Abstract

Chronic lung diseases affect a vast portion of the world’s population. One of the key difficulties in accurately diagnosing and treating chronic lung disease is our inability to measure dynamic motion of the lungs in vivo. Phase contrast x-ray imaging (PCXI) allows us to image the lungs in high resolution by exploiting the difference in refractive indices between tissue and air. Combining PCXI with x-ray velocimetry (XV) allows us to track the local motion of the lungs, improving our ability to locate small regions of disease under natural ventilation conditions. Via simulation, we investigate the optimal imaging speed and sequence to capture lung motion in vivo in small animals using XV on both synchrotron and laboratory x-ray sources, balancing the noise inherent in a short exposure with motion blur that results from a long exposure.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Array-source X-ray velocimetry

G. W. Goonan, A. Fouras, and S. Dubsky
Opt. Express 26(2) 935-950 (2018)

Real-time measurement of alveolar size and population using phase contrast x-ray imaging

Andrew F.T. Leong, Genevieve A. Buckley, David M. Paganin, Stuart B. Hooper, Megan J. Wallace, and Marcus J. Kitchen
Biomed. Opt. Express 5(11) 4024-4038 (2014)

Measurement of absolute regional lung air volumes from near-field x-ray speckles

Andrew F. T. Leong, David M. Paganin, Stuart B. Hooper, Melissa L. Siew, and Marcus J. Kitchen
Opt. Express 21(23) 27905-27923 (2013)

References

  • View by:
  • |
  • |
  • |

  1. A. Fouras, M. J. Kitchen, S. Dubsky, R. A. Lewis, S. B. Hooper, and K. Hourigan, “The past, present, and future of x-ray technology for in vivo imaging of function and form,” J. Appl. Phys. 105(10), 102009 (2009).
    [Crossref]
  2. A. Fouras, B. J. Allison, M. J. Kitchen, S. Dubsky, J. Nguyen, K. Hourigan, K. K. W. Siu, R. A. Lewis, M. J. Wallace, and S. B. Hooper, “Altered lung motion is a sensitive indicator of regional lung disease,” Ann. Biomed. Eng. 40(5), 1160–1169 (2012).
    [Crossref] [PubMed]
  3. S. Dubsky, S. B. Hooper, K. K. W. Siu, and A. Fouras, “Synchrotron-based dynamic computed tomography of tissue motion for regional lung function measurement,” J. R. Soc. Interface 9(74), 2213–2224 (2012).
    [Crossref] [PubMed]
  4. R. A. Lewis, N. Yagi, M. J. Kitchen, M. J. Morgan, D. Paganin, K. K. W. Siu, K. Pavlov, I. Williams, K. Uesugi, M. J. Wallace, C. J. Hall, J. Whitley, and S. B. Hooper, “Dynamic imaging of the lungs using x-ray phase contrast,” Phys. Med. Biol. 50(21), 5031–5040 (2005).
    [Crossref] [PubMed]
  5. M. J. Kitchen, R. A. Lewis, M. J. Morgan, M. J. Wallace, M. L. Siew, K. K. W. Siu, A. Habib, A. Fouras, N. Yagi, K. Uesugi, and S. B. Hooper, “Dynamic measures of regional lung air volume using phase contrast x-ray imaging,” Phys. Med. Biol. 53(21), 6065–6077 (2008).
    [Crossref] [PubMed]
  6. S. B. Hooper, M. J. Kitchen, M. L. Siew, R. A. Lewis, A. Fouras, A. B. te Pas, K. K. Siu, N. Yagi, K. Uesugi, and M. J. Wallace, “Imaging lung aeration and lung liquid clearance at birth using phase contrast X-ray imaging,” Clin. Exp. Pharmacol. Physiol. 36(1), 117–125 (2009).
    [Crossref] [PubMed]
  7. K. K. W. Siu, K. S. Morgan, D. M. Paganin, R. Boucher, K. Uesugi, N. Yagi, and D. W. Parsons, “Phase contrast X-ray imaging for the non-invasive detection of airway surfaces and lumen characteristics in mouse models of airway disease,” Eur. J. Radiol. 68(3Suppl), S22–S26 (2008).
    [Crossref] [PubMed]
  8. S. Dubsky, S. B. Hooper, K. K. W. Siu, and A. Fouras, “Dynamic four-dimensional X-ray PIV of the lung”, presented at the 9th International Symposium on Particle Image Velocimetry, Kobe, Japan, 21–23 July 2011.
  9. A. Bravin, P. Coan, and P. Suortti, “X-ray phase-contrast imaging: from pre-clinical applications towards clinics,” Phys. Med. Biol. 58(1), R1–R35 (2013).
    [Crossref] [PubMed]
  10. T. Takeda, “Phase-contrast and fluorescent X-ray imaging for biomedical researches,” Nucl. Instrum. Methods Phys. Res. A 548(1–2), 38–46 (2005).
    [Crossref]
  11. K. S. Morgan, K. K. W. Siu, and D. M. Paganin, “The projection approximation versus an exact solution for X-ray phase contrast imaging, with a plane wave scattered by a dielectric cylinder,” Opt. Commun. 283(23), 4601–4608 (2010).
    [Crossref]
  12. T. D. Dudderar and P. G. Simpkins, “Laser speckle photography in a fluid medium,” Nature 270(5632), 45–47 (1977).
    [Crossref]
  13. R. J. Adrian, “Twenty years of particle image velocimetry,” Exp. Fluids 39(2), 159–169 (2005).
    [Crossref]
  14. A. Fouras, J. Dusting, J. Sheridan, M. Kawahashi, H. Hirahara, and K. Hourigan, “Engineering imaging: using particle image velocimetry to see physiology in a new light,” Clin. Exp. Pharmacol. Physiol. 36(2), 238–247 (2009).
    [Crossref] [PubMed]
  15. S. C. Irvine, D. M. Paganin, S. Dubsky, R. A. Lewis, and A. Fouras, “Phase retrieval for improved three-dimensional velocimetry of dynamic x-ray blood speckle,” Appl. Phys. Lett. 93(15), 153901 (2008).
    [Crossref]
  16. R. A. Jamison, S. Dubsky, K. K. W. Siu, K. Hourigan, and A. Fouras, “X-ray velocimetry and haemodynamic forces within a stenosed femoral model at physiological flow rates,” Ann. Biomed. Eng. 39(6), 1643–1653 (2011).
    [Crossref] [PubMed]
  17. I. Ng, D. M. Paganin, and A. Fouras, “Optimization of in-line phase contrast particle image velocimetry using a laboratory x-ray source,” J. Appl. Phys. 112(7), 074701 (2012).
    [Crossref]
  18. A. Fouras, J. Dusting, R. Lewis, and K. Hourigan, “Three-dimensional synchrotron x-ray particle image velocimetry,” J. Appl. Phys. 102(6), 064916 (2007).
    [Crossref]
  19. Excillum, “MetalJet Sources”, (Excillum, 2015), http://www.excillum.com/products-and-services/metaljet-x-ray-sources.html .
  20. Varian, “PaxScan® 2020X Amorphous Silicon Digital X-ray Detector,” (Varian, 2015), https://www.varian.com/media/100772/browser .
  21. R. P. Murrie, A. W. Stevenson, K. S. Morgan, A. Fouras, D. M. Paganin, and K. K. W. Siu, “Feasibility study of propagation-based phase-contrast X-ray lung imaging on the Imaging and Medical beamline at the Australian Synchrotron,” J. Synchrotron Radiat. 21(2), 430–445 (2014).
    [Crossref] [PubMed]
  22. R. P. Murrie, K. S. Morgan, A. Maksimenko, A. Fouras, D. M. Paganin, C. Hall, K. K. W. Siu, D. W. Parsons, and M. Donnelley, “Live small-animal X-ray lung velocimetry and lung micro-tomography at the Australian Synchrotron Imaging and Medical Beamline,” J. Synchrotron Radiat. 22(4), 1049–1055 (2015).
    [Crossref] [PubMed]
  23. D. S. Faffe, P. R. M. Rocco, E. M. Negri, and W. A. Zin, “Comparison of rat and mouse pulmonary tissue mechanical properties and histology,” J. Appl. Physiol. 92(1), 230–234 (2002).
    [Crossref] [PubMed]
  24. C. G. Irvin and J. H. T. Bates, “Measuring the lung function in the mouse: the challenge of size,” Respir. Res. 4(1), 4 (2003).
    [Crossref] [PubMed]
  25. M. J. Kitchen, D. Paganin, R. A. Lewis, N. Yagi, K. Uesugi, and S. T. Mudie, “On the origin of speckle in x-ray phase contrast images of lung tissue,” Phys. Med. Biol. 49(18), 4335–4348 (2004).
    [Crossref] [PubMed]
  26. J. H. Hubbell and S. M. Seltzer, “Tables of X-ray mass attenuation coefficients and mass energy absorption coefficients from 1 keV to 20 MeV for elements Z=1 to 92 and 48 additional substances of dosimetric interest,” (National Institute of Standards and Technology, 2011), http://physics.nist.gov/PhysRefData/XrayMassCoef/cover.html .
  27. D. Paganin, Coherent X-Ray Optics (Oxford University Press, 2006).

2015 (1)

R. P. Murrie, K. S. Morgan, A. Maksimenko, A. Fouras, D. M. Paganin, C. Hall, K. K. W. Siu, D. W. Parsons, and M. Donnelley, “Live small-animal X-ray lung velocimetry and lung micro-tomography at the Australian Synchrotron Imaging and Medical Beamline,” J. Synchrotron Radiat. 22(4), 1049–1055 (2015).
[Crossref] [PubMed]

2014 (1)

R. P. Murrie, A. W. Stevenson, K. S. Morgan, A. Fouras, D. M. Paganin, and K. K. W. Siu, “Feasibility study of propagation-based phase-contrast X-ray lung imaging on the Imaging and Medical beamline at the Australian Synchrotron,” J. Synchrotron Radiat. 21(2), 430–445 (2014).
[Crossref] [PubMed]

2013 (1)

A. Bravin, P. Coan, and P. Suortti, “X-ray phase-contrast imaging: from pre-clinical applications towards clinics,” Phys. Med. Biol. 58(1), R1–R35 (2013).
[Crossref] [PubMed]

2012 (3)

A. Fouras, B. J. Allison, M. J. Kitchen, S. Dubsky, J. Nguyen, K. Hourigan, K. K. W. Siu, R. A. Lewis, M. J. Wallace, and S. B. Hooper, “Altered lung motion is a sensitive indicator of regional lung disease,” Ann. Biomed. Eng. 40(5), 1160–1169 (2012).
[Crossref] [PubMed]

S. Dubsky, S. B. Hooper, K. K. W. Siu, and A. Fouras, “Synchrotron-based dynamic computed tomography of tissue motion for regional lung function measurement,” J. R. Soc. Interface 9(74), 2213–2224 (2012).
[Crossref] [PubMed]

I. Ng, D. M. Paganin, and A. Fouras, “Optimization of in-line phase contrast particle image velocimetry using a laboratory x-ray source,” J. Appl. Phys. 112(7), 074701 (2012).
[Crossref]

2011 (1)

R. A. Jamison, S. Dubsky, K. K. W. Siu, K. Hourigan, and A. Fouras, “X-ray velocimetry and haemodynamic forces within a stenosed femoral model at physiological flow rates,” Ann. Biomed. Eng. 39(6), 1643–1653 (2011).
[Crossref] [PubMed]

2010 (1)

K. S. Morgan, K. K. W. Siu, and D. M. Paganin, “The projection approximation versus an exact solution for X-ray phase contrast imaging, with a plane wave scattered by a dielectric cylinder,” Opt. Commun. 283(23), 4601–4608 (2010).
[Crossref]

2009 (3)

A. Fouras, J. Dusting, J. Sheridan, M. Kawahashi, H. Hirahara, and K. Hourigan, “Engineering imaging: using particle image velocimetry to see physiology in a new light,” Clin. Exp. Pharmacol. Physiol. 36(2), 238–247 (2009).
[Crossref] [PubMed]

A. Fouras, M. J. Kitchen, S. Dubsky, R. A. Lewis, S. B. Hooper, and K. Hourigan, “The past, present, and future of x-ray technology for in vivo imaging of function and form,” J. Appl. Phys. 105(10), 102009 (2009).
[Crossref]

S. B. Hooper, M. J. Kitchen, M. L. Siew, R. A. Lewis, A. Fouras, A. B. te Pas, K. K. Siu, N. Yagi, K. Uesugi, and M. J. Wallace, “Imaging lung aeration and lung liquid clearance at birth using phase contrast X-ray imaging,” Clin. Exp. Pharmacol. Physiol. 36(1), 117–125 (2009).
[Crossref] [PubMed]

2008 (3)

K. K. W. Siu, K. S. Morgan, D. M. Paganin, R. Boucher, K. Uesugi, N. Yagi, and D. W. Parsons, “Phase contrast X-ray imaging for the non-invasive detection of airway surfaces and lumen characteristics in mouse models of airway disease,” Eur. J. Radiol. 68(3Suppl), S22–S26 (2008).
[Crossref] [PubMed]

M. J. Kitchen, R. A. Lewis, M. J. Morgan, M. J. Wallace, M. L. Siew, K. K. W. Siu, A. Habib, A. Fouras, N. Yagi, K. Uesugi, and S. B. Hooper, “Dynamic measures of regional lung air volume using phase contrast x-ray imaging,” Phys. Med. Biol. 53(21), 6065–6077 (2008).
[Crossref] [PubMed]

S. C. Irvine, D. M. Paganin, S. Dubsky, R. A. Lewis, and A. Fouras, “Phase retrieval for improved three-dimensional velocimetry of dynamic x-ray blood speckle,” Appl. Phys. Lett. 93(15), 153901 (2008).
[Crossref]

2007 (1)

A. Fouras, J. Dusting, R. Lewis, and K. Hourigan, “Three-dimensional synchrotron x-ray particle image velocimetry,” J. Appl. Phys. 102(6), 064916 (2007).
[Crossref]

2005 (3)

R. J. Adrian, “Twenty years of particle image velocimetry,” Exp. Fluids 39(2), 159–169 (2005).
[Crossref]

R. A. Lewis, N. Yagi, M. J. Kitchen, M. J. Morgan, D. Paganin, K. K. W. Siu, K. Pavlov, I. Williams, K. Uesugi, M. J. Wallace, C. J. Hall, J. Whitley, and S. B. Hooper, “Dynamic imaging of the lungs using x-ray phase contrast,” Phys. Med. Biol. 50(21), 5031–5040 (2005).
[Crossref] [PubMed]

T. Takeda, “Phase-contrast and fluorescent X-ray imaging for biomedical researches,” Nucl. Instrum. Methods Phys. Res. A 548(1–2), 38–46 (2005).
[Crossref]

2004 (1)

M. J. Kitchen, D. Paganin, R. A. Lewis, N. Yagi, K. Uesugi, and S. T. Mudie, “On the origin of speckle in x-ray phase contrast images of lung tissue,” Phys. Med. Biol. 49(18), 4335–4348 (2004).
[Crossref] [PubMed]

2003 (1)

C. G. Irvin and J. H. T. Bates, “Measuring the lung function in the mouse: the challenge of size,” Respir. Res. 4(1), 4 (2003).
[Crossref] [PubMed]

2002 (1)

D. S. Faffe, P. R. M. Rocco, E. M. Negri, and W. A. Zin, “Comparison of rat and mouse pulmonary tissue mechanical properties and histology,” J. Appl. Physiol. 92(1), 230–234 (2002).
[Crossref] [PubMed]

1977 (1)

T. D. Dudderar and P. G. Simpkins, “Laser speckle photography in a fluid medium,” Nature 270(5632), 45–47 (1977).
[Crossref]

Adrian, R. J.

R. J. Adrian, “Twenty years of particle image velocimetry,” Exp. Fluids 39(2), 159–169 (2005).
[Crossref]

Allison, B. J.

A. Fouras, B. J. Allison, M. J. Kitchen, S. Dubsky, J. Nguyen, K. Hourigan, K. K. W. Siu, R. A. Lewis, M. J. Wallace, and S. B. Hooper, “Altered lung motion is a sensitive indicator of regional lung disease,” Ann. Biomed. Eng. 40(5), 1160–1169 (2012).
[Crossref] [PubMed]

Bates, J. H. T.

C. G. Irvin and J. H. T. Bates, “Measuring the lung function in the mouse: the challenge of size,” Respir. Res. 4(1), 4 (2003).
[Crossref] [PubMed]

Boucher, R.

K. K. W. Siu, K. S. Morgan, D. M. Paganin, R. Boucher, K. Uesugi, N. Yagi, and D. W. Parsons, “Phase contrast X-ray imaging for the non-invasive detection of airway surfaces and lumen characteristics in mouse models of airway disease,” Eur. J. Radiol. 68(3Suppl), S22–S26 (2008).
[Crossref] [PubMed]

Bravin, A.

A. Bravin, P. Coan, and P. Suortti, “X-ray phase-contrast imaging: from pre-clinical applications towards clinics,” Phys. Med. Biol. 58(1), R1–R35 (2013).
[Crossref] [PubMed]

Coan, P.

A. Bravin, P. Coan, and P. Suortti, “X-ray phase-contrast imaging: from pre-clinical applications towards clinics,” Phys. Med. Biol. 58(1), R1–R35 (2013).
[Crossref] [PubMed]

Donnelley, M.

R. P. Murrie, K. S. Morgan, A. Maksimenko, A. Fouras, D. M. Paganin, C. Hall, K. K. W. Siu, D. W. Parsons, and M. Donnelley, “Live small-animal X-ray lung velocimetry and lung micro-tomography at the Australian Synchrotron Imaging and Medical Beamline,” J. Synchrotron Radiat. 22(4), 1049–1055 (2015).
[Crossref] [PubMed]

Dubsky, S.

A. Fouras, B. J. Allison, M. J. Kitchen, S. Dubsky, J. Nguyen, K. Hourigan, K. K. W. Siu, R. A. Lewis, M. J. Wallace, and S. B. Hooper, “Altered lung motion is a sensitive indicator of regional lung disease,” Ann. Biomed. Eng. 40(5), 1160–1169 (2012).
[Crossref] [PubMed]

S. Dubsky, S. B. Hooper, K. K. W. Siu, and A. Fouras, “Synchrotron-based dynamic computed tomography of tissue motion for regional lung function measurement,” J. R. Soc. Interface 9(74), 2213–2224 (2012).
[Crossref] [PubMed]

R. A. Jamison, S. Dubsky, K. K. W. Siu, K. Hourigan, and A. Fouras, “X-ray velocimetry and haemodynamic forces within a stenosed femoral model at physiological flow rates,” Ann. Biomed. Eng. 39(6), 1643–1653 (2011).
[Crossref] [PubMed]

A. Fouras, M. J. Kitchen, S. Dubsky, R. A. Lewis, S. B. Hooper, and K. Hourigan, “The past, present, and future of x-ray technology for in vivo imaging of function and form,” J. Appl. Phys. 105(10), 102009 (2009).
[Crossref]

S. C. Irvine, D. M. Paganin, S. Dubsky, R. A. Lewis, and A. Fouras, “Phase retrieval for improved three-dimensional velocimetry of dynamic x-ray blood speckle,” Appl. Phys. Lett. 93(15), 153901 (2008).
[Crossref]

Dudderar, T. D.

T. D. Dudderar and P. G. Simpkins, “Laser speckle photography in a fluid medium,” Nature 270(5632), 45–47 (1977).
[Crossref]

Dusting, J.

A. Fouras, J. Dusting, J. Sheridan, M. Kawahashi, H. Hirahara, and K. Hourigan, “Engineering imaging: using particle image velocimetry to see physiology in a new light,” Clin. Exp. Pharmacol. Physiol. 36(2), 238–247 (2009).
[Crossref] [PubMed]

A. Fouras, J. Dusting, R. Lewis, and K. Hourigan, “Three-dimensional synchrotron x-ray particle image velocimetry,” J. Appl. Phys. 102(6), 064916 (2007).
[Crossref]

Faffe, D. S.

D. S. Faffe, P. R. M. Rocco, E. M. Negri, and W. A. Zin, “Comparison of rat and mouse pulmonary tissue mechanical properties and histology,” J. Appl. Physiol. 92(1), 230–234 (2002).
[Crossref] [PubMed]

Fouras, A.

R. P. Murrie, K. S. Morgan, A. Maksimenko, A. Fouras, D. M. Paganin, C. Hall, K. K. W. Siu, D. W. Parsons, and M. Donnelley, “Live small-animal X-ray lung velocimetry and lung micro-tomography at the Australian Synchrotron Imaging and Medical Beamline,” J. Synchrotron Radiat. 22(4), 1049–1055 (2015).
[Crossref] [PubMed]

R. P. Murrie, A. W. Stevenson, K. S. Morgan, A. Fouras, D. M. Paganin, and K. K. W. Siu, “Feasibility study of propagation-based phase-contrast X-ray lung imaging on the Imaging and Medical beamline at the Australian Synchrotron,” J. Synchrotron Radiat. 21(2), 430–445 (2014).
[Crossref] [PubMed]

I. Ng, D. M. Paganin, and A. Fouras, “Optimization of in-line phase contrast particle image velocimetry using a laboratory x-ray source,” J. Appl. Phys. 112(7), 074701 (2012).
[Crossref]

A. Fouras, B. J. Allison, M. J. Kitchen, S. Dubsky, J. Nguyen, K. Hourigan, K. K. W. Siu, R. A. Lewis, M. J. Wallace, and S. B. Hooper, “Altered lung motion is a sensitive indicator of regional lung disease,” Ann. Biomed. Eng. 40(5), 1160–1169 (2012).
[Crossref] [PubMed]

S. Dubsky, S. B. Hooper, K. K. W. Siu, and A. Fouras, “Synchrotron-based dynamic computed tomography of tissue motion for regional lung function measurement,” J. R. Soc. Interface 9(74), 2213–2224 (2012).
[Crossref] [PubMed]

R. A. Jamison, S. Dubsky, K. K. W. Siu, K. Hourigan, and A. Fouras, “X-ray velocimetry and haemodynamic forces within a stenosed femoral model at physiological flow rates,” Ann. Biomed. Eng. 39(6), 1643–1653 (2011).
[Crossref] [PubMed]

A. Fouras, J. Dusting, J. Sheridan, M. Kawahashi, H. Hirahara, and K. Hourigan, “Engineering imaging: using particle image velocimetry to see physiology in a new light,” Clin. Exp. Pharmacol. Physiol. 36(2), 238–247 (2009).
[Crossref] [PubMed]

A. Fouras, M. J. Kitchen, S. Dubsky, R. A. Lewis, S. B. Hooper, and K. Hourigan, “The past, present, and future of x-ray technology for in vivo imaging of function and form,” J. Appl. Phys. 105(10), 102009 (2009).
[Crossref]

S. B. Hooper, M. J. Kitchen, M. L. Siew, R. A. Lewis, A. Fouras, A. B. te Pas, K. K. Siu, N. Yagi, K. Uesugi, and M. J. Wallace, “Imaging lung aeration and lung liquid clearance at birth using phase contrast X-ray imaging,” Clin. Exp. Pharmacol. Physiol. 36(1), 117–125 (2009).
[Crossref] [PubMed]

M. J. Kitchen, R. A. Lewis, M. J. Morgan, M. J. Wallace, M. L. Siew, K. K. W. Siu, A. Habib, A. Fouras, N. Yagi, K. Uesugi, and S. B. Hooper, “Dynamic measures of regional lung air volume using phase contrast x-ray imaging,” Phys. Med. Biol. 53(21), 6065–6077 (2008).
[Crossref] [PubMed]

S. C. Irvine, D. M. Paganin, S. Dubsky, R. A. Lewis, and A. Fouras, “Phase retrieval for improved three-dimensional velocimetry of dynamic x-ray blood speckle,” Appl. Phys. Lett. 93(15), 153901 (2008).
[Crossref]

A. Fouras, J. Dusting, R. Lewis, and K. Hourigan, “Three-dimensional synchrotron x-ray particle image velocimetry,” J. Appl. Phys. 102(6), 064916 (2007).
[Crossref]

Habib, A.

M. J. Kitchen, R. A. Lewis, M. J. Morgan, M. J. Wallace, M. L. Siew, K. K. W. Siu, A. Habib, A. Fouras, N. Yagi, K. Uesugi, and S. B. Hooper, “Dynamic measures of regional lung air volume using phase contrast x-ray imaging,” Phys. Med. Biol. 53(21), 6065–6077 (2008).
[Crossref] [PubMed]

Hall, C.

R. P. Murrie, K. S. Morgan, A. Maksimenko, A. Fouras, D. M. Paganin, C. Hall, K. K. W. Siu, D. W. Parsons, and M. Donnelley, “Live small-animal X-ray lung velocimetry and lung micro-tomography at the Australian Synchrotron Imaging and Medical Beamline,” J. Synchrotron Radiat. 22(4), 1049–1055 (2015).
[Crossref] [PubMed]

Hall, C. J.

R. A. Lewis, N. Yagi, M. J. Kitchen, M. J. Morgan, D. Paganin, K. K. W. Siu, K. Pavlov, I. Williams, K. Uesugi, M. J. Wallace, C. J. Hall, J. Whitley, and S. B. Hooper, “Dynamic imaging of the lungs using x-ray phase contrast,” Phys. Med. Biol. 50(21), 5031–5040 (2005).
[Crossref] [PubMed]

Hirahara, H.

A. Fouras, J. Dusting, J. Sheridan, M. Kawahashi, H. Hirahara, and K. Hourigan, “Engineering imaging: using particle image velocimetry to see physiology in a new light,” Clin. Exp. Pharmacol. Physiol. 36(2), 238–247 (2009).
[Crossref] [PubMed]

Hooper, S. B.

A. Fouras, B. J. Allison, M. J. Kitchen, S. Dubsky, J. Nguyen, K. Hourigan, K. K. W. Siu, R. A. Lewis, M. J. Wallace, and S. B. Hooper, “Altered lung motion is a sensitive indicator of regional lung disease,” Ann. Biomed. Eng. 40(5), 1160–1169 (2012).
[Crossref] [PubMed]

S. Dubsky, S. B. Hooper, K. K. W. Siu, and A. Fouras, “Synchrotron-based dynamic computed tomography of tissue motion for regional lung function measurement,” J. R. Soc. Interface 9(74), 2213–2224 (2012).
[Crossref] [PubMed]

A. Fouras, M. J. Kitchen, S. Dubsky, R. A. Lewis, S. B. Hooper, and K. Hourigan, “The past, present, and future of x-ray technology for in vivo imaging of function and form,” J. Appl. Phys. 105(10), 102009 (2009).
[Crossref]

S. B. Hooper, M. J. Kitchen, M. L. Siew, R. A. Lewis, A. Fouras, A. B. te Pas, K. K. Siu, N. Yagi, K. Uesugi, and M. J. Wallace, “Imaging lung aeration and lung liquid clearance at birth using phase contrast X-ray imaging,” Clin. Exp. Pharmacol. Physiol. 36(1), 117–125 (2009).
[Crossref] [PubMed]

M. J. Kitchen, R. A. Lewis, M. J. Morgan, M. J. Wallace, M. L. Siew, K. K. W. Siu, A. Habib, A. Fouras, N. Yagi, K. Uesugi, and S. B. Hooper, “Dynamic measures of regional lung air volume using phase contrast x-ray imaging,” Phys. Med. Biol. 53(21), 6065–6077 (2008).
[Crossref] [PubMed]

R. A. Lewis, N. Yagi, M. J. Kitchen, M. J. Morgan, D. Paganin, K. K. W. Siu, K. Pavlov, I. Williams, K. Uesugi, M. J. Wallace, C. J. Hall, J. Whitley, and S. B. Hooper, “Dynamic imaging of the lungs using x-ray phase contrast,” Phys. Med. Biol. 50(21), 5031–5040 (2005).
[Crossref] [PubMed]

Hourigan, K.

A. Fouras, B. J. Allison, M. J. Kitchen, S. Dubsky, J. Nguyen, K. Hourigan, K. K. W. Siu, R. A. Lewis, M. J. Wallace, and S. B. Hooper, “Altered lung motion is a sensitive indicator of regional lung disease,” Ann. Biomed. Eng. 40(5), 1160–1169 (2012).
[Crossref] [PubMed]

R. A. Jamison, S. Dubsky, K. K. W. Siu, K. Hourigan, and A. Fouras, “X-ray velocimetry and haemodynamic forces within a stenosed femoral model at physiological flow rates,” Ann. Biomed. Eng. 39(6), 1643–1653 (2011).
[Crossref] [PubMed]

A. Fouras, J. Dusting, J. Sheridan, M. Kawahashi, H. Hirahara, and K. Hourigan, “Engineering imaging: using particle image velocimetry to see physiology in a new light,” Clin. Exp. Pharmacol. Physiol. 36(2), 238–247 (2009).
[Crossref] [PubMed]

A. Fouras, M. J. Kitchen, S. Dubsky, R. A. Lewis, S. B. Hooper, and K. Hourigan, “The past, present, and future of x-ray technology for in vivo imaging of function and form,” J. Appl. Phys. 105(10), 102009 (2009).
[Crossref]

A. Fouras, J. Dusting, R. Lewis, and K. Hourigan, “Three-dimensional synchrotron x-ray particle image velocimetry,” J. Appl. Phys. 102(6), 064916 (2007).
[Crossref]

Irvin, C. G.

C. G. Irvin and J. H. T. Bates, “Measuring the lung function in the mouse: the challenge of size,” Respir. Res. 4(1), 4 (2003).
[Crossref] [PubMed]

Irvine, S. C.

S. C. Irvine, D. M. Paganin, S. Dubsky, R. A. Lewis, and A. Fouras, “Phase retrieval for improved three-dimensional velocimetry of dynamic x-ray blood speckle,” Appl. Phys. Lett. 93(15), 153901 (2008).
[Crossref]

Jamison, R. A.

R. A. Jamison, S. Dubsky, K. K. W. Siu, K. Hourigan, and A. Fouras, “X-ray velocimetry and haemodynamic forces within a stenosed femoral model at physiological flow rates,” Ann. Biomed. Eng. 39(6), 1643–1653 (2011).
[Crossref] [PubMed]

Kawahashi, M.

A. Fouras, J. Dusting, J. Sheridan, M. Kawahashi, H. Hirahara, and K. Hourigan, “Engineering imaging: using particle image velocimetry to see physiology in a new light,” Clin. Exp. Pharmacol. Physiol. 36(2), 238–247 (2009).
[Crossref] [PubMed]

Kitchen, M. J.

A. Fouras, B. J. Allison, M. J. Kitchen, S. Dubsky, J. Nguyen, K. Hourigan, K. K. W. Siu, R. A. Lewis, M. J. Wallace, and S. B. Hooper, “Altered lung motion is a sensitive indicator of regional lung disease,” Ann. Biomed. Eng. 40(5), 1160–1169 (2012).
[Crossref] [PubMed]

A. Fouras, M. J. Kitchen, S. Dubsky, R. A. Lewis, S. B. Hooper, and K. Hourigan, “The past, present, and future of x-ray technology for in vivo imaging of function and form,” J. Appl. Phys. 105(10), 102009 (2009).
[Crossref]

S. B. Hooper, M. J. Kitchen, M. L. Siew, R. A. Lewis, A. Fouras, A. B. te Pas, K. K. Siu, N. Yagi, K. Uesugi, and M. J. Wallace, “Imaging lung aeration and lung liquid clearance at birth using phase contrast X-ray imaging,” Clin. Exp. Pharmacol. Physiol. 36(1), 117–125 (2009).
[Crossref] [PubMed]

M. J. Kitchen, R. A. Lewis, M. J. Morgan, M. J. Wallace, M. L. Siew, K. K. W. Siu, A. Habib, A. Fouras, N. Yagi, K. Uesugi, and S. B. Hooper, “Dynamic measures of regional lung air volume using phase contrast x-ray imaging,” Phys. Med. Biol. 53(21), 6065–6077 (2008).
[Crossref] [PubMed]

R. A. Lewis, N. Yagi, M. J. Kitchen, M. J. Morgan, D. Paganin, K. K. W. Siu, K. Pavlov, I. Williams, K. Uesugi, M. J. Wallace, C. J. Hall, J. Whitley, and S. B. Hooper, “Dynamic imaging of the lungs using x-ray phase contrast,” Phys. Med. Biol. 50(21), 5031–5040 (2005).
[Crossref] [PubMed]

M. J. Kitchen, D. Paganin, R. A. Lewis, N. Yagi, K. Uesugi, and S. T. Mudie, “On the origin of speckle in x-ray phase contrast images of lung tissue,” Phys. Med. Biol. 49(18), 4335–4348 (2004).
[Crossref] [PubMed]

Lewis, R.

A. Fouras, J. Dusting, R. Lewis, and K. Hourigan, “Three-dimensional synchrotron x-ray particle image velocimetry,” J. Appl. Phys. 102(6), 064916 (2007).
[Crossref]

Lewis, R. A.

A. Fouras, B. J. Allison, M. J. Kitchen, S. Dubsky, J. Nguyen, K. Hourigan, K. K. W. Siu, R. A. Lewis, M. J. Wallace, and S. B. Hooper, “Altered lung motion is a sensitive indicator of regional lung disease,” Ann. Biomed. Eng. 40(5), 1160–1169 (2012).
[Crossref] [PubMed]

A. Fouras, M. J. Kitchen, S. Dubsky, R. A. Lewis, S. B. Hooper, and K. Hourigan, “The past, present, and future of x-ray technology for in vivo imaging of function and form,” J. Appl. Phys. 105(10), 102009 (2009).
[Crossref]

S. B. Hooper, M. J. Kitchen, M. L. Siew, R. A. Lewis, A. Fouras, A. B. te Pas, K. K. Siu, N. Yagi, K. Uesugi, and M. J. Wallace, “Imaging lung aeration and lung liquid clearance at birth using phase contrast X-ray imaging,” Clin. Exp. Pharmacol. Physiol. 36(1), 117–125 (2009).
[Crossref] [PubMed]

M. J. Kitchen, R. A. Lewis, M. J. Morgan, M. J. Wallace, M. L. Siew, K. K. W. Siu, A. Habib, A. Fouras, N. Yagi, K. Uesugi, and S. B. Hooper, “Dynamic measures of regional lung air volume using phase contrast x-ray imaging,” Phys. Med. Biol. 53(21), 6065–6077 (2008).
[Crossref] [PubMed]

S. C. Irvine, D. M. Paganin, S. Dubsky, R. A. Lewis, and A. Fouras, “Phase retrieval for improved three-dimensional velocimetry of dynamic x-ray blood speckle,” Appl. Phys. Lett. 93(15), 153901 (2008).
[Crossref]

R. A. Lewis, N. Yagi, M. J. Kitchen, M. J. Morgan, D. Paganin, K. K. W. Siu, K. Pavlov, I. Williams, K. Uesugi, M. J. Wallace, C. J. Hall, J. Whitley, and S. B. Hooper, “Dynamic imaging of the lungs using x-ray phase contrast,” Phys. Med. Biol. 50(21), 5031–5040 (2005).
[Crossref] [PubMed]

M. J. Kitchen, D. Paganin, R. A. Lewis, N. Yagi, K. Uesugi, and S. T. Mudie, “On the origin of speckle in x-ray phase contrast images of lung tissue,” Phys. Med. Biol. 49(18), 4335–4348 (2004).
[Crossref] [PubMed]

Maksimenko, A.

R. P. Murrie, K. S. Morgan, A. Maksimenko, A. Fouras, D. M. Paganin, C. Hall, K. K. W. Siu, D. W. Parsons, and M. Donnelley, “Live small-animal X-ray lung velocimetry and lung micro-tomography at the Australian Synchrotron Imaging and Medical Beamline,” J. Synchrotron Radiat. 22(4), 1049–1055 (2015).
[Crossref] [PubMed]

Morgan, K. S.

R. P. Murrie, K. S. Morgan, A. Maksimenko, A. Fouras, D. M. Paganin, C. Hall, K. K. W. Siu, D. W. Parsons, and M. Donnelley, “Live small-animal X-ray lung velocimetry and lung micro-tomography at the Australian Synchrotron Imaging and Medical Beamline,” J. Synchrotron Radiat. 22(4), 1049–1055 (2015).
[Crossref] [PubMed]

R. P. Murrie, A. W. Stevenson, K. S. Morgan, A. Fouras, D. M. Paganin, and K. K. W. Siu, “Feasibility study of propagation-based phase-contrast X-ray lung imaging on the Imaging and Medical beamline at the Australian Synchrotron,” J. Synchrotron Radiat. 21(2), 430–445 (2014).
[Crossref] [PubMed]

K. S. Morgan, K. K. W. Siu, and D. M. Paganin, “The projection approximation versus an exact solution for X-ray phase contrast imaging, with a plane wave scattered by a dielectric cylinder,” Opt. Commun. 283(23), 4601–4608 (2010).
[Crossref]

K. K. W. Siu, K. S. Morgan, D. M. Paganin, R. Boucher, K. Uesugi, N. Yagi, and D. W. Parsons, “Phase contrast X-ray imaging for the non-invasive detection of airway surfaces and lumen characteristics in mouse models of airway disease,” Eur. J. Radiol. 68(3Suppl), S22–S26 (2008).
[Crossref] [PubMed]

Morgan, M. J.

M. J. Kitchen, R. A. Lewis, M. J. Morgan, M. J. Wallace, M. L. Siew, K. K. W. Siu, A. Habib, A. Fouras, N. Yagi, K. Uesugi, and S. B. Hooper, “Dynamic measures of regional lung air volume using phase contrast x-ray imaging,” Phys. Med. Biol. 53(21), 6065–6077 (2008).
[Crossref] [PubMed]

R. A. Lewis, N. Yagi, M. J. Kitchen, M. J. Morgan, D. Paganin, K. K. W. Siu, K. Pavlov, I. Williams, K. Uesugi, M. J. Wallace, C. J. Hall, J. Whitley, and S. B. Hooper, “Dynamic imaging of the lungs using x-ray phase contrast,” Phys. Med. Biol. 50(21), 5031–5040 (2005).
[Crossref] [PubMed]

Mudie, S. T.

M. J. Kitchen, D. Paganin, R. A. Lewis, N. Yagi, K. Uesugi, and S. T. Mudie, “On the origin of speckle in x-ray phase contrast images of lung tissue,” Phys. Med. Biol. 49(18), 4335–4348 (2004).
[Crossref] [PubMed]

Murrie, R. P.

R. P. Murrie, K. S. Morgan, A. Maksimenko, A. Fouras, D. M. Paganin, C. Hall, K. K. W. Siu, D. W. Parsons, and M. Donnelley, “Live small-animal X-ray lung velocimetry and lung micro-tomography at the Australian Synchrotron Imaging and Medical Beamline,” J. Synchrotron Radiat. 22(4), 1049–1055 (2015).
[Crossref] [PubMed]

R. P. Murrie, A. W. Stevenson, K. S. Morgan, A. Fouras, D. M. Paganin, and K. K. W. Siu, “Feasibility study of propagation-based phase-contrast X-ray lung imaging on the Imaging and Medical beamline at the Australian Synchrotron,” J. Synchrotron Radiat. 21(2), 430–445 (2014).
[Crossref] [PubMed]

Negri, E. M.

D. S. Faffe, P. R. M. Rocco, E. M. Negri, and W. A. Zin, “Comparison of rat and mouse pulmonary tissue mechanical properties and histology,” J. Appl. Physiol. 92(1), 230–234 (2002).
[Crossref] [PubMed]

Ng, I.

I. Ng, D. M. Paganin, and A. Fouras, “Optimization of in-line phase contrast particle image velocimetry using a laboratory x-ray source,” J. Appl. Phys. 112(7), 074701 (2012).
[Crossref]

Nguyen, J.

A. Fouras, B. J. Allison, M. J. Kitchen, S. Dubsky, J. Nguyen, K. Hourigan, K. K. W. Siu, R. A. Lewis, M. J. Wallace, and S. B. Hooper, “Altered lung motion is a sensitive indicator of regional lung disease,” Ann. Biomed. Eng. 40(5), 1160–1169 (2012).
[Crossref] [PubMed]

Paganin, D.

R. A. Lewis, N. Yagi, M. J. Kitchen, M. J. Morgan, D. Paganin, K. K. W. Siu, K. Pavlov, I. Williams, K. Uesugi, M. J. Wallace, C. J. Hall, J. Whitley, and S. B. Hooper, “Dynamic imaging of the lungs using x-ray phase contrast,” Phys. Med. Biol. 50(21), 5031–5040 (2005).
[Crossref] [PubMed]

M. J. Kitchen, D. Paganin, R. A. Lewis, N. Yagi, K. Uesugi, and S. T. Mudie, “On the origin of speckle in x-ray phase contrast images of lung tissue,” Phys. Med. Biol. 49(18), 4335–4348 (2004).
[Crossref] [PubMed]

Paganin, D. M.

R. P. Murrie, K. S. Morgan, A. Maksimenko, A. Fouras, D. M. Paganin, C. Hall, K. K. W. Siu, D. W. Parsons, and M. Donnelley, “Live small-animal X-ray lung velocimetry and lung micro-tomography at the Australian Synchrotron Imaging and Medical Beamline,” J. Synchrotron Radiat. 22(4), 1049–1055 (2015).
[Crossref] [PubMed]

R. P. Murrie, A. W. Stevenson, K. S. Morgan, A. Fouras, D. M. Paganin, and K. K. W. Siu, “Feasibility study of propagation-based phase-contrast X-ray lung imaging on the Imaging and Medical beamline at the Australian Synchrotron,” J. Synchrotron Radiat. 21(2), 430–445 (2014).
[Crossref] [PubMed]

I. Ng, D. M. Paganin, and A. Fouras, “Optimization of in-line phase contrast particle image velocimetry using a laboratory x-ray source,” J. Appl. Phys. 112(7), 074701 (2012).
[Crossref]

K. S. Morgan, K. K. W. Siu, and D. M. Paganin, “The projection approximation versus an exact solution for X-ray phase contrast imaging, with a plane wave scattered by a dielectric cylinder,” Opt. Commun. 283(23), 4601–4608 (2010).
[Crossref]

S. C. Irvine, D. M. Paganin, S. Dubsky, R. A. Lewis, and A. Fouras, “Phase retrieval for improved three-dimensional velocimetry of dynamic x-ray blood speckle,” Appl. Phys. Lett. 93(15), 153901 (2008).
[Crossref]

K. K. W. Siu, K. S. Morgan, D. M. Paganin, R. Boucher, K. Uesugi, N. Yagi, and D. W. Parsons, “Phase contrast X-ray imaging for the non-invasive detection of airway surfaces and lumen characteristics in mouse models of airway disease,” Eur. J. Radiol. 68(3Suppl), S22–S26 (2008).
[Crossref] [PubMed]

Parsons, D. W.

R. P. Murrie, K. S. Morgan, A. Maksimenko, A. Fouras, D. M. Paganin, C. Hall, K. K. W. Siu, D. W. Parsons, and M. Donnelley, “Live small-animal X-ray lung velocimetry and lung micro-tomography at the Australian Synchrotron Imaging and Medical Beamline,” J. Synchrotron Radiat. 22(4), 1049–1055 (2015).
[Crossref] [PubMed]

K. K. W. Siu, K. S. Morgan, D. M. Paganin, R. Boucher, K. Uesugi, N. Yagi, and D. W. Parsons, “Phase contrast X-ray imaging for the non-invasive detection of airway surfaces and lumen characteristics in mouse models of airway disease,” Eur. J. Radiol. 68(3Suppl), S22–S26 (2008).
[Crossref] [PubMed]

Pavlov, K.

R. A. Lewis, N. Yagi, M. J. Kitchen, M. J. Morgan, D. Paganin, K. K. W. Siu, K. Pavlov, I. Williams, K. Uesugi, M. J. Wallace, C. J. Hall, J. Whitley, and S. B. Hooper, “Dynamic imaging of the lungs using x-ray phase contrast,” Phys. Med. Biol. 50(21), 5031–5040 (2005).
[Crossref] [PubMed]

Rocco, P. R. M.

D. S. Faffe, P. R. M. Rocco, E. M. Negri, and W. A. Zin, “Comparison of rat and mouse pulmonary tissue mechanical properties and histology,” J. Appl. Physiol. 92(1), 230–234 (2002).
[Crossref] [PubMed]

Sheridan, J.

A. Fouras, J. Dusting, J. Sheridan, M. Kawahashi, H. Hirahara, and K. Hourigan, “Engineering imaging: using particle image velocimetry to see physiology in a new light,” Clin. Exp. Pharmacol. Physiol. 36(2), 238–247 (2009).
[Crossref] [PubMed]

Siew, M. L.

S. B. Hooper, M. J. Kitchen, M. L. Siew, R. A. Lewis, A. Fouras, A. B. te Pas, K. K. Siu, N. Yagi, K. Uesugi, and M. J. Wallace, “Imaging lung aeration and lung liquid clearance at birth using phase contrast X-ray imaging,” Clin. Exp. Pharmacol. Physiol. 36(1), 117–125 (2009).
[Crossref] [PubMed]

M. J. Kitchen, R. A. Lewis, M. J. Morgan, M. J. Wallace, M. L. Siew, K. K. W. Siu, A. Habib, A. Fouras, N. Yagi, K. Uesugi, and S. B. Hooper, “Dynamic measures of regional lung air volume using phase contrast x-ray imaging,” Phys. Med. Biol. 53(21), 6065–6077 (2008).
[Crossref] [PubMed]

Simpkins, P. G.

T. D. Dudderar and P. G. Simpkins, “Laser speckle photography in a fluid medium,” Nature 270(5632), 45–47 (1977).
[Crossref]

Siu, K. K.

S. B. Hooper, M. J. Kitchen, M. L. Siew, R. A. Lewis, A. Fouras, A. B. te Pas, K. K. Siu, N. Yagi, K. Uesugi, and M. J. Wallace, “Imaging lung aeration and lung liquid clearance at birth using phase contrast X-ray imaging,” Clin. Exp. Pharmacol. Physiol. 36(1), 117–125 (2009).
[Crossref] [PubMed]

Siu, K. K. W.

R. P. Murrie, K. S. Morgan, A. Maksimenko, A. Fouras, D. M. Paganin, C. Hall, K. K. W. Siu, D. W. Parsons, and M. Donnelley, “Live small-animal X-ray lung velocimetry and lung micro-tomography at the Australian Synchrotron Imaging and Medical Beamline,” J. Synchrotron Radiat. 22(4), 1049–1055 (2015).
[Crossref] [PubMed]

R. P. Murrie, A. W. Stevenson, K. S. Morgan, A. Fouras, D. M. Paganin, and K. K. W. Siu, “Feasibility study of propagation-based phase-contrast X-ray lung imaging on the Imaging and Medical beamline at the Australian Synchrotron,” J. Synchrotron Radiat. 21(2), 430–445 (2014).
[Crossref] [PubMed]

S. Dubsky, S. B. Hooper, K. K. W. Siu, and A. Fouras, “Synchrotron-based dynamic computed tomography of tissue motion for regional lung function measurement,” J. R. Soc. Interface 9(74), 2213–2224 (2012).
[Crossref] [PubMed]

A. Fouras, B. J. Allison, M. J. Kitchen, S. Dubsky, J. Nguyen, K. Hourigan, K. K. W. Siu, R. A. Lewis, M. J. Wallace, and S. B. Hooper, “Altered lung motion is a sensitive indicator of regional lung disease,” Ann. Biomed. Eng. 40(5), 1160–1169 (2012).
[Crossref] [PubMed]

R. A. Jamison, S. Dubsky, K. K. W. Siu, K. Hourigan, and A. Fouras, “X-ray velocimetry and haemodynamic forces within a stenosed femoral model at physiological flow rates,” Ann. Biomed. Eng. 39(6), 1643–1653 (2011).
[Crossref] [PubMed]

K. S. Morgan, K. K. W. Siu, and D. M. Paganin, “The projection approximation versus an exact solution for X-ray phase contrast imaging, with a plane wave scattered by a dielectric cylinder,” Opt. Commun. 283(23), 4601–4608 (2010).
[Crossref]

K. K. W. Siu, K. S. Morgan, D. M. Paganin, R. Boucher, K. Uesugi, N. Yagi, and D. W. Parsons, “Phase contrast X-ray imaging for the non-invasive detection of airway surfaces and lumen characteristics in mouse models of airway disease,” Eur. J. Radiol. 68(3Suppl), S22–S26 (2008).
[Crossref] [PubMed]

M. J. Kitchen, R. A. Lewis, M. J. Morgan, M. J. Wallace, M. L. Siew, K. K. W. Siu, A. Habib, A. Fouras, N. Yagi, K. Uesugi, and S. B. Hooper, “Dynamic measures of regional lung air volume using phase contrast x-ray imaging,” Phys. Med. Biol. 53(21), 6065–6077 (2008).
[Crossref] [PubMed]

R. A. Lewis, N. Yagi, M. J. Kitchen, M. J. Morgan, D. Paganin, K. K. W. Siu, K. Pavlov, I. Williams, K. Uesugi, M. J. Wallace, C. J. Hall, J. Whitley, and S. B. Hooper, “Dynamic imaging of the lungs using x-ray phase contrast,” Phys. Med. Biol. 50(21), 5031–5040 (2005).
[Crossref] [PubMed]

Stevenson, A. W.

R. P. Murrie, A. W. Stevenson, K. S. Morgan, A. Fouras, D. M. Paganin, and K. K. W. Siu, “Feasibility study of propagation-based phase-contrast X-ray lung imaging on the Imaging and Medical beamline at the Australian Synchrotron,” J. Synchrotron Radiat. 21(2), 430–445 (2014).
[Crossref] [PubMed]

Suortti, P.

A. Bravin, P. Coan, and P. Suortti, “X-ray phase-contrast imaging: from pre-clinical applications towards clinics,” Phys. Med. Biol. 58(1), R1–R35 (2013).
[Crossref] [PubMed]

Takeda, T.

T. Takeda, “Phase-contrast and fluorescent X-ray imaging for biomedical researches,” Nucl. Instrum. Methods Phys. Res. A 548(1–2), 38–46 (2005).
[Crossref]

te Pas, A. B.

S. B. Hooper, M. J. Kitchen, M. L. Siew, R. A. Lewis, A. Fouras, A. B. te Pas, K. K. Siu, N. Yagi, K. Uesugi, and M. J. Wallace, “Imaging lung aeration and lung liquid clearance at birth using phase contrast X-ray imaging,” Clin. Exp. Pharmacol. Physiol. 36(1), 117–125 (2009).
[Crossref] [PubMed]

Uesugi, K.

S. B. Hooper, M. J. Kitchen, M. L. Siew, R. A. Lewis, A. Fouras, A. B. te Pas, K. K. Siu, N. Yagi, K. Uesugi, and M. J. Wallace, “Imaging lung aeration and lung liquid clearance at birth using phase contrast X-ray imaging,” Clin. Exp. Pharmacol. Physiol. 36(1), 117–125 (2009).
[Crossref] [PubMed]

K. K. W. Siu, K. S. Morgan, D. M. Paganin, R. Boucher, K. Uesugi, N. Yagi, and D. W. Parsons, “Phase contrast X-ray imaging for the non-invasive detection of airway surfaces and lumen characteristics in mouse models of airway disease,” Eur. J. Radiol. 68(3Suppl), S22–S26 (2008).
[Crossref] [PubMed]

M. J. Kitchen, R. A. Lewis, M. J. Morgan, M. J. Wallace, M. L. Siew, K. K. W. Siu, A. Habib, A. Fouras, N. Yagi, K. Uesugi, and S. B. Hooper, “Dynamic measures of regional lung air volume using phase contrast x-ray imaging,” Phys. Med. Biol. 53(21), 6065–6077 (2008).
[Crossref] [PubMed]

R. A. Lewis, N. Yagi, M. J. Kitchen, M. J. Morgan, D. Paganin, K. K. W. Siu, K. Pavlov, I. Williams, K. Uesugi, M. J. Wallace, C. J. Hall, J. Whitley, and S. B. Hooper, “Dynamic imaging of the lungs using x-ray phase contrast,” Phys. Med. Biol. 50(21), 5031–5040 (2005).
[Crossref] [PubMed]

M. J. Kitchen, D. Paganin, R. A. Lewis, N. Yagi, K. Uesugi, and S. T. Mudie, “On the origin of speckle in x-ray phase contrast images of lung tissue,” Phys. Med. Biol. 49(18), 4335–4348 (2004).
[Crossref] [PubMed]

Wallace, M. J.

A. Fouras, B. J. Allison, M. J. Kitchen, S. Dubsky, J. Nguyen, K. Hourigan, K. K. W. Siu, R. A. Lewis, M. J. Wallace, and S. B. Hooper, “Altered lung motion is a sensitive indicator of regional lung disease,” Ann. Biomed. Eng. 40(5), 1160–1169 (2012).
[Crossref] [PubMed]

S. B. Hooper, M. J. Kitchen, M. L. Siew, R. A. Lewis, A. Fouras, A. B. te Pas, K. K. Siu, N. Yagi, K. Uesugi, and M. J. Wallace, “Imaging lung aeration and lung liquid clearance at birth using phase contrast X-ray imaging,” Clin. Exp. Pharmacol. Physiol. 36(1), 117–125 (2009).
[Crossref] [PubMed]

M. J. Kitchen, R. A. Lewis, M. J. Morgan, M. J. Wallace, M. L. Siew, K. K. W. Siu, A. Habib, A. Fouras, N. Yagi, K. Uesugi, and S. B. Hooper, “Dynamic measures of regional lung air volume using phase contrast x-ray imaging,” Phys. Med. Biol. 53(21), 6065–6077 (2008).
[Crossref] [PubMed]

R. A. Lewis, N. Yagi, M. J. Kitchen, M. J. Morgan, D. Paganin, K. K. W. Siu, K. Pavlov, I. Williams, K. Uesugi, M. J. Wallace, C. J. Hall, J. Whitley, and S. B. Hooper, “Dynamic imaging of the lungs using x-ray phase contrast,” Phys. Med. Biol. 50(21), 5031–5040 (2005).
[Crossref] [PubMed]

Whitley, J.

R. A. Lewis, N. Yagi, M. J. Kitchen, M. J. Morgan, D. Paganin, K. K. W. Siu, K. Pavlov, I. Williams, K. Uesugi, M. J. Wallace, C. J. Hall, J. Whitley, and S. B. Hooper, “Dynamic imaging of the lungs using x-ray phase contrast,” Phys. Med. Biol. 50(21), 5031–5040 (2005).
[Crossref] [PubMed]

Williams, I.

R. A. Lewis, N. Yagi, M. J. Kitchen, M. J. Morgan, D. Paganin, K. K. W. Siu, K. Pavlov, I. Williams, K. Uesugi, M. J. Wallace, C. J. Hall, J. Whitley, and S. B. Hooper, “Dynamic imaging of the lungs using x-ray phase contrast,” Phys. Med. Biol. 50(21), 5031–5040 (2005).
[Crossref] [PubMed]

Yagi, N.

S. B. Hooper, M. J. Kitchen, M. L. Siew, R. A. Lewis, A. Fouras, A. B. te Pas, K. K. Siu, N. Yagi, K. Uesugi, and M. J. Wallace, “Imaging lung aeration and lung liquid clearance at birth using phase contrast X-ray imaging,” Clin. Exp. Pharmacol. Physiol. 36(1), 117–125 (2009).
[Crossref] [PubMed]

M. J. Kitchen, R. A. Lewis, M. J. Morgan, M. J. Wallace, M. L. Siew, K. K. W. Siu, A. Habib, A. Fouras, N. Yagi, K. Uesugi, and S. B. Hooper, “Dynamic measures of regional lung air volume using phase contrast x-ray imaging,” Phys. Med. Biol. 53(21), 6065–6077 (2008).
[Crossref] [PubMed]

K. K. W. Siu, K. S. Morgan, D. M. Paganin, R. Boucher, K. Uesugi, N. Yagi, and D. W. Parsons, “Phase contrast X-ray imaging for the non-invasive detection of airway surfaces and lumen characteristics in mouse models of airway disease,” Eur. J. Radiol. 68(3Suppl), S22–S26 (2008).
[Crossref] [PubMed]

R. A. Lewis, N. Yagi, M. J. Kitchen, M. J. Morgan, D. Paganin, K. K. W. Siu, K. Pavlov, I. Williams, K. Uesugi, M. J. Wallace, C. J. Hall, J. Whitley, and S. B. Hooper, “Dynamic imaging of the lungs using x-ray phase contrast,” Phys. Med. Biol. 50(21), 5031–5040 (2005).
[Crossref] [PubMed]

M. J. Kitchen, D. Paganin, R. A. Lewis, N. Yagi, K. Uesugi, and S. T. Mudie, “On the origin of speckle in x-ray phase contrast images of lung tissue,” Phys. Med. Biol. 49(18), 4335–4348 (2004).
[Crossref] [PubMed]

Zin, W. A.

D. S. Faffe, P. R. M. Rocco, E. M. Negri, and W. A. Zin, “Comparison of rat and mouse pulmonary tissue mechanical properties and histology,” J. Appl. Physiol. 92(1), 230–234 (2002).
[Crossref] [PubMed]

Ann. Biomed. Eng. (2)

A. Fouras, B. J. Allison, M. J. Kitchen, S. Dubsky, J. Nguyen, K. Hourigan, K. K. W. Siu, R. A. Lewis, M. J. Wallace, and S. B. Hooper, “Altered lung motion is a sensitive indicator of regional lung disease,” Ann. Biomed. Eng. 40(5), 1160–1169 (2012).
[Crossref] [PubMed]

R. A. Jamison, S. Dubsky, K. K. W. Siu, K. Hourigan, and A. Fouras, “X-ray velocimetry and haemodynamic forces within a stenosed femoral model at physiological flow rates,” Ann. Biomed. Eng. 39(6), 1643–1653 (2011).
[Crossref] [PubMed]

Appl. Phys. Lett. (1)

S. C. Irvine, D. M. Paganin, S. Dubsky, R. A. Lewis, and A. Fouras, “Phase retrieval for improved three-dimensional velocimetry of dynamic x-ray blood speckle,” Appl. Phys. Lett. 93(15), 153901 (2008).
[Crossref]

Clin. Exp. Pharmacol. Physiol. (2)

A. Fouras, J. Dusting, J. Sheridan, M. Kawahashi, H. Hirahara, and K. Hourigan, “Engineering imaging: using particle image velocimetry to see physiology in a new light,” Clin. Exp. Pharmacol. Physiol. 36(2), 238–247 (2009).
[Crossref] [PubMed]

S. B. Hooper, M. J. Kitchen, M. L. Siew, R. A. Lewis, A. Fouras, A. B. te Pas, K. K. Siu, N. Yagi, K. Uesugi, and M. J. Wallace, “Imaging lung aeration and lung liquid clearance at birth using phase contrast X-ray imaging,” Clin. Exp. Pharmacol. Physiol. 36(1), 117–125 (2009).
[Crossref] [PubMed]

Eur. J. Radiol. (1)

K. K. W. Siu, K. S. Morgan, D. M. Paganin, R. Boucher, K. Uesugi, N. Yagi, and D. W. Parsons, “Phase contrast X-ray imaging for the non-invasive detection of airway surfaces and lumen characteristics in mouse models of airway disease,” Eur. J. Radiol. 68(3Suppl), S22–S26 (2008).
[Crossref] [PubMed]

Exp. Fluids (1)

R. J. Adrian, “Twenty years of particle image velocimetry,” Exp. Fluids 39(2), 159–169 (2005).
[Crossref]

J. Appl. Phys. (3)

I. Ng, D. M. Paganin, and A. Fouras, “Optimization of in-line phase contrast particle image velocimetry using a laboratory x-ray source,” J. Appl. Phys. 112(7), 074701 (2012).
[Crossref]

A. Fouras, J. Dusting, R. Lewis, and K. Hourigan, “Three-dimensional synchrotron x-ray particle image velocimetry,” J. Appl. Phys. 102(6), 064916 (2007).
[Crossref]

A. Fouras, M. J. Kitchen, S. Dubsky, R. A. Lewis, S. B. Hooper, and K. Hourigan, “The past, present, and future of x-ray technology for in vivo imaging of function and form,” J. Appl. Phys. 105(10), 102009 (2009).
[Crossref]

J. Appl. Physiol. (1)

D. S. Faffe, P. R. M. Rocco, E. M. Negri, and W. A. Zin, “Comparison of rat and mouse pulmonary tissue mechanical properties and histology,” J. Appl. Physiol. 92(1), 230–234 (2002).
[Crossref] [PubMed]

J. R. Soc. Interface (1)

S. Dubsky, S. B. Hooper, K. K. W. Siu, and A. Fouras, “Synchrotron-based dynamic computed tomography of tissue motion for regional lung function measurement,” J. R. Soc. Interface 9(74), 2213–2224 (2012).
[Crossref] [PubMed]

J. Synchrotron Radiat. (2)

R. P. Murrie, A. W. Stevenson, K. S. Morgan, A. Fouras, D. M. Paganin, and K. K. W. Siu, “Feasibility study of propagation-based phase-contrast X-ray lung imaging on the Imaging and Medical beamline at the Australian Synchrotron,” J. Synchrotron Radiat. 21(2), 430–445 (2014).
[Crossref] [PubMed]

R. P. Murrie, K. S. Morgan, A. Maksimenko, A. Fouras, D. M. Paganin, C. Hall, K. K. W. Siu, D. W. Parsons, and M. Donnelley, “Live small-animal X-ray lung velocimetry and lung micro-tomography at the Australian Synchrotron Imaging and Medical Beamline,” J. Synchrotron Radiat. 22(4), 1049–1055 (2015).
[Crossref] [PubMed]

Nature (1)

T. D. Dudderar and P. G. Simpkins, “Laser speckle photography in a fluid medium,” Nature 270(5632), 45–47 (1977).
[Crossref]

Nucl. Instrum. Methods Phys. Res. A (1)

T. Takeda, “Phase-contrast and fluorescent X-ray imaging for biomedical researches,” Nucl. Instrum. Methods Phys. Res. A 548(1–2), 38–46 (2005).
[Crossref]

Opt. Commun. (1)

K. S. Morgan, K. K. W. Siu, and D. M. Paganin, “The projection approximation versus an exact solution for X-ray phase contrast imaging, with a plane wave scattered by a dielectric cylinder,” Opt. Commun. 283(23), 4601–4608 (2010).
[Crossref]

Phys. Med. Biol. (4)

R. A. Lewis, N. Yagi, M. J. Kitchen, M. J. Morgan, D. Paganin, K. K. W. Siu, K. Pavlov, I. Williams, K. Uesugi, M. J. Wallace, C. J. Hall, J. Whitley, and S. B. Hooper, “Dynamic imaging of the lungs using x-ray phase contrast,” Phys. Med. Biol. 50(21), 5031–5040 (2005).
[Crossref] [PubMed]

M. J. Kitchen, R. A. Lewis, M. J. Morgan, M. J. Wallace, M. L. Siew, K. K. W. Siu, A. Habib, A. Fouras, N. Yagi, K. Uesugi, and S. B. Hooper, “Dynamic measures of regional lung air volume using phase contrast x-ray imaging,” Phys. Med. Biol. 53(21), 6065–6077 (2008).
[Crossref] [PubMed]

A. Bravin, P. Coan, and P. Suortti, “X-ray phase-contrast imaging: from pre-clinical applications towards clinics,” Phys. Med. Biol. 58(1), R1–R35 (2013).
[Crossref] [PubMed]

M. J. Kitchen, D. Paganin, R. A. Lewis, N. Yagi, K. Uesugi, and S. T. Mudie, “On the origin of speckle in x-ray phase contrast images of lung tissue,” Phys. Med. Biol. 49(18), 4335–4348 (2004).
[Crossref] [PubMed]

Respir. Res. (1)

C. G. Irvin and J. H. T. Bates, “Measuring the lung function in the mouse: the challenge of size,” Respir. Res. 4(1), 4 (2003).
[Crossref] [PubMed]

Other (5)

J. H. Hubbell and S. M. Seltzer, “Tables of X-ray mass attenuation coefficients and mass energy absorption coefficients from 1 keV to 20 MeV for elements Z=1 to 92 and 48 additional substances of dosimetric interest,” (National Institute of Standards and Technology, 2011), http://physics.nist.gov/PhysRefData/XrayMassCoef/cover.html .

D. Paganin, Coherent X-Ray Optics (Oxford University Press, 2006).

S. Dubsky, S. B. Hooper, K. K. W. Siu, and A. Fouras, “Dynamic four-dimensional X-ray PIV of the lung”, presented at the 9th International Symposium on Particle Image Velocimetry, Kobe, Japan, 21–23 July 2011.

Excillum, “MetalJet Sources”, (Excillum, 2015), http://www.excillum.com/products-and-services/metaljet-x-ray-sources.html .

Varian, “PaxScan® 2020X Amorphous Silicon Digital X-ray Detector,” (Varian, 2015), https://www.varian.com/media/100772/browser .

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 A schematic of a propagation-based phase contrast x-ray imaging set-up of the lungs. The x-rays propagate over the distance R1 from the source through the sample, where they undergo refraction based on the refractive indices of the material interfaces. The refracted and diffracted x-rays then propagate over distance R2 to the detector, where a Fresnel diffraction pattern is recorded.
Fig. 2
Fig. 2 Schematic diagram illustrating the technique of x-ray velocimetry, where the speckle images taken at two different time points are discretised into interrogation windows, the cross correlation calculated for each window, and the resultant vector field produced to show the motion of the sample.
Fig. 3
Fig. 3 Generation of simulated lung speckle images with a rotational motion centered at the middle of the image. (a) A high-resolution (1 µm pixel size) phase contrast x-ray image of air-filled sphere surrounded by lung tissue, simulating a single alveolus, generated using a polychromatic spectrum based on the Excillum source. (b) Single white pixels build the sphere position map for generating the motion-blurred speckle image. The sphere image from a) is convolved with the motion-blur position map from b) and the intensity is adjusted dependent on exposure time, with (c-d) showing close up images of how the speckle is generated by increasing the number of overlying spheres. (e) Shows the speckle image generated, with motion-blur evident toward the outer edges of the image, and (f) shows the final image with noise, source and detector blurring added.
Fig. 4
Fig. 4 Rotationally averaged power spectrum of the lung speckle images at different exposure times, demonstrating that the application of an 8px median filter to the laboratory images, a common experimental post-processing technique, reduces the noise floor of the images, but does not remove the important spatial frequency data associated with the lung speckle.
Fig. 5
Fig. 5 The optimum exposure time ratio was investigated for the range of velocities present in the rotational images. The lowest percentage error in the XV vector fields was consistently seen in our 1:2 ratio data set. Blue points indicate sampled points, at εt = 0.25, 0.33, 0.5, 0.66, 0.75 and 1.0. The data set for this image was an exposure time of 25 ms, with the dead-time varying to match the exposure time ratio. Images were rotating at 10 rpm, and simulate a laboratory x-ray source.
Fig. 6
Fig. 6 Magnitude of the velocity vectors in the rotational image for speckle images simulated on a laboratory source (left) and synchrotron source (right), at exposure times of 10, 30 and 70 ms at 10 rpm. The red data points show the theoretical or ‘perfect’ vector field and the blue data points show the simulated experimental results.
Fig. 7
Fig. 7 The XV percentage error as a function of exposure time and speckle velocity for laboratory (top) and synchrotron (bottom) generated images. Dotted lines show the degree of rotation between images (i.e. rotation at start of T2 from 0°). Solid lines show the blurred speckle displacement between images. As the total image cycle is made up of 3x exposure times (1 exposure and 2 times the exposure time between exposures), the total blurred speckle displacement cannot be greater than 3 blurred speckle widths.

Tables (1)

Tables Icon

Table 1 Summary of parameters used in both producing the lung speckle images based on both a synchrotron and laboratory x-ray source, and the XV parameters analysed

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

r o t a t i o n o f n t h i m a g e = ( n ± Σ ) f u l l r o t a t i o n a n g l e 150
θ = s p e e d o f r o t a t i o n ( e x p o s u r e t i m e + d e a d - t i m e b e t w e e n e x p o s u r e s ) .

Metrics