Abstract

We used a spatial light modulator to project an optical micropattern of 473 nm light with a quartic intensity gradient on a single lung cancer cell. We observed that the intracellular amounts of reactive oxygen species (ROS) of the cancer cells were proportional to the intensity of the blue light, and the blue light intensity gradients could drive directional cell migration. This optically induced directional cell migration was inhibited by a ROS scavenger in the culture medium in a dose-dependent manner. In contrast, the ROS levels in fibroblasts were saturated by the blue light at low intensity and therefore the fibroblasts did not exhibit directional migration in the intensity gradient.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Slow Ca2+ wave stimulation using low repetition rate femtosecond pulsed irradiation

S. Iwanaga, N. I. Smith, K. Fujita, and S. Kawata
Opt. Express 14(2) 717-725 (2006)

Manipulating the mitochondria activity in human hepatic cell line Huh7 by low-power laser irradiation

Anna Lynnyk, Mariia Lunova, Milan Jirsa, Daria Egorova, Andrei Kulikov, Šárka Kubinová, Oleg Lunov, and Alexandr Dejneka
Biomed. Opt. Express 9(3) 1283-1300 (2018)

Time-resolved optical imaging provides a molecular snapshot of altered metabolic function in living human cancer cell models

Dhruv Sud, Wei Zhong, David G. Beer, and Mary-Ann Mycek
Opt. Express 14(10) 4412-4426 (2006)

References

  • View by:
  • |
  • |
  • |

  1. E. T. Roussos, J. S. Condeelis, and A. Patsialou, “Chemotaxis in cancer,” Nat. Rev. Cancer 11(8), 573–587 (2011).
    [Crossref] [PubMed]
  2. D. E. Discher, P. Janmey, and Y.-L. Wang, “Tissue cells feel and respond to the stiffness of their substrate,” Science 310(5751), 1139–1143 (2005).
    [Crossref] [PubMed]
  3. B. Cortese, I. E. Palamà, S. D’Amone, and G. Gigli, “Influence of electrotaxis on cell behaviour,” Integr Biol (Camb) 6(9), 817–830 (2014).
    [Crossref] [PubMed]
  4. A. Ehrlicher, T. Betz, B. Stuhrmann, D. Koch, V. Milner, M. G. Raizen, and J. Kas, “Guiding neuronal growth with light,” Proc. Natl. Acad. Sci. U.S.A. 99(25), 16024–16028 (2002).
    [Crossref] [PubMed]
  5. G. Biener, E. Vrotsos, K. Sugaya, and A. Dogariu, “Optical torques guiding cell motility,” Opt. Express 17(12), 9724–9732 (2009).
    [Crossref] [PubMed]
  6. J.-L. Xiao, T.-H. Hsu, P.-Y. Hsu, W.-J. Yang, P.-L. Kuo, and C.-H. Lee, “Motion of cancer-cell lamellipodia perturbed by laser light of two wavelengths,” Appl. Phys. Lett. 97(20), 203702 (2010).
    [Crossref]
  7. J.-L. Xiao, H.-J. Pan, and C.-H. Lee, “Optically micropatterned culture of adherent cells,” J. Biomed. Opt. 17(7), 075004 (2012).
    [Crossref] [PubMed]
  8. J.-L. Xiao, D.-H. Lu, and C.-H. Lee, “Guiding the migration of adherent cells by using optical micropatterns,” Appl. Phys. Lett. 102(12), 123703 (2013).
    [Crossref]
  9. T. Nakanishi-Ueda, H. J. Majima, K. Watanabe, T. Ueda, H. P. Indo, S. Suenaga, T. Hisamitsu, T. Ozawa, H. Yasuhara, and R. Koide, “Blue LED light exposure develops intracellular reactive oxygen species, lipid peroxidation, and subsequent cellular injuries in cultured bovine retinal pigment epithelial cells,” Free Radic. Res. 47(10), 774–780 (2013).
    [Crossref] [PubMed]
  10. C. Opländer, S. Hidding, F. B. Werners, M. Born, N. Pallua, and C. V. Suschek, “Effects of blue light irradiation on human dermal fibroblasts,” J. Photochem. Photobiol. B 103(2), 118–125 (2011).
    [Crossref] [PubMed]
  11. T. R. Hurd, M. DeGennaro, and R. Lehmann, “Redox regulation of cell migration and adhesion,” Trends Cell Biol. 22(2), 107–115 (2012).
    [Crossref] [PubMed]
  12. V. J. Forrest, Y. H. Kang, D. E. McClain, D. H. Robinson, and N. Ramakrishnan, “Oxidative stress-induced apoptosis prevented by Trolox,” Free Radic. Biol. Med. 16(6), 675–684 (1994).
    [Crossref] [PubMed]
  13. H. J. Sung, Y. Kim, H. Kang, J. W. Sull, Y. S. Kim, S.-W. Jang, and J. Ko, “Inhibitory effect of Trolox on the migration and invasion of human lung and cervical cancer cells,” Int. J. Mol. Med. 29(2), 245–251 (2012).
    [PubMed]

2014 (1)

B. Cortese, I. E. Palamà, S. D’Amone, and G. Gigli, “Influence of electrotaxis on cell behaviour,” Integr Biol (Camb) 6(9), 817–830 (2014).
[Crossref] [PubMed]

2013 (2)

J.-L. Xiao, D.-H. Lu, and C.-H. Lee, “Guiding the migration of adherent cells by using optical micropatterns,” Appl. Phys. Lett. 102(12), 123703 (2013).
[Crossref]

T. Nakanishi-Ueda, H. J. Majima, K. Watanabe, T. Ueda, H. P. Indo, S. Suenaga, T. Hisamitsu, T. Ozawa, H. Yasuhara, and R. Koide, “Blue LED light exposure develops intracellular reactive oxygen species, lipid peroxidation, and subsequent cellular injuries in cultured bovine retinal pigment epithelial cells,” Free Radic. Res. 47(10), 774–780 (2013).
[Crossref] [PubMed]

2012 (3)

T. R. Hurd, M. DeGennaro, and R. Lehmann, “Redox regulation of cell migration and adhesion,” Trends Cell Biol. 22(2), 107–115 (2012).
[Crossref] [PubMed]

J.-L. Xiao, H.-J. Pan, and C.-H. Lee, “Optically micropatterned culture of adherent cells,” J. Biomed. Opt. 17(7), 075004 (2012).
[Crossref] [PubMed]

H. J. Sung, Y. Kim, H. Kang, J. W. Sull, Y. S. Kim, S.-W. Jang, and J. Ko, “Inhibitory effect of Trolox on the migration and invasion of human lung and cervical cancer cells,” Int. J. Mol. Med. 29(2), 245–251 (2012).
[PubMed]

2011 (2)

C. Opländer, S. Hidding, F. B. Werners, M. Born, N. Pallua, and C. V. Suschek, “Effects of blue light irradiation on human dermal fibroblasts,” J. Photochem. Photobiol. B 103(2), 118–125 (2011).
[Crossref] [PubMed]

E. T. Roussos, J. S. Condeelis, and A. Patsialou, “Chemotaxis in cancer,” Nat. Rev. Cancer 11(8), 573–587 (2011).
[Crossref] [PubMed]

2010 (1)

J.-L. Xiao, T.-H. Hsu, P.-Y. Hsu, W.-J. Yang, P.-L. Kuo, and C.-H. Lee, “Motion of cancer-cell lamellipodia perturbed by laser light of two wavelengths,” Appl. Phys. Lett. 97(20), 203702 (2010).
[Crossref]

2009 (1)

2005 (1)

D. E. Discher, P. Janmey, and Y.-L. Wang, “Tissue cells feel and respond to the stiffness of their substrate,” Science 310(5751), 1139–1143 (2005).
[Crossref] [PubMed]

2002 (1)

A. Ehrlicher, T. Betz, B. Stuhrmann, D. Koch, V. Milner, M. G. Raizen, and J. Kas, “Guiding neuronal growth with light,” Proc. Natl. Acad. Sci. U.S.A. 99(25), 16024–16028 (2002).
[Crossref] [PubMed]

1994 (1)

V. J. Forrest, Y. H. Kang, D. E. McClain, D. H. Robinson, and N. Ramakrishnan, “Oxidative stress-induced apoptosis prevented by Trolox,” Free Radic. Biol. Med. 16(6), 675–684 (1994).
[Crossref] [PubMed]

Betz, T.

A. Ehrlicher, T. Betz, B. Stuhrmann, D. Koch, V. Milner, M. G. Raizen, and J. Kas, “Guiding neuronal growth with light,” Proc. Natl. Acad. Sci. U.S.A. 99(25), 16024–16028 (2002).
[Crossref] [PubMed]

Biener, G.

Born, M.

C. Opländer, S. Hidding, F. B. Werners, M. Born, N. Pallua, and C. V. Suschek, “Effects of blue light irradiation on human dermal fibroblasts,” J. Photochem. Photobiol. B 103(2), 118–125 (2011).
[Crossref] [PubMed]

Condeelis, J. S.

E. T. Roussos, J. S. Condeelis, and A. Patsialou, “Chemotaxis in cancer,” Nat. Rev. Cancer 11(8), 573–587 (2011).
[Crossref] [PubMed]

Cortese, B.

B. Cortese, I. E. Palamà, S. D’Amone, and G. Gigli, “Influence of electrotaxis on cell behaviour,” Integr Biol (Camb) 6(9), 817–830 (2014).
[Crossref] [PubMed]

D’Amone, S.

B. Cortese, I. E. Palamà, S. D’Amone, and G. Gigli, “Influence of electrotaxis on cell behaviour,” Integr Biol (Camb) 6(9), 817–830 (2014).
[Crossref] [PubMed]

DeGennaro, M.

T. R. Hurd, M. DeGennaro, and R. Lehmann, “Redox regulation of cell migration and adhesion,” Trends Cell Biol. 22(2), 107–115 (2012).
[Crossref] [PubMed]

Discher, D. E.

D. E. Discher, P. Janmey, and Y.-L. Wang, “Tissue cells feel and respond to the stiffness of their substrate,” Science 310(5751), 1139–1143 (2005).
[Crossref] [PubMed]

Dogariu, A.

Ehrlicher, A.

A. Ehrlicher, T. Betz, B. Stuhrmann, D. Koch, V. Milner, M. G. Raizen, and J. Kas, “Guiding neuronal growth with light,” Proc. Natl. Acad. Sci. U.S.A. 99(25), 16024–16028 (2002).
[Crossref] [PubMed]

Forrest, V. J.

V. J. Forrest, Y. H. Kang, D. E. McClain, D. H. Robinson, and N. Ramakrishnan, “Oxidative stress-induced apoptosis prevented by Trolox,” Free Radic. Biol. Med. 16(6), 675–684 (1994).
[Crossref] [PubMed]

Gigli, G.

B. Cortese, I. E. Palamà, S. D’Amone, and G. Gigli, “Influence of electrotaxis on cell behaviour,” Integr Biol (Camb) 6(9), 817–830 (2014).
[Crossref] [PubMed]

Hidding, S.

C. Opländer, S. Hidding, F. B. Werners, M. Born, N. Pallua, and C. V. Suschek, “Effects of blue light irradiation on human dermal fibroblasts,” J. Photochem. Photobiol. B 103(2), 118–125 (2011).
[Crossref] [PubMed]

Hisamitsu, T.

T. Nakanishi-Ueda, H. J. Majima, K. Watanabe, T. Ueda, H. P. Indo, S. Suenaga, T. Hisamitsu, T. Ozawa, H. Yasuhara, and R. Koide, “Blue LED light exposure develops intracellular reactive oxygen species, lipid peroxidation, and subsequent cellular injuries in cultured bovine retinal pigment epithelial cells,” Free Radic. Res. 47(10), 774–780 (2013).
[Crossref] [PubMed]

Hsu, P.-Y.

J.-L. Xiao, T.-H. Hsu, P.-Y. Hsu, W.-J. Yang, P.-L. Kuo, and C.-H. Lee, “Motion of cancer-cell lamellipodia perturbed by laser light of two wavelengths,” Appl. Phys. Lett. 97(20), 203702 (2010).
[Crossref]

Hsu, T.-H.

J.-L. Xiao, T.-H. Hsu, P.-Y. Hsu, W.-J. Yang, P.-L. Kuo, and C.-H. Lee, “Motion of cancer-cell lamellipodia perturbed by laser light of two wavelengths,” Appl. Phys. Lett. 97(20), 203702 (2010).
[Crossref]

Hurd, T. R.

T. R. Hurd, M. DeGennaro, and R. Lehmann, “Redox regulation of cell migration and adhesion,” Trends Cell Biol. 22(2), 107–115 (2012).
[Crossref] [PubMed]

Indo, H. P.

T. Nakanishi-Ueda, H. J. Majima, K. Watanabe, T. Ueda, H. P. Indo, S. Suenaga, T. Hisamitsu, T. Ozawa, H. Yasuhara, and R. Koide, “Blue LED light exposure develops intracellular reactive oxygen species, lipid peroxidation, and subsequent cellular injuries in cultured bovine retinal pigment epithelial cells,” Free Radic. Res. 47(10), 774–780 (2013).
[Crossref] [PubMed]

Jang, S.-W.

H. J. Sung, Y. Kim, H. Kang, J. W. Sull, Y. S. Kim, S.-W. Jang, and J. Ko, “Inhibitory effect of Trolox on the migration and invasion of human lung and cervical cancer cells,” Int. J. Mol. Med. 29(2), 245–251 (2012).
[PubMed]

Janmey, P.

D. E. Discher, P. Janmey, and Y.-L. Wang, “Tissue cells feel and respond to the stiffness of their substrate,” Science 310(5751), 1139–1143 (2005).
[Crossref] [PubMed]

Kang, H.

H. J. Sung, Y. Kim, H. Kang, J. W. Sull, Y. S. Kim, S.-W. Jang, and J. Ko, “Inhibitory effect of Trolox on the migration and invasion of human lung and cervical cancer cells,” Int. J. Mol. Med. 29(2), 245–251 (2012).
[PubMed]

Kang, Y. H.

V. J. Forrest, Y. H. Kang, D. E. McClain, D. H. Robinson, and N. Ramakrishnan, “Oxidative stress-induced apoptosis prevented by Trolox,” Free Radic. Biol. Med. 16(6), 675–684 (1994).
[Crossref] [PubMed]

Kas, J.

A. Ehrlicher, T. Betz, B. Stuhrmann, D. Koch, V. Milner, M. G. Raizen, and J. Kas, “Guiding neuronal growth with light,” Proc. Natl. Acad. Sci. U.S.A. 99(25), 16024–16028 (2002).
[Crossref] [PubMed]

Kim, Y.

H. J. Sung, Y. Kim, H. Kang, J. W. Sull, Y. S. Kim, S.-W. Jang, and J. Ko, “Inhibitory effect of Trolox on the migration and invasion of human lung and cervical cancer cells,” Int. J. Mol. Med. 29(2), 245–251 (2012).
[PubMed]

Kim, Y. S.

H. J. Sung, Y. Kim, H. Kang, J. W. Sull, Y. S. Kim, S.-W. Jang, and J. Ko, “Inhibitory effect of Trolox on the migration and invasion of human lung and cervical cancer cells,” Int. J. Mol. Med. 29(2), 245–251 (2012).
[PubMed]

Ko, J.

H. J. Sung, Y. Kim, H. Kang, J. W. Sull, Y. S. Kim, S.-W. Jang, and J. Ko, “Inhibitory effect of Trolox on the migration and invasion of human lung and cervical cancer cells,” Int. J. Mol. Med. 29(2), 245–251 (2012).
[PubMed]

Koch, D.

A. Ehrlicher, T. Betz, B. Stuhrmann, D. Koch, V. Milner, M. G. Raizen, and J. Kas, “Guiding neuronal growth with light,” Proc. Natl. Acad. Sci. U.S.A. 99(25), 16024–16028 (2002).
[Crossref] [PubMed]

Koide, R.

T. Nakanishi-Ueda, H. J. Majima, K. Watanabe, T. Ueda, H. P. Indo, S. Suenaga, T. Hisamitsu, T. Ozawa, H. Yasuhara, and R. Koide, “Blue LED light exposure develops intracellular reactive oxygen species, lipid peroxidation, and subsequent cellular injuries in cultured bovine retinal pigment epithelial cells,” Free Radic. Res. 47(10), 774–780 (2013).
[Crossref] [PubMed]

Kuo, P.-L.

J.-L. Xiao, T.-H. Hsu, P.-Y. Hsu, W.-J. Yang, P.-L. Kuo, and C.-H. Lee, “Motion of cancer-cell lamellipodia perturbed by laser light of two wavelengths,” Appl. Phys. Lett. 97(20), 203702 (2010).
[Crossref]

Lee, C.-H.

J.-L. Xiao, D.-H. Lu, and C.-H. Lee, “Guiding the migration of adherent cells by using optical micropatterns,” Appl. Phys. Lett. 102(12), 123703 (2013).
[Crossref]

J.-L. Xiao, H.-J. Pan, and C.-H. Lee, “Optically micropatterned culture of adherent cells,” J. Biomed. Opt. 17(7), 075004 (2012).
[Crossref] [PubMed]

J.-L. Xiao, T.-H. Hsu, P.-Y. Hsu, W.-J. Yang, P.-L. Kuo, and C.-H. Lee, “Motion of cancer-cell lamellipodia perturbed by laser light of two wavelengths,” Appl. Phys. Lett. 97(20), 203702 (2010).
[Crossref]

Lehmann, R.

T. R. Hurd, M. DeGennaro, and R. Lehmann, “Redox regulation of cell migration and adhesion,” Trends Cell Biol. 22(2), 107–115 (2012).
[Crossref] [PubMed]

Lu, D.-H.

J.-L. Xiao, D.-H. Lu, and C.-H. Lee, “Guiding the migration of adherent cells by using optical micropatterns,” Appl. Phys. Lett. 102(12), 123703 (2013).
[Crossref]

Majima, H. J.

T. Nakanishi-Ueda, H. J. Majima, K. Watanabe, T. Ueda, H. P. Indo, S. Suenaga, T. Hisamitsu, T. Ozawa, H. Yasuhara, and R. Koide, “Blue LED light exposure develops intracellular reactive oxygen species, lipid peroxidation, and subsequent cellular injuries in cultured bovine retinal pigment epithelial cells,” Free Radic. Res. 47(10), 774–780 (2013).
[Crossref] [PubMed]

McClain, D. E.

V. J. Forrest, Y. H. Kang, D. E. McClain, D. H. Robinson, and N. Ramakrishnan, “Oxidative stress-induced apoptosis prevented by Trolox,” Free Radic. Biol. Med. 16(6), 675–684 (1994).
[Crossref] [PubMed]

Milner, V.

A. Ehrlicher, T. Betz, B. Stuhrmann, D. Koch, V. Milner, M. G. Raizen, and J. Kas, “Guiding neuronal growth with light,” Proc. Natl. Acad. Sci. U.S.A. 99(25), 16024–16028 (2002).
[Crossref] [PubMed]

Nakanishi-Ueda, T.

T. Nakanishi-Ueda, H. J. Majima, K. Watanabe, T. Ueda, H. P. Indo, S. Suenaga, T. Hisamitsu, T. Ozawa, H. Yasuhara, and R. Koide, “Blue LED light exposure develops intracellular reactive oxygen species, lipid peroxidation, and subsequent cellular injuries in cultured bovine retinal pigment epithelial cells,” Free Radic. Res. 47(10), 774–780 (2013).
[Crossref] [PubMed]

Opländer, C.

C. Opländer, S. Hidding, F. B. Werners, M. Born, N. Pallua, and C. V. Suschek, “Effects of blue light irradiation on human dermal fibroblasts,” J. Photochem. Photobiol. B 103(2), 118–125 (2011).
[Crossref] [PubMed]

Ozawa, T.

T. Nakanishi-Ueda, H. J. Majima, K. Watanabe, T. Ueda, H. P. Indo, S. Suenaga, T. Hisamitsu, T. Ozawa, H. Yasuhara, and R. Koide, “Blue LED light exposure develops intracellular reactive oxygen species, lipid peroxidation, and subsequent cellular injuries in cultured bovine retinal pigment epithelial cells,” Free Radic. Res. 47(10), 774–780 (2013).
[Crossref] [PubMed]

Palamà, I. E.

B. Cortese, I. E. Palamà, S. D’Amone, and G. Gigli, “Influence of electrotaxis on cell behaviour,” Integr Biol (Camb) 6(9), 817–830 (2014).
[Crossref] [PubMed]

Pallua, N.

C. Opländer, S. Hidding, F. B. Werners, M. Born, N. Pallua, and C. V. Suschek, “Effects of blue light irradiation on human dermal fibroblasts,” J. Photochem. Photobiol. B 103(2), 118–125 (2011).
[Crossref] [PubMed]

Pan, H.-J.

J.-L. Xiao, H.-J. Pan, and C.-H. Lee, “Optically micropatterned culture of adherent cells,” J. Biomed. Opt. 17(7), 075004 (2012).
[Crossref] [PubMed]

Patsialou, A.

E. T. Roussos, J. S. Condeelis, and A. Patsialou, “Chemotaxis in cancer,” Nat. Rev. Cancer 11(8), 573–587 (2011).
[Crossref] [PubMed]

Raizen, M. G.

A. Ehrlicher, T. Betz, B. Stuhrmann, D. Koch, V. Milner, M. G. Raizen, and J. Kas, “Guiding neuronal growth with light,” Proc. Natl. Acad. Sci. U.S.A. 99(25), 16024–16028 (2002).
[Crossref] [PubMed]

Ramakrishnan, N.

V. J. Forrest, Y. H. Kang, D. E. McClain, D. H. Robinson, and N. Ramakrishnan, “Oxidative stress-induced apoptosis prevented by Trolox,” Free Radic. Biol. Med. 16(6), 675–684 (1994).
[Crossref] [PubMed]

Robinson, D. H.

V. J. Forrest, Y. H. Kang, D. E. McClain, D. H. Robinson, and N. Ramakrishnan, “Oxidative stress-induced apoptosis prevented by Trolox,” Free Radic. Biol. Med. 16(6), 675–684 (1994).
[Crossref] [PubMed]

Roussos, E. T.

E. T. Roussos, J. S. Condeelis, and A. Patsialou, “Chemotaxis in cancer,” Nat. Rev. Cancer 11(8), 573–587 (2011).
[Crossref] [PubMed]

Stuhrmann, B.

A. Ehrlicher, T. Betz, B. Stuhrmann, D. Koch, V. Milner, M. G. Raizen, and J. Kas, “Guiding neuronal growth with light,” Proc. Natl. Acad. Sci. U.S.A. 99(25), 16024–16028 (2002).
[Crossref] [PubMed]

Suenaga, S.

T. Nakanishi-Ueda, H. J. Majima, K. Watanabe, T. Ueda, H. P. Indo, S. Suenaga, T. Hisamitsu, T. Ozawa, H. Yasuhara, and R. Koide, “Blue LED light exposure develops intracellular reactive oxygen species, lipid peroxidation, and subsequent cellular injuries in cultured bovine retinal pigment epithelial cells,” Free Radic. Res. 47(10), 774–780 (2013).
[Crossref] [PubMed]

Sugaya, K.

Sull, J. W.

H. J. Sung, Y. Kim, H. Kang, J. W. Sull, Y. S. Kim, S.-W. Jang, and J. Ko, “Inhibitory effect of Trolox on the migration and invasion of human lung and cervical cancer cells,” Int. J. Mol. Med. 29(2), 245–251 (2012).
[PubMed]

Sung, H. J.

H. J. Sung, Y. Kim, H. Kang, J. W. Sull, Y. S. Kim, S.-W. Jang, and J. Ko, “Inhibitory effect of Trolox on the migration and invasion of human lung and cervical cancer cells,” Int. J. Mol. Med. 29(2), 245–251 (2012).
[PubMed]

Suschek, C. V.

C. Opländer, S. Hidding, F. B. Werners, M. Born, N. Pallua, and C. V. Suschek, “Effects of blue light irradiation on human dermal fibroblasts,” J. Photochem. Photobiol. B 103(2), 118–125 (2011).
[Crossref] [PubMed]

Ueda, T.

T. Nakanishi-Ueda, H. J. Majima, K. Watanabe, T. Ueda, H. P. Indo, S. Suenaga, T. Hisamitsu, T. Ozawa, H. Yasuhara, and R. Koide, “Blue LED light exposure develops intracellular reactive oxygen species, lipid peroxidation, and subsequent cellular injuries in cultured bovine retinal pigment epithelial cells,” Free Radic. Res. 47(10), 774–780 (2013).
[Crossref] [PubMed]

Vrotsos, E.

Wang, Y.-L.

D. E. Discher, P. Janmey, and Y.-L. Wang, “Tissue cells feel and respond to the stiffness of their substrate,” Science 310(5751), 1139–1143 (2005).
[Crossref] [PubMed]

Watanabe, K.

T. Nakanishi-Ueda, H. J. Majima, K. Watanabe, T. Ueda, H. P. Indo, S. Suenaga, T. Hisamitsu, T. Ozawa, H. Yasuhara, and R. Koide, “Blue LED light exposure develops intracellular reactive oxygen species, lipid peroxidation, and subsequent cellular injuries in cultured bovine retinal pigment epithelial cells,” Free Radic. Res. 47(10), 774–780 (2013).
[Crossref] [PubMed]

Werners, F. B.

C. Opländer, S. Hidding, F. B. Werners, M. Born, N. Pallua, and C. V. Suschek, “Effects of blue light irradiation on human dermal fibroblasts,” J. Photochem. Photobiol. B 103(2), 118–125 (2011).
[Crossref] [PubMed]

Xiao, J.-L.

J.-L. Xiao, D.-H. Lu, and C.-H. Lee, “Guiding the migration of adherent cells by using optical micropatterns,” Appl. Phys. Lett. 102(12), 123703 (2013).
[Crossref]

J.-L. Xiao, H.-J. Pan, and C.-H. Lee, “Optically micropatterned culture of adherent cells,” J. Biomed. Opt. 17(7), 075004 (2012).
[Crossref] [PubMed]

J.-L. Xiao, T.-H. Hsu, P.-Y. Hsu, W.-J. Yang, P.-L. Kuo, and C.-H. Lee, “Motion of cancer-cell lamellipodia perturbed by laser light of two wavelengths,” Appl. Phys. Lett. 97(20), 203702 (2010).
[Crossref]

Yang, W.-J.

J.-L. Xiao, T.-H. Hsu, P.-Y. Hsu, W.-J. Yang, P.-L. Kuo, and C.-H. Lee, “Motion of cancer-cell lamellipodia perturbed by laser light of two wavelengths,” Appl. Phys. Lett. 97(20), 203702 (2010).
[Crossref]

Yasuhara, H.

T. Nakanishi-Ueda, H. J. Majima, K. Watanabe, T. Ueda, H. P. Indo, S. Suenaga, T. Hisamitsu, T. Ozawa, H. Yasuhara, and R. Koide, “Blue LED light exposure develops intracellular reactive oxygen species, lipid peroxidation, and subsequent cellular injuries in cultured bovine retinal pigment epithelial cells,” Free Radic. Res. 47(10), 774–780 (2013).
[Crossref] [PubMed]

Appl. Phys. Lett. (2)

J.-L. Xiao, D.-H. Lu, and C.-H. Lee, “Guiding the migration of adherent cells by using optical micropatterns,” Appl. Phys. Lett. 102(12), 123703 (2013).
[Crossref]

J.-L. Xiao, T.-H. Hsu, P.-Y. Hsu, W.-J. Yang, P.-L. Kuo, and C.-H. Lee, “Motion of cancer-cell lamellipodia perturbed by laser light of two wavelengths,” Appl. Phys. Lett. 97(20), 203702 (2010).
[Crossref]

Free Radic. Biol. Med. (1)

V. J. Forrest, Y. H. Kang, D. E. McClain, D. H. Robinson, and N. Ramakrishnan, “Oxidative stress-induced apoptosis prevented by Trolox,” Free Radic. Biol. Med. 16(6), 675–684 (1994).
[Crossref] [PubMed]

Free Radic. Res. (1)

T. Nakanishi-Ueda, H. J. Majima, K. Watanabe, T. Ueda, H. P. Indo, S. Suenaga, T. Hisamitsu, T. Ozawa, H. Yasuhara, and R. Koide, “Blue LED light exposure develops intracellular reactive oxygen species, lipid peroxidation, and subsequent cellular injuries in cultured bovine retinal pigment epithelial cells,” Free Radic. Res. 47(10), 774–780 (2013).
[Crossref] [PubMed]

Int. J. Mol. Med. (1)

H. J. Sung, Y. Kim, H. Kang, J. W. Sull, Y. S. Kim, S.-W. Jang, and J. Ko, “Inhibitory effect of Trolox on the migration and invasion of human lung and cervical cancer cells,” Int. J. Mol. Med. 29(2), 245–251 (2012).
[PubMed]

Integr Biol (Camb) (1)

B. Cortese, I. E. Palamà, S. D’Amone, and G. Gigli, “Influence of electrotaxis on cell behaviour,” Integr Biol (Camb) 6(9), 817–830 (2014).
[Crossref] [PubMed]

J. Biomed. Opt. (1)

J.-L. Xiao, H.-J. Pan, and C.-H. Lee, “Optically micropatterned culture of adherent cells,” J. Biomed. Opt. 17(7), 075004 (2012).
[Crossref] [PubMed]

J. Photochem. Photobiol. B (1)

C. Opländer, S. Hidding, F. B. Werners, M. Born, N. Pallua, and C. V. Suschek, “Effects of blue light irradiation on human dermal fibroblasts,” J. Photochem. Photobiol. B 103(2), 118–125 (2011).
[Crossref] [PubMed]

Nat. Rev. Cancer (1)

E. T. Roussos, J. S. Condeelis, and A. Patsialou, “Chemotaxis in cancer,” Nat. Rev. Cancer 11(8), 573–587 (2011).
[Crossref] [PubMed]

Opt. Express (1)

Proc. Natl. Acad. Sci. U.S.A. (1)

A. Ehrlicher, T. Betz, B. Stuhrmann, D. Koch, V. Milner, M. G. Raizen, and J. Kas, “Guiding neuronal growth with light,” Proc. Natl. Acad. Sci. U.S.A. 99(25), 16024–16028 (2002).
[Crossref] [PubMed]

Science (1)

D. E. Discher, P. Janmey, and Y.-L. Wang, “Tissue cells feel and respond to the stiffness of their substrate,” Science 310(5751), 1139–1143 (2005).
[Crossref] [PubMed]

Trends Cell Biol. (1)

T. R. Hurd, M. DeGennaro, and R. Lehmann, “Redox regulation of cell migration and adhesion,” Trends Cell Biol. 22(2), 107–115 (2012).
[Crossref] [PubMed]

Supplementary Material (2)

NameDescription
» Visualization 1: MOV (1134 KB)     
» Visualization 2: MOV (1077 KB)     

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 (a) The optical pattern for quantifying the intracellular levels of ROS. (b) DIC image of a group of A549 cells under the illumination of the pattern in (a). (c) Fluorescence image of a ROS indicator CM-H2DCFDA in the cells in (b). (d) Intensity of the ROS indicator per cell measured in three individual experiments. The data were normalized to that obtained from cells without the blue-light illumination.
Fig. 2
Fig. 2 The pattern of a quartic intensity gradient used for the experiments of directional cell migration.
Fig. 3
Fig. 3 (a) Image of an A549 cell illuminated by blue light of a quartic intensity gradient at the starting point. The white line marks the cell boundary. (b) The same cell in (a) after 495 minutes of illumination. Scale bar, 50 μm. (c) Migration trajectories of 7 cells under the quartic optical intensity gradient. The recording duration is 500 minutes.
Fig. 4
Fig. 4 (a) The optical pattern for testing the effect of Trolox on the production of ROS induced by blue light. (b) DIC image of the A549 cells under the pattern illumination for one hour. (c) Intracellular ROS levels indicated by a ROS indicator CM-H2DCFDA of the cells in (b). (d) DIC image of the A549 cells under the pattern illumination and the treatment of 150 μM Trolox. (e) Intracellular ROS levels of the cells in (d). Scale bar, 100 μm.
Fig. 5
Fig. 5 (a) Image of an A549 cell illuminated by blue light of a quartic intensity gradient with 150 μM Trolox in the culture medium at the starting point. The white line marks the cell boundary. (b) The same cell in (a) after 495 minutes of illumination. Scale bar, 50 μm. (c) Migration trajectories of 7 cells under the quartic optical intensity gradient. The recording duration is 500 minutes.
Fig. 6
Fig. 6 Cell displacements along the horizontal direction (X-axis) under the treatments of the optical intensity gradient and Trolox of 90 μM and 150 μM. The horizontal displacements are shortened by the Trolox in a dose-dependent manner. In each condition, migration trajectories of 7 cells in 500 minutes were recorded. Error bar, standard error of the mean. ***, p < 0.005.
Fig. 7
Fig. 7 (a) Intensity of the ROS indicator per MRC-5 cell measured in three individual experiments. The data were normalized to that obtained from the cells without blue-light illumination. (b) Migration trajectories of 7 MRC-5 cells under the quartic optical intensity gradient. The recording duration is 500 minutes.

Metrics