Abstract

Raman spectroscopy has shown great potential in biomedical applications. However, intrinsically weak Raman signals cause slow data acquisition especially in Raman imaging. This problem can be overcome by narrow-band Raman imaging followed by spectral reconstruction. Our previous study has shown that Raman spectra free of fluorescence background can be reconstructed from narrow-band Raman measurements using traditional Wiener estimation. However, fluorescence-free Raman spectra are only available from those sophisticated Raman setups capable of fluorescence suppression. The reconstruction of Raman spectra with fluorescence background from narrow-band measurements is much more challenging due to the significant variation in fluorescence background. In this study, two advanced Wiener estimation methods, i.e. modified Wiener estimation and sequential weighted Wiener estimation, were optimized to achieve this goal. Both spontaneous Raman spectra and surface enhanced Raman spectra were evaluated. Compared with traditional Wiener estimation, two advanced methods showed significant improvement in the reconstruction of spontaneous Raman spectra. However, traditional Wiener estimation can work as effectively as the advanced methods for SERS spectra but much faster. The wise selection of these methods would enable accurate Raman reconstruction in a simple Raman setup without the function of fluorescence suppression for fast Raman imaging.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Stepwise method based on Wiener estimation for spectral reconstruction in spectroscopic Raman imaging

Shuo Chen, Gang Wang, Xiaoyu Cui, and Quan Liu
Opt. Express 25(2) 1005-1018 (2017)

Recovery of Raman spectra with low signal-to-noise ratio using Wiener estimation

Shuo Chen, Xiaoqian Lin, Clement Yuen, Saraswathi Padmanabhan, Roger W. Beuerman, and Quan Liu
Opt. Express 22(10) 12102-12114 (2014)

References

  • View by:
  • |
  • |
  • |

  1. C. Raman and K. Krishnan, “A new type of secondary radiation,” Nature 121(3048), 501–502 (1928).
    [Crossref]
  2. C. Krafft, G. Steiner, C. Beleites, and R. Salzer, “Disease recognition by infrared and Raman spectroscopy,” J. Biophotonics 2(1-2), 13–28 (2009).
    [Crossref] [PubMed]
  3. I. Nabiev, I. Chourpa, and M. Manfait, “Applications of Raman and surface-enhanced Raman scattering spectroscopy in medicine,” J. Raman Spectrosc. 25(1), 13–23 (1994).
    [Crossref]
  4. M. Bowden, D. J. Gardiner, G. Rice, and D. L. Gerrard, “Line-scanned micro Raman spectroscopy using a cooled CCD imaging detector,” J. Raman Spectrosc. 21(1), 37–41 (1990).
    [Crossref]
  5. N. L. Jestel, J. M. Shaver, and M. D. Morris, “Hyperspectral Raman line imaging of an aluminosilicate glass,” Appl. Spectrosc. 52(1), 64–69 (1998).
    [Crossref]
  6. S. Stewart, R. J. Priore, M. P. Nelson, and P. J. Treado, “Raman imaging,” Annu. Rev. Anal. Chem. (Palo Alto Calif) 5(1), 337–360 (2012).
    [Crossref] [PubMed]
  7. P. J. Treado, I. W. Levin, and E. N. Lewis, “High-fidelity Raman imaging spectrometry: a rapid method using an acousto-optic tunable filter,” Appl. Spectrosc. 46(8), 1211–1216 (1992).
    [Crossref]
  8. H. R. Morris, C. C. Hoyt, P. Miller, and P. J. Treado, “Liquid crystal tunable filter Raman chemical imaging,” Appl. Spectrosc. 50(6), 805–811 (1996).
    [Crossref]
  9. M. P. Nelson and M. Myrick, “Single-frame chemical imaging: Dimension reduction fiber-optic array improvements and application to laser-induced breakdown spectroscopy,” Appl. Spectrosc. 53(7), 751–759 (1999).
    [Crossref]
  10. J. Ma and D. Ben-Amotz, “Rapid micro-Raman imaging using fiber-bundle image compression,” Appl. Spectrosc. 51(12), 1845–1848 (1997).
    [Crossref]
  11. S. Chen, Y. H. Ong, and Q. Liu, “Fast reconstruction of Raman spectra from narrow-band measurements based on Wiener estimation,” J. Raman Spectrosc. 44(6), 875–881 (2013).
    [Crossref]
  12. J. Zhao, M. M. Carrabba, and F. S. Allen, “Automated fluorescence rejection using shifted excitation Raman difference spectroscopy,” Appl. Spectrosc. 56(7), 834–845 (2002).
    [Crossref]
  13. P. A. Mosier-Boss, S. Lieberman, and R. Newbery, “Fluorescence rejection in Raman spectroscopy by shifted-spectra, edge detection, and FFT filtering techniques,” Appl. Spectrosc. 49(5), 630–638 (1995).
    [Crossref]
  14. P. Matousek, M. Towrie, C. Ma, W. Kwok, D. Phillips, W. Toner, and A. Parker, “Fluorescence suppression in resonance Raman spectroscopy using a high-performance picosecond Kerr gate,” J. Raman Spectrosc. 32(12), 983–988 (2001).
    [Crossref]
  15. S. Chen and Q. Liu, “Modified Wiener estimation of diffuse reflectance spectra from RGB values by the synthesis of new colors for tissue measurements,” J. Biomed. Opt. 17(3), 030501 (2012).
  16. S. Chen, X. Lin, C. Zhu, and Q. Liu, “Sequential weighted Wiener estimation for extraction of key tissue parameters in color imaging: a phantom study,” J. Biomed. Opt. 19(12), 127001 (2014).
    [Crossref] [PubMed]
  17. S. Feng, R. Chen, J. Lin, J. Pan, Y. Wu, Y. Li, J. Chen, and H. Zeng, “Gastric cancer detection based on blood plasma surface-enhanced Raman spectroscopy excited by polarized laser light,” Biosens. Bioelectron. 26(7), 3167–3174 (2011).
    [Crossref] [PubMed]
  18. J. Lin, R. Chen, S. Feng, J. Pan, B. Li, G. Chen, S. Lin, C. Li, L. Sun, Z. Huang, and H. Zeng, “Surface-enhanced Raman scattering spectroscopy for potential noninvasive nasopharyngeal cancer detection,” J. Raman Spectrosc. 43(4), 497–502 (2012).
    [Crossref]
  19. W. F. Zhang and D. Q. Dai, “Spectral reflectance estimation from camera responses by support vector regression and a composite model,” J. Opt. Soc. Am. A 25(9), 2286–2296 (2008).
    [Crossref] [PubMed]
  20. V. Mazet, C. Carteret, D. Brie, J. Idier, and B. Humbert, “Background removal from spectra by designing and minimising a non-quadratic cost function,” Chemometr. Intell. Lab. 76(2), 121–133 (2005).
    [Crossref]
  21. R. Piché, “Nonnegative color spectrum analysis filters from principal component analysis characteristic spectra,” J. Opt. Soc. Am. A 19(10), 1946–1950 (2002).
    [Crossref] [PubMed]
  22. M. Melanie, An Introduction to Genetic Algorithms (MIT Press, 1998).
  23. C. R. Houck, J. A. Joines, and M. G. Kay, “A genetic algorithm for function optimization: a Matlab implementation,” NCSU-IE TR 95, (1995).
  24. J. S. U. Hjorth, Computer Intensive Statistical Methods: Validation, Model Selection, and Boostrap (Chapman and Hall/CRC, 1993).
  25. H. Haneishi, T. Hasegawa, A. Hosoi, Y. Yokoyama, N. Tsumura, and Y. Miyake, “System design for accurately estimating the spectral reflectance of art paintings,” Appl. Opt. 39(35), 6621–6632 (2000).
    [Crossref] [PubMed]
  26. S. Feng, J. Lin, Z. Huang, G. Chen, W. Chen, Y. Wang, R. Chen, and H. Zeng, “Esophageal cancer detection based on tissue surface-enhanced Raman spectroscopy and multivariate analysis,” Appl. Phys. Lett. 102(4), 043702 (2013).
    [Crossref]
  27. Y. H. Ong, M. Lim, and Q. Liu, “Comparison of principal component analysis and biochemical component analysis in Raman spectroscopy for the discrimination of apoptosis and necrosis in K562 leukemia cells,” Opt. Express 20(20), 22158–22171 (2012).
    [Crossref] [PubMed]

2014 (1)

S. Chen, X. Lin, C. Zhu, and Q. Liu, “Sequential weighted Wiener estimation for extraction of key tissue parameters in color imaging: a phantom study,” J. Biomed. Opt. 19(12), 127001 (2014).
[Crossref] [PubMed]

2013 (2)

S. Feng, J. Lin, Z. Huang, G. Chen, W. Chen, Y. Wang, R. Chen, and H. Zeng, “Esophageal cancer detection based on tissue surface-enhanced Raman spectroscopy and multivariate analysis,” Appl. Phys. Lett. 102(4), 043702 (2013).
[Crossref]

S. Chen, Y. H. Ong, and Q. Liu, “Fast reconstruction of Raman spectra from narrow-band measurements based on Wiener estimation,” J. Raman Spectrosc. 44(6), 875–881 (2013).
[Crossref]

2012 (4)

J. Lin, R. Chen, S. Feng, J. Pan, B. Li, G. Chen, S. Lin, C. Li, L. Sun, Z. Huang, and H. Zeng, “Surface-enhanced Raman scattering spectroscopy for potential noninvasive nasopharyngeal cancer detection,” J. Raman Spectrosc. 43(4), 497–502 (2012).
[Crossref]

S. Stewart, R. J. Priore, M. P. Nelson, and P. J. Treado, “Raman imaging,” Annu. Rev. Anal. Chem. (Palo Alto Calif) 5(1), 337–360 (2012).
[Crossref] [PubMed]

Y. H. Ong, M. Lim, and Q. Liu, “Comparison of principal component analysis and biochemical component analysis in Raman spectroscopy for the discrimination of apoptosis and necrosis in K562 leukemia cells,” Opt. Express 20(20), 22158–22171 (2012).
[Crossref] [PubMed]

S. Chen and Q. Liu, “Modified Wiener estimation of diffuse reflectance spectra from RGB values by the synthesis of new colors for tissue measurements,” J. Biomed. Opt. 17(3), 030501 (2012).

2011 (1)

S. Feng, R. Chen, J. Lin, J. Pan, Y. Wu, Y. Li, J. Chen, and H. Zeng, “Gastric cancer detection based on blood plasma surface-enhanced Raman spectroscopy excited by polarized laser light,” Biosens. Bioelectron. 26(7), 3167–3174 (2011).
[Crossref] [PubMed]

2009 (1)

C. Krafft, G. Steiner, C. Beleites, and R. Salzer, “Disease recognition by infrared and Raman spectroscopy,” J. Biophotonics 2(1-2), 13–28 (2009).
[Crossref] [PubMed]

2008 (1)

2005 (1)

V. Mazet, C. Carteret, D. Brie, J. Idier, and B. Humbert, “Background removal from spectra by designing and minimising a non-quadratic cost function,” Chemometr. Intell. Lab. 76(2), 121–133 (2005).
[Crossref]

2002 (2)

2001 (1)

P. Matousek, M. Towrie, C. Ma, W. Kwok, D. Phillips, W. Toner, and A. Parker, “Fluorescence suppression in resonance Raman spectroscopy using a high-performance picosecond Kerr gate,” J. Raman Spectrosc. 32(12), 983–988 (2001).
[Crossref]

2000 (1)

1999 (1)

1998 (1)

1997 (1)

1996 (1)

1995 (1)

1994 (1)

I. Nabiev, I. Chourpa, and M. Manfait, “Applications of Raman and surface-enhanced Raman scattering spectroscopy in medicine,” J. Raman Spectrosc. 25(1), 13–23 (1994).
[Crossref]

1992 (1)

1990 (1)

M. Bowden, D. J. Gardiner, G. Rice, and D. L. Gerrard, “Line-scanned micro Raman spectroscopy using a cooled CCD imaging detector,” J. Raman Spectrosc. 21(1), 37–41 (1990).
[Crossref]

1928 (1)

C. Raman and K. Krishnan, “A new type of secondary radiation,” Nature 121(3048), 501–502 (1928).
[Crossref]

Allen, F. S.

Beleites, C.

C. Krafft, G. Steiner, C. Beleites, and R. Salzer, “Disease recognition by infrared and Raman spectroscopy,” J. Biophotonics 2(1-2), 13–28 (2009).
[Crossref] [PubMed]

Ben-Amotz, D.

Bowden, M.

M. Bowden, D. J. Gardiner, G. Rice, and D. L. Gerrard, “Line-scanned micro Raman spectroscopy using a cooled CCD imaging detector,” J. Raman Spectrosc. 21(1), 37–41 (1990).
[Crossref]

Brie, D.

V. Mazet, C. Carteret, D. Brie, J. Idier, and B. Humbert, “Background removal from spectra by designing and minimising a non-quadratic cost function,” Chemometr. Intell. Lab. 76(2), 121–133 (2005).
[Crossref]

Carrabba, M. M.

Carteret, C.

V. Mazet, C. Carteret, D. Brie, J. Idier, and B. Humbert, “Background removal from spectra by designing and minimising a non-quadratic cost function,” Chemometr. Intell. Lab. 76(2), 121–133 (2005).
[Crossref]

Chen, G.

S. Feng, J. Lin, Z. Huang, G. Chen, W. Chen, Y. Wang, R. Chen, and H. Zeng, “Esophageal cancer detection based on tissue surface-enhanced Raman spectroscopy and multivariate analysis,” Appl. Phys. Lett. 102(4), 043702 (2013).
[Crossref]

J. Lin, R. Chen, S. Feng, J. Pan, B. Li, G. Chen, S. Lin, C. Li, L. Sun, Z. Huang, and H. Zeng, “Surface-enhanced Raman scattering spectroscopy for potential noninvasive nasopharyngeal cancer detection,” J. Raman Spectrosc. 43(4), 497–502 (2012).
[Crossref]

Chen, J.

S. Feng, R. Chen, J. Lin, J. Pan, Y. Wu, Y. Li, J. Chen, and H. Zeng, “Gastric cancer detection based on blood plasma surface-enhanced Raman spectroscopy excited by polarized laser light,” Biosens. Bioelectron. 26(7), 3167–3174 (2011).
[Crossref] [PubMed]

Chen, R.

S. Feng, J. Lin, Z. Huang, G. Chen, W. Chen, Y. Wang, R. Chen, and H. Zeng, “Esophageal cancer detection based on tissue surface-enhanced Raman spectroscopy and multivariate analysis,” Appl. Phys. Lett. 102(4), 043702 (2013).
[Crossref]

J. Lin, R. Chen, S. Feng, J. Pan, B. Li, G. Chen, S. Lin, C. Li, L. Sun, Z. Huang, and H. Zeng, “Surface-enhanced Raman scattering spectroscopy for potential noninvasive nasopharyngeal cancer detection,” J. Raman Spectrosc. 43(4), 497–502 (2012).
[Crossref]

S. Feng, R. Chen, J. Lin, J. Pan, Y. Wu, Y. Li, J. Chen, and H. Zeng, “Gastric cancer detection based on blood plasma surface-enhanced Raman spectroscopy excited by polarized laser light,” Biosens. Bioelectron. 26(7), 3167–3174 (2011).
[Crossref] [PubMed]

Chen, S.

S. Chen, X. Lin, C. Zhu, and Q. Liu, “Sequential weighted Wiener estimation for extraction of key tissue parameters in color imaging: a phantom study,” J. Biomed. Opt. 19(12), 127001 (2014).
[Crossref] [PubMed]

S. Chen, Y. H. Ong, and Q. Liu, “Fast reconstruction of Raman spectra from narrow-band measurements based on Wiener estimation,” J. Raman Spectrosc. 44(6), 875–881 (2013).
[Crossref]

S. Chen and Q. Liu, “Modified Wiener estimation of diffuse reflectance spectra from RGB values by the synthesis of new colors for tissue measurements,” J. Biomed. Opt. 17(3), 030501 (2012).

Chen, W.

S. Feng, J. Lin, Z. Huang, G. Chen, W. Chen, Y. Wang, R. Chen, and H. Zeng, “Esophageal cancer detection based on tissue surface-enhanced Raman spectroscopy and multivariate analysis,” Appl. Phys. Lett. 102(4), 043702 (2013).
[Crossref]

Chourpa, I.

I. Nabiev, I. Chourpa, and M. Manfait, “Applications of Raman and surface-enhanced Raman scattering spectroscopy in medicine,” J. Raman Spectrosc. 25(1), 13–23 (1994).
[Crossref]

Dai, D. Q.

Feng, S.

S. Feng, J. Lin, Z. Huang, G. Chen, W. Chen, Y. Wang, R. Chen, and H. Zeng, “Esophageal cancer detection based on tissue surface-enhanced Raman spectroscopy and multivariate analysis,” Appl. Phys. Lett. 102(4), 043702 (2013).
[Crossref]

J. Lin, R. Chen, S. Feng, J. Pan, B. Li, G. Chen, S. Lin, C. Li, L. Sun, Z. Huang, and H. Zeng, “Surface-enhanced Raman scattering spectroscopy for potential noninvasive nasopharyngeal cancer detection,” J. Raman Spectrosc. 43(4), 497–502 (2012).
[Crossref]

S. Feng, R. Chen, J. Lin, J. Pan, Y. Wu, Y. Li, J. Chen, and H. Zeng, “Gastric cancer detection based on blood plasma surface-enhanced Raman spectroscopy excited by polarized laser light,” Biosens. Bioelectron. 26(7), 3167–3174 (2011).
[Crossref] [PubMed]

Gardiner, D. J.

M. Bowden, D. J. Gardiner, G. Rice, and D. L. Gerrard, “Line-scanned micro Raman spectroscopy using a cooled CCD imaging detector,” J. Raman Spectrosc. 21(1), 37–41 (1990).
[Crossref]

Gerrard, D. L.

M. Bowden, D. J. Gardiner, G. Rice, and D. L. Gerrard, “Line-scanned micro Raman spectroscopy using a cooled CCD imaging detector,” J. Raman Spectrosc. 21(1), 37–41 (1990).
[Crossref]

Haneishi, H.

Hasegawa, T.

Hosoi, A.

Hoyt, C. C.

Huang, Z.

S. Feng, J. Lin, Z. Huang, G. Chen, W. Chen, Y. Wang, R. Chen, and H. Zeng, “Esophageal cancer detection based on tissue surface-enhanced Raman spectroscopy and multivariate analysis,” Appl. Phys. Lett. 102(4), 043702 (2013).
[Crossref]

J. Lin, R. Chen, S. Feng, J. Pan, B. Li, G. Chen, S. Lin, C. Li, L. Sun, Z. Huang, and H. Zeng, “Surface-enhanced Raman scattering spectroscopy for potential noninvasive nasopharyngeal cancer detection,” J. Raman Spectrosc. 43(4), 497–502 (2012).
[Crossref]

Humbert, B.

V. Mazet, C. Carteret, D. Brie, J. Idier, and B. Humbert, “Background removal from spectra by designing and minimising a non-quadratic cost function,” Chemometr. Intell. Lab. 76(2), 121–133 (2005).
[Crossref]

Idier, J.

V. Mazet, C. Carteret, D. Brie, J. Idier, and B. Humbert, “Background removal from spectra by designing and minimising a non-quadratic cost function,” Chemometr. Intell. Lab. 76(2), 121–133 (2005).
[Crossref]

Jestel, N. L.

Krafft, C.

C. Krafft, G. Steiner, C. Beleites, and R. Salzer, “Disease recognition by infrared and Raman spectroscopy,” J. Biophotonics 2(1-2), 13–28 (2009).
[Crossref] [PubMed]

Krishnan, K.

C. Raman and K. Krishnan, “A new type of secondary radiation,” Nature 121(3048), 501–502 (1928).
[Crossref]

Kwok, W.

P. Matousek, M. Towrie, C. Ma, W. Kwok, D. Phillips, W. Toner, and A. Parker, “Fluorescence suppression in resonance Raman spectroscopy using a high-performance picosecond Kerr gate,” J. Raman Spectrosc. 32(12), 983–988 (2001).
[Crossref]

Levin, I. W.

Lewis, E. N.

Li, B.

J. Lin, R. Chen, S. Feng, J. Pan, B. Li, G. Chen, S. Lin, C. Li, L. Sun, Z. Huang, and H. Zeng, “Surface-enhanced Raman scattering spectroscopy for potential noninvasive nasopharyngeal cancer detection,” J. Raman Spectrosc. 43(4), 497–502 (2012).
[Crossref]

Li, C.

J. Lin, R. Chen, S. Feng, J. Pan, B. Li, G. Chen, S. Lin, C. Li, L. Sun, Z. Huang, and H. Zeng, “Surface-enhanced Raman scattering spectroscopy for potential noninvasive nasopharyngeal cancer detection,” J. Raman Spectrosc. 43(4), 497–502 (2012).
[Crossref]

Li, Y.

S. Feng, R. Chen, J. Lin, J. Pan, Y. Wu, Y. Li, J. Chen, and H. Zeng, “Gastric cancer detection based on blood plasma surface-enhanced Raman spectroscopy excited by polarized laser light,” Biosens. Bioelectron. 26(7), 3167–3174 (2011).
[Crossref] [PubMed]

Lieberman, S.

Lim, M.

Lin, J.

S. Feng, J. Lin, Z. Huang, G. Chen, W. Chen, Y. Wang, R. Chen, and H. Zeng, “Esophageal cancer detection based on tissue surface-enhanced Raman spectroscopy and multivariate analysis,” Appl. Phys. Lett. 102(4), 043702 (2013).
[Crossref]

J. Lin, R. Chen, S. Feng, J. Pan, B. Li, G. Chen, S. Lin, C. Li, L. Sun, Z. Huang, and H. Zeng, “Surface-enhanced Raman scattering spectroscopy for potential noninvasive nasopharyngeal cancer detection,” J. Raman Spectrosc. 43(4), 497–502 (2012).
[Crossref]

S. Feng, R. Chen, J. Lin, J. Pan, Y. Wu, Y. Li, J. Chen, and H. Zeng, “Gastric cancer detection based on blood plasma surface-enhanced Raman spectroscopy excited by polarized laser light,” Biosens. Bioelectron. 26(7), 3167–3174 (2011).
[Crossref] [PubMed]

Lin, S.

J. Lin, R. Chen, S. Feng, J. Pan, B. Li, G. Chen, S. Lin, C. Li, L. Sun, Z. Huang, and H. Zeng, “Surface-enhanced Raman scattering spectroscopy for potential noninvasive nasopharyngeal cancer detection,” J. Raman Spectrosc. 43(4), 497–502 (2012).
[Crossref]

Lin, X.

S. Chen, X. Lin, C. Zhu, and Q. Liu, “Sequential weighted Wiener estimation for extraction of key tissue parameters in color imaging: a phantom study,” J. Biomed. Opt. 19(12), 127001 (2014).
[Crossref] [PubMed]

Liu, Q.

S. Chen, X. Lin, C. Zhu, and Q. Liu, “Sequential weighted Wiener estimation for extraction of key tissue parameters in color imaging: a phantom study,” J. Biomed. Opt. 19(12), 127001 (2014).
[Crossref] [PubMed]

S. Chen, Y. H. Ong, and Q. Liu, “Fast reconstruction of Raman spectra from narrow-band measurements based on Wiener estimation,” J. Raman Spectrosc. 44(6), 875–881 (2013).
[Crossref]

S. Chen and Q. Liu, “Modified Wiener estimation of diffuse reflectance spectra from RGB values by the synthesis of new colors for tissue measurements,” J. Biomed. Opt. 17(3), 030501 (2012).

Y. H. Ong, M. Lim, and Q. Liu, “Comparison of principal component analysis and biochemical component analysis in Raman spectroscopy for the discrimination of apoptosis and necrosis in K562 leukemia cells,” Opt. Express 20(20), 22158–22171 (2012).
[Crossref] [PubMed]

Ma, C.

P. Matousek, M. Towrie, C. Ma, W. Kwok, D. Phillips, W. Toner, and A. Parker, “Fluorescence suppression in resonance Raman spectroscopy using a high-performance picosecond Kerr gate,” J. Raman Spectrosc. 32(12), 983–988 (2001).
[Crossref]

Ma, J.

Manfait, M.

I. Nabiev, I. Chourpa, and M. Manfait, “Applications of Raman and surface-enhanced Raman scattering spectroscopy in medicine,” J. Raman Spectrosc. 25(1), 13–23 (1994).
[Crossref]

Matousek, P.

P. Matousek, M. Towrie, C. Ma, W. Kwok, D. Phillips, W. Toner, and A. Parker, “Fluorescence suppression in resonance Raman spectroscopy using a high-performance picosecond Kerr gate,” J. Raman Spectrosc. 32(12), 983–988 (2001).
[Crossref]

Mazet, V.

V. Mazet, C. Carteret, D. Brie, J. Idier, and B. Humbert, “Background removal from spectra by designing and minimising a non-quadratic cost function,” Chemometr. Intell. Lab. 76(2), 121–133 (2005).
[Crossref]

Miller, P.

Miyake, Y.

Morris, H. R.

Morris, M. D.

Mosier-Boss, P. A.

Myrick, M.

Nabiev, I.

I. Nabiev, I. Chourpa, and M. Manfait, “Applications of Raman and surface-enhanced Raman scattering spectroscopy in medicine,” J. Raman Spectrosc. 25(1), 13–23 (1994).
[Crossref]

Nelson, M. P.

Newbery, R.

Ong, Y. H.

Pan, J.

J. Lin, R. Chen, S. Feng, J. Pan, B. Li, G. Chen, S. Lin, C. Li, L. Sun, Z. Huang, and H. Zeng, “Surface-enhanced Raman scattering spectroscopy for potential noninvasive nasopharyngeal cancer detection,” J. Raman Spectrosc. 43(4), 497–502 (2012).
[Crossref]

S. Feng, R. Chen, J. Lin, J. Pan, Y. Wu, Y. Li, J. Chen, and H. Zeng, “Gastric cancer detection based on blood plasma surface-enhanced Raman spectroscopy excited by polarized laser light,” Biosens. Bioelectron. 26(7), 3167–3174 (2011).
[Crossref] [PubMed]

Parker, A.

P. Matousek, M. Towrie, C. Ma, W. Kwok, D. Phillips, W. Toner, and A. Parker, “Fluorescence suppression in resonance Raman spectroscopy using a high-performance picosecond Kerr gate,” J. Raman Spectrosc. 32(12), 983–988 (2001).
[Crossref]

Phillips, D.

P. Matousek, M. Towrie, C. Ma, W. Kwok, D. Phillips, W. Toner, and A. Parker, “Fluorescence suppression in resonance Raman spectroscopy using a high-performance picosecond Kerr gate,” J. Raman Spectrosc. 32(12), 983–988 (2001).
[Crossref]

Piché, R.

Priore, R. J.

S. Stewart, R. J. Priore, M. P. Nelson, and P. J. Treado, “Raman imaging,” Annu. Rev. Anal. Chem. (Palo Alto Calif) 5(1), 337–360 (2012).
[Crossref] [PubMed]

Raman, C.

C. Raman and K. Krishnan, “A new type of secondary radiation,” Nature 121(3048), 501–502 (1928).
[Crossref]

Rice, G.

M. Bowden, D. J. Gardiner, G. Rice, and D. L. Gerrard, “Line-scanned micro Raman spectroscopy using a cooled CCD imaging detector,” J. Raman Spectrosc. 21(1), 37–41 (1990).
[Crossref]

Salzer, R.

C. Krafft, G. Steiner, C. Beleites, and R. Salzer, “Disease recognition by infrared and Raman spectroscopy,” J. Biophotonics 2(1-2), 13–28 (2009).
[Crossref] [PubMed]

Shaver, J. M.

Steiner, G.

C. Krafft, G. Steiner, C. Beleites, and R. Salzer, “Disease recognition by infrared and Raman spectroscopy,” J. Biophotonics 2(1-2), 13–28 (2009).
[Crossref] [PubMed]

Stewart, S.

S. Stewart, R. J. Priore, M. P. Nelson, and P. J. Treado, “Raman imaging,” Annu. Rev. Anal. Chem. (Palo Alto Calif) 5(1), 337–360 (2012).
[Crossref] [PubMed]

Sun, L.

J. Lin, R. Chen, S. Feng, J. Pan, B. Li, G. Chen, S. Lin, C. Li, L. Sun, Z. Huang, and H. Zeng, “Surface-enhanced Raman scattering spectroscopy for potential noninvasive nasopharyngeal cancer detection,” J. Raman Spectrosc. 43(4), 497–502 (2012).
[Crossref]

Toner, W.

P. Matousek, M. Towrie, C. Ma, W. Kwok, D. Phillips, W. Toner, and A. Parker, “Fluorescence suppression in resonance Raman spectroscopy using a high-performance picosecond Kerr gate,” J. Raman Spectrosc. 32(12), 983–988 (2001).
[Crossref]

Towrie, M.

P. Matousek, M. Towrie, C. Ma, W. Kwok, D. Phillips, W. Toner, and A. Parker, “Fluorescence suppression in resonance Raman spectroscopy using a high-performance picosecond Kerr gate,” J. Raman Spectrosc. 32(12), 983–988 (2001).
[Crossref]

Treado, P. J.

Tsumura, N.

Wang, Y.

S. Feng, J. Lin, Z. Huang, G. Chen, W. Chen, Y. Wang, R. Chen, and H. Zeng, “Esophageal cancer detection based on tissue surface-enhanced Raman spectroscopy and multivariate analysis,” Appl. Phys. Lett. 102(4), 043702 (2013).
[Crossref]

Wu, Y.

S. Feng, R. Chen, J. Lin, J. Pan, Y. Wu, Y. Li, J. Chen, and H. Zeng, “Gastric cancer detection based on blood plasma surface-enhanced Raman spectroscopy excited by polarized laser light,” Biosens. Bioelectron. 26(7), 3167–3174 (2011).
[Crossref] [PubMed]

Yokoyama, Y.

Zeng, H.

S. Feng, J. Lin, Z. Huang, G. Chen, W. Chen, Y. Wang, R. Chen, and H. Zeng, “Esophageal cancer detection based on tissue surface-enhanced Raman spectroscopy and multivariate analysis,” Appl. Phys. Lett. 102(4), 043702 (2013).
[Crossref]

J. Lin, R. Chen, S. Feng, J. Pan, B. Li, G. Chen, S. Lin, C. Li, L. Sun, Z. Huang, and H. Zeng, “Surface-enhanced Raman scattering spectroscopy for potential noninvasive nasopharyngeal cancer detection,” J. Raman Spectrosc. 43(4), 497–502 (2012).
[Crossref]

S. Feng, R. Chen, J. Lin, J. Pan, Y. Wu, Y. Li, J. Chen, and H. Zeng, “Gastric cancer detection based on blood plasma surface-enhanced Raman spectroscopy excited by polarized laser light,” Biosens. Bioelectron. 26(7), 3167–3174 (2011).
[Crossref] [PubMed]

Zhang, W. F.

Zhao, J.

Zhu, C.

S. Chen, X. Lin, C. Zhu, and Q. Liu, “Sequential weighted Wiener estimation for extraction of key tissue parameters in color imaging: a phantom study,” J. Biomed. Opt. 19(12), 127001 (2014).
[Crossref] [PubMed]

Annu. Rev. Anal. Chem. (Palo Alto Calif) (1)

S. Stewart, R. J. Priore, M. P. Nelson, and P. J. Treado, “Raman imaging,” Annu. Rev. Anal. Chem. (Palo Alto Calif) 5(1), 337–360 (2012).
[Crossref] [PubMed]

Appl. Opt. (1)

Appl. Phys. Lett. (1)

S. Feng, J. Lin, Z. Huang, G. Chen, W. Chen, Y. Wang, R. Chen, and H. Zeng, “Esophageal cancer detection based on tissue surface-enhanced Raman spectroscopy and multivariate analysis,” Appl. Phys. Lett. 102(4), 043702 (2013).
[Crossref]

Appl. Spectrosc. (7)

Biosens. Bioelectron. (1)

S. Feng, R. Chen, J. Lin, J. Pan, Y. Wu, Y. Li, J. Chen, and H. Zeng, “Gastric cancer detection based on blood plasma surface-enhanced Raman spectroscopy excited by polarized laser light,” Biosens. Bioelectron. 26(7), 3167–3174 (2011).
[Crossref] [PubMed]

Chemometr. Intell. Lab. (1)

V. Mazet, C. Carteret, D. Brie, J. Idier, and B. Humbert, “Background removal from spectra by designing and minimising a non-quadratic cost function,” Chemometr. Intell. Lab. 76(2), 121–133 (2005).
[Crossref]

J. Biomed. Opt. (2)

S. Chen and Q. Liu, “Modified Wiener estimation of diffuse reflectance spectra from RGB values by the synthesis of new colors for tissue measurements,” J. Biomed. Opt. 17(3), 030501 (2012).

S. Chen, X. Lin, C. Zhu, and Q. Liu, “Sequential weighted Wiener estimation for extraction of key tissue parameters in color imaging: a phantom study,” J. Biomed. Opt. 19(12), 127001 (2014).
[Crossref] [PubMed]

J. Biophotonics (1)

C. Krafft, G. Steiner, C. Beleites, and R. Salzer, “Disease recognition by infrared and Raman spectroscopy,” J. Biophotonics 2(1-2), 13–28 (2009).
[Crossref] [PubMed]

J. Opt. Soc. Am. A (2)

J. Raman Spectrosc. (5)

J. Lin, R. Chen, S. Feng, J. Pan, B. Li, G. Chen, S. Lin, C. Li, L. Sun, Z. Huang, and H. Zeng, “Surface-enhanced Raman scattering spectroscopy for potential noninvasive nasopharyngeal cancer detection,” J. Raman Spectrosc. 43(4), 497–502 (2012).
[Crossref]

P. Matousek, M. Towrie, C. Ma, W. Kwok, D. Phillips, W. Toner, and A. Parker, “Fluorescence suppression in resonance Raman spectroscopy using a high-performance picosecond Kerr gate,” J. Raman Spectrosc. 32(12), 983–988 (2001).
[Crossref]

I. Nabiev, I. Chourpa, and M. Manfait, “Applications of Raman and surface-enhanced Raman scattering spectroscopy in medicine,” J. Raman Spectrosc. 25(1), 13–23 (1994).
[Crossref]

M. Bowden, D. J. Gardiner, G. Rice, and D. L. Gerrard, “Line-scanned micro Raman spectroscopy using a cooled CCD imaging detector,” J. Raman Spectrosc. 21(1), 37–41 (1990).
[Crossref]

S. Chen, Y. H. Ong, and Q. Liu, “Fast reconstruction of Raman spectra from narrow-band measurements based on Wiener estimation,” J. Raman Spectrosc. 44(6), 875–881 (2013).
[Crossref]

Nature (1)

C. Raman and K. Krishnan, “A new type of secondary radiation,” Nature 121(3048), 501–502 (1928).
[Crossref]

Opt. Express (1)

Other (3)

M. Melanie, An Introduction to Genetic Algorithms (MIT Press, 1998).

C. R. Houck, J. A. Joines, and M. G. Kay, “A genetic algorithm for function optimization: a Matlab implementation,” NCSU-IE TR 95, (1995).

J. S. U. Hjorth, Computer Intensive Statistical Methods: Validation, Model Selection, and Boostrap (Chapman and Hall/CRC, 1993).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 General procedure for Wiener estimation.
Fig. 2
Fig. 2 Raw measured (a) spontaneous Raman spectra and (b) SERS spectra both with fluorescence background.
Fig. 3
Fig. 3 Comparison between the measured spontaneous Raman spectrum and the spontaneous Raman spectrum reconstructed by traditional Wiener estimation with the best combination of six commercial filters in (a) the best case, (b) the typical case, (c) the worst case. (d) shows the transmittance spectra of the best combination of six commercial filters corresponding to the typical case . Note that fluorescence background has been removed in both sets of spectra to facilitate comparison in Raman features.
Fig. 4
Fig. 4 Comparison between the measured spontaneous Raman spectrum and the spontaneous Raman spectrum reconstructed by traditional Wiener estimation with the best combination of six non-negative PCs based filters in (a) the best case, (b) the typical case, (c) the worst case. (d) shows the filters’ transmittance spectra. Note that fluorescence background has been removed in both sets of spectra to facilitate comparison in Raman features.
Fig. 5
Fig. 5 Comparison between the measured SERS spectrum and the SERS spectrum reconstructed by traditional Wiener estimation with the best combination of six commercial filters in (a) the best case, (b) the typical case, (c) the worst case. (d) shows the transmittance spectra of the best combination of six commercial filters corresponding to the typical case. Note that fluorescence background has been removed in both sets of spectra to facilitate comparison in Raman features.
Fig. 6
Fig. 6 Comparison between the measured SERS spectrum and the SRES spectrum reconstructed by traditional Wiener estimation with the best combination of six non-negative PCs based filters in (a) the best case, (b) the typical case, (c) the worst case. (d) shows the filters’ transmittance spectra. Note that fluorescence background has been removed in both sets of spectra to facilitate comparison in Raman features.

Tables (9)

Tables Icon

Table 1 Commercial filters used in the simulations of narrow-band measurements

Tables Icon

Table 2 Cumulative contribution ratio of different PC numbers for spontaneous Raman spectra and SERS spectra

Tables Icon

Table 3 Comparison in the mean relative RMSE of spontaneous Raman spectra (after fluorescence background removed) reconstructed from narrow-band measurements using different types and numbers of filters

Tables Icon

Table 4 Comparison in the mean relative RMSE of SERS spectra (after fluorescence background removed) reconstructed from narrow-band measurements using different types and numbers of filters

Tables Icon

Table 5 Comparison in the mean relative RMSE of spontaneous Raman spectra (after fluorescence background removed) reconstructed from narrow-band measurements with the best combination of three filters between traditional Wiener estimation and modified Wiener estimation involving different number of synthetic filters

Tables Icon

Table 6 Comparison in the mean relative RMSE of SERS spectra (after fluorescence background removed) reconstructed from narrow-band measurements with the best combination of three filters between traditional Wiener estimation and modified Wiener estimation involving different number of synthetic filters

Tables Icon

Table 7 Comparison in the mean relative RMSE of spontaneous Raman spectra (after fluorescence background removed) reconstructed from narrow-band measurements with the best combination of filters between traditional Wiener estimation and sequential weighted Wiener estimation involving different numbers of iterations

Tables Icon

Table 8 Comparison in the mean relative RMSE of SERS spectra (after fluorescence background removed) reconstructed from narrow-band measurements with the best combination of filters between traditional Wiener estimation and sequential weighted Wiener estimation involving different numbers of iterations

Tables Icon

Table 9 Computation time taken to reconstruct 50 SERS spectra measured from blood serum samples with 3 filters for traditional WE, modified WE and sequential weighted WE (1st iteration)

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

c = F s
W = E ( s c T ) [ E ( c c T ) ] 1
W = i = 1 n w i s i c i T j = 1 n ( w j c j c j T ) 1
w i = d i 1 i = 1 n d i 1
Relative RMSE = [ i = 1 N [ R r ( λ i ) R m ( λ i ) ] 2 N × m a x [ R m ( λ i ) ] 2 ] 1 / 2
G ( λ ) = e x p ( ( λ u ) 2 2 σ 2 )

Metrics