Abstract

We demonstrate fluorescence imaging with high fluorescence intensity and depth resolution in which depth-induced spherical aberration (SA) caused by refractive-index mismatch between the medium and biological sample is corrected. To reduce the impact of SA, we incorporate a spatial light modulator into a two-photon excitation fluorescence microscope. Consequently, when fluorescent beads in epoxy resin were observed with this method of SA correction, the fluorescence signal of the observed images was ∼27 times higher and extension in the direction of the optical axes was ∼6.5 times shorter at a depth of ∼890 μm. Thus, the proposed method increases the depth observable at high resolution. Further, our results show that the method improved the fluorescence intensity of images of the fluorescent beads and the structure of a biological sample.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Correction of spherical aberration in multi-focal multiphoton microscopy with spatial light modulator

Naoya Matsumoto, Alu Konno, Yasushi Ohbayashi, Takashi Inoue, Akiyuki Matsumoto, Kenji Uchimura, Kenji Kadomatsu, and Shigetoshi Okazaki
Opt. Express 25(6) 7055-7068 (2017)

Two-photon excitation fluorescence microscopy with a high depth of field using an axicon

Pascal Dufour, Michel Piché, Yves De Koninck, and Nathalie McCarthy
Appl. Opt. 45(36) 9246-9252 (2006)

Methanol immersion reduces spherical aberration of water dipping lenses at long wavelengths used in multi-photon laser scanning microscopy

Greg Norris, Ayman Gebril, Valerie A. Ferro, and Gail McConnell
Biomed. Opt. Express 3(12) 3314-3324 (2012)

References

  • View by:
  • |
  • |
  • |

  1. W. Denk, J. H. Strickler, and W. W. Webb, “Two-photon laser scanning fluorescence microscopy,” Science 248, 73–76 (1990).
    [Crossref] [PubMed]
  2. D. Kobat, M. E. Durst, N. Nishimura, A. W. Wong, C. B. Schaffer, and C. Xu, “Deep tissue multiphoton microscopy using longer wavelength excitation,” Opt. Express 17(16) 13354–13364 (2009).
    [Crossref] [PubMed]
  3. P. Theer, M. T. Hasan, and W. Denk, “Two-photon imaging to a depth of 1000 μ m in living brains by use of a Ti:Al2O3 regenerative amplifier,” Opt. Lett. 28(12), 1022–1024 (2003).
    [Crossref] [PubMed]
  4. E. J. Botcherby, C. W. Smith, M. M. Kohl, D. Débarre, M. J. Booth, R. Juškaitis, O. Paulsen, and T. Wilson, “Aberration-free three-dimensional multiphoton imaging of neuronal activity at kHz rates,” Proc. Natl. Acad. Sci. USA 109(8), 2919–2924 (2012).
    [Crossref] [PubMed]
  5. X. Tao, B. Fernandez, O. Azucena, M. Fu, D. Garcia, Y. Zuo, D. C. Chen, and J. Kubby, “Adaptive optics confocal microscopy using direct wavefront sensing,” Opt. Lett. 36(7), 1062–1064 (2011).
    [Crossref] [PubMed]
  6. O. Azucena, J. Crest, J. Cao, W. Sullivan, P. Kner, D. Gavel, D. Dillon, S. Olivier, and J. Kubby, “Wavefront aberration measurements and corrections through thick tissue using fluorescentmicrosphere reference beacons,” Opt. Express,  18(16), 17521–17532 (2010).
    [Crossref] [PubMed]
  7. D. E. Milkie, E. Betzig, and N. Ji, “Pupil-segmentation-based adaptive optical microscopy with full-pupil illumination,” Opt. Lett. 36(21), 4206–4208 (2011).
    [Crossref] [PubMed]
  8. C. Wang, R. Liu, D. E. Milkie, W. Sun, Z. Tan, A. Kerlin, T. W. Chen, D. S. Kim, and N. Ji, “Multiplexed aberration measurement for deep tissue imaging in vivo,” Nat. Meth. 11, 1037–1040 (2014).
    [Crossref]
  9. J. Zeng, P. Mahou, M. C. Schanne-Klein, E. Beaurepaire, and D. Debarre, “3D resolved mapping of optical aberrations in thick tissues,” Bio. Opt. Express 3(8), 1898–1913 (2012).
    [Crossref]
  10. R. Kawakami, K. Sawada, A. Sato, T. Hibi, Y. Kozawa, S. Sato, H. Yokoyama, and T. Nemoto, “Visualizing hippocampal neurons with in vivo two-photon microscopy using a 1030 nm picosecond pulse laser,” Sci. Rep. 3, 1014 (2013)
    [Crossref] [PubMed]
  11. H. Hama, H. Kurokawa, H. Kawano, R. Ando, T. Shimogori, H. Noda, K. Fukami, A. Sakaue-Sawano, and A. Miyawaki, “Scale: A chemical approach for fluorescence imaging and reconstruction of transparent mouse brain,” Nat. Neurosci. 14, 1481–1488 (2011).
    [Crossref] [PubMed]
  12. R. Dickie, R. M. Bachoo, M. A. Rupnick, S. M. Dallabrida, G. M. DeLoid, J. Lai, R. A. DePinho, and R. A. Rogers, “Three-dimensional visualization of microvessel architecture of whole-mount tissue by confocal microscopy,” Microvasc. Res. 72, 20–26 (2006).
    [Crossref]
  13. E. A. Susaki, K. Tainaka, D. Perrin, F. Kishino, T. Tawara, T. M. Watanabe, C. Yokoyama, H. Onoe, M. Eguchi, S. Yamaguchi, T. Abe, H. Kiyonari, Y. Shimizu, A. Miyawaki, H. Yokota, and H. R. Ueda, “Whole-brain imaging with single-cell resolution using chemical cocktails and computational analysis,” Cell 157(3), 726–739 (2014).
    [Crossref] [PubMed]
  14. M. T. Ke, S. Fujimoto, and T. Imai, “SeeDB: A simple and morphology-preserving optical clearing agent for neuronal circuit reconstruction,” Nat. Neurosci. 16, 1154–1161 (2013).
    [Crossref] [PubMed]
  15. T. Kuwajima, A. A. Sitko, P. Bhansali, C. Jurgens, W. Guido, and C. Mason, “ClearT: A detergent- and solvent-free clearing method for neuronal and non-neuronal tissue,” Development 140, 1364–1368 (2013).
    [Crossref] [PubMed]
  16. A. Erturk, K. Becker, N. Jahrling, C. P. Mauch, C. D. Hojer, J. G. Egen, F. Hellal, F. Bradke, M. Sheng, and H. U. Dodt, “Three-dimensional imaging of solvent-cleared organs using 3DISCO,” Nat. Proto. 7, 1983–1995 (2012).
    [Crossref]
  17. T. Inoue, H. Tanaka, N. Fukuchi, M. Takumi, N. Matsumoto, T. Hara, N. Yoshida, Y. Igasaki, and Y. Kobayashi, “LCOS spatial light modulator controlled by 12-bit signals for optical phase-only modulation,” Proc. SPIE 6487, 64870Y (2007).
  18. N. Matsumoto, T. Ando, T. Inoue, Y. Ohtake, N. Fukuchi, and T. Hara, “Generation of high-quality higher-order Laguerre-Gaussian beams using liquid-crystal-on-silicon spatial light modulators,” J. Opt. Soc. Am. A 25(7), 1642–1651 (2008).
    [Crossref]
  19. P. Török, P. Varga, and G. R. Booker, “Electromagnetic diffraction of light focused through a planar interface between materials of mismatched refractive indices: Structure of the electromagnetic field. I,” J. Opt. Soc. Am. A 12(10), 2136–2144 (1995).
    [Crossref]
  20. P. S. Salter, M. Baum, I. Alexeev, M. Schmidt, and M. J. Booth, “Exploring the depth range for three-dimensional laser machining with aberration correction,” Opt. Express 22(15), 17644–17656 (2014).
    [Crossref] [PubMed]
  21. H. Itoh, N. Matsumoto, and T. Inoue, “Spherical aberration correction suitable for a wavefront controller,” Opt. Express 17(16), 14367–14373 (2009).
    [Crossref] [PubMed]
  22. N. Matsumoto, H. Itoh, T. Inoue, T. Otsu, and H. Toyoda, “Stable and flexible multiple spot pattern generation using LCOS spatial light modulator,” Opt. Express 22(20), 24722–24733 (2014).
    [Crossref] [PubMed]
  23. T. J. Gould, D. Burke, J. Bewersdorf, and M. J. Booth, “Adaptive optics enables 3D STED microscopy in aberating specimens,” Opt. Express 20(19), 20998–21009 (2012).
    [Crossref] [PubMed]

2014 (4)

C. Wang, R. Liu, D. E. Milkie, W. Sun, Z. Tan, A. Kerlin, T. W. Chen, D. S. Kim, and N. Ji, “Multiplexed aberration measurement for deep tissue imaging in vivo,” Nat. Meth. 11, 1037–1040 (2014).
[Crossref]

E. A. Susaki, K. Tainaka, D. Perrin, F. Kishino, T. Tawara, T. M. Watanabe, C. Yokoyama, H. Onoe, M. Eguchi, S. Yamaguchi, T. Abe, H. Kiyonari, Y. Shimizu, A. Miyawaki, H. Yokota, and H. R. Ueda, “Whole-brain imaging with single-cell resolution using chemical cocktails and computational analysis,” Cell 157(3), 726–739 (2014).
[Crossref] [PubMed]

P. S. Salter, M. Baum, I. Alexeev, M. Schmidt, and M. J. Booth, “Exploring the depth range for three-dimensional laser machining with aberration correction,” Opt. Express 22(15), 17644–17656 (2014).
[Crossref] [PubMed]

N. Matsumoto, H. Itoh, T. Inoue, T. Otsu, and H. Toyoda, “Stable and flexible multiple spot pattern generation using LCOS spatial light modulator,” Opt. Express 22(20), 24722–24733 (2014).
[Crossref] [PubMed]

2013 (3)

M. T. Ke, S. Fujimoto, and T. Imai, “SeeDB: A simple and morphology-preserving optical clearing agent for neuronal circuit reconstruction,” Nat. Neurosci. 16, 1154–1161 (2013).
[Crossref] [PubMed]

T. Kuwajima, A. A. Sitko, P. Bhansali, C. Jurgens, W. Guido, and C. Mason, “ClearT: A detergent- and solvent-free clearing method for neuronal and non-neuronal tissue,” Development 140, 1364–1368 (2013).
[Crossref] [PubMed]

R. Kawakami, K. Sawada, A. Sato, T. Hibi, Y. Kozawa, S. Sato, H. Yokoyama, and T. Nemoto, “Visualizing hippocampal neurons with in vivo two-photon microscopy using a 1030 nm picosecond pulse laser,” Sci. Rep. 3, 1014 (2013)
[Crossref] [PubMed]

2012 (4)

A. Erturk, K. Becker, N. Jahrling, C. P. Mauch, C. D. Hojer, J. G. Egen, F. Hellal, F. Bradke, M. Sheng, and H. U. Dodt, “Three-dimensional imaging of solvent-cleared organs using 3DISCO,” Nat. Proto. 7, 1983–1995 (2012).
[Crossref]

J. Zeng, P. Mahou, M. C. Schanne-Klein, E. Beaurepaire, and D. Debarre, “3D resolved mapping of optical aberrations in thick tissues,” Bio. Opt. Express 3(8), 1898–1913 (2012).
[Crossref]

E. J. Botcherby, C. W. Smith, M. M. Kohl, D. Débarre, M. J. Booth, R. Juškaitis, O. Paulsen, and T. Wilson, “Aberration-free three-dimensional multiphoton imaging of neuronal activity at kHz rates,” Proc. Natl. Acad. Sci. USA 109(8), 2919–2924 (2012).
[Crossref] [PubMed]

T. J. Gould, D. Burke, J. Bewersdorf, and M. J. Booth, “Adaptive optics enables 3D STED microscopy in aberating specimens,” Opt. Express 20(19), 20998–21009 (2012).
[Crossref] [PubMed]

2011 (3)

2010 (1)

2009 (2)

2008 (1)

2007 (1)

T. Inoue, H. Tanaka, N. Fukuchi, M. Takumi, N. Matsumoto, T. Hara, N. Yoshida, Y. Igasaki, and Y. Kobayashi, “LCOS spatial light modulator controlled by 12-bit signals for optical phase-only modulation,” Proc. SPIE 6487, 64870Y (2007).

2006 (1)

R. Dickie, R. M. Bachoo, M. A. Rupnick, S. M. Dallabrida, G. M. DeLoid, J. Lai, R. A. DePinho, and R. A. Rogers, “Three-dimensional visualization of microvessel architecture of whole-mount tissue by confocal microscopy,” Microvasc. Res. 72, 20–26 (2006).
[Crossref]

2003 (1)

1995 (1)

1990 (1)

W. Denk, J. H. Strickler, and W. W. Webb, “Two-photon laser scanning fluorescence microscopy,” Science 248, 73–76 (1990).
[Crossref] [PubMed]

Abe, T.

E. A. Susaki, K. Tainaka, D. Perrin, F. Kishino, T. Tawara, T. M. Watanabe, C. Yokoyama, H. Onoe, M. Eguchi, S. Yamaguchi, T. Abe, H. Kiyonari, Y. Shimizu, A. Miyawaki, H. Yokota, and H. R. Ueda, “Whole-brain imaging with single-cell resolution using chemical cocktails and computational analysis,” Cell 157(3), 726–739 (2014).
[Crossref] [PubMed]

Alexeev, I.

Ando, R.

H. Hama, H. Kurokawa, H. Kawano, R. Ando, T. Shimogori, H. Noda, K. Fukami, A. Sakaue-Sawano, and A. Miyawaki, “Scale: A chemical approach for fluorescence imaging and reconstruction of transparent mouse brain,” Nat. Neurosci. 14, 1481–1488 (2011).
[Crossref] [PubMed]

Ando, T.

Azucena, O.

Bachoo, R. M.

R. Dickie, R. M. Bachoo, M. A. Rupnick, S. M. Dallabrida, G. M. DeLoid, J. Lai, R. A. DePinho, and R. A. Rogers, “Three-dimensional visualization of microvessel architecture of whole-mount tissue by confocal microscopy,” Microvasc. Res. 72, 20–26 (2006).
[Crossref]

Baum, M.

Beaurepaire, E.

J. Zeng, P. Mahou, M. C. Schanne-Klein, E. Beaurepaire, and D. Debarre, “3D resolved mapping of optical aberrations in thick tissues,” Bio. Opt. Express 3(8), 1898–1913 (2012).
[Crossref]

Becker, K.

A. Erturk, K. Becker, N. Jahrling, C. P. Mauch, C. D. Hojer, J. G. Egen, F. Hellal, F. Bradke, M. Sheng, and H. U. Dodt, “Three-dimensional imaging of solvent-cleared organs using 3DISCO,” Nat. Proto. 7, 1983–1995 (2012).
[Crossref]

Betzig, E.

Bewersdorf, J.

Bhansali, P.

T. Kuwajima, A. A. Sitko, P. Bhansali, C. Jurgens, W. Guido, and C. Mason, “ClearT: A detergent- and solvent-free clearing method for neuronal and non-neuronal tissue,” Development 140, 1364–1368 (2013).
[Crossref] [PubMed]

Booker, G. R.

Booth, M. J.

Botcherby, E. J.

E. J. Botcherby, C. W. Smith, M. M. Kohl, D. Débarre, M. J. Booth, R. Juškaitis, O. Paulsen, and T. Wilson, “Aberration-free three-dimensional multiphoton imaging of neuronal activity at kHz rates,” Proc. Natl. Acad. Sci. USA 109(8), 2919–2924 (2012).
[Crossref] [PubMed]

Bradke, F.

A. Erturk, K. Becker, N. Jahrling, C. P. Mauch, C. D. Hojer, J. G. Egen, F. Hellal, F. Bradke, M. Sheng, and H. U. Dodt, “Three-dimensional imaging of solvent-cleared organs using 3DISCO,” Nat. Proto. 7, 1983–1995 (2012).
[Crossref]

Burke, D.

Cao, J.

Chen, D. C.

Chen, T. W.

C. Wang, R. Liu, D. E. Milkie, W. Sun, Z. Tan, A. Kerlin, T. W. Chen, D. S. Kim, and N. Ji, “Multiplexed aberration measurement for deep tissue imaging in vivo,” Nat. Meth. 11, 1037–1040 (2014).
[Crossref]

Crest, J.

Dallabrida, S. M.

R. Dickie, R. M. Bachoo, M. A. Rupnick, S. M. Dallabrida, G. M. DeLoid, J. Lai, R. A. DePinho, and R. A. Rogers, “Three-dimensional visualization of microvessel architecture of whole-mount tissue by confocal microscopy,” Microvasc. Res. 72, 20–26 (2006).
[Crossref]

Debarre, D.

J. Zeng, P. Mahou, M. C. Schanne-Klein, E. Beaurepaire, and D. Debarre, “3D resolved mapping of optical aberrations in thick tissues,” Bio. Opt. Express 3(8), 1898–1913 (2012).
[Crossref]

Débarre, D.

E. J. Botcherby, C. W. Smith, M. M. Kohl, D. Débarre, M. J. Booth, R. Juškaitis, O. Paulsen, and T. Wilson, “Aberration-free three-dimensional multiphoton imaging of neuronal activity at kHz rates,” Proc. Natl. Acad. Sci. USA 109(8), 2919–2924 (2012).
[Crossref] [PubMed]

DeLoid, G. M.

R. Dickie, R. M. Bachoo, M. A. Rupnick, S. M. Dallabrida, G. M. DeLoid, J. Lai, R. A. DePinho, and R. A. Rogers, “Three-dimensional visualization of microvessel architecture of whole-mount tissue by confocal microscopy,” Microvasc. Res. 72, 20–26 (2006).
[Crossref]

Denk, W.

DePinho, R. A.

R. Dickie, R. M. Bachoo, M. A. Rupnick, S. M. Dallabrida, G. M. DeLoid, J. Lai, R. A. DePinho, and R. A. Rogers, “Three-dimensional visualization of microvessel architecture of whole-mount tissue by confocal microscopy,” Microvasc. Res. 72, 20–26 (2006).
[Crossref]

Dickie, R.

R. Dickie, R. M. Bachoo, M. A. Rupnick, S. M. Dallabrida, G. M. DeLoid, J. Lai, R. A. DePinho, and R. A. Rogers, “Three-dimensional visualization of microvessel architecture of whole-mount tissue by confocal microscopy,” Microvasc. Res. 72, 20–26 (2006).
[Crossref]

Dillon, D.

Dodt, H. U.

A. Erturk, K. Becker, N. Jahrling, C. P. Mauch, C. D. Hojer, J. G. Egen, F. Hellal, F. Bradke, M. Sheng, and H. U. Dodt, “Three-dimensional imaging of solvent-cleared organs using 3DISCO,” Nat. Proto. 7, 1983–1995 (2012).
[Crossref]

Durst, M. E.

Egen, J. G.

A. Erturk, K. Becker, N. Jahrling, C. P. Mauch, C. D. Hojer, J. G. Egen, F. Hellal, F. Bradke, M. Sheng, and H. U. Dodt, “Three-dimensional imaging of solvent-cleared organs using 3DISCO,” Nat. Proto. 7, 1983–1995 (2012).
[Crossref]

Eguchi, M.

E. A. Susaki, K. Tainaka, D. Perrin, F. Kishino, T. Tawara, T. M. Watanabe, C. Yokoyama, H. Onoe, M. Eguchi, S. Yamaguchi, T. Abe, H. Kiyonari, Y. Shimizu, A. Miyawaki, H. Yokota, and H. R. Ueda, “Whole-brain imaging with single-cell resolution using chemical cocktails and computational analysis,” Cell 157(3), 726–739 (2014).
[Crossref] [PubMed]

Erturk, A.

A. Erturk, K. Becker, N. Jahrling, C. P. Mauch, C. D. Hojer, J. G. Egen, F. Hellal, F. Bradke, M. Sheng, and H. U. Dodt, “Three-dimensional imaging of solvent-cleared organs using 3DISCO,” Nat. Proto. 7, 1983–1995 (2012).
[Crossref]

Fernandez, B.

Fu, M.

Fujimoto, S.

M. T. Ke, S. Fujimoto, and T. Imai, “SeeDB: A simple and morphology-preserving optical clearing agent for neuronal circuit reconstruction,” Nat. Neurosci. 16, 1154–1161 (2013).
[Crossref] [PubMed]

Fukami, K.

H. Hama, H. Kurokawa, H. Kawano, R. Ando, T. Shimogori, H. Noda, K. Fukami, A. Sakaue-Sawano, and A. Miyawaki, “Scale: A chemical approach for fluorescence imaging and reconstruction of transparent mouse brain,” Nat. Neurosci. 14, 1481–1488 (2011).
[Crossref] [PubMed]

Fukuchi, N.

N. Matsumoto, T. Ando, T. Inoue, Y. Ohtake, N. Fukuchi, and T. Hara, “Generation of high-quality higher-order Laguerre-Gaussian beams using liquid-crystal-on-silicon spatial light modulators,” J. Opt. Soc. Am. A 25(7), 1642–1651 (2008).
[Crossref]

T. Inoue, H. Tanaka, N. Fukuchi, M. Takumi, N. Matsumoto, T. Hara, N. Yoshida, Y. Igasaki, and Y. Kobayashi, “LCOS spatial light modulator controlled by 12-bit signals for optical phase-only modulation,” Proc. SPIE 6487, 64870Y (2007).

Garcia, D.

Gavel, D.

Gould, T. J.

Guido, W.

T. Kuwajima, A. A. Sitko, P. Bhansali, C. Jurgens, W. Guido, and C. Mason, “ClearT: A detergent- and solvent-free clearing method for neuronal and non-neuronal tissue,” Development 140, 1364–1368 (2013).
[Crossref] [PubMed]

Hama, H.

H. Hama, H. Kurokawa, H. Kawano, R. Ando, T. Shimogori, H. Noda, K. Fukami, A. Sakaue-Sawano, and A. Miyawaki, “Scale: A chemical approach for fluorescence imaging and reconstruction of transparent mouse brain,” Nat. Neurosci. 14, 1481–1488 (2011).
[Crossref] [PubMed]

Hara, T.

N. Matsumoto, T. Ando, T. Inoue, Y. Ohtake, N. Fukuchi, and T. Hara, “Generation of high-quality higher-order Laguerre-Gaussian beams using liquid-crystal-on-silicon spatial light modulators,” J. Opt. Soc. Am. A 25(7), 1642–1651 (2008).
[Crossref]

T. Inoue, H. Tanaka, N. Fukuchi, M. Takumi, N. Matsumoto, T. Hara, N. Yoshida, Y. Igasaki, and Y. Kobayashi, “LCOS spatial light modulator controlled by 12-bit signals for optical phase-only modulation,” Proc. SPIE 6487, 64870Y (2007).

Hasan, M. T.

Hellal, F.

A. Erturk, K. Becker, N. Jahrling, C. P. Mauch, C. D. Hojer, J. G. Egen, F. Hellal, F. Bradke, M. Sheng, and H. U. Dodt, “Three-dimensional imaging of solvent-cleared organs using 3DISCO,” Nat. Proto. 7, 1983–1995 (2012).
[Crossref]

Hibi, T.

R. Kawakami, K. Sawada, A. Sato, T. Hibi, Y. Kozawa, S. Sato, H. Yokoyama, and T. Nemoto, “Visualizing hippocampal neurons with in vivo two-photon microscopy using a 1030 nm picosecond pulse laser,” Sci. Rep. 3, 1014 (2013)
[Crossref] [PubMed]

Hojer, C. D.

A. Erturk, K. Becker, N. Jahrling, C. P. Mauch, C. D. Hojer, J. G. Egen, F. Hellal, F. Bradke, M. Sheng, and H. U. Dodt, “Three-dimensional imaging of solvent-cleared organs using 3DISCO,” Nat. Proto. 7, 1983–1995 (2012).
[Crossref]

Igasaki, Y.

T. Inoue, H. Tanaka, N. Fukuchi, M. Takumi, N. Matsumoto, T. Hara, N. Yoshida, Y. Igasaki, and Y. Kobayashi, “LCOS spatial light modulator controlled by 12-bit signals for optical phase-only modulation,” Proc. SPIE 6487, 64870Y (2007).

Imai, T.

M. T. Ke, S. Fujimoto, and T. Imai, “SeeDB: A simple and morphology-preserving optical clearing agent for neuronal circuit reconstruction,” Nat. Neurosci. 16, 1154–1161 (2013).
[Crossref] [PubMed]

Inoue, T.

Itoh, H.

Jahrling, N.

A. Erturk, K. Becker, N. Jahrling, C. P. Mauch, C. D. Hojer, J. G. Egen, F. Hellal, F. Bradke, M. Sheng, and H. U. Dodt, “Three-dimensional imaging of solvent-cleared organs using 3DISCO,” Nat. Proto. 7, 1983–1995 (2012).
[Crossref]

Ji, N.

C. Wang, R. Liu, D. E. Milkie, W. Sun, Z. Tan, A. Kerlin, T. W. Chen, D. S. Kim, and N. Ji, “Multiplexed aberration measurement for deep tissue imaging in vivo,” Nat. Meth. 11, 1037–1040 (2014).
[Crossref]

D. E. Milkie, E. Betzig, and N. Ji, “Pupil-segmentation-based adaptive optical microscopy with full-pupil illumination,” Opt. Lett. 36(21), 4206–4208 (2011).
[Crossref] [PubMed]

Jurgens, C.

T. Kuwajima, A. A. Sitko, P. Bhansali, C. Jurgens, W. Guido, and C. Mason, “ClearT: A detergent- and solvent-free clearing method for neuronal and non-neuronal tissue,” Development 140, 1364–1368 (2013).
[Crossref] [PubMed]

Juškaitis, R.

E. J. Botcherby, C. W. Smith, M. M. Kohl, D. Débarre, M. J. Booth, R. Juškaitis, O. Paulsen, and T. Wilson, “Aberration-free three-dimensional multiphoton imaging of neuronal activity at kHz rates,” Proc. Natl. Acad. Sci. USA 109(8), 2919–2924 (2012).
[Crossref] [PubMed]

Kawakami, R.

R. Kawakami, K. Sawada, A. Sato, T. Hibi, Y. Kozawa, S. Sato, H. Yokoyama, and T. Nemoto, “Visualizing hippocampal neurons with in vivo two-photon microscopy using a 1030 nm picosecond pulse laser,” Sci. Rep. 3, 1014 (2013)
[Crossref] [PubMed]

Kawano, H.

H. Hama, H. Kurokawa, H. Kawano, R. Ando, T. Shimogori, H. Noda, K. Fukami, A. Sakaue-Sawano, and A. Miyawaki, “Scale: A chemical approach for fluorescence imaging and reconstruction of transparent mouse brain,” Nat. Neurosci. 14, 1481–1488 (2011).
[Crossref] [PubMed]

Ke, M. T.

M. T. Ke, S. Fujimoto, and T. Imai, “SeeDB: A simple and morphology-preserving optical clearing agent for neuronal circuit reconstruction,” Nat. Neurosci. 16, 1154–1161 (2013).
[Crossref] [PubMed]

Kerlin, A.

C. Wang, R. Liu, D. E. Milkie, W. Sun, Z. Tan, A. Kerlin, T. W. Chen, D. S. Kim, and N. Ji, “Multiplexed aberration measurement for deep tissue imaging in vivo,” Nat. Meth. 11, 1037–1040 (2014).
[Crossref]

Kim, D. S.

C. Wang, R. Liu, D. E. Milkie, W. Sun, Z. Tan, A. Kerlin, T. W. Chen, D. S. Kim, and N. Ji, “Multiplexed aberration measurement for deep tissue imaging in vivo,” Nat. Meth. 11, 1037–1040 (2014).
[Crossref]

Kishino, F.

E. A. Susaki, K. Tainaka, D. Perrin, F. Kishino, T. Tawara, T. M. Watanabe, C. Yokoyama, H. Onoe, M. Eguchi, S. Yamaguchi, T. Abe, H. Kiyonari, Y. Shimizu, A. Miyawaki, H. Yokota, and H. R. Ueda, “Whole-brain imaging with single-cell resolution using chemical cocktails and computational analysis,” Cell 157(3), 726–739 (2014).
[Crossref] [PubMed]

Kiyonari, H.

E. A. Susaki, K. Tainaka, D. Perrin, F. Kishino, T. Tawara, T. M. Watanabe, C. Yokoyama, H. Onoe, M. Eguchi, S. Yamaguchi, T. Abe, H. Kiyonari, Y. Shimizu, A. Miyawaki, H. Yokota, and H. R. Ueda, “Whole-brain imaging with single-cell resolution using chemical cocktails and computational analysis,” Cell 157(3), 726–739 (2014).
[Crossref] [PubMed]

Kner, P.

Kobat, D.

Kobayashi, Y.

T. Inoue, H. Tanaka, N. Fukuchi, M. Takumi, N. Matsumoto, T. Hara, N. Yoshida, Y. Igasaki, and Y. Kobayashi, “LCOS spatial light modulator controlled by 12-bit signals for optical phase-only modulation,” Proc. SPIE 6487, 64870Y (2007).

Kohl, M. M.

E. J. Botcherby, C. W. Smith, M. M. Kohl, D. Débarre, M. J. Booth, R. Juškaitis, O. Paulsen, and T. Wilson, “Aberration-free three-dimensional multiphoton imaging of neuronal activity at kHz rates,” Proc. Natl. Acad. Sci. USA 109(8), 2919–2924 (2012).
[Crossref] [PubMed]

Kozawa, Y.

R. Kawakami, K. Sawada, A. Sato, T. Hibi, Y. Kozawa, S. Sato, H. Yokoyama, and T. Nemoto, “Visualizing hippocampal neurons with in vivo two-photon microscopy using a 1030 nm picosecond pulse laser,” Sci. Rep. 3, 1014 (2013)
[Crossref] [PubMed]

Kubby, J.

Kurokawa, H.

H. Hama, H. Kurokawa, H. Kawano, R. Ando, T. Shimogori, H. Noda, K. Fukami, A. Sakaue-Sawano, and A. Miyawaki, “Scale: A chemical approach for fluorescence imaging and reconstruction of transparent mouse brain,” Nat. Neurosci. 14, 1481–1488 (2011).
[Crossref] [PubMed]

Kuwajima, T.

T. Kuwajima, A. A. Sitko, P. Bhansali, C. Jurgens, W. Guido, and C. Mason, “ClearT: A detergent- and solvent-free clearing method for neuronal and non-neuronal tissue,” Development 140, 1364–1368 (2013).
[Crossref] [PubMed]

Lai, J.

R. Dickie, R. M. Bachoo, M. A. Rupnick, S. M. Dallabrida, G. M. DeLoid, J. Lai, R. A. DePinho, and R. A. Rogers, “Three-dimensional visualization of microvessel architecture of whole-mount tissue by confocal microscopy,” Microvasc. Res. 72, 20–26 (2006).
[Crossref]

Liu, R.

C. Wang, R. Liu, D. E. Milkie, W. Sun, Z. Tan, A. Kerlin, T. W. Chen, D. S. Kim, and N. Ji, “Multiplexed aberration measurement for deep tissue imaging in vivo,” Nat. Meth. 11, 1037–1040 (2014).
[Crossref]

Mahou, P.

J. Zeng, P. Mahou, M. C. Schanne-Klein, E. Beaurepaire, and D. Debarre, “3D resolved mapping of optical aberrations in thick tissues,” Bio. Opt. Express 3(8), 1898–1913 (2012).
[Crossref]

Mason, C.

T. Kuwajima, A. A. Sitko, P. Bhansali, C. Jurgens, W. Guido, and C. Mason, “ClearT: A detergent- and solvent-free clearing method for neuronal and non-neuronal tissue,” Development 140, 1364–1368 (2013).
[Crossref] [PubMed]

Matsumoto, N.

Mauch, C. P.

A. Erturk, K. Becker, N. Jahrling, C. P. Mauch, C. D. Hojer, J. G. Egen, F. Hellal, F. Bradke, M. Sheng, and H. U. Dodt, “Three-dimensional imaging of solvent-cleared organs using 3DISCO,” Nat. Proto. 7, 1983–1995 (2012).
[Crossref]

Milkie, D. E.

C. Wang, R. Liu, D. E. Milkie, W. Sun, Z. Tan, A. Kerlin, T. W. Chen, D. S. Kim, and N. Ji, “Multiplexed aberration measurement for deep tissue imaging in vivo,” Nat. Meth. 11, 1037–1040 (2014).
[Crossref]

D. E. Milkie, E. Betzig, and N. Ji, “Pupil-segmentation-based adaptive optical microscopy with full-pupil illumination,” Opt. Lett. 36(21), 4206–4208 (2011).
[Crossref] [PubMed]

Miyawaki, A.

E. A. Susaki, K. Tainaka, D. Perrin, F. Kishino, T. Tawara, T. M. Watanabe, C. Yokoyama, H. Onoe, M. Eguchi, S. Yamaguchi, T. Abe, H. Kiyonari, Y. Shimizu, A. Miyawaki, H. Yokota, and H. R. Ueda, “Whole-brain imaging with single-cell resolution using chemical cocktails and computational analysis,” Cell 157(3), 726–739 (2014).
[Crossref] [PubMed]

H. Hama, H. Kurokawa, H. Kawano, R. Ando, T. Shimogori, H. Noda, K. Fukami, A. Sakaue-Sawano, and A. Miyawaki, “Scale: A chemical approach for fluorescence imaging and reconstruction of transparent mouse brain,” Nat. Neurosci. 14, 1481–1488 (2011).
[Crossref] [PubMed]

Nemoto, T.

R. Kawakami, K. Sawada, A. Sato, T. Hibi, Y. Kozawa, S. Sato, H. Yokoyama, and T. Nemoto, “Visualizing hippocampal neurons with in vivo two-photon microscopy using a 1030 nm picosecond pulse laser,” Sci. Rep. 3, 1014 (2013)
[Crossref] [PubMed]

Nishimura, N.

Noda, H.

H. Hama, H. Kurokawa, H. Kawano, R. Ando, T. Shimogori, H. Noda, K. Fukami, A. Sakaue-Sawano, and A. Miyawaki, “Scale: A chemical approach for fluorescence imaging and reconstruction of transparent mouse brain,” Nat. Neurosci. 14, 1481–1488 (2011).
[Crossref] [PubMed]

Ohtake, Y.

Olivier, S.

Onoe, H.

E. A. Susaki, K. Tainaka, D. Perrin, F. Kishino, T. Tawara, T. M. Watanabe, C. Yokoyama, H. Onoe, M. Eguchi, S. Yamaguchi, T. Abe, H. Kiyonari, Y. Shimizu, A. Miyawaki, H. Yokota, and H. R. Ueda, “Whole-brain imaging with single-cell resolution using chemical cocktails and computational analysis,” Cell 157(3), 726–739 (2014).
[Crossref] [PubMed]

Otsu, T.

Paulsen, O.

E. J. Botcherby, C. W. Smith, M. M. Kohl, D. Débarre, M. J. Booth, R. Juškaitis, O. Paulsen, and T. Wilson, “Aberration-free three-dimensional multiphoton imaging of neuronal activity at kHz rates,” Proc. Natl. Acad. Sci. USA 109(8), 2919–2924 (2012).
[Crossref] [PubMed]

Perrin, D.

E. A. Susaki, K. Tainaka, D. Perrin, F. Kishino, T. Tawara, T. M. Watanabe, C. Yokoyama, H. Onoe, M. Eguchi, S. Yamaguchi, T. Abe, H. Kiyonari, Y. Shimizu, A. Miyawaki, H. Yokota, and H. R. Ueda, “Whole-brain imaging with single-cell resolution using chemical cocktails and computational analysis,” Cell 157(3), 726–739 (2014).
[Crossref] [PubMed]

Rogers, R. A.

R. Dickie, R. M. Bachoo, M. A. Rupnick, S. M. Dallabrida, G. M. DeLoid, J. Lai, R. A. DePinho, and R. A. Rogers, “Three-dimensional visualization of microvessel architecture of whole-mount tissue by confocal microscopy,” Microvasc. Res. 72, 20–26 (2006).
[Crossref]

Rupnick, M. A.

R. Dickie, R. M. Bachoo, M. A. Rupnick, S. M. Dallabrida, G. M. DeLoid, J. Lai, R. A. DePinho, and R. A. Rogers, “Three-dimensional visualization of microvessel architecture of whole-mount tissue by confocal microscopy,” Microvasc. Res. 72, 20–26 (2006).
[Crossref]

Sakaue-Sawano, A.

H. Hama, H. Kurokawa, H. Kawano, R. Ando, T. Shimogori, H. Noda, K. Fukami, A. Sakaue-Sawano, and A. Miyawaki, “Scale: A chemical approach for fluorescence imaging and reconstruction of transparent mouse brain,” Nat. Neurosci. 14, 1481–1488 (2011).
[Crossref] [PubMed]

Salter, P. S.

Sato, A.

R. Kawakami, K. Sawada, A. Sato, T. Hibi, Y. Kozawa, S. Sato, H. Yokoyama, and T. Nemoto, “Visualizing hippocampal neurons with in vivo two-photon microscopy using a 1030 nm picosecond pulse laser,” Sci. Rep. 3, 1014 (2013)
[Crossref] [PubMed]

Sato, S.

R. Kawakami, K. Sawada, A. Sato, T. Hibi, Y. Kozawa, S. Sato, H. Yokoyama, and T. Nemoto, “Visualizing hippocampal neurons with in vivo two-photon microscopy using a 1030 nm picosecond pulse laser,” Sci. Rep. 3, 1014 (2013)
[Crossref] [PubMed]

Sawada, K.

R. Kawakami, K. Sawada, A. Sato, T. Hibi, Y. Kozawa, S. Sato, H. Yokoyama, and T. Nemoto, “Visualizing hippocampal neurons with in vivo two-photon microscopy using a 1030 nm picosecond pulse laser,” Sci. Rep. 3, 1014 (2013)
[Crossref] [PubMed]

Schaffer, C. B.

Schanne-Klein, M. C.

J. Zeng, P. Mahou, M. C. Schanne-Klein, E. Beaurepaire, and D. Debarre, “3D resolved mapping of optical aberrations in thick tissues,” Bio. Opt. Express 3(8), 1898–1913 (2012).
[Crossref]

Schmidt, M.

Sheng, M.

A. Erturk, K. Becker, N. Jahrling, C. P. Mauch, C. D. Hojer, J. G. Egen, F. Hellal, F. Bradke, M. Sheng, and H. U. Dodt, “Three-dimensional imaging of solvent-cleared organs using 3DISCO,” Nat. Proto. 7, 1983–1995 (2012).
[Crossref]

Shimizu, Y.

E. A. Susaki, K. Tainaka, D. Perrin, F. Kishino, T. Tawara, T. M. Watanabe, C. Yokoyama, H. Onoe, M. Eguchi, S. Yamaguchi, T. Abe, H. Kiyonari, Y. Shimizu, A. Miyawaki, H. Yokota, and H. R. Ueda, “Whole-brain imaging with single-cell resolution using chemical cocktails and computational analysis,” Cell 157(3), 726–739 (2014).
[Crossref] [PubMed]

Shimogori, T.

H. Hama, H. Kurokawa, H. Kawano, R. Ando, T. Shimogori, H. Noda, K. Fukami, A. Sakaue-Sawano, and A. Miyawaki, “Scale: A chemical approach for fluorescence imaging and reconstruction of transparent mouse brain,” Nat. Neurosci. 14, 1481–1488 (2011).
[Crossref] [PubMed]

Sitko, A. A.

T. Kuwajima, A. A. Sitko, P. Bhansali, C. Jurgens, W. Guido, and C. Mason, “ClearT: A detergent- and solvent-free clearing method for neuronal and non-neuronal tissue,” Development 140, 1364–1368 (2013).
[Crossref] [PubMed]

Smith, C. W.

E. J. Botcherby, C. W. Smith, M. M. Kohl, D. Débarre, M. J. Booth, R. Juškaitis, O. Paulsen, and T. Wilson, “Aberration-free three-dimensional multiphoton imaging of neuronal activity at kHz rates,” Proc. Natl. Acad. Sci. USA 109(8), 2919–2924 (2012).
[Crossref] [PubMed]

Strickler, J. H.

W. Denk, J. H. Strickler, and W. W. Webb, “Two-photon laser scanning fluorescence microscopy,” Science 248, 73–76 (1990).
[Crossref] [PubMed]

Sullivan, W.

Sun, W.

C. Wang, R. Liu, D. E. Milkie, W. Sun, Z. Tan, A. Kerlin, T. W. Chen, D. S. Kim, and N. Ji, “Multiplexed aberration measurement for deep tissue imaging in vivo,” Nat. Meth. 11, 1037–1040 (2014).
[Crossref]

Susaki, E. A.

E. A. Susaki, K. Tainaka, D. Perrin, F. Kishino, T. Tawara, T. M. Watanabe, C. Yokoyama, H. Onoe, M. Eguchi, S. Yamaguchi, T. Abe, H. Kiyonari, Y. Shimizu, A. Miyawaki, H. Yokota, and H. R. Ueda, “Whole-brain imaging with single-cell resolution using chemical cocktails and computational analysis,” Cell 157(3), 726–739 (2014).
[Crossref] [PubMed]

Tainaka, K.

E. A. Susaki, K. Tainaka, D. Perrin, F. Kishino, T. Tawara, T. M. Watanabe, C. Yokoyama, H. Onoe, M. Eguchi, S. Yamaguchi, T. Abe, H. Kiyonari, Y. Shimizu, A. Miyawaki, H. Yokota, and H. R. Ueda, “Whole-brain imaging with single-cell resolution using chemical cocktails and computational analysis,” Cell 157(3), 726–739 (2014).
[Crossref] [PubMed]

Takumi, M.

T. Inoue, H. Tanaka, N. Fukuchi, M. Takumi, N. Matsumoto, T. Hara, N. Yoshida, Y. Igasaki, and Y. Kobayashi, “LCOS spatial light modulator controlled by 12-bit signals for optical phase-only modulation,” Proc. SPIE 6487, 64870Y (2007).

Tan, Z.

C. Wang, R. Liu, D. E. Milkie, W. Sun, Z. Tan, A. Kerlin, T. W. Chen, D. S. Kim, and N. Ji, “Multiplexed aberration measurement for deep tissue imaging in vivo,” Nat. Meth. 11, 1037–1040 (2014).
[Crossref]

Tanaka, H.

T. Inoue, H. Tanaka, N. Fukuchi, M. Takumi, N. Matsumoto, T. Hara, N. Yoshida, Y. Igasaki, and Y. Kobayashi, “LCOS spatial light modulator controlled by 12-bit signals for optical phase-only modulation,” Proc. SPIE 6487, 64870Y (2007).

Tao, X.

Tawara, T.

E. A. Susaki, K. Tainaka, D. Perrin, F. Kishino, T. Tawara, T. M. Watanabe, C. Yokoyama, H. Onoe, M. Eguchi, S. Yamaguchi, T. Abe, H. Kiyonari, Y. Shimizu, A. Miyawaki, H. Yokota, and H. R. Ueda, “Whole-brain imaging with single-cell resolution using chemical cocktails and computational analysis,” Cell 157(3), 726–739 (2014).
[Crossref] [PubMed]

Theer, P.

Török, P.

Toyoda, H.

Ueda, H. R.

E. A. Susaki, K. Tainaka, D. Perrin, F. Kishino, T. Tawara, T. M. Watanabe, C. Yokoyama, H. Onoe, M. Eguchi, S. Yamaguchi, T. Abe, H. Kiyonari, Y. Shimizu, A. Miyawaki, H. Yokota, and H. R. Ueda, “Whole-brain imaging with single-cell resolution using chemical cocktails and computational analysis,” Cell 157(3), 726–739 (2014).
[Crossref] [PubMed]

Varga, P.

Wang, C.

C. Wang, R. Liu, D. E. Milkie, W. Sun, Z. Tan, A. Kerlin, T. W. Chen, D. S. Kim, and N. Ji, “Multiplexed aberration measurement for deep tissue imaging in vivo,” Nat. Meth. 11, 1037–1040 (2014).
[Crossref]

Watanabe, T. M.

E. A. Susaki, K. Tainaka, D. Perrin, F. Kishino, T. Tawara, T. M. Watanabe, C. Yokoyama, H. Onoe, M. Eguchi, S. Yamaguchi, T. Abe, H. Kiyonari, Y. Shimizu, A. Miyawaki, H. Yokota, and H. R. Ueda, “Whole-brain imaging with single-cell resolution using chemical cocktails and computational analysis,” Cell 157(3), 726–739 (2014).
[Crossref] [PubMed]

Webb, W. W.

W. Denk, J. H. Strickler, and W. W. Webb, “Two-photon laser scanning fluorescence microscopy,” Science 248, 73–76 (1990).
[Crossref] [PubMed]

Wilson, T.

E. J. Botcherby, C. W. Smith, M. M. Kohl, D. Débarre, M. J. Booth, R. Juškaitis, O. Paulsen, and T. Wilson, “Aberration-free three-dimensional multiphoton imaging of neuronal activity at kHz rates,” Proc. Natl. Acad. Sci. USA 109(8), 2919–2924 (2012).
[Crossref] [PubMed]

Wong, A. W.

Xu, C.

Yamaguchi, S.

E. A. Susaki, K. Tainaka, D. Perrin, F. Kishino, T. Tawara, T. M. Watanabe, C. Yokoyama, H. Onoe, M. Eguchi, S. Yamaguchi, T. Abe, H. Kiyonari, Y. Shimizu, A. Miyawaki, H. Yokota, and H. R. Ueda, “Whole-brain imaging with single-cell resolution using chemical cocktails and computational analysis,” Cell 157(3), 726–739 (2014).
[Crossref] [PubMed]

Yokota, H.

E. A. Susaki, K. Tainaka, D. Perrin, F. Kishino, T. Tawara, T. M. Watanabe, C. Yokoyama, H. Onoe, M. Eguchi, S. Yamaguchi, T. Abe, H. Kiyonari, Y. Shimizu, A. Miyawaki, H. Yokota, and H. R. Ueda, “Whole-brain imaging with single-cell resolution using chemical cocktails and computational analysis,” Cell 157(3), 726–739 (2014).
[Crossref] [PubMed]

Yokoyama, C.

E. A. Susaki, K. Tainaka, D. Perrin, F. Kishino, T. Tawara, T. M. Watanabe, C. Yokoyama, H. Onoe, M. Eguchi, S. Yamaguchi, T. Abe, H. Kiyonari, Y. Shimizu, A. Miyawaki, H. Yokota, and H. R. Ueda, “Whole-brain imaging with single-cell resolution using chemical cocktails and computational analysis,” Cell 157(3), 726–739 (2014).
[Crossref] [PubMed]

Yokoyama, H.

R. Kawakami, K. Sawada, A. Sato, T. Hibi, Y. Kozawa, S. Sato, H. Yokoyama, and T. Nemoto, “Visualizing hippocampal neurons with in vivo two-photon microscopy using a 1030 nm picosecond pulse laser,” Sci. Rep. 3, 1014 (2013)
[Crossref] [PubMed]

Yoshida, N.

T. Inoue, H. Tanaka, N. Fukuchi, M. Takumi, N. Matsumoto, T. Hara, N. Yoshida, Y. Igasaki, and Y. Kobayashi, “LCOS spatial light modulator controlled by 12-bit signals for optical phase-only modulation,” Proc. SPIE 6487, 64870Y (2007).

Zeng, J.

J. Zeng, P. Mahou, M. C. Schanne-Klein, E. Beaurepaire, and D. Debarre, “3D resolved mapping of optical aberrations in thick tissues,” Bio. Opt. Express 3(8), 1898–1913 (2012).
[Crossref]

Zuo, Y.

Bio. Opt. Express (1)

J. Zeng, P. Mahou, M. C. Schanne-Klein, E. Beaurepaire, and D. Debarre, “3D resolved mapping of optical aberrations in thick tissues,” Bio. Opt. Express 3(8), 1898–1913 (2012).
[Crossref]

Cell (1)

E. A. Susaki, K. Tainaka, D. Perrin, F. Kishino, T. Tawara, T. M. Watanabe, C. Yokoyama, H. Onoe, M. Eguchi, S. Yamaguchi, T. Abe, H. Kiyonari, Y. Shimizu, A. Miyawaki, H. Yokota, and H. R. Ueda, “Whole-brain imaging with single-cell resolution using chemical cocktails and computational analysis,” Cell 157(3), 726–739 (2014).
[Crossref] [PubMed]

Development (1)

T. Kuwajima, A. A. Sitko, P. Bhansali, C. Jurgens, W. Guido, and C. Mason, “ClearT: A detergent- and solvent-free clearing method for neuronal and non-neuronal tissue,” Development 140, 1364–1368 (2013).
[Crossref] [PubMed]

J. Opt. Soc. Am. A (2)

Microvasc. Res. (1)

R. Dickie, R. M. Bachoo, M. A. Rupnick, S. M. Dallabrida, G. M. DeLoid, J. Lai, R. A. DePinho, and R. A. Rogers, “Three-dimensional visualization of microvessel architecture of whole-mount tissue by confocal microscopy,” Microvasc. Res. 72, 20–26 (2006).
[Crossref]

Nat. Meth. (1)

C. Wang, R. Liu, D. E. Milkie, W. Sun, Z. Tan, A. Kerlin, T. W. Chen, D. S. Kim, and N. Ji, “Multiplexed aberration measurement for deep tissue imaging in vivo,” Nat. Meth. 11, 1037–1040 (2014).
[Crossref]

Nat. Neurosci. (2)

H. Hama, H. Kurokawa, H. Kawano, R. Ando, T. Shimogori, H. Noda, K. Fukami, A. Sakaue-Sawano, and A. Miyawaki, “Scale: A chemical approach for fluorescence imaging and reconstruction of transparent mouse brain,” Nat. Neurosci. 14, 1481–1488 (2011).
[Crossref] [PubMed]

M. T. Ke, S. Fujimoto, and T. Imai, “SeeDB: A simple and morphology-preserving optical clearing agent for neuronal circuit reconstruction,” Nat. Neurosci. 16, 1154–1161 (2013).
[Crossref] [PubMed]

Nat. Proto. (1)

A. Erturk, K. Becker, N. Jahrling, C. P. Mauch, C. D. Hojer, J. G. Egen, F. Hellal, F. Bradke, M. Sheng, and H. U. Dodt, “Three-dimensional imaging of solvent-cleared organs using 3DISCO,” Nat. Proto. 7, 1983–1995 (2012).
[Crossref]

Opt. Express (6)

Opt. Lett. (3)

Proc. Natl. Acad. Sci. USA (1)

E. J. Botcherby, C. W. Smith, M. M. Kohl, D. Débarre, M. J. Booth, R. Juškaitis, O. Paulsen, and T. Wilson, “Aberration-free three-dimensional multiphoton imaging of neuronal activity at kHz rates,” Proc. Natl. Acad. Sci. USA 109(8), 2919–2924 (2012).
[Crossref] [PubMed]

Proc. SPIE (1)

T. Inoue, H. Tanaka, N. Fukuchi, M. Takumi, N. Matsumoto, T. Hara, N. Yoshida, Y. Igasaki, and Y. Kobayashi, “LCOS spatial light modulator controlled by 12-bit signals for optical phase-only modulation,” Proc. SPIE 6487, 64870Y (2007).

Sci. Rep. (1)

R. Kawakami, K. Sawada, A. Sato, T. Hibi, Y. Kozawa, S. Sato, H. Yokoyama, and T. Nemoto, “Visualizing hippocampal neurons with in vivo two-photon microscopy using a 1030 nm picosecond pulse laser,” Sci. Rep. 3, 1014 (2013)
[Crossref] [PubMed]

Science (1)

W. Denk, J. H. Strickler, and W. W. Webb, “Two-photon laser scanning fluorescence microscopy,” Science 248, 73–76 (1990).
[Crossref] [PubMed]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 Focusing geometry showing the refraction of rays at the interface between two media: (a) Rays from a plane wavefront are concentrated at O0 in the case of n1 = n2. (b) Rays from a plane wavefront are focused with depth range Δ in the case of n1 < n2 because the rays are refracted depending on incident angle θ1 of the ray at the interface (Snell’s law). (c) Rays from a modulated wavefront are concentrated at O2 in the case of n1 < n2.
Fig. 2
Fig. 2 Schematic of the experimental TPM system with ab SLM. The solid lines (red) and dashed lines (green) represent the excitation beam and fluorescence light, respectively.
Fig. 3
Fig. 3 Results of observation of the fluorescent polystyrene beads in epoxy resin using a dry objective lens (NA 0.75) with optical-depth increments of 621 nm. (a), (b) xz projected image from an optical depth of −30 μm to 932 μm with and without SA correction, respectively. The 932 μm optical depth is the maximum working distance of the objective lens. (c), (d) Gamma-value-adjusted xz projected images (γ =1.75). (e)-(f) Magnified xz projected images from an optical depth of (e) −30 μm to 30 μm, (f) 203 μm to 263 μm, (g) 436 μm to 496 μm, and (h) 670 μm to 730 μm. Scale bar indicates 20 μm optical depth.
Fig. 4
Fig. 4 (a) Normalized fluorescence intensity as a function of observed depth. (b) Fluorescence intensity improvement ratio and depth-resolution improvement ratio.
Fig. 5
Fig. 5 Observation of fluorescent polystyrene beads in pig meat using a dry objective lens (NA 0.75) with optical-depth increments of 690 nm. (a) Overall view of the pig meat after the transparency-enhancement process. (b) xy fluorescence image of the beads in the pig meat obtained through epi-illumination. (c), (d) xz projected image from 27.6 μm depth to 387 μm depth with and without SA correction, respectively. (e), (f) Gamma-value-adjusted xz projected images (γ = 1.5). Most of the fluorescence beads were fixed, but some beads moved (in the yellow dashed circle), because they were injected by a needle-free injector. Scale bar indicates 20 μm optical depth.
Fig. 6
Fig. 6 Observation of the cerebral blood vessels of a young SD rat; a fluorescence tracer was injected into the circulatory system of a 7-day-old rat using a dry objective lens (NA 0.75) with optical-depth increments of 970 nm. (a), (b) y-z projected images from 0 μm depth to 550 μmm depth with and without SA correction, respectively. (c), (d) Magnified y-z projected images of (a) and (b), respectively. The orange arrows show the length of the observed blood vessel when scanned without SA correction. (e), (f) False-color y-z projected images. Scale bar indicates 20 μmm depth.
Fig. 7
Fig. 7 Observation of fluorescent polystyrene beads in epoxy resin using a silicone-oil immersion objective lens (NA 1.05) with depth increments of 440 nm. (a),(b) xz projected image from a depth of −5.5 μm to 880 μm with and without SA correction. (c), (d) Gamma-value-adjusted x–z projected image (γ=1.5). (e) Normalized fluorescence intensity as a function of the observed depth. (f) Fluorescence-intensity improvement ratio and depth-resolution improvement ratio. Scale bar indicates 20 μm depth.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

ϕ ( ρ ) = 2 π d λ ( ( 1 + α ) n 2 2 ( N A ρ ) 2 n 1 2 ( N A ρ ) 2 ) ,

Metrics