lett. 37(15), 3111–3113 (2012).
[Crossref] [PubMed]

2011 (2)

W. M. Suh, A. H. Seto, R. J. P. Margey, I. Cruz-Gonzalez, and I.-K. Jang, “Intravascular Detection of the Vulnerable Plaque,” Circ Cardiovasc Imaging 4(2), 169–178 (2011).
[Crossref] [PubMed]

J. Nguyen, J. Ferdman, M. Zhao, D. Huland, S. Saqqa, J. Ma, N. Nishimura, T. H. Schwartz, and C. B. Schaffer, “Sub-surface, micrometer-scale incisions produced in rodent cortex using tightly-focused femtosecond laser pulses,” Lasers Surg. Med. 43(5), 382–391 (2011).
[Crossref] [PubMed]

2010 (1)

2008 (2)

C. Xu, J. M. Schmitt, S. G. Carlier, and R. Virmani, “Characterization of atherosclerosis plaques by measuring both backscattering and attenuation coefficients in optical coherence tomography,” J. Biomed. Opt. 13(3), 034003 (2008).
[Crossref] [PubMed]

C. V. Gabel, “Femtosecond lasers in biology: nanoscale surgery with ultrafast optics,” Contemp. Phys. 49(6), 391–411 (2008).
[Crossref]

2006 (1)

M. Cilingiroglu, J. H. Oh, B. Sugunan, N. J. Kemp, J. Kim, S. Lee, H. N. Zaatari, D. Escobedo, S. Thomsen, T. E. Milner, and M. D. Feldman, “Detection of vulnerable plaque in a murine model of atherosclerosis with optical coherence tomography,” Catheter. Cardiovasc. Interv. 67(6), 915–923 (2006).
[Crossref] [PubMed]

2005 (3)

F. J. van der Meer, D. J. Faber, D. M. Baraznji Sassoon, M. C. Aalders, G. Pasterkamp, and T. G. van Leeuwen, “Localized measurement of optical attenuation coefficients of atherosclerotic plaque constituents by quantitative optical coherence tomography,” IEEE Trans. Med. Imaging 24(10), 1369–1376 (2005).
[Crossref] [PubMed]

A. Vogel, J. Noack, G. Hüttman, and G. Paltauf, “Mechanisms of femtosecond laser nanosurgery of cells and tissues,” Appl. Phys. B 81(8), 1015–1047 (2005).
[Crossref]

V. Fuster, P. R. Moreno, Z. A. Fayad, R. Corti, and J. J. Badimon, “Atherothrombosis and High-Risk Plaque: Part I: Evolving Concepts,” J. Am. Coll. Cardiol. 46(6), 937–954 (2005).
[Crossref] [PubMed]

2004 (1)

K. S. Meir and E. Leitersdorf, “Atherosclerosis in the Apolipoprotein-E-Deficient Mouse: A Decade of Progress,” Arterioscler. Thromb. Vasc. Biol. 24(6), 1006–1014 (2004).
[Crossref] [PubMed]

1997 (1)

X. Liu, D. Du, and G. Mourou, “Laser ablation and micromachining with ultrashort laser pulses,” IEEE J. Quantum Electron. 33(10), 1706–1716 (1997).
[Crossref]

1996 (1)

A. Vogel, S. Busch, and U. Parlitz, “Shock wave emission and cavitation bubble generation by picosecond and nanosecond optical breakdown in water,” J. Acoust. Soc. Am. 100(1), 148–165 (1996).
[Crossref]

1995 (1)

M. H. Niemz, “Threshold dependence of laser‐induced optical breakdown on pulse duration,” Appl. Phys. Lett. 66(10), 1181–1183 (1995).
[Crossref]

1994 (2)

Y. Nakashima, A. S. Plump, E. W. Raines, J. L. Breslow, and R. Ross, “ApoE-deficient mice develop lesions of all phases of atherosclerosis throughout the arterial tree,” Arterioscler. Thromb. 14(1), 133–140 (1994).
[Crossref] [PubMed]

D. Du, X. Liu, G. Korn, J. Squier, and G. Mourou, “Laser‐induced breakdown by impact ionization in SiO2 with pulse widths from 7 ns to 150 fs,” Appl. Phys. Lett. 64(23), 3071–3073 (1994).
[Crossref]

1992 (1)

J. A. Bittl, T. A. Sanborn, J. E. Tcheng, R. M. Siegel, and S. G. Ellis, “Clinical success, complications and restenosis rates with excimer laser coronary angioplasty,” Am. J. Cardiol. 70(20), 1533–1539 (1992).
[Crossref] [PubMed]

1987 (1)

D. L. Singleton, G. Paraskevopoulos, R. Taylor, and L. Higginson, “Excimer laser angioplasty: Tissue ablation, arterial response, and fiber optic delivery,” IEEE J. Quantum Electron. 23(10), 1772–1782 (1987).
[Crossref]

1985 (1)

R. Ginsburg, L. Wexler, R. S. Mitchell, and D. Profitt, “Percutaneous transluminal laser angioplasty for treatment of peripheral vascular disease. Clinical experience with 16 patients,” Radiology 156(3), 619–624 (1985).
[Crossref] [PubMed]

1983 (1)

S. L. Trokel, R. Srinivasan, and B. Braren, “Excimer laser surgery of the cornea,” Am. J. Ophthalmol. 96(6), 710–715 (1983).
[Crossref] [PubMed]

1980 (1)

P. C. Block, J. T. Fallon, and D. Elmer, “Experimental angioplasty: lessons from the laboratory,” AJR Am. J. Roentgenol. 135(5), 907–912 (1980).
[Crossref] [PubMed]

Aalders, M. C.

F. J. van der Meer, D. J. Faber, D. M. Baraznji Sassoon, M. C. Aalders, G. Pasterkamp, and T. G. van Leeuwen, “Localized measurement of optical attenuation coefficients of atherosclerotic plaque constituents by quantitative optical coherence tomography,” IEEE Trans. Med. Imaging 24(10), 1369–1376 (2005).
[Crossref] [PubMed]

Alharbi, M.

Y. Wang, M. Alharbi, T. D. Bradley, C. Fourcade-Dutin, B. Debord, B. Beaudou, F. Gerôme, and F. Benabid, “Hollow-core photonic crystal fibre for high power laser beam delivery,” High Power Laser Sci. Eng. 1(01), 17–28 (2013).
[Crossref]

Y. Y. Wang, X. Peng, M. Alharbi, C. F. Dutin, T. D. Bradley, F. Gérôme, M. Mielke, T. Booth, and F. Benabid, “Design and fabrication of hollow-core photonic crystal fibers for high-power ultrashort pulse transportation and pulse compression,” Opt. Lett. 37(15), 3111–3113 (2012).
[Crossref] [PubMed]

Asaria, P.

J. A. Finegold, P. Asaria, and D. P. Francis, “Mortality from ischaemic heart disease by country, region, and age: Statistics from World Health Organisation and United Nations,” Int. J. Cardiol. 168(2), 934–945 (2013).
[Crossref] [PubMed]

Badimon, J. J.

V. Fuster, P. R. Moreno, Z. A. Fayad, R. Corti, and J. J. Badimon, “Atherothrombosis and High-Risk Plaque: Part I: Evolving Concepts,” J. Am. Coll. Cardiol. 46(6), 937–954 (2005).
[Crossref] [PubMed]

Baraznji Sassoon, D. M.

F. J. van der Meer, D. J. Faber, D. M. Baraznji Sassoon, M. C. Aalders, G. Pasterkamp, and T. G. van Leeuwen, “Localized measurement of optical attenuation coefficients of atherosclerotic plaque constituents by quantitative optical coherence tomography,” IEEE Trans. Med. Imaging 24(10), 1369–1376 (2005).
[Crossref] [PubMed]

Beaudou, B.

Y. Wang, M. Alharbi, T. D. Bradley, C. Fourcade-Dutin, B. Debord, B. Beaudou, F. Gerôme, and F. Benabid, “Hollow-core photonic crystal fibre for high power laser beam delivery,” High Power Laser Sci. Eng. 1(01), 17–28 (2013).
[Crossref]

Benabid, F.

Y. Wang, M. Alharbi, T. D. Bradley, C. Fourcade-Dutin, B. Debord, B. Beaudou, F. Gerôme, and F. Benabid, “Hollow-core photonic crystal fibre for high power laser beam delivery,” High Power Laser Sci. Eng. 1(01), 17–28 (2013).
[Crossref]

Y. Y. Wang, X. Peng, M. Alharbi, C. F. Dutin, T. D. Bradley, F. Gérôme, M. Mielke, T. Booth, and F. Benabid, “Design and fabrication of hollow-core photonic crystal fibers for high-power ultrashort pulse transportation and pulse compression,” Opt. Lett. 37(15), 3111–3113 (2012).
[Crossref] [PubMed]

Ben-Yakar, A.

O. Ferhanoglu, M. Yildirim, K. Subramanian, and A. Ben-Yakar, “A 5-mm piezo-scanning fiber device for high speed ultrafast laser microsurgery,” Biomed. Opt. Express 5(7), 2023–2036 (2014).
[Crossref] [PubMed]

C. L. Hoy, O. Ferhanoglu, M. Yildirim, K. H. Kim, S. S. Karajanagi, K. M. C. Chan, J. B. Kobler, S. M. Zeitels, and A. Ben-Yakar, “Clinical Ultrafast Laser Surgery: Recent Advances and Future Directions,” IEEE J. Sel. Top. Quantum Electron. 20(2), 242–255 (2014).
[Crossref]

Bittl, J. A.

J. A. Bittl, T. A. Sanborn, J. E. Tcheng, R. M. Siegel, and S. G. Ellis, “Clinical success, complications and restenosis rates with excimer laser coronary angioplasty,” Am. J. Cardiol. 70(20), 1533–1539 (1992).
[Crossref] [PubMed]

Block, P. C.

P. C. Block, J. T. Fallon, and D. Elmer, “Experimental angioplasty: lessons from the laboratory,” AJR Am. J. Roentgenol. 135(5), 907–912 (1980).
[Crossref] [PubMed]

Booth, T.

Bradley, T. D.

Y. Wang, M. Alharbi, T. D. Bradley, C. Fourcade-Dutin, B. Debord, B. Beaudou, F. Gerôme, and F. Benabid, “Hollow-core photonic crystal fibre for high power laser beam delivery,” High Power Laser Sci. Eng. 1(01), 17–28 (2013).
[Crossref]

Y. Y. Wang, X. Peng, M. Alharbi, C. F. Dutin, T. D. Bradley, F. Gérôme, M. Mielke, T. Booth, and F. Benabid, “Design and fabrication of hollow-core photonic crystal fibers for high-power ultrashort pulse transportation and pulse compression,” Opt. Lett. 37(15), 3111–3113 (2012).
[Crossref] [PubMed]

Braren, B.

S. L. Trokel, R. Srinivasan, and B. Braren, “Excimer laser surgery of the cornea,” Am. J. Ophthalmol. 96(6), 710–715 (1983).
[Crossref] [PubMed]

Breslow, J. L.

Y. Nakashima, A. S. Plump, E. W. Raines, J. L. Breslow, and R. Ross, “ApoE-deficient mice develop lesions of all phases of atherosclerosis throughout the arterial tree,” Arterioscler. Thromb. 14(1), 133–140 (1994).
[Crossref] [PubMed]

Busch, S.

A. Vogel, S. Busch, and U. Parlitz, “Shock wave emission and cavitation bubble generation by picosecond and nanosecond optical breakdown in water,” J. Acoust. Soc. Am. 100(1), 148–165 (1996).
[Crossref]

Carlier, S. G.

C. Xu, J. M. Schmitt, S. G. Carlier, and R. Virmani, “Characterization of atherosclerosis plaques by measuring both backscattering and attenuation coefficients in optical coherence tomography,” J. Biomed. Opt. 13(3), 034003 (2008).
[Crossref] [PubMed]

Chan, K. M. C.

C. L. Hoy, O. Ferhanoglu, M. Yildirim, K. H. Kim, S. S. Karajanagi, K. M. C. Chan, J. B. Kobler, S. M. Zeitels, and A. Ben-Yakar, “Clinical Ultrafast Laser Surgery: Recent Advances and Future Directions,” IEEE J. Sel. Top. Quantum Electron. 20(2), 242–255 (2014).
[Crossref]

Chung, C.-Y.

J. L. Suhalim, C.-Y. Chung, M. B. Lilledahl, R. S. Lim, M. Levi, B. J. Tromberg, and E. O. Potma, “Characterization of Cholesterol Crystals in Atherosclerotic Plaques Using Stimulated Raman Scattering and Second-Harmonic Generation Microscopy,” Biophys. J. 102(8), 1988–1995 (2012).
[Crossref] [PubMed]

Cilingiroglu, M.

M. Cilingiroglu, J. H. Oh, B. Sugunan, N. J. Kemp, J. Kim, S. Lee, H. N. Zaatari, D. Escobedo, S. Thomsen, T. E. Milner, and M. D. Feldman, “Detection of vulnerable plaque in a murine model of atherosclerosis with optical coherence tomography,” Catheter. Cardiovasc. Interv. 67(6), 915–923 (2006).
[Crossref] [PubMed]

Corti, R.

V. Fuster, P. R. Moreno, Z. A. Fayad, R. Corti, and J. J. Badimon, “Atherothrombosis and High-Risk Plaque: Part I: Evolving Concepts,” J. Am. Coll. Cardiol. 46(6), 937–954 (2005).
[Crossref] [PubMed]

Covarrubias, A.

Cruz-Gonzalez, I.

W. M. Suh, A. H. Seto, R. J. P. Margey, I. Cruz-Gonzalez, and I.-K. Jang, “Intravascular Detection of the Vulnerable Plaque,” Circ Cardiovasc Imaging 4(2), 169–178 (2011).
[Crossref] [PubMed]

Debord, B.

Y. Wang, M. Alharbi, T. D. Bradley, C. Fourcade-Dutin, B. Debord, B. Beaudou, F. Gerôme, and F. Benabid, “Hollow-core photonic crystal fibre for high power laser beam delivery,” High Power Laser Sci. Eng. 1(01), 17–28 (2013).
[Crossref]

Du, D.

X. Liu, D. Du, and G. Mourou, “Laser ablation and micromachining with ultrashort laser pulses,” IEEE J. Quantum Electron. 33(10), 1706–1716 (1997).
[Crossref]

D. Du, X. Liu, G. Korn, J. Squier, and G. Mourou, “Laser‐induced breakdown by impact ionization in SiO2 with pulse widths from 7 ns to 150 fs,” Appl. Phys. Lett. 64(23), 3071–3073 (1994).
[Crossref]

Dutin, C. F.

Ellis, S. G.

J. A. Bittl, T. A. Sanborn, J. E. Tcheng, R. M. Siegel, and S. G. Ellis, “Clinical success, complications and restenosis rates with excimer laser coronary angioplasty,” Am. J. Cardiol. 70(20), 1533–1539 (1992).
[Crossref] [PubMed]

Elmer, D.

P. C. Block, J. T. Fallon, and D. Elmer, “Experimental angioplasty: lessons from the laboratory,” AJR Am. J. Roentgenol. 135(5), 907–912 (1980).
[Crossref] [PubMed]

Escobedo, D.

M. Cilingiroglu, J. H. Oh, B. Sugunan, N. J. Kemp, J. Kim, S. Lee, H. N. Zaatari, D. Escobedo, S. Thomsen, T. E. Milner, and M. D. Feldman, “Detection of vulnerable plaque in a murine model of atherosclerosis with optical coherence tomography,” Catheter. Cardiovasc. Interv. 67(6), 915–923 (2006).
[Crossref] [PubMed]

Faber, D. J.

F. J. van der Meer, D. J. Faber, D. M. Baraznji Sassoon, M. C. Aalders, G. Pasterkamp, and T. G. van Leeuwen, “Localized measurement of optical attenuation coefficients of atherosclerotic plaque constituents by quantitative optical coherence tomography,” IEEE Trans. Med. Imaging 24(10), 1369–1376 (2005).
[Crossref] [PubMed]

Fallon, J. T.

P. C. Block, J. T. Fallon, and D. Elmer, “Experimental angioplasty: lessons from the laboratory,” AJR Am. J. Roentgenol. 135(5), 907–912 (1980).
[Crossref] [PubMed]

Fankhauser, F.

Faust, S.

Fayad, Z. A.

V. Fuster, P. R. Moreno, Z. A. Fayad, R. Corti, and J. J. Badimon, “Atherothrombosis and High-Risk Plaque: Part I: Evolving Concepts,” J. Am. Coll. Cardiol. 46(6), 937–954 (2005).
[Crossref] [PubMed]

Feldman, M. D.

M. Cilingiroglu, J. H. Oh, B. Sugunan, N. J. Kemp, J. Kim, S. Lee, H. N. Zaatari, D. Escobedo, S. Thomsen, T. E. Milner, and M. D. Feldman, “Detection of vulnerable plaque in a murine model of atherosclerosis with optical coherence tomography,” Catheter. Cardiovasc. Interv. 67(6), 915–923 (2006).
[Crossref] [PubMed]

Feng, Y.

Ferdman, J.

J. Nguyen, J. Ferdman, M. Zhao, D. Huland, S. Saqqa, J. Ma, N. Nishimura, T. H. Schwartz, and C. B. Schaffer, “Sub-surface, micrometer-scale incisions produced in rodent cortex using tightly-focused femtosecond laser pulses,” Lasers Surg. Med. 43(5), 382–391 (2011).
[Crossref] [PubMed]

Ferhanoglu, O.

O. Ferhanoglu, M. Yildirim, K. Subramanian, and A. Ben-Yakar, “A 5-mm piezo-scanning fiber device for high speed ultrafast laser microsurgery,” Biomed. Opt. Express 5(7), 2023–2036 (2014).
[Crossref] [PubMed]

C. L. Hoy, O. Ferhanoglu, M. Yildirim, K. H. Kim, S. S. Karajanagi, K. M. C. Chan, J. B. Kobler, S. M. Zeitels, and A. Ben-Yakar, “Clinical Ultrafast Laser Surgery: Recent Advances and Future Directions,” IEEE J. Sel. Top. Quantum Electron. 20(2), 242–255 (2014).
[Crossref]

Finegold, J. A.

J. A. Finegold, P. Asaria, and D. P. Francis, “Mortality from ischaemic heart disease by country, region, and age: Statistics from World Health Organisation and United Nations,” Int. J. Cardiol. 168(2), 934–945 (2013).
[Crossref] [PubMed]

Fourcade-Dutin, C.

Y. Wang, M. Alharbi, T. D. Bradley, C. Fourcade-Dutin, B. Debord, B. Beaudou, F. Gerôme, and F. Benabid, “Hollow-core photonic crystal fibre for high power laser beam delivery,” High Power Laser Sci. Eng. 1(01), 17–28 (2013).
[Crossref]

Francis, D. P.

J. A. Finegold, P. Asaria, and D. P. Francis, “Mortality from ischaemic heart disease by country, region, and age: Statistics from World Health Organisation and United Nations,” Int. J. Cardiol. 168(2), 934–945 (2013).
[Crossref] [PubMed]

Fuster, V.

V. Fuster, P. R. Moreno, Z. A. Fayad, R. Corti, and J. J. Badimon, “Atherothrombosis and High-Risk Plaque: Part I: Evolving Concepts,” J. Am. Coll. Cardiol. 46(6), 937–954 (2005).
[Crossref] [PubMed]

Gabel, C. V.

C. V. Gabel, “Femtosecond lasers in biology: nanoscale surgery with ultrafast optics,” Contemp. Phys. 49(6), 391–411 (2008).
[Crossref]

Gerôme, F.

Y. Wang, M. Alharbi, T. D. Bradley, C. Fourcade-Dutin, B. Debord, B. Beaudou, F. Gerôme, and F. Benabid, “Hollow-core photonic crystal fibre for high power laser beam delivery,” High Power Laser Sci. Eng. 1(01), 17–28 (2013).
[Crossref]

Gérôme, F.

Ginsburg, R.

R. Ginsburg, L. Wexler, R. S. Mitchell, and D. Profitt, “Percutaneous transluminal laser angioplasty for treatment of peripheral vascular disease. Clinical experience with 16 patients,” Radiology 156(3), 619–624 (1985).
[Crossref] [PubMed]

Graener, H.

Higginson, L.

D. L. Singleton, G. Paraskevopoulos, R. Taylor, and L. Higginson, “Excimer laser angioplasty: Tissue ablation, arterial response, and fiber optic delivery,” IEEE J. Quantum Electron. 23(10), 1772–1782 (1987).
[Crossref]

Hoy, C. L.

C. L. Hoy, O. Ferhanoglu, M. Yildirim, K. H. Kim, S. S. Karajanagi, K. M. C. Chan, J. B. Kobler, S. M. Zeitels, and A. Ben-Yakar, “Clinical Ultrafast Laser Surgery: Recent Advances and Future Directions,” IEEE J. Sel. Top. Quantum Electron. 20(2), 242–255 (2014).
[Crossref]

Huland, D.

J. Nguyen, J. Ferdman, M. Zhao, D. Huland, S. Saqqa, J. Ma, N. Nishimura, T. H. Schwartz, and C. B. Schaffer, “Sub-surface, micrometer-scale incisions produced in rodent cortex using tightly-focused femtosecond laser pulses,” Lasers Surg. Med. 43(5), 382–391 (2011).
[Crossref] [PubMed]

Hüttman, G.

A. Vogel, J. Noack, G. Hüttman, and G. Paltauf, “Mechanisms of femtosecond laser nanosurgery of cells and tissues,” Appl. Phys. B 81(8), 1015–1047 (2005).
[Crossref]

Jang, I.-K.

W. M. Suh, A. H. Seto, R. J. P. Margey, I. Cruz-Gonzalez, and I.-K. Jang, “Intravascular Detection of the Vulnerable Plaque,” Circ Cardiovasc Imaging 4(2), 169–178 (2011).
[Crossref] [PubMed]

Karajanagi, S. S.

C. L. Hoy, O. Ferhanoglu, M. Yildirim, K. H. Kim, S. S. Karajanagi, K. M. C. Chan, J. B. Kobler, S. M. Zeitels, and A. Ben-Yakar, “Clinical Ultrafast Laser Surgery: Recent Advances and Future Directions,” IEEE J. Sel. Top. Quantum Electron. 20(2), 242–255 (2014).
[Crossref]

Kemp, N. J.

M. Cilingiroglu, J. H. Oh, B. Sugunan, N. J. Kemp, J. Kim, S. Lee, H. N. Zaatari, D. Escobedo, S. Thomsen, T. E. Milner, and M. D. Feldman, “Detection of vulnerable plaque in a murine model of atherosclerosis with optical coherence tomography,” Catheter. Cardiovasc. Interv. 67(6), 915–923 (2006).
[Crossref] [PubMed]

Kim, J.

M. Cilingiroglu, J. H. Oh, B. Sugunan, N. J. Kemp, J. Kim, S. Lee, H. N. Zaatari, D. Escobedo, S. Thomsen, T. E. Milner, and M. D. Feldman, “Detection of vulnerable plaque in a murine model of atherosclerosis with optical coherence tomography,” Catheter. Cardiovasc. Interv. 67(6), 915–923 (2006).
[Crossref] [PubMed]

Kim, K. H.

C. L. Hoy, O. Ferhanoglu, M. Yildirim, K. H. Kim, S. S. Karajanagi, K. M. C. Chan, J. B. Kobler, S. M. Zeitels, and A. Ben-Yakar, “Clinical Ultrafast Laser Surgery: Recent Advances and Future Directions,” IEEE J. Sel. Top. Quantum Electron. 20(2), 242–255 (2014).
[Crossref]

Kobler, J. B.

C. L. Hoy, O. Ferhanoglu, M. Yildirim, K. H. Kim, S. S. Karajanagi, K. M. C. Chan, J. B. Kobler, S. M. Zeitels, and A. Ben-Yakar, “Clinical Ultrafast Laser Surgery: Recent Advances and Future Directions,” IEEE J. Sel. Top. Quantum Electron. 20(2), 242–255 (2014).
[Crossref]

Korn, G.

D. Du, X. Liu, G. Korn, J. Squier, and G. Mourou, “Laser‐induced breakdown by impact ionization in SiO2 with pulse widths from 7 ns to 150 fs,” Appl. Phys. Lett. 64(23), 3071–3073 (1994).
[Crossref]

Lee, S.

M. Cilingiroglu, J. H. Oh, B. Sugunan, N. J. Kemp, J. Kim, S. Lee, H. N. Zaatari, D. Escobedo, S. Thomsen, T. E. Milner, and M. D. Feldman, “Detection of vulnerable plaque in a murine model of atherosclerosis with optical coherence tomography,” Catheter. Cardiovasc. Interv. 67(6), 915–923 (2006).
[Crossref] [PubMed]

Leitersdorf, E.

K. S. Meir and E. Leitersdorf, “Atherosclerosis in the Apolipoprotein-E-Deficient Mouse: A Decade of Progress,” Arterioscler. Thromb. Vasc. Biol. 24(6), 1006–1014 (2004).
[Crossref] [PubMed]

Levi, M.

J. L. Suhalim, C.-Y. Chung, M. B. Lilledahl, R. S. Lim, M. Levi, B. J. Tromberg, and E. O. Potma, “Characterization of Cholesterol Crystals in Atherosclerotic Plaques Using Stimulated Raman Scattering and Second-Harmonic Generation Microscopy,” Biophys. J. 102(8), 1988–1995 (2012).
[Crossref] [PubMed]

Lilge, L.

Lilledahl, M. B.

J. L. Suhalim, C.-Y. Chung, M. B. Lilledahl, R. S. Lim, M. Levi, B. J. Tromberg, and E. O. Potma, “Characterization of Cholesterol Crystals in Atherosclerotic Plaques Using Stimulated Raman Scattering and Second-Harmonic Generation Microscopy,” Biophys. J. 102(8), 1988–1995 (2012).
[Crossref] [PubMed]

Lim, R. S.

J. L. Suhalim, C.-Y. Chung, M. B. Lilledahl, R. S. Lim, M. Levi, B. J. Tromberg, and E. O. Potma, “Characterization of Cholesterol Crystals in Atherosclerotic Plaques Using Stimulated Raman Scattering and Second-Harmonic Generation Microscopy,” Biophys. J. 102(8), 1988–1995 (2012).
[Crossref] [PubMed]

Liu, X.

X. Liu, D. Du, and G. Mourou, “Laser ablation and micromachining with ultrashort laser pulses,” IEEE J. Quantum Electron. 33(10), 1706–1716 (1997).
[Crossref]

D. Du, X. Liu, G. Korn, J. Squier, and G. Mourou, “Laser‐induced breakdown by impact ionization in SiO2 with pulse widths from 7 ns to 150 fs,” Appl. Phys. Lett. 64(23), 3071–3073 (1994).
[Crossref]

Ma, J.

J. Nguyen, J. Ferdman, M. Zhao, D. Huland, S. Saqqa, J. Ma, N. Nishimura, T. H. Schwartz, and C. B. Schaffer, “Sub-surface, micrometer-scale incisions produced in rodent cortex using tightly-focused femtosecond laser pulses,” Lasers Surg. Med. 43(5), 382–391 (2011).
[Crossref] [PubMed]

Margey, R. J. P.

W. M. Suh, A. H. Seto, R. J. P. Margey, I. Cruz-Gonzalez, and I.-K. Jang, “Intravascular Detection of the Vulnerable Plaque,” Circ Cardiovasc Imaging 4(2), 169–178 (2011).
[Crossref] [PubMed]

Marjoribanks, R. S.

Meir, K. S.

K. S. Meir and E. Leitersdorf, “Atherosclerosis in the Apolipoprotein-E-Deficient Mouse: A Decade of Progress,” Arterioscler. Thromb. Vasc. Biol. 24(6), 1006–1014 (2004).
[Crossref] [PubMed]

Miclea, M.

Mielke, M.

Milner, T. E.

M. Cilingiroglu, J. H. Oh, B. Sugunan, N. J. Kemp, J. Kim, S. Lee, H. N. Zaatari, D. Escobedo, S. Thomsen, T. E. Milner, and M. D. Feldman, “Detection of vulnerable plaque in a murine model of atherosclerosis with optical coherence tomography,” Catheter. Cardiovasc. Interv. 67(6), 915–923 (2006).
[Crossref] [PubMed]

Mitchell, R. S.

R. Ginsburg, L. Wexler, R. S. Mitchell, and D. Profitt, “Percutaneous transluminal laser angioplasty for treatment of peripheral vascular disease. Clinical experience with 16 patients,” Radiology 156(3), 619–624 (1985).
[Crossref] [PubMed]

Mordovanakis, A.

Moreno, P. R.

V. Fuster, P. R. Moreno, Z. A. Fayad, R. Corti, and J. J. Badimon, “Atherothrombosis and High-Risk Plaque: Part I: Evolving Concepts,” J. Am. Coll. Cardiol. 46(6), 937–954 (2005).
[Crossref] [PubMed]

Mourou, G.

X. Liu, D. Du, and G. Mourou, “Laser ablation and micromachining with ultrashort laser pulses,” IEEE J. Quantum Electron. 33(10), 1706–1716 (1997).
[Crossref]

D. Du, X. Liu, G. Korn, J. Squier, and G. Mourou, “Laser‐induced breakdown by impact ionization in SiO2 with pulse widths from 7 ns to 150 fs,” Appl. Phys. Lett. 64(23), 3071–3073 (1994).
[Crossref]

Nakashima, Y.

Y. Nakashima, A. S. Plump, E. W. Raines, J. L. Breslow, and R. Ross, “ApoE-deficient mice develop lesions of all phases of atherosclerosis throughout the arterial tree,” Arterioscler. Thromb. 14(1), 133–140 (1994).
[Crossref] [PubMed]

Nguyen, J.

J. Nguyen, J. Ferdman, M. Zhao, D. Huland, S. Saqqa, J. Ma, N. Nishimura, T. H. Schwartz, and C. B. Schaffer, “Sub-surface, micrometer-scale incisions produced in rodent cortex using tightly-focused femtosecond laser pulses,” Lasers Surg. Med. 43(5), 382–391 (2011).
[Crossref] [PubMed]

Niemz, M. H.

M. H. Niemz, “Threshold dependence of laser‐induced optical breakdown on pulse duration,” Appl. Phys. Lett. 66(10), 1181–1183 (1995).
[Crossref]

Nishimura, N.

J. Nguyen, J. Ferdman, M. Zhao, D. Huland, S. Saqqa, J. Ma, N. Nishimura, T. H. Schwartz, and C. B. Schaffer, “Sub-surface, micrometer-scale incisions produced in rodent cortex using tightly-focused femtosecond laser pulses,” Lasers Surg. Med. 43(5), 382–391 (2011).
[Crossref] [PubMed]

Noack, J.

A. Vogel, J. Noack, G. Hüttman, and G. Paltauf, “Mechanisms of femtosecond laser nanosurgery of cells and tissues,” Appl. Phys. B 81(8), 1015–1047 (2005).
[Crossref]

Oh, J. H.

M. Cilingiroglu, J. H. Oh, B. Sugunan, N. J. Kemp, J. Kim, S. Lee, H. N. Zaatari, D. Escobedo, S. Thomsen, T. E. Milner, and M. D. Feldman, “Detection of vulnerable plaque in a murine model of atherosclerosis with optical coherence tomography,” Catheter. Cardiovasc. Interv. 67(6), 915–923 (2006).
[Crossref] [PubMed]

Paltauf, G.

A. Vogel, J. Noack, G. Hüttman, and G. Paltauf, “Mechanisms of femtosecond laser nanosurgery of cells and tissues,” Appl. Phys. B 81(8), 1015–1047 (2005).
[Crossref]

Paraskevopoulos, G.

D. L. Singleton, G. Paraskevopoulos, R. Taylor, and L. Higginson, “Excimer laser angioplasty: Tissue ablation, arterial response, and fiber optic delivery,” IEEE J. Quantum Electron. 23(10), 1772–1782 (1987).
[Crossref]

Parlitz, U.

A. Vogel, S. Busch, and U. Parlitz, “Shock wave emission and cavitation bubble generation by picosecond and nanosecond optical breakdown in water,” J. Acoust. Soc. Am. 100(1), 148–165 (1996).
[Crossref]

Pasterkamp, G.

F. J. van der Meer, D. J. Faber, D. M. Baraznji Sassoon, M. C. Aalders, G. Pasterkamp, and T. G. van Leeuwen, “Localized measurement of optical attenuation coefficients of atherosclerotic plaque constituents by quantitative optical coherence tomography,” IEEE Trans. Med. Imaging 24(10), 1369–1376 (2005).
[Crossref] [PubMed]

Peng, X.

Plump, A. S.

Y. Nakashima, A. S. Plump, E. W. Raines, J. L. Breslow, and R. Ross, “ApoE-deficient mice develop lesions of all phases of atherosclerosis throughout the arterial tree,” Arterioscler. Thromb. 14(1), 133–140 (1994).
[Crossref] [PubMed]

Potma, E. O.

J. L. Suhalim, C.-Y. Chung, M. B. Lilledahl, R. S. Lim, M. Levi, B. J. Tromberg, and E. O. Potma, “Characterization of Cholesterol Crystals in Atherosclerotic Plaques Using Stimulated Raman Scattering and Second-Harmonic Generation Microscopy,” Biophys. J. 102(8), 1988–1995 (2012).
[Crossref] [PubMed]

Profitt, D.

R. Ginsburg, L. Wexler, R. S. Mitchell, and D. Profitt, “Percutaneous transluminal laser angioplasty for treatment of peripheral vascular disease. Clinical experience with 16 patients,” Radiology 156(3), 619–624 (1985).
[Crossref] [PubMed]

Qian, Z.

Raines, E. W.

Y. Nakashima, A. S. Plump, E. W. Raines, J. L. Breslow, and R. Ross, “ApoE-deficient mice develop lesions of all phases of atherosclerosis throughout the arterial tree,” Arterioscler. Thromb. 14(1), 133–140 (1994).
[Crossref] [PubMed]

Ross, R.

Y. Nakashima, A. S. Plump, E. W. Raines, J. L. Breslow, and R. Ross, “ApoE-deficient mice develop lesions of all phases of atherosclerosis throughout the arterial tree,” Arterioscler. Thromb. 14(1), 133–140 (1994).
[Crossref] [PubMed]

Sanborn, T. A.

J. A. Bittl, T. A. Sanborn, J. E. Tcheng, R. M. Siegel, and S. G. Ellis, “Clinical success, complications and restenosis rates with excimer laser coronary angioplasty,” Am. J. Cardiol. 70(20), 1533–1539 (1992).
[Crossref] [PubMed]

Saqqa, S.

J. Nguyen, J. Ferdman, M. Zhao, D. Huland, S. Saqqa, J. Ma, N. Nishimura, T. H. Schwartz, and C. B. Schaffer, “Sub-surface, micrometer-scale incisions produced in rodent cortex using tightly-focused femtosecond laser pulses,” Lasers Surg. Med. 43(5), 382–391 (2011).
[Crossref] [PubMed]

Schaffer, C. B.

J. Nguyen, J. Ferdman, M. Zhao, D. Huland, S. Saqqa, J. Ma, N. Nishimura, T. H. Schwartz, and C. B. Schaffer, “Sub-surface, micrometer-scale incisions produced in rodent cortex using tightly-focused femtosecond laser pulses,” Lasers Surg. Med. 43(5), 382–391 (2011).
[Crossref] [PubMed]

Schmitt, J. M.

C. Xu, J. M. Schmitt, S. G. Carlier, and R. Virmani, “Characterization of atherosclerosis plaques by measuring both backscattering and attenuation coefficients in optical coherence tomography,” J. Biomed. Opt. 13(3), 034003 (2008).
[Crossref] [PubMed]

Schoenly, J. E.

Schwartz, T. H.

J. Nguyen, J. Ferdman, M. Zhao, D. Huland, S. Saqqa, J. Ma, N. Nishimura, T. H. Schwartz, and C. B. Schaffer, “Sub-surface, micrometer-scale incisions produced in rodent cortex using tightly-focused femtosecond laser pulses,” Lasers Surg. Med. 43(5), 382–391 (2011).
[Crossref] [PubMed]

Seifert, G.

Seto, A. H.

W. M. Suh, A. H. Seto, R. J. P. Margey, I. Cruz-Gonzalez, and I.-K. Jang, “Intravascular Detection of the Vulnerable Plaque,” Circ Cardiovasc Imaging 4(2), 169–178 (2011).
[Crossref] [PubMed]

Siegel, R. M.

J. A. Bittl, T. A. Sanborn, J. E. Tcheng, R. M. Siegel, and S. G. Ellis, “Clinical success, complications and restenosis rates with excimer laser coronary angioplasty,” Am. J. Cardiol. 70(20), 1533–1539 (1992).
[Crossref] [PubMed]

Singleton, D. L.

D. L. Singleton, G. Paraskevopoulos, R. Taylor, and L. Higginson, “Excimer laser angioplasty: Tissue ablation, arterial response, and fiber optic delivery,” IEEE J. Quantum Electron. 23(10), 1772–1782 (1987).
[Crossref]

Skrzypczak, U.

Squier, J.

D. Du, X. Liu, G. Korn, J. Squier, and G. Mourou, “Laser‐induced breakdown by impact ionization in SiO2 with pulse widths from 7 ns to 150 fs,” Appl. Phys. Lett. 64(23), 3071–3073 (1994).
[Crossref]

Srinivasan, R.

S. L. Trokel, R. Srinivasan, and B. Braren, “Excimer laser surgery of the cornea,” Am. J. Ophthalmol. 96(6), 710–715 (1983).
[Crossref] [PubMed]

Subramanian, K.

Sugunan, B.

M. Cilingiroglu, J. H. Oh, B. Sugunan, N. J. Kemp, J. Kim, S. Lee, H. N. Zaatari, D. Escobedo, S. Thomsen, T. E. Milner, and M. D. Feldman, “Detection of vulnerable plaque in a murine model of atherosclerosis with optical coherence tomography,” Catheter. Cardiovasc. Interv. 67(6), 915–923 (2006).
[Crossref] [PubMed]

Suh, W. M.

W. M. Suh, A. H. Seto, R. J. P. Margey, I. Cruz-Gonzalez, and I.-K. Jang, “Intravascular Detection of the Vulnerable Plaque,” Circ Cardiovasc Imaging 4(2), 169–178 (2011).
[Crossref] [PubMed]

Suhalim, J. L.

J. L. Suhalim, C.-Y. Chung, M. B. Lilledahl, R. S. Lim, M. Levi, B. J. Tromberg, and E. O. Potma, “Characterization of Cholesterol Crystals in Atherosclerotic Plaques Using Stimulated Raman Scattering and Second-Harmonic Generation Microscopy,” Biophys. J. 102(8), 1988–1995 (2012).
[Crossref] [PubMed]

Taylor, R.

D. L. Singleton, G. Paraskevopoulos, R. Taylor, and L. Higginson, “Excimer laser angioplasty: Tissue ablation, arterial response, and fiber optic delivery,” IEEE J. Quantum Electron. 23(10), 1772–1782 (1987).
[Crossref]

Tcheng, J. E.

J. A. Bittl, T. A. Sanborn, J. E. Tcheng, R. M. Siegel, and S. G. Ellis, “Clinical success, complications and restenosis rates with excimer laser coronary angioplasty,” Am. J. Cardiol. 70(20), 1533–1539 (1992).
[Crossref] [PubMed]

Thomsen, S.

M. Cilingiroglu, J. H. Oh, B. Sugunan, N. J. Kemp, J. Kim, S. Lee, H. N. Zaatari, D. Escobedo, S. Thomsen, T. E. Milner, and M. D. Feldman, “Detection of vulnerable plaque in a murine model of atherosclerosis with optical coherence tomography,” Catheter. Cardiovasc. Interv. 67(6), 915–923 (2006).
[Crossref] [PubMed]

Trokel, S. L.

S. L. Trokel, R. Srinivasan, and B. Braren, “Excimer laser surgery of the cornea,” Am. J. Ophthalmol. 96(6), 710–715 (1983).
[Crossref] [PubMed]

Tromberg, B. J.

J. L. Suhalim, C.-Y. Chung, M. B. Lilledahl, R. S. Lim, M. Levi, B. J. Tromberg, and E. O. Potma, “Characterization of Cholesterol Crystals in Atherosclerotic Plaques Using Stimulated Raman Scattering and Second-Harmonic Generation Microscopy,” Biophys. J. 102(8), 1988–1995 (2012).
[Crossref] [PubMed]

van der Meer, F. J.

F. J. van der Meer, D. J. Faber, D. M. Baraznji Sassoon, M. C. Aalders, G. Pasterkamp, and T. G. van Leeuwen, “Localized measurement of optical attenuation coefficients of atherosclerotic plaque constituents by quantitative optical coherence tomography,” IEEE Trans. Med. Imaging 24(10), 1369–1376 (2005).
[Crossref] [PubMed]

van Leeuwen, T. G.

F. J. van der Meer, D. J. Faber, D. M. Baraznji Sassoon, M. C. Aalders, G. Pasterkamp, and T. G. van Leeuwen, “Localized measurement of optical attenuation coefficients of atherosclerotic plaque constituents by quantitative optical coherence tomography,” IEEE Trans. Med. Imaging 24(10), 1369–1376 (2005).
[Crossref] [PubMed]

Virmani, R.

C. Xu, J. M. Schmitt, S. G. Carlier, and R. Virmani, “Characterization of atherosclerosis plaques by measuring both backscattering and attenuation coefficients in optical coherence tomography,” J. Biomed. Opt. 13(3), 034003 (2008).
[Crossref] [PubMed]

Vogel, A.

A. Vogel, J. Noack, G. Hüttman, and G. Paltauf, “Mechanisms of femtosecond laser nanosurgery of cells and tissues,” Appl. Phys. B 81(8), 1015–1047 (2005).
[Crossref]

A. Vogel, S. Busch, and U. Parlitz, “Shock wave emission and cavitation bubble generation by picosecond and nanosecond optical breakdown in water,” J. Acoust. Soc. Am. 100(1), 148–165 (1996).
[Crossref]

Wang, Y.

Y. Wang, M. Alharbi, T. D. Bradley, C. Fourcade-Dutin, B. Debord, B. Beaudou, F. Gerôme, and F. Benabid, “Hollow-core photonic crystal fibre for high power laser beam delivery,” High Power Laser Sci. Eng. 1(01), 17–28 (2013).
[Crossref]

Wang, Y. Y.

Wexler, L.

R. Ginsburg, L. Wexler, R. S. Mitchell, and D. Profitt, “Percutaneous transluminal laser angioplasty for treatment of peripheral vascular disease. Clinical experience with 16 patients,” Radiology 156(3), 619–624 (1985).
[Crossref] [PubMed]

Xu, C.

C. Xu, J. M. Schmitt, S. G. Carlier, and R. Virmani, “Characterization of atherosclerosis plaques by measuring both backscattering and attenuation coefficients in optical coherence tomography,” J. Biomed. Opt. 13(3), 034003 (2008).
[Crossref] [PubMed]

Yildirim, M.

O. Ferhanoglu, M. Yildirim, K. Subramanian, and A. Ben-Yakar, “A 5-mm piezo-scanning fiber device for high speed ultrafast laser microsurgery,” Biomed. Opt. Express 5(7), 2023–2036 (2014).
[Crossref] [PubMed]

C. L. Hoy, O. Ferhanoglu, M. Yildirim, K. H. Kim, S. S. Karajanagi, K. M. C. Chan, J. B. Kobler, S. M. Zeitels, and A. Ben-Yakar, “Clinical Ultrafast Laser Surgery: Recent Advances and Future Directions,” IEEE J. Sel. Top. Quantum Electron. 20(2), 242–255 (2014).
[Crossref]

Zaatari, H. N.

M. Cilingiroglu, J. H. Oh, B. Sugunan, N. J. Kemp, J. Kim, S. Lee, H. N. Zaatari, D. Escobedo, S. Thomsen, T. E. Milner, and M. D. Feldman, “Detection of vulnerable plaque in a murine model of atherosclerosis with optical coherence tomography,” Catheter. Cardiovasc. Interv. 67(6), 915–923 (2006).
[Crossref] [PubMed]

Zeitels, S. M.

C. L. Hoy, O. Ferhanoglu, M. Yildirim, K. H. Kim, S. S. Karajanagi, K. M. C. Chan, J. B. Kobler, S. M. Zeitels, and A. Ben-Yakar, “Clinical Ultrafast Laser Surgery: Recent Advances and Future Directions,” IEEE J. Sel. Top. Quantum Electron. 20(2), 242–255 (2014).
[Crossref]

Zhao, M.

J. Nguyen, J. Ferdman, M. Zhao, D. Huland, S. Saqqa, J. Ma, N. Nishimura, T. H. Schwartz, and C. B. Schaffer, “Sub-surface, micrometer-scale incisions produced in rodent cortex using tightly-focused femtosecond laser pulses,” Lasers Surg. Med. 43(5), 382–391 (2011).
[Crossref] [PubMed]

AJR Am. J. Roentgenol. (1)

P. C. Block, J. T. Fallon, and D. Elmer, “Experimental angioplasty: lessons from the laboratory,” AJR Am. J. Roentgenol. 135(5), 907–912 (1980).
[Crossref] [PubMed]

Am. J. Cardiol. (1)

J. A. Bittl, T. A. Sanborn, J. E. Tcheng, R. M. Siegel, and S. G. Ellis, “Clinical success, complications and restenosis rates with excimer laser coronary angioplasty,” Am. J. Cardiol. 70(20), 1533–1539 (1992).
[Crossref] [PubMed]

Am. J. Ophthalmol. (1)

S. L. Trokel, R. Srinivasan, and B. Braren, “Excimer laser surgery of the cornea,” Am. J. Ophthalmol. 96(6), 710–715 (1983).
[Crossref] [PubMed]

Appl. Phys. B (1)

A. Vogel, J. Noack, G. Hüttman, and G. Paltauf, “Mechanisms of femtosecond laser nanosurgery of cells and tissues,” Appl. Phys. B 81(8), 1015–1047 (2005).
[Crossref]

Appl. Phys. Lett. (2)

D. Du, X. Liu, G. Korn, J. Squier, and G. Mourou, “Laser‐induced breakdown by impact ionization in SiO2 with pulse widths from 7 ns to 150 fs,” Appl. Phys. Lett. 64(23), 3071–3073 (1994).
[Crossref]

M. H. Niemz, “Threshold dependence of laser‐induced optical breakdown on pulse duration,” Appl. Phys. Lett. 66(10), 1181–1183 (1995).
[Crossref]

Arterioscler. Thromb. (1)

Y. Nakashima, A. S. Plump, E. W. Raines, J. L. Breslow, and R. Ross, “ApoE-deficient mice develop lesions of all phases of atherosclerosis throughout the arterial tree,” Arterioscler. Thromb. 14(1), 133–140 (1994).
[Crossref] [PubMed]

Arterioscler. Thromb. Vasc. Biol. (1)

K. S. Meir and E. Leitersdorf, “Atherosclerosis in the Apolipoprotein-E-Deficient Mouse: A Decade of Progress,” Arterioscler. Thromb. Vasc. Biol. 24(6), 1006–1014 (2004).
[Crossref] [PubMed]

Biomed. Opt. Express (2)

Biophys. J. (1)

J. L. Suhalim, C.-Y. Chung, M. B. Lilledahl, R. S. Lim, M. Levi, B. J. Tromberg, and E. O. Potma, “Characterization of Cholesterol Crystals in Atherosclerotic Plaques Using Stimulated Raman Scattering and Second-Harmonic Generation Microscopy,” Biophys. J. 102(8), 1988–1995 (2012).
[Crossref] [PubMed]

Catheter. Cardiovasc. Interv. (1)

M. Cilingiroglu, J. H. Oh, B. Sugunan, N. J. Kemp, J. Kim, S. Lee, H. N. Zaatari, D. Escobedo, S. Thomsen, T. E. Milner, and M. D. Feldman, “Detection of vulnerable plaque in a murine model of atherosclerosis with optical coherence tomography,” Catheter. Cardiovasc. Interv. 67(6), 915–923 (2006).
[Crossref] [PubMed]

Circ Cardiovasc Imaging (1)

W. M. Suh, A. H. Seto, R. J. P. Margey, I. Cruz-Gonzalez, and I.-K. Jang, “Intravascular Detection of the Vulnerable Plaque,” Circ Cardiovasc Imaging 4(2), 169–178 (2011).
[Crossref] [PubMed]

Contemp. Phys. (1)

C. V. Gabel, “Femtosecond lasers in biology: nanoscale surgery with ultrafast optics,” Contemp. Phys. 49(6), 391–411 (2008).
[Crossref]

High Power Laser Sci. Eng. (1)

Y. Wang, M. Alharbi, T. D. Bradley, C. Fourcade-Dutin, B. Debord, B. Beaudou, F. Gerôme, and F. Benabid, “Hollow-core photonic crystal fibre for high power laser beam delivery,” High Power Laser Sci. Eng. 1(01), 17–28 (2013).
[Crossref]

IEEE J. Quantum Electron. (2)

X. Liu, D. Du, and G. Mourou, “Laser ablation and micromachining with ultrashort laser pulses,” IEEE J. Quantum Electron. 33(10), 1706–1716 (1997).
[Crossref]

D. L. Singleton, G. Paraskevopoulos, R. Taylor, and L. Higginson, “Excimer laser angioplasty: Tissue ablation, arterial response, and fiber optic delivery,” IEEE J. Quantum Electron. 23(10), 1772–1782 (1987).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

C. L. Hoy, O. Ferhanoglu, M. Yildirim, K. H. Kim, S. S. Karajanagi, K. M. C. Chan, J. B. Kobler, S. M. Zeitels, and A. Ben-Yakar, “Clinical Ultrafast Laser Surgery: Recent Advances and Future Directions,” IEEE J. Sel. Top. Quantum Electron. 20(2), 242–255 (2014).
[Crossref]

IEEE Trans. Med. Imaging (1)

F. J. van der Meer, D. J. Faber, D. M. Baraznji Sassoon, M. C. Aalders, G. Pasterkamp, and T. G. van Leeuwen, “Localized measurement of optical attenuation coefficients of atherosclerotic plaque constituents by quantitative optical coherence tomography,” IEEE Trans. Med. Imaging 24(10), 1369–1376 (2005).
[Crossref] [PubMed]

Int. J. Cardiol. (1)

J. A. Finegold, P. Asaria, and D. P. Francis, “Mortality from ischaemic heart disease by country, region, and age: Statistics from World Health Organisation and United Nations,” Int. J. Cardiol. 168(2), 934–945 (2013).
[Crossref] [PubMed]

J. Acoust. Soc. Am. (1)

A. Vogel, S. Busch, and U. Parlitz, “Shock wave emission and cavitation bubble generation by picosecond and nanosecond optical breakdown in water,” J. Acoust. Soc. Am. 100(1), 148–165 (1996).
[Crossref]

J. Am. Coll. Cardiol. (1)

V. Fuster, P. R. Moreno, Z. A. Fayad, R. Corti, and J. J. Badimon, “Atherothrombosis and High-Risk Plaque: Part I: Evolving Concepts,” J. Am. Coll. Cardiol. 46(6), 937–954 (2005).
[Crossref] [PubMed]

J. Biomed. Opt. (1)

C. Xu, J. M. Schmitt, S. G. Carlier, and R. Virmani, “Characterization of atherosclerosis plaques by measuring both backscattering and attenuation coefficients in optical coherence tomography,” J. Biomed. Opt. 13(3), 034003 (2008).
[Crossref] [PubMed]

Lasers Surg. Med. (1)

J. Nguyen, J. Ferdman, M. Zhao, D. Huland, S. Saqqa, J. Ma, N. Nishimura, T. H. Schwartz, and C. B. Schaffer, “Sub-surface, micrometer-scale incisions produced in rodent cortex using tightly-focused femtosecond laser pulses,” Lasers Surg. Med. 43(5), 382–391 (2011).
[Crossref] [PubMed]

Opt. Express (1)

Opt. Lett. (1)

Radiology (1)

R. Ginsburg, L. Wexler, R. S. Mitchell, and D. Profitt, “Percutaneous transluminal laser angioplasty for treatment of peripheral vascular disease. Clinical experience with 16 patients,” Radiology 156(3), 619–624 (1985).
[Crossref] [PubMed]

Other (3)

G. R. Mood, MD, J. Lee, MD, PhD, L. A. Garcia, MD, “Atherectomy in the Treatment of Lower-Extremity Peripheral Artery Disease: A Critical Review | Vascular Disease Management,” http://www.vasculardiseasemanagement.com/content/atherectomy-treatment-lower-extremity-peripheral-artery-disease-critical-review .

H. Wisweh, U. Merkel, A.-K. Hüller, K. Lüerßen, and H. Lubatschowski, “Optical coherence tomography monitoring of vocal fold femtosecond laser microsurgery,” in (2007), Vol. 6632, pp. 663207–663207–7.

R. Kammel, R. Ackermann, A. Tünnermann, and S. Nolte, “Pump-probe investigation of fs-LIOB in water by simultaneous spatial and temporal focusing,” in (2013), Vol. 8611, p. 86110A–86110A–7.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 A cross sectional view of an artery illustrating the location of plaque and the arterial layers.
Fig. 2
Fig. 2 (a) Schematic of the ablation set-up. An objective (NA 0.8) focused the collimated ultrafast pulses into the tissue mounted on the x,y,z stage. A computer controlled the CCD, OCT, and mechanical stage. The beam splitter directing the reflected light (blue) toward the CCD was removed during ablation. (b) Representation of the serpentine ablation pattern. Each line was separated transversely by δx and axially by δz. For all experiments the arterial endothelium was placed toward the incident laser pulse.
Fig. 3
Fig. 3 Images of ablation holes from histological slices. (a) 5 µm ablation spot (E = 0.6 µJ), (b) 5 µm ablation spot with short filamentation (E = 0.6 µJ), (c) ablation spot with elongated filamentation tail (E = 4 µJ), (d) long filamentation (E = 10 µJ), (e) surface damage (E = 4 µJ), (f) Schematic describing how the different holes were characterized, (g) representative ablation pattern marked within green ovals (E = 4 µJ). Scale bar is 10 µm in (a)-(e).
Fig. 4
Fig. 4 Characterization results of ultrafast ablation. N is the number of holes characterized. (a) The percentage of ablation holes with surface damage as a function of pulse energy for three depth ranges. (b) Transverse ablation width measured in plaque and tunica media versus pulse energy. (c) The percentage of holes with filament tails as a function of pulse energy. (d) Filament propagation length versus pulse energy.
Fig. 5
Fig. 5 Tunica media of non-atherosclerotic mouse aorta ablated with a 100x200 µm2 plane. (a) Transverse OCT image of the ablation area. (b) Transverse histological cut of the ablation area. The green brackets refer to the extent of the ablation plane. The images are oriented in the same direction. The incident ablation pulse comes from the endothelium side.
Fig. 6
Fig. 6 ApoE-KO mouse plaque after ablation of a 100x200x50 µm3 targeted volume. (a) Transverse OCT image of the ablation area. (b-d) Time evolution of the ablated volume after the ablation (t = 0 min). (b) t = 1 min, (c) t = 3 min, (d) t = 5 min. (e) Transverse of the histological cut of the ablation area. (*) plaque, ( + ) tunica media, (#) tunica adventitia. All scale bars are 100 µm. The incident ablation pulse comes from the plaque side.

Metrics