Abstract

To monitor biofilm growth on polydimethylsiloxane in a photobioreactor effectively, the biofilm cells and liquids were separated and measured using a sensor with two U-shaped, double-tapered, fiber-optic probes (Sen. and Ref. probes). The probes’ Au-coated hemispherical tips enabled double-pass evanescent field absorption. The Sen. probe sensed the cells and liquids inside the biofilm. The polyimide–silica hybrid-film-coated Ref. probe separated the liquids from the biofilm cells and analyzed the liquid concentration. The biofilm structure and active biomass were also examined to confirm the effectiveness of the measurement using a simulation model. The sensor was found to effectively respond to the biofilm growth in the adsorption through exponential phases at thicknesses of 0–536 μm.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Fiber-optic differential absorption sensor for accurately monitoring biomass in a photobioreactor

Nianbing Zhong, Qiang Liao, Xun Zhu, and Mingfu Zhao
Appl. Opt. 54(2) 228-235 (2015)

Luminous exothermic hollow optical elements for enhancement of biofilm growth and activity

Nianbing Zhong, Mingfu Zhao, Lianchao Zhong, Shan Li, Binbin Luo, Bin Tang, Tao Song, Shenghui Shi, Xinyu Hu, Xin Xin, Ruohua Wu, Yanyan Cen, and Zhengkun Wang
Opt. Express 25(6) 5876-5890 (2017)

Fiber-optic microsensors to measure backscattered light intensity in biofilms

Haluk Beyenal, Zbigniew Lewandowski, Chris Yakymyshyn, Brad Lemley, and Joe Wehri
Appl. Opt. 39(19) 3408-3412 (2000)

References

  • View by:
  • |
  • |
  • |

  1. H. C. Flemming and J. Wingender, “The biofilm matrix,” Nat. Rev. Microbiol. 8(9), 623–633 (2010).
    [PubMed]
  2. L. Hall-Stoodley, J. W. Costerton, and P. Stoodley, “Bacterial biofilms: from the Natural environment to infectious diseases,” Nat. Rev. Microbiol. 2(2), 95–108 (2004).
    [Crossref] [PubMed]
  3. D. Davies, “Understanding biofilm resistance to antibacterial agents,” Nat. Rev. Drug Discov. 2(2), 114–122 (2003).
    [Crossref] [PubMed]
  4. N. C. Francis, I. Kassam, B. Nowroozi, W. S. Grundfest, and Z. D. Taylor, “Analysis of flexible substrates for clinical translation of laser-generated shockwave therapy,” Biomed. Opt. Express 6(3), 827–837 (2015).
    [Crossref] [PubMed]
  5. Y. T. Zheng, M. Toyofuku, N. Nomura, and S. Shigeto, “Correlation of Carotenoid accumulation with aggregation and biofilm development in Rhodococcus sp. SD-74,” Anal. Chem. 85(15), 7295–7301 (2013).
    [Crossref] [PubMed]
  6. K. Biswas, M. W. Taylor, and S. J. Turner, “Successional development of biofilms in moving bed biofilm reactor (MBBR) systems treating municipal wastewater,” Appl. Microbiol. Biotechnol. 98(3), 1429–1440 (2014).
    [Crossref] [PubMed]
  7. Q. Liao, N. B. Zhong, X. Zhu, R. Chen, Y. Z. Wang, and D. J. Lee, “Enhancement of hydrogen production by adsorption of Rhodoseudomonas palustris CQK 01 on a new support material,” Int. J. Hydrogen Energy 38(35), 15730–15737 (2013).
    [Crossref]
  8. N. Zhong, Q. Liao, X. Zhu, and R. Chen, “A fiber-optic sensor for accurately monitoring biofilm growth in a hydrogen production photobioreactor,” Anal. Chem. 86(8), 3994–4001 (2014).
    [Crossref] [PubMed]
  9. R. Bakke, R. Kommedal, and S. Kalvenes, “Quantification of biofilm accumulation by an optical approach,” J. Microbiol. Methods 44(1), 13–26 (2001).
    [Crossref] [PubMed]
  10. T. Schmid, C. Helmbrecht, U. Panne, C. Haisch, and R. Niessner, “Process analysis of biofilms by photoacoustic spectroscopy,” Anal. Bioanal. Chem. 375(8), 1124–1129 (2003).
    [PubMed]
  11. M. Fischer, M. Wahl, and G. Friedrichs, “Design and field application of a UV-LED based optical fiber biofilm sensor,” Biosens. Bioelectron. 33(1), 172–178 (2012).
    [Crossref] [PubMed]
  12. J. T. Babauta, H. D. Nguyen, and H. Beyenal, “Redox and pH microenvironments within Shewanella oneidensis MR-1 biofilms reveal an electron transfer mechanism,” Environ. Sci. Technol. 45(15), 6654–6660 (2011).
    [Crossref] [PubMed]
  13. R. Chen, Y. K. Pu, Q. Liao, X. Zhu, and Y. Z. Wang, “A simulation on PSB biofilm formation with considering cell inactivation,” Int. J. Hydrogen Energy 38(35), 15670–15679 (2013).
    [Crossref]
  14. J. Yin and Y. Xia, “Chemical visualization of individual chondrocytes in articular cartilage by attenuated-total-reflection Fourier Transform Infrared Microimaging,” Biomed. Opt. Express 2(4), 937–945 (2011).
    [Crossref] [PubMed]
  15. N. Zhong, X. Zhu, Q. Liao, Y. Wang, R. Chen, and Y. Sun, “Effects of surface roughness on optical properties and sensitivity of fiber-optic evanescent wave sensors,” Appl. Opt. 52(17), 3937–3945 (2013).
    [Crossref] [PubMed]
  16. P. Nath, “Enhanced sensitive fiber-optic sensor with double pass evanescent field absorption,” Microw. Opt. Technol. Lett. 51(12), 3004–3006 (2009).
    [Crossref]
  17. N. Zhong, Q. Liao, X. Zhu, Y. Wang, and R. Chen, “High-quality fiber fabrication in buffered hydrofluoric acid solution with ultrasonic agitation,” Appl. Opt. 52(7), 1432–1440 (2013).
    [Crossref] [PubMed]
  18. S. Mononobe and M. Ohtsu, “Fabrication of a pencil-shaped fiber probe for near-field optics by selective chemical etching,” J. Lightwave Technol. 14(10), 2231–2235 (1996).
    [Crossref]
  19. T. Saiki and K. Matsuda, “Near-field optical fiber probe optimized for illumination–collection hybrid mode operation,” Appl. Phys. Lett. 74(19), 2773–2775 (1999).
    [Crossref]
  20. K. Maruyama, H. Ohkawa, S. Ogawa, A. Ueda, O. Niwa, and K. Suzuki, “Fabrication and characterization of a nanometer-sized optical fiber electrode based on selective chemical etching for scanning electrochemical/optical microscopy,” Anal. Chem. 78(6), 1904–1912 (2006).
    [Crossref] [PubMed]
  21. N. Zhong, Q. Liao, X. Zhu, and M. Zhao, “Fiber Bragg grating with polyimide-silica hybrid membrane for accurately monitoring cell growth and temperature in a photobioreactor,” Anal. Chem. 86(18), 9278–9285 (2014).
    [Crossref] [PubMed]
  22. L. Li, R. Chen, X. Zhu, H. Wang, Y. Wang, Q. Liao, and D. Wang, “Optofluidic microreactors with TiO2-coated fiberglass,” ACS Appl. Mater. Interfaces 5(23), 12548–12553 (2013).
    [Crossref] [PubMed]
  23. A. Oláh, H. Hillborg, and G. J. Vancso, “Hydrophobic recovery of UV/ozone treated poly (dimethylsiloxane): adhesion studies by contact mechanics and mechanism of surface modification,” Appl. Surf. Sci. 239(3-4), 410–423 (2005).
    [Crossref]
  24. R. Bakke and P. Q. Olsson, “Biofilm thickness measurements by light microscopy,” J. Microbiol. Methods 5(2), 93–98 (1986).
    [Crossref]
  25. A. Iadicicco, S. Campopiano, A. Cutolo, M. Giordano, and A. Cusano, “Self temperature referenced refractive index sensor by non-uniform thinned fiber Bragg gratings,” Sens. Actuators B Chem. 120(1), 231–237 (2006).
    [Crossref]
  26. B. D. Gupta, H. Dodeja, and A. K. Tomar, “Fibre-optic evanescent field absorption sensor based on a U-shaped probe,” Opt. Quantum Electron. 281(11), 629–1639 (1996).
  27. P. Nath, “Enhanced sensitive fiber-optic sensor with double pass evanescent field absorption,” Microw. Opt. Technol. Lett. 51(12), 3004–3006 (2009).
    [Crossref]
  28. R. Philip-Chandy, P. J. Scully, P. Eldridge, H. J. Kadim, M. G. Grapin, M. G. Jonca, M. G. D’Ambrosio, and F. Colin, “An optical fiber sensor for biofilm measurement using intensity modulation and image analysis,” IEEE J. Sel. Top. Quantum Electron. 6(5), 764–772 (2000).
    [Crossref]
  29. C. Sandt, J. Barbeau, M. A. Gagnon, and M. Lafleur, “Role of the ammonium group in the diffusion of quaternary ammonium compounds in Streptococcus mutans biofilms,” J. Antimicrob. Chemother. 60(6), 1281–1287 (2007).
    [Crossref] [PubMed]
  30. S.-J. Shin, J.-K. Lee, H.-Y. Ha, S.-A. Hong, H.-S. Chun, and I.-H. Oh, “Effect of the catalytic ink preparation method on the performance of polymer electrolyte membrane fuel cells,” J. Power Sources 106(1), 146–152 (2002).
    [Crossref]
  31. P. Polynkin, A. Polynkin, N. Peyghambarian, and M. Mansuripur, “Evanescent field-based optical fiber sensing device for measuring the refractive index of liquids in microfluidic channels,” Opt. Lett. 30(11), 1273–1275 (2005).
    [Crossref] [PubMed]
  32. M. Heidrich, M. P. Kühnel, M. Kellner, R.-A. Lorbeer, T. Lange, A. Winkel, M. Stiesch, H. Meyer, and A. Heisterkamp, “3D imaging of biofilms on implants by detection of scattered light with a scanning laser optical tomograph,” Biomed. Opt. Express 2(11), 2982–2994 (2011).
    [Crossref] [PubMed]
  33. C. Zhang, X. Zhu, Q. Liao, Y. Z. Wang, J. Li, Y. D. Ding, and H. Wang, “Performance of a groove-type photobioreactor for hydrogen production by immobilized photosynthetic bacteria,” Int. J. Hydrogen Energy 35(11), 5284–5292 (2010).
    [Crossref]
  34. R. Srinivasan, N. Sailasuta, R. Hurd, S. Nelson, and D. Pelletier, “Evidence of elevated glutamate in multiple sclerosis using magnetic resonance spectroscopy at 3 T,” Brain 128(5), 1016–1025 (2005).
    [Crossref] [PubMed]

2015 (1)

2014 (3)

K. Biswas, M. W. Taylor, and S. J. Turner, “Successional development of biofilms in moving bed biofilm reactor (MBBR) systems treating municipal wastewater,” Appl. Microbiol. Biotechnol. 98(3), 1429–1440 (2014).
[Crossref] [PubMed]

N. Zhong, Q. Liao, X. Zhu, and R. Chen, “A fiber-optic sensor for accurately monitoring biofilm growth in a hydrogen production photobioreactor,” Anal. Chem. 86(8), 3994–4001 (2014).
[Crossref] [PubMed]

N. Zhong, Q. Liao, X. Zhu, and M. Zhao, “Fiber Bragg grating with polyimide-silica hybrid membrane for accurately monitoring cell growth and temperature in a photobioreactor,” Anal. Chem. 86(18), 9278–9285 (2014).
[Crossref] [PubMed]

2013 (6)

L. Li, R. Chen, X. Zhu, H. Wang, Y. Wang, Q. Liao, and D. Wang, “Optofluidic microreactors with TiO2-coated fiberglass,” ACS Appl. Mater. Interfaces 5(23), 12548–12553 (2013).
[Crossref] [PubMed]

Q. Liao, N. B. Zhong, X. Zhu, R. Chen, Y. Z. Wang, and D. J. Lee, “Enhancement of hydrogen production by adsorption of Rhodoseudomonas palustris CQK 01 on a new support material,” Int. J. Hydrogen Energy 38(35), 15730–15737 (2013).
[Crossref]

Y. T. Zheng, M. Toyofuku, N. Nomura, and S. Shigeto, “Correlation of Carotenoid accumulation with aggregation and biofilm development in Rhodococcus sp. SD-74,” Anal. Chem. 85(15), 7295–7301 (2013).
[Crossref] [PubMed]

R. Chen, Y. K. Pu, Q. Liao, X. Zhu, and Y. Z. Wang, “A simulation on PSB biofilm formation with considering cell inactivation,” Int. J. Hydrogen Energy 38(35), 15670–15679 (2013).
[Crossref]

N. Zhong, X. Zhu, Q. Liao, Y. Wang, R. Chen, and Y. Sun, “Effects of surface roughness on optical properties and sensitivity of fiber-optic evanescent wave sensors,” Appl. Opt. 52(17), 3937–3945 (2013).
[Crossref] [PubMed]

N. Zhong, Q. Liao, X. Zhu, Y. Wang, and R. Chen, “High-quality fiber fabrication in buffered hydrofluoric acid solution with ultrasonic agitation,” Appl. Opt. 52(7), 1432–1440 (2013).
[Crossref] [PubMed]

2012 (1)

M. Fischer, M. Wahl, and G. Friedrichs, “Design and field application of a UV-LED based optical fiber biofilm sensor,” Biosens. Bioelectron. 33(1), 172–178 (2012).
[Crossref] [PubMed]

2011 (3)

2010 (2)

C. Zhang, X. Zhu, Q. Liao, Y. Z. Wang, J. Li, Y. D. Ding, and H. Wang, “Performance of a groove-type photobioreactor for hydrogen production by immobilized photosynthetic bacteria,” Int. J. Hydrogen Energy 35(11), 5284–5292 (2010).
[Crossref]

H. C. Flemming and J. Wingender, “The biofilm matrix,” Nat. Rev. Microbiol. 8(9), 623–633 (2010).
[PubMed]

2009 (2)

P. Nath, “Enhanced sensitive fiber-optic sensor with double pass evanescent field absorption,” Microw. Opt. Technol. Lett. 51(12), 3004–3006 (2009).
[Crossref]

P. Nath, “Enhanced sensitive fiber-optic sensor with double pass evanescent field absorption,” Microw. Opt. Technol. Lett. 51(12), 3004–3006 (2009).
[Crossref]

2007 (1)

C. Sandt, J. Barbeau, M. A. Gagnon, and M. Lafleur, “Role of the ammonium group in the diffusion of quaternary ammonium compounds in Streptococcus mutans biofilms,” J. Antimicrob. Chemother. 60(6), 1281–1287 (2007).
[Crossref] [PubMed]

2006 (2)

K. Maruyama, H. Ohkawa, S. Ogawa, A. Ueda, O. Niwa, and K. Suzuki, “Fabrication and characterization of a nanometer-sized optical fiber electrode based on selective chemical etching for scanning electrochemical/optical microscopy,” Anal. Chem. 78(6), 1904–1912 (2006).
[Crossref] [PubMed]

A. Iadicicco, S. Campopiano, A. Cutolo, M. Giordano, and A. Cusano, “Self temperature referenced refractive index sensor by non-uniform thinned fiber Bragg gratings,” Sens. Actuators B Chem. 120(1), 231–237 (2006).
[Crossref]

2005 (3)

A. Oláh, H. Hillborg, and G. J. Vancso, “Hydrophobic recovery of UV/ozone treated poly (dimethylsiloxane): adhesion studies by contact mechanics and mechanism of surface modification,” Appl. Surf. Sci. 239(3-4), 410–423 (2005).
[Crossref]

P. Polynkin, A. Polynkin, N. Peyghambarian, and M. Mansuripur, “Evanescent field-based optical fiber sensing device for measuring the refractive index of liquids in microfluidic channels,” Opt. Lett. 30(11), 1273–1275 (2005).
[Crossref] [PubMed]

R. Srinivasan, N. Sailasuta, R. Hurd, S. Nelson, and D. Pelletier, “Evidence of elevated glutamate in multiple sclerosis using magnetic resonance spectroscopy at 3 T,” Brain 128(5), 1016–1025 (2005).
[Crossref] [PubMed]

2004 (1)

L. Hall-Stoodley, J. W. Costerton, and P. Stoodley, “Bacterial biofilms: from the Natural environment to infectious diseases,” Nat. Rev. Microbiol. 2(2), 95–108 (2004).
[Crossref] [PubMed]

2003 (2)

D. Davies, “Understanding biofilm resistance to antibacterial agents,” Nat. Rev. Drug Discov. 2(2), 114–122 (2003).
[Crossref] [PubMed]

T. Schmid, C. Helmbrecht, U. Panne, C. Haisch, and R. Niessner, “Process analysis of biofilms by photoacoustic spectroscopy,” Anal. Bioanal. Chem. 375(8), 1124–1129 (2003).
[PubMed]

2002 (1)

S.-J. Shin, J.-K. Lee, H.-Y. Ha, S.-A. Hong, H.-S. Chun, and I.-H. Oh, “Effect of the catalytic ink preparation method on the performance of polymer electrolyte membrane fuel cells,” J. Power Sources 106(1), 146–152 (2002).
[Crossref]

2001 (1)

R. Bakke, R. Kommedal, and S. Kalvenes, “Quantification of biofilm accumulation by an optical approach,” J. Microbiol. Methods 44(1), 13–26 (2001).
[Crossref] [PubMed]

2000 (1)

R. Philip-Chandy, P. J. Scully, P. Eldridge, H. J. Kadim, M. G. Grapin, M. G. Jonca, M. G. D’Ambrosio, and F. Colin, “An optical fiber sensor for biofilm measurement using intensity modulation and image analysis,” IEEE J. Sel. Top. Quantum Electron. 6(5), 764–772 (2000).
[Crossref]

1999 (1)

T. Saiki and K. Matsuda, “Near-field optical fiber probe optimized for illumination–collection hybrid mode operation,” Appl. Phys. Lett. 74(19), 2773–2775 (1999).
[Crossref]

1996 (2)

B. D. Gupta, H. Dodeja, and A. K. Tomar, “Fibre-optic evanescent field absorption sensor based on a U-shaped probe,” Opt. Quantum Electron. 281(11), 629–1639 (1996).

S. Mononobe and M. Ohtsu, “Fabrication of a pencil-shaped fiber probe for near-field optics by selective chemical etching,” J. Lightwave Technol. 14(10), 2231–2235 (1996).
[Crossref]

1986 (1)

R. Bakke and P. Q. Olsson, “Biofilm thickness measurements by light microscopy,” J. Microbiol. Methods 5(2), 93–98 (1986).
[Crossref]

Babauta, J. T.

J. T. Babauta, H. D. Nguyen, and H. Beyenal, “Redox and pH microenvironments within Shewanella oneidensis MR-1 biofilms reveal an electron transfer mechanism,” Environ. Sci. Technol. 45(15), 6654–6660 (2011).
[Crossref] [PubMed]

Bakke, R.

R. Bakke, R. Kommedal, and S. Kalvenes, “Quantification of biofilm accumulation by an optical approach,” J. Microbiol. Methods 44(1), 13–26 (2001).
[Crossref] [PubMed]

R. Bakke and P. Q. Olsson, “Biofilm thickness measurements by light microscopy,” J. Microbiol. Methods 5(2), 93–98 (1986).
[Crossref]

Barbeau, J.

C. Sandt, J. Barbeau, M. A. Gagnon, and M. Lafleur, “Role of the ammonium group in the diffusion of quaternary ammonium compounds in Streptococcus mutans biofilms,” J. Antimicrob. Chemother. 60(6), 1281–1287 (2007).
[Crossref] [PubMed]

Beyenal, H.

J. T. Babauta, H. D. Nguyen, and H. Beyenal, “Redox and pH microenvironments within Shewanella oneidensis MR-1 biofilms reveal an electron transfer mechanism,” Environ. Sci. Technol. 45(15), 6654–6660 (2011).
[Crossref] [PubMed]

Biswas, K.

K. Biswas, M. W. Taylor, and S. J. Turner, “Successional development of biofilms in moving bed biofilm reactor (MBBR) systems treating municipal wastewater,” Appl. Microbiol. Biotechnol. 98(3), 1429–1440 (2014).
[Crossref] [PubMed]

Campopiano, S.

A. Iadicicco, S. Campopiano, A. Cutolo, M. Giordano, and A. Cusano, “Self temperature referenced refractive index sensor by non-uniform thinned fiber Bragg gratings,” Sens. Actuators B Chem. 120(1), 231–237 (2006).
[Crossref]

Chen, R.

N. Zhong, Q. Liao, X. Zhu, and R. Chen, “A fiber-optic sensor for accurately monitoring biofilm growth in a hydrogen production photobioreactor,” Anal. Chem. 86(8), 3994–4001 (2014).
[Crossref] [PubMed]

R. Chen, Y. K. Pu, Q. Liao, X. Zhu, and Y. Z. Wang, “A simulation on PSB biofilm formation with considering cell inactivation,” Int. J. Hydrogen Energy 38(35), 15670–15679 (2013).
[Crossref]

N. Zhong, X. Zhu, Q. Liao, Y. Wang, R. Chen, and Y. Sun, “Effects of surface roughness on optical properties and sensitivity of fiber-optic evanescent wave sensors,” Appl. Opt. 52(17), 3937–3945 (2013).
[Crossref] [PubMed]

N. Zhong, Q. Liao, X. Zhu, Y. Wang, and R. Chen, “High-quality fiber fabrication in buffered hydrofluoric acid solution with ultrasonic agitation,” Appl. Opt. 52(7), 1432–1440 (2013).
[Crossref] [PubMed]

Q. Liao, N. B. Zhong, X. Zhu, R. Chen, Y. Z. Wang, and D. J. Lee, “Enhancement of hydrogen production by adsorption of Rhodoseudomonas palustris CQK 01 on a new support material,” Int. J. Hydrogen Energy 38(35), 15730–15737 (2013).
[Crossref]

L. Li, R. Chen, X. Zhu, H. Wang, Y. Wang, Q. Liao, and D. Wang, “Optofluidic microreactors with TiO2-coated fiberglass,” ACS Appl. Mater. Interfaces 5(23), 12548–12553 (2013).
[Crossref] [PubMed]

Chun, H.-S.

S.-J. Shin, J.-K. Lee, H.-Y. Ha, S.-A. Hong, H.-S. Chun, and I.-H. Oh, “Effect of the catalytic ink preparation method on the performance of polymer electrolyte membrane fuel cells,” J. Power Sources 106(1), 146–152 (2002).
[Crossref]

Colin, F.

R. Philip-Chandy, P. J. Scully, P. Eldridge, H. J. Kadim, M. G. Grapin, M. G. Jonca, M. G. D’Ambrosio, and F. Colin, “An optical fiber sensor for biofilm measurement using intensity modulation and image analysis,” IEEE J. Sel. Top. Quantum Electron. 6(5), 764–772 (2000).
[Crossref]

Costerton, J. W.

L. Hall-Stoodley, J. W. Costerton, and P. Stoodley, “Bacterial biofilms: from the Natural environment to infectious diseases,” Nat. Rev. Microbiol. 2(2), 95–108 (2004).
[Crossref] [PubMed]

Cusano, A.

A. Iadicicco, S. Campopiano, A. Cutolo, M. Giordano, and A. Cusano, “Self temperature referenced refractive index sensor by non-uniform thinned fiber Bragg gratings,” Sens. Actuators B Chem. 120(1), 231–237 (2006).
[Crossref]

Cutolo, A.

A. Iadicicco, S. Campopiano, A. Cutolo, M. Giordano, and A. Cusano, “Self temperature referenced refractive index sensor by non-uniform thinned fiber Bragg gratings,” Sens. Actuators B Chem. 120(1), 231–237 (2006).
[Crossref]

D’Ambrosio, M. G.

R. Philip-Chandy, P. J. Scully, P. Eldridge, H. J. Kadim, M. G. Grapin, M. G. Jonca, M. G. D’Ambrosio, and F. Colin, “An optical fiber sensor for biofilm measurement using intensity modulation and image analysis,” IEEE J. Sel. Top. Quantum Electron. 6(5), 764–772 (2000).
[Crossref]

Davies, D.

D. Davies, “Understanding biofilm resistance to antibacterial agents,” Nat. Rev. Drug Discov. 2(2), 114–122 (2003).
[Crossref] [PubMed]

Ding, Y. D.

C. Zhang, X. Zhu, Q. Liao, Y. Z. Wang, J. Li, Y. D. Ding, and H. Wang, “Performance of a groove-type photobioreactor for hydrogen production by immobilized photosynthetic bacteria,” Int. J. Hydrogen Energy 35(11), 5284–5292 (2010).
[Crossref]

Dodeja, H.

B. D. Gupta, H. Dodeja, and A. K. Tomar, “Fibre-optic evanescent field absorption sensor based on a U-shaped probe,” Opt. Quantum Electron. 281(11), 629–1639 (1996).

Eldridge, P.

R. Philip-Chandy, P. J. Scully, P. Eldridge, H. J. Kadim, M. G. Grapin, M. G. Jonca, M. G. D’Ambrosio, and F. Colin, “An optical fiber sensor for biofilm measurement using intensity modulation and image analysis,” IEEE J. Sel. Top. Quantum Electron. 6(5), 764–772 (2000).
[Crossref]

Fischer, M.

M. Fischer, M. Wahl, and G. Friedrichs, “Design and field application of a UV-LED based optical fiber biofilm sensor,” Biosens. Bioelectron. 33(1), 172–178 (2012).
[Crossref] [PubMed]

Flemming, H. C.

H. C. Flemming and J. Wingender, “The biofilm matrix,” Nat. Rev. Microbiol. 8(9), 623–633 (2010).
[PubMed]

Francis, N. C.

Friedrichs, G.

M. Fischer, M. Wahl, and G. Friedrichs, “Design and field application of a UV-LED based optical fiber biofilm sensor,” Biosens. Bioelectron. 33(1), 172–178 (2012).
[Crossref] [PubMed]

Gagnon, M. A.

C. Sandt, J. Barbeau, M. A. Gagnon, and M. Lafleur, “Role of the ammonium group in the diffusion of quaternary ammonium compounds in Streptococcus mutans biofilms,” J. Antimicrob. Chemother. 60(6), 1281–1287 (2007).
[Crossref] [PubMed]

Giordano, M.

A. Iadicicco, S. Campopiano, A. Cutolo, M. Giordano, and A. Cusano, “Self temperature referenced refractive index sensor by non-uniform thinned fiber Bragg gratings,” Sens. Actuators B Chem. 120(1), 231–237 (2006).
[Crossref]

Grapin, M. G.

R. Philip-Chandy, P. J. Scully, P. Eldridge, H. J. Kadim, M. G. Grapin, M. G. Jonca, M. G. D’Ambrosio, and F. Colin, “An optical fiber sensor for biofilm measurement using intensity modulation and image analysis,” IEEE J. Sel. Top. Quantum Electron. 6(5), 764–772 (2000).
[Crossref]

Grundfest, W. S.

Gupta, B. D.

B. D. Gupta, H. Dodeja, and A. K. Tomar, “Fibre-optic evanescent field absorption sensor based on a U-shaped probe,” Opt. Quantum Electron. 281(11), 629–1639 (1996).

Ha, H.-Y.

S.-J. Shin, J.-K. Lee, H.-Y. Ha, S.-A. Hong, H.-S. Chun, and I.-H. Oh, “Effect of the catalytic ink preparation method on the performance of polymer electrolyte membrane fuel cells,” J. Power Sources 106(1), 146–152 (2002).
[Crossref]

Haisch, C.

T. Schmid, C. Helmbrecht, U. Panne, C. Haisch, and R. Niessner, “Process analysis of biofilms by photoacoustic spectroscopy,” Anal. Bioanal. Chem. 375(8), 1124–1129 (2003).
[PubMed]

Hall-Stoodley, L.

L. Hall-Stoodley, J. W. Costerton, and P. Stoodley, “Bacterial biofilms: from the Natural environment to infectious diseases,” Nat. Rev. Microbiol. 2(2), 95–108 (2004).
[Crossref] [PubMed]

Heidrich, M.

Heisterkamp, A.

Helmbrecht, C.

T. Schmid, C. Helmbrecht, U. Panne, C. Haisch, and R. Niessner, “Process analysis of biofilms by photoacoustic spectroscopy,” Anal. Bioanal. Chem. 375(8), 1124–1129 (2003).
[PubMed]

Hillborg, H.

A. Oláh, H. Hillborg, and G. J. Vancso, “Hydrophobic recovery of UV/ozone treated poly (dimethylsiloxane): adhesion studies by contact mechanics and mechanism of surface modification,” Appl. Surf. Sci. 239(3-4), 410–423 (2005).
[Crossref]

Hong, S.-A.

S.-J. Shin, J.-K. Lee, H.-Y. Ha, S.-A. Hong, H.-S. Chun, and I.-H. Oh, “Effect of the catalytic ink preparation method on the performance of polymer electrolyte membrane fuel cells,” J. Power Sources 106(1), 146–152 (2002).
[Crossref]

Hurd, R.

R. Srinivasan, N. Sailasuta, R. Hurd, S. Nelson, and D. Pelletier, “Evidence of elevated glutamate in multiple sclerosis using magnetic resonance spectroscopy at 3 T,” Brain 128(5), 1016–1025 (2005).
[Crossref] [PubMed]

Iadicicco, A.

A. Iadicicco, S. Campopiano, A. Cutolo, M. Giordano, and A. Cusano, “Self temperature referenced refractive index sensor by non-uniform thinned fiber Bragg gratings,” Sens. Actuators B Chem. 120(1), 231–237 (2006).
[Crossref]

Jonca, M. G.

R. Philip-Chandy, P. J. Scully, P. Eldridge, H. J. Kadim, M. G. Grapin, M. G. Jonca, M. G. D’Ambrosio, and F. Colin, “An optical fiber sensor for biofilm measurement using intensity modulation and image analysis,” IEEE J. Sel. Top. Quantum Electron. 6(5), 764–772 (2000).
[Crossref]

Kadim, H. J.

R. Philip-Chandy, P. J. Scully, P. Eldridge, H. J. Kadim, M. G. Grapin, M. G. Jonca, M. G. D’Ambrosio, and F. Colin, “An optical fiber sensor for biofilm measurement using intensity modulation and image analysis,” IEEE J. Sel. Top. Quantum Electron. 6(5), 764–772 (2000).
[Crossref]

Kalvenes, S.

R. Bakke, R. Kommedal, and S. Kalvenes, “Quantification of biofilm accumulation by an optical approach,” J. Microbiol. Methods 44(1), 13–26 (2001).
[Crossref] [PubMed]

Kassam, I.

Kellner, M.

Kommedal, R.

R. Bakke, R. Kommedal, and S. Kalvenes, “Quantification of biofilm accumulation by an optical approach,” J. Microbiol. Methods 44(1), 13–26 (2001).
[Crossref] [PubMed]

Kühnel, M. P.

Lafleur, M.

C. Sandt, J. Barbeau, M. A. Gagnon, and M. Lafleur, “Role of the ammonium group in the diffusion of quaternary ammonium compounds in Streptococcus mutans biofilms,” J. Antimicrob. Chemother. 60(6), 1281–1287 (2007).
[Crossref] [PubMed]

Lange, T.

Lee, D. J.

Q. Liao, N. B. Zhong, X. Zhu, R. Chen, Y. Z. Wang, and D. J. Lee, “Enhancement of hydrogen production by adsorption of Rhodoseudomonas palustris CQK 01 on a new support material,” Int. J. Hydrogen Energy 38(35), 15730–15737 (2013).
[Crossref]

Lee, J.-K.

S.-J. Shin, J.-K. Lee, H.-Y. Ha, S.-A. Hong, H.-S. Chun, and I.-H. Oh, “Effect of the catalytic ink preparation method on the performance of polymer electrolyte membrane fuel cells,” J. Power Sources 106(1), 146–152 (2002).
[Crossref]

Li, J.

C. Zhang, X. Zhu, Q. Liao, Y. Z. Wang, J. Li, Y. D. Ding, and H. Wang, “Performance of a groove-type photobioreactor for hydrogen production by immobilized photosynthetic bacteria,” Int. J. Hydrogen Energy 35(11), 5284–5292 (2010).
[Crossref]

Li, L.

L. Li, R. Chen, X. Zhu, H. Wang, Y. Wang, Q. Liao, and D. Wang, “Optofluidic microreactors with TiO2-coated fiberglass,” ACS Appl. Mater. Interfaces 5(23), 12548–12553 (2013).
[Crossref] [PubMed]

Liao, Q.

N. Zhong, Q. Liao, X. Zhu, and M. Zhao, “Fiber Bragg grating with polyimide-silica hybrid membrane for accurately monitoring cell growth and temperature in a photobioreactor,” Anal. Chem. 86(18), 9278–9285 (2014).
[Crossref] [PubMed]

N. Zhong, Q. Liao, X. Zhu, and R. Chen, “A fiber-optic sensor for accurately monitoring biofilm growth in a hydrogen production photobioreactor,” Anal. Chem. 86(8), 3994–4001 (2014).
[Crossref] [PubMed]

Q. Liao, N. B. Zhong, X. Zhu, R. Chen, Y. Z. Wang, and D. J. Lee, “Enhancement of hydrogen production by adsorption of Rhodoseudomonas palustris CQK 01 on a new support material,” Int. J. Hydrogen Energy 38(35), 15730–15737 (2013).
[Crossref]

R. Chen, Y. K. Pu, Q. Liao, X. Zhu, and Y. Z. Wang, “A simulation on PSB biofilm formation with considering cell inactivation,” Int. J. Hydrogen Energy 38(35), 15670–15679 (2013).
[Crossref]

N. Zhong, X. Zhu, Q. Liao, Y. Wang, R. Chen, and Y. Sun, “Effects of surface roughness on optical properties and sensitivity of fiber-optic evanescent wave sensors,” Appl. Opt. 52(17), 3937–3945 (2013).
[Crossref] [PubMed]

N. Zhong, Q. Liao, X. Zhu, Y. Wang, and R. Chen, “High-quality fiber fabrication in buffered hydrofluoric acid solution with ultrasonic agitation,” Appl. Opt. 52(7), 1432–1440 (2013).
[Crossref] [PubMed]

L. Li, R. Chen, X. Zhu, H. Wang, Y. Wang, Q. Liao, and D. Wang, “Optofluidic microreactors with TiO2-coated fiberglass,” ACS Appl. Mater. Interfaces 5(23), 12548–12553 (2013).
[Crossref] [PubMed]

C. Zhang, X. Zhu, Q. Liao, Y. Z. Wang, J. Li, Y. D. Ding, and H. Wang, “Performance of a groove-type photobioreactor for hydrogen production by immobilized photosynthetic bacteria,” Int. J. Hydrogen Energy 35(11), 5284–5292 (2010).
[Crossref]

Lorbeer, R.-A.

Mansuripur, M.

Maruyama, K.

K. Maruyama, H. Ohkawa, S. Ogawa, A. Ueda, O. Niwa, and K. Suzuki, “Fabrication and characterization of a nanometer-sized optical fiber electrode based on selective chemical etching for scanning electrochemical/optical microscopy,” Anal. Chem. 78(6), 1904–1912 (2006).
[Crossref] [PubMed]

Matsuda, K.

T. Saiki and K. Matsuda, “Near-field optical fiber probe optimized for illumination–collection hybrid mode operation,” Appl. Phys. Lett. 74(19), 2773–2775 (1999).
[Crossref]

Meyer, H.

Mononobe, S.

S. Mononobe and M. Ohtsu, “Fabrication of a pencil-shaped fiber probe for near-field optics by selective chemical etching,” J. Lightwave Technol. 14(10), 2231–2235 (1996).
[Crossref]

Nath, P.

P. Nath, “Enhanced sensitive fiber-optic sensor with double pass evanescent field absorption,” Microw. Opt. Technol. Lett. 51(12), 3004–3006 (2009).
[Crossref]

P. Nath, “Enhanced sensitive fiber-optic sensor with double pass evanescent field absorption,” Microw. Opt. Technol. Lett. 51(12), 3004–3006 (2009).
[Crossref]

Nelson, S.

R. Srinivasan, N. Sailasuta, R. Hurd, S. Nelson, and D. Pelletier, “Evidence of elevated glutamate in multiple sclerosis using magnetic resonance spectroscopy at 3 T,” Brain 128(5), 1016–1025 (2005).
[Crossref] [PubMed]

Nguyen, H. D.

J. T. Babauta, H. D. Nguyen, and H. Beyenal, “Redox and pH microenvironments within Shewanella oneidensis MR-1 biofilms reveal an electron transfer mechanism,” Environ. Sci. Technol. 45(15), 6654–6660 (2011).
[Crossref] [PubMed]

Niessner, R.

T. Schmid, C. Helmbrecht, U. Panne, C. Haisch, and R. Niessner, “Process analysis of biofilms by photoacoustic spectroscopy,” Anal. Bioanal. Chem. 375(8), 1124–1129 (2003).
[PubMed]

Niwa, O.

K. Maruyama, H. Ohkawa, S. Ogawa, A. Ueda, O. Niwa, and K. Suzuki, “Fabrication and characterization of a nanometer-sized optical fiber electrode based on selective chemical etching for scanning electrochemical/optical microscopy,” Anal. Chem. 78(6), 1904–1912 (2006).
[Crossref] [PubMed]

Nomura, N.

Y. T. Zheng, M. Toyofuku, N. Nomura, and S. Shigeto, “Correlation of Carotenoid accumulation with aggregation and biofilm development in Rhodococcus sp. SD-74,” Anal. Chem. 85(15), 7295–7301 (2013).
[Crossref] [PubMed]

Nowroozi, B.

Ogawa, S.

K. Maruyama, H. Ohkawa, S. Ogawa, A. Ueda, O. Niwa, and K. Suzuki, “Fabrication and characterization of a nanometer-sized optical fiber electrode based on selective chemical etching for scanning electrochemical/optical microscopy,” Anal. Chem. 78(6), 1904–1912 (2006).
[Crossref] [PubMed]

Oh, I.-H.

S.-J. Shin, J.-K. Lee, H.-Y. Ha, S.-A. Hong, H.-S. Chun, and I.-H. Oh, “Effect of the catalytic ink preparation method on the performance of polymer electrolyte membrane fuel cells,” J. Power Sources 106(1), 146–152 (2002).
[Crossref]

Ohkawa, H.

K. Maruyama, H. Ohkawa, S. Ogawa, A. Ueda, O. Niwa, and K. Suzuki, “Fabrication and characterization of a nanometer-sized optical fiber electrode based on selective chemical etching for scanning electrochemical/optical microscopy,” Anal. Chem. 78(6), 1904–1912 (2006).
[Crossref] [PubMed]

Ohtsu, M.

S. Mononobe and M. Ohtsu, “Fabrication of a pencil-shaped fiber probe for near-field optics by selective chemical etching,” J. Lightwave Technol. 14(10), 2231–2235 (1996).
[Crossref]

Oláh, A.

A. Oláh, H. Hillborg, and G. J. Vancso, “Hydrophobic recovery of UV/ozone treated poly (dimethylsiloxane): adhesion studies by contact mechanics and mechanism of surface modification,” Appl. Surf. Sci. 239(3-4), 410–423 (2005).
[Crossref]

Olsson, P. Q.

R. Bakke and P. Q. Olsson, “Biofilm thickness measurements by light microscopy,” J. Microbiol. Methods 5(2), 93–98 (1986).
[Crossref]

Panne, U.

T. Schmid, C. Helmbrecht, U. Panne, C. Haisch, and R. Niessner, “Process analysis of biofilms by photoacoustic spectroscopy,” Anal. Bioanal. Chem. 375(8), 1124–1129 (2003).
[PubMed]

Pelletier, D.

R. Srinivasan, N. Sailasuta, R. Hurd, S. Nelson, and D. Pelletier, “Evidence of elevated glutamate in multiple sclerosis using magnetic resonance spectroscopy at 3 T,” Brain 128(5), 1016–1025 (2005).
[Crossref] [PubMed]

Peyghambarian, N.

Philip-Chandy, R.

R. Philip-Chandy, P. J. Scully, P. Eldridge, H. J. Kadim, M. G. Grapin, M. G. Jonca, M. G. D’Ambrosio, and F. Colin, “An optical fiber sensor for biofilm measurement using intensity modulation and image analysis,” IEEE J. Sel. Top. Quantum Electron. 6(5), 764–772 (2000).
[Crossref]

Polynkin, A.

Polynkin, P.

Pu, Y. K.

R. Chen, Y. K. Pu, Q. Liao, X. Zhu, and Y. Z. Wang, “A simulation on PSB biofilm formation with considering cell inactivation,” Int. J. Hydrogen Energy 38(35), 15670–15679 (2013).
[Crossref]

Saiki, T.

T. Saiki and K. Matsuda, “Near-field optical fiber probe optimized for illumination–collection hybrid mode operation,” Appl. Phys. Lett. 74(19), 2773–2775 (1999).
[Crossref]

Sailasuta, N.

R. Srinivasan, N. Sailasuta, R. Hurd, S. Nelson, and D. Pelletier, “Evidence of elevated glutamate in multiple sclerosis using magnetic resonance spectroscopy at 3 T,” Brain 128(5), 1016–1025 (2005).
[Crossref] [PubMed]

Sandt, C.

C. Sandt, J. Barbeau, M. A. Gagnon, and M. Lafleur, “Role of the ammonium group in the diffusion of quaternary ammonium compounds in Streptococcus mutans biofilms,” J. Antimicrob. Chemother. 60(6), 1281–1287 (2007).
[Crossref] [PubMed]

Schmid, T.

T. Schmid, C. Helmbrecht, U. Panne, C. Haisch, and R. Niessner, “Process analysis of biofilms by photoacoustic spectroscopy,” Anal. Bioanal. Chem. 375(8), 1124–1129 (2003).
[PubMed]

Scully, P. J.

R. Philip-Chandy, P. J. Scully, P. Eldridge, H. J. Kadim, M. G. Grapin, M. G. Jonca, M. G. D’Ambrosio, and F. Colin, “An optical fiber sensor for biofilm measurement using intensity modulation and image analysis,” IEEE J. Sel. Top. Quantum Electron. 6(5), 764–772 (2000).
[Crossref]

Shigeto, S.

Y. T. Zheng, M. Toyofuku, N. Nomura, and S. Shigeto, “Correlation of Carotenoid accumulation with aggregation and biofilm development in Rhodococcus sp. SD-74,” Anal. Chem. 85(15), 7295–7301 (2013).
[Crossref] [PubMed]

Shin, S.-J.

S.-J. Shin, J.-K. Lee, H.-Y. Ha, S.-A. Hong, H.-S. Chun, and I.-H. Oh, “Effect of the catalytic ink preparation method on the performance of polymer electrolyte membrane fuel cells,” J. Power Sources 106(1), 146–152 (2002).
[Crossref]

Srinivasan, R.

R. Srinivasan, N. Sailasuta, R. Hurd, S. Nelson, and D. Pelletier, “Evidence of elevated glutamate in multiple sclerosis using magnetic resonance spectroscopy at 3 T,” Brain 128(5), 1016–1025 (2005).
[Crossref] [PubMed]

Stiesch, M.

Stoodley, P.

L. Hall-Stoodley, J. W. Costerton, and P. Stoodley, “Bacterial biofilms: from the Natural environment to infectious diseases,” Nat. Rev. Microbiol. 2(2), 95–108 (2004).
[Crossref] [PubMed]

Sun, Y.

Suzuki, K.

K. Maruyama, H. Ohkawa, S. Ogawa, A. Ueda, O. Niwa, and K. Suzuki, “Fabrication and characterization of a nanometer-sized optical fiber electrode based on selective chemical etching for scanning electrochemical/optical microscopy,” Anal. Chem. 78(6), 1904–1912 (2006).
[Crossref] [PubMed]

Taylor, M. W.

K. Biswas, M. W. Taylor, and S. J. Turner, “Successional development of biofilms in moving bed biofilm reactor (MBBR) systems treating municipal wastewater,” Appl. Microbiol. Biotechnol. 98(3), 1429–1440 (2014).
[Crossref] [PubMed]

Taylor, Z. D.

Tomar, A. K.

B. D. Gupta, H. Dodeja, and A. K. Tomar, “Fibre-optic evanescent field absorption sensor based on a U-shaped probe,” Opt. Quantum Electron. 281(11), 629–1639 (1996).

Toyofuku, M.

Y. T. Zheng, M. Toyofuku, N. Nomura, and S. Shigeto, “Correlation of Carotenoid accumulation with aggregation and biofilm development in Rhodococcus sp. SD-74,” Anal. Chem. 85(15), 7295–7301 (2013).
[Crossref] [PubMed]

Turner, S. J.

K. Biswas, M. W. Taylor, and S. J. Turner, “Successional development of biofilms in moving bed biofilm reactor (MBBR) systems treating municipal wastewater,” Appl. Microbiol. Biotechnol. 98(3), 1429–1440 (2014).
[Crossref] [PubMed]

Ueda, A.

K. Maruyama, H. Ohkawa, S. Ogawa, A. Ueda, O. Niwa, and K. Suzuki, “Fabrication and characterization of a nanometer-sized optical fiber electrode based on selective chemical etching for scanning electrochemical/optical microscopy,” Anal. Chem. 78(6), 1904–1912 (2006).
[Crossref] [PubMed]

Vancso, G. J.

A. Oláh, H. Hillborg, and G. J. Vancso, “Hydrophobic recovery of UV/ozone treated poly (dimethylsiloxane): adhesion studies by contact mechanics and mechanism of surface modification,” Appl. Surf. Sci. 239(3-4), 410–423 (2005).
[Crossref]

Wahl, M.

M. Fischer, M. Wahl, and G. Friedrichs, “Design and field application of a UV-LED based optical fiber biofilm sensor,” Biosens. Bioelectron. 33(1), 172–178 (2012).
[Crossref] [PubMed]

Wang, D.

L. Li, R. Chen, X. Zhu, H. Wang, Y. Wang, Q. Liao, and D. Wang, “Optofluidic microreactors with TiO2-coated fiberglass,” ACS Appl. Mater. Interfaces 5(23), 12548–12553 (2013).
[Crossref] [PubMed]

Wang, H.

L. Li, R. Chen, X. Zhu, H. Wang, Y. Wang, Q. Liao, and D. Wang, “Optofluidic microreactors with TiO2-coated fiberglass,” ACS Appl. Mater. Interfaces 5(23), 12548–12553 (2013).
[Crossref] [PubMed]

C. Zhang, X. Zhu, Q. Liao, Y. Z. Wang, J. Li, Y. D. Ding, and H. Wang, “Performance of a groove-type photobioreactor for hydrogen production by immobilized photosynthetic bacteria,” Int. J. Hydrogen Energy 35(11), 5284–5292 (2010).
[Crossref]

Wang, Y.

Wang, Y. Z.

R. Chen, Y. K. Pu, Q. Liao, X. Zhu, and Y. Z. Wang, “A simulation on PSB biofilm formation with considering cell inactivation,” Int. J. Hydrogen Energy 38(35), 15670–15679 (2013).
[Crossref]

Q. Liao, N. B. Zhong, X. Zhu, R. Chen, Y. Z. Wang, and D. J. Lee, “Enhancement of hydrogen production by adsorption of Rhodoseudomonas palustris CQK 01 on a new support material,” Int. J. Hydrogen Energy 38(35), 15730–15737 (2013).
[Crossref]

C. Zhang, X. Zhu, Q. Liao, Y. Z. Wang, J. Li, Y. D. Ding, and H. Wang, “Performance of a groove-type photobioreactor for hydrogen production by immobilized photosynthetic bacteria,” Int. J. Hydrogen Energy 35(11), 5284–5292 (2010).
[Crossref]

Wingender, J.

H. C. Flemming and J. Wingender, “The biofilm matrix,” Nat. Rev. Microbiol. 8(9), 623–633 (2010).
[PubMed]

Winkel, A.

Xia, Y.

Yin, J.

Zhang, C.

C. Zhang, X. Zhu, Q. Liao, Y. Z. Wang, J. Li, Y. D. Ding, and H. Wang, “Performance of a groove-type photobioreactor for hydrogen production by immobilized photosynthetic bacteria,” Int. J. Hydrogen Energy 35(11), 5284–5292 (2010).
[Crossref]

Zhao, M.

N. Zhong, Q. Liao, X. Zhu, and M. Zhao, “Fiber Bragg grating with polyimide-silica hybrid membrane for accurately monitoring cell growth and temperature in a photobioreactor,” Anal. Chem. 86(18), 9278–9285 (2014).
[Crossref] [PubMed]

Zheng, Y. T.

Y. T. Zheng, M. Toyofuku, N. Nomura, and S. Shigeto, “Correlation of Carotenoid accumulation with aggregation and biofilm development in Rhodococcus sp. SD-74,” Anal. Chem. 85(15), 7295–7301 (2013).
[Crossref] [PubMed]

Zhong, N.

N. Zhong, Q. Liao, X. Zhu, and R. Chen, “A fiber-optic sensor for accurately monitoring biofilm growth in a hydrogen production photobioreactor,” Anal. Chem. 86(8), 3994–4001 (2014).
[Crossref] [PubMed]

N. Zhong, Q. Liao, X. Zhu, and M. Zhao, “Fiber Bragg grating with polyimide-silica hybrid membrane for accurately monitoring cell growth and temperature in a photobioreactor,” Anal. Chem. 86(18), 9278–9285 (2014).
[Crossref] [PubMed]

N. Zhong, X. Zhu, Q. Liao, Y. Wang, R. Chen, and Y. Sun, “Effects of surface roughness on optical properties and sensitivity of fiber-optic evanescent wave sensors,” Appl. Opt. 52(17), 3937–3945 (2013).
[Crossref] [PubMed]

N. Zhong, Q. Liao, X. Zhu, Y. Wang, and R. Chen, “High-quality fiber fabrication in buffered hydrofluoric acid solution with ultrasonic agitation,” Appl. Opt. 52(7), 1432–1440 (2013).
[Crossref] [PubMed]

Zhong, N. B.

Q. Liao, N. B. Zhong, X. Zhu, R. Chen, Y. Z. Wang, and D. J. Lee, “Enhancement of hydrogen production by adsorption of Rhodoseudomonas palustris CQK 01 on a new support material,” Int. J. Hydrogen Energy 38(35), 15730–15737 (2013).
[Crossref]

Zhu, X.

N. Zhong, Q. Liao, X. Zhu, and R. Chen, “A fiber-optic sensor for accurately monitoring biofilm growth in a hydrogen production photobioreactor,” Anal. Chem. 86(8), 3994–4001 (2014).
[Crossref] [PubMed]

N. Zhong, Q. Liao, X. Zhu, and M. Zhao, “Fiber Bragg grating with polyimide-silica hybrid membrane for accurately monitoring cell growth and temperature in a photobioreactor,” Anal. Chem. 86(18), 9278–9285 (2014).
[Crossref] [PubMed]

L. Li, R. Chen, X. Zhu, H. Wang, Y. Wang, Q. Liao, and D. Wang, “Optofluidic microreactors with TiO2-coated fiberglass,” ACS Appl. Mater. Interfaces 5(23), 12548–12553 (2013).
[Crossref] [PubMed]

Q. Liao, N. B. Zhong, X. Zhu, R. Chen, Y. Z. Wang, and D. J. Lee, “Enhancement of hydrogen production by adsorption of Rhodoseudomonas palustris CQK 01 on a new support material,” Int. J. Hydrogen Energy 38(35), 15730–15737 (2013).
[Crossref]

N. Zhong, Q. Liao, X. Zhu, Y. Wang, and R. Chen, “High-quality fiber fabrication in buffered hydrofluoric acid solution with ultrasonic agitation,” Appl. Opt. 52(7), 1432–1440 (2013).
[Crossref] [PubMed]

N. Zhong, X. Zhu, Q. Liao, Y. Wang, R. Chen, and Y. Sun, “Effects of surface roughness on optical properties and sensitivity of fiber-optic evanescent wave sensors,” Appl. Opt. 52(17), 3937–3945 (2013).
[Crossref] [PubMed]

R. Chen, Y. K. Pu, Q. Liao, X. Zhu, and Y. Z. Wang, “A simulation on PSB biofilm formation with considering cell inactivation,” Int. J. Hydrogen Energy 38(35), 15670–15679 (2013).
[Crossref]

C. Zhang, X. Zhu, Q. Liao, Y. Z. Wang, J. Li, Y. D. Ding, and H. Wang, “Performance of a groove-type photobioreactor for hydrogen production by immobilized photosynthetic bacteria,” Int. J. Hydrogen Energy 35(11), 5284–5292 (2010).
[Crossref]

ACS Appl. Mater. Interfaces (1)

L. Li, R. Chen, X. Zhu, H. Wang, Y. Wang, Q. Liao, and D. Wang, “Optofluidic microreactors with TiO2-coated fiberglass,” ACS Appl. Mater. Interfaces 5(23), 12548–12553 (2013).
[Crossref] [PubMed]

Anal. Bioanal. Chem. (1)

T. Schmid, C. Helmbrecht, U. Panne, C. Haisch, and R. Niessner, “Process analysis of biofilms by photoacoustic spectroscopy,” Anal. Bioanal. Chem. 375(8), 1124–1129 (2003).
[PubMed]

Anal. Chem. (4)

Y. T. Zheng, M. Toyofuku, N. Nomura, and S. Shigeto, “Correlation of Carotenoid accumulation with aggregation and biofilm development in Rhodococcus sp. SD-74,” Anal. Chem. 85(15), 7295–7301 (2013).
[Crossref] [PubMed]

N. Zhong, Q. Liao, X. Zhu, and R. Chen, “A fiber-optic sensor for accurately monitoring biofilm growth in a hydrogen production photobioreactor,” Anal. Chem. 86(8), 3994–4001 (2014).
[Crossref] [PubMed]

K. Maruyama, H. Ohkawa, S. Ogawa, A. Ueda, O. Niwa, and K. Suzuki, “Fabrication and characterization of a nanometer-sized optical fiber electrode based on selective chemical etching for scanning electrochemical/optical microscopy,” Anal. Chem. 78(6), 1904–1912 (2006).
[Crossref] [PubMed]

N. Zhong, Q. Liao, X. Zhu, and M. Zhao, “Fiber Bragg grating with polyimide-silica hybrid membrane for accurately monitoring cell growth and temperature in a photobioreactor,” Anal. Chem. 86(18), 9278–9285 (2014).
[Crossref] [PubMed]

Appl. Microbiol. Biotechnol. (1)

K. Biswas, M. W. Taylor, and S. J. Turner, “Successional development of biofilms in moving bed biofilm reactor (MBBR) systems treating municipal wastewater,” Appl. Microbiol. Biotechnol. 98(3), 1429–1440 (2014).
[Crossref] [PubMed]

Appl. Opt. (2)

Appl. Phys. Lett. (1)

T. Saiki and K. Matsuda, “Near-field optical fiber probe optimized for illumination–collection hybrid mode operation,” Appl. Phys. Lett. 74(19), 2773–2775 (1999).
[Crossref]

Appl. Surf. Sci. (1)

A. Oláh, H. Hillborg, and G. J. Vancso, “Hydrophobic recovery of UV/ozone treated poly (dimethylsiloxane): adhesion studies by contact mechanics and mechanism of surface modification,” Appl. Surf. Sci. 239(3-4), 410–423 (2005).
[Crossref]

Biomed. Opt. Express (3)

Biosens. Bioelectron. (1)

M. Fischer, M. Wahl, and G. Friedrichs, “Design and field application of a UV-LED based optical fiber biofilm sensor,” Biosens. Bioelectron. 33(1), 172–178 (2012).
[Crossref] [PubMed]

Brain (1)

R. Srinivasan, N. Sailasuta, R. Hurd, S. Nelson, and D. Pelletier, “Evidence of elevated glutamate in multiple sclerosis using magnetic resonance spectroscopy at 3 T,” Brain 128(5), 1016–1025 (2005).
[Crossref] [PubMed]

Environ. Sci. Technol. (1)

J. T. Babauta, H. D. Nguyen, and H. Beyenal, “Redox and pH microenvironments within Shewanella oneidensis MR-1 biofilms reveal an electron transfer mechanism,” Environ. Sci. Technol. 45(15), 6654–6660 (2011).
[Crossref] [PubMed]

IEEE J. Sel. Top. Quantum Electron. (1)

R. Philip-Chandy, P. J. Scully, P. Eldridge, H. J. Kadim, M. G. Grapin, M. G. Jonca, M. G. D’Ambrosio, and F. Colin, “An optical fiber sensor for biofilm measurement using intensity modulation and image analysis,” IEEE J. Sel. Top. Quantum Electron. 6(5), 764–772 (2000).
[Crossref]

Int. J. Hydrogen Energy (3)

C. Zhang, X. Zhu, Q. Liao, Y. Z. Wang, J. Li, Y. D. Ding, and H. Wang, “Performance of a groove-type photobioreactor for hydrogen production by immobilized photosynthetic bacteria,” Int. J. Hydrogen Energy 35(11), 5284–5292 (2010).
[Crossref]

R. Chen, Y. K. Pu, Q. Liao, X. Zhu, and Y. Z. Wang, “A simulation on PSB biofilm formation with considering cell inactivation,” Int. J. Hydrogen Energy 38(35), 15670–15679 (2013).
[Crossref]

Q. Liao, N. B. Zhong, X. Zhu, R. Chen, Y. Z. Wang, and D. J. Lee, “Enhancement of hydrogen production by adsorption of Rhodoseudomonas palustris CQK 01 on a new support material,” Int. J. Hydrogen Energy 38(35), 15730–15737 (2013).
[Crossref]

J. Antimicrob. Chemother. (1)

C. Sandt, J. Barbeau, M. A. Gagnon, and M. Lafleur, “Role of the ammonium group in the diffusion of quaternary ammonium compounds in Streptococcus mutans biofilms,” J. Antimicrob. Chemother. 60(6), 1281–1287 (2007).
[Crossref] [PubMed]

J. Lightwave Technol. (1)

S. Mononobe and M. Ohtsu, “Fabrication of a pencil-shaped fiber probe for near-field optics by selective chemical etching,” J. Lightwave Technol. 14(10), 2231–2235 (1996).
[Crossref]

J. Microbiol. Methods (2)

R. Bakke, R. Kommedal, and S. Kalvenes, “Quantification of biofilm accumulation by an optical approach,” J. Microbiol. Methods 44(1), 13–26 (2001).
[Crossref] [PubMed]

R. Bakke and P. Q. Olsson, “Biofilm thickness measurements by light microscopy,” J. Microbiol. Methods 5(2), 93–98 (1986).
[Crossref]

J. Power Sources (1)

S.-J. Shin, J.-K. Lee, H.-Y. Ha, S.-A. Hong, H.-S. Chun, and I.-H. Oh, “Effect of the catalytic ink preparation method on the performance of polymer electrolyte membrane fuel cells,” J. Power Sources 106(1), 146–152 (2002).
[Crossref]

Microw. Opt. Technol. Lett. (2)

P. Nath, “Enhanced sensitive fiber-optic sensor with double pass evanescent field absorption,” Microw. Opt. Technol. Lett. 51(12), 3004–3006 (2009).
[Crossref]

P. Nath, “Enhanced sensitive fiber-optic sensor with double pass evanescent field absorption,” Microw. Opt. Technol. Lett. 51(12), 3004–3006 (2009).
[Crossref]

Nat. Rev. Drug Discov. (1)

D. Davies, “Understanding biofilm resistance to antibacterial agents,” Nat. Rev. Drug Discov. 2(2), 114–122 (2003).
[Crossref] [PubMed]

Nat. Rev. Microbiol. (2)

H. C. Flemming and J. Wingender, “The biofilm matrix,” Nat. Rev. Microbiol. 8(9), 623–633 (2010).
[PubMed]

L. Hall-Stoodley, J. W. Costerton, and P. Stoodley, “Bacterial biofilms: from the Natural environment to infectious diseases,” Nat. Rev. Microbiol. 2(2), 95–108 (2004).
[Crossref] [PubMed]

Opt. Lett. (1)

Opt. Quantum Electron. (1)

B. D. Gupta, H. Dodeja, and A. K. Tomar, “Fibre-optic evanescent field absorption sensor based on a U-shaped probe,” Opt. Quantum Electron. 281(11), 629–1639 (1996).

Sens. Actuators B Chem. (1)

A. Iadicicco, S. Campopiano, A. Cutolo, M. Giordano, and A. Cusano, “Self temperature referenced refractive index sensor by non-uniform thinned fiber Bragg gratings,” Sens. Actuators B Chem. 120(1), 231–237 (2006).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 Structure and micrographs of sensor and PSB R. pseudomonas, CQK-01 strain. Structures of (a) sensor and (b) reference probes (LRF: light reflective film). (c) Micrograph of etched fiber. (d) Micrograph of probe tip. (e–g) Scanning electron microscope (SEM) images of etched fiber and coated PSHF film fiber. (h) Micrograph of PSB R. palustris, CQK-01 strain.
Fig. 2
Fig. 2 Schematic diagram of experimental system (I: FBG temperature sensor; II: biofilm Sen. probe; III: biofilm Ref. probe).
Fig. 3
Fig. 3 Schematic diagram of light transmission in tapered fiber with rough surface (NR: normal region; ER: etched region; SP: surface pit; the subscripts “re” and “in” on I denote reflected and incident light, respectively).
Fig. 4
Fig. 4 Performance parameters of prepared probes: (a) spectral transmission characteristics; (b) output light intensity variation versus temperature; (c) time response curve of Ref. probe; (d) output light intensity variation versus glucose concentration.
Fig. 5
Fig. 5 Probe output signals, biofilm thickness, sensor parameter K1, and ESEM images of biofilm during biofilm development under continuous flow culture: (a) probe output signals and biofilm thickness versus culture time; (b) sensor signal, fitting curve, and simulated curve versus biofilm thickness; (c) ESEM images of biofilm at different culture times.
Fig. 6
Fig. 6 Probe output signals, biofilm thickness, and sensor parameter K2 during biofilm development under intermittent flow culture: (a) probe output signals and biofilm thickness versus culture time; (b) sensor signal, fitting curve, and simulated curve versus biofilm thickness.
Fig. 7
Fig. 7 Probe output signals, biofilm thickness, sensor parameter K3, and active biomass in biofilms during biofilm development on PDMS with groove depth of 500 μm: (a) probe output signals and biofilm thickness versus culture time; (b) sensor signal, fitting curve, and simulated curve versus biofilm thickness; (c) images of active biomass in sliced biofilm samples (AP-EP denotes biofilm adsorption and exponential phases, SP denotes biofilm stationary phase).

Tables (1)

Tables Icon

Table 1 Simulation Parameters

Equations (21)

Equations on this page are rendered with MathJax. Learn more.

I out = I in e ξL ,
I in = π/2 U i δ 2y arctan(2δ/Δ) π/2 U i I in ,
ξ= [ ξ eff ( n ) ] outer,1 + [ ξ eff ( n ) ] inner,1 ,
[ ξ eff ( n ) ] outer = αλ n x K (R,L,β,r,δ/Δ),outer r( n x 2 n 2 ) ,
K (R,L,β,r,δ/Δ),outer = 0 L 0 R L tanβ φ 1 φ 2 cos 3 (θβ) [1 n x 2 cos 2 (θβ)] 2 [ n x 2 sin 2 (θβ)1] 1/2 dθdh d L 4π 0 L 0 2(R L tanβ) φ 1 φ 2 sin(θβ)cos(θβ) [1 n x 2 cos 2 (θβ)] 2 dθdhd L ,
φ 1 =arcsin[ (rh) n 2 (r+R L tanβ) n 1 ]
φ 2 =arcsin( rh r+R L tanβ )arctan(2δ/Δ),
[ ξ eff ( n ) ] inner = αλ n x K (R,L,β,r,δ/Δ),inner r( n x 2 n 2 ) ,
K (R,L,β,r,δ/Δ),inner = 0 L 0 R L tanβ ψ 1 ψ 2 cos 3 (θβ) [1 n x 2 cos 2 (θβ)] 2 [ n x 2 sin 2 (θβ)1] 1/2 dθdh d L 4π 0 L 0 2(R L tanβ) ψ 1 ψ 2 sin(θβ)cos(θβ) [1 n x 2 cos 2 (θβ)] 2 dθdhd L ,
ψ 1 =arcsin[ (rh) r sin φ 1 ],
ψ 2 =arcsin[ (rh) r sin φ 2 ].
I out = I in exp{ [ 2δλ n x ( K (R,L,β,r,δ/Δ),inner + K (R,L,β,r,δ/Δ),outer ) r( n x 2 n 2 ) ]×2L }.
I out = I in η 1 exp( η 2 n 2 ),
η 1 =exp[ 4( α b + α l )λL( K (R,L,β,r,δ/Δ),inner + K (R,L,β,r,δ/Δ),outer ) r n x ]
η 2 = 4( α b + α l )λL( K (R,L,β,r,δ/Δ),inner + K (R,L,β,r,δ/Δ),outer ) r n x 3 .
n 2 = V b n b + V l n l 2 ,
I out,s = K s I in η 1,s exp[ η 2,s ( V b n b 2 + V l n l 2 ) ],
I out,f = K f I in η 1,f exp( η 2,f V l n l 2 ),
K= I out,f I out,s = K f K s exp( η 2,s V b n b 2 ).
K= I out,f I out,s = K f K s exp( η 2,s LW x b n b 2 ).
K= K f K s [ 1+ η 2,s LW x b n b 2 + 1 2 η 2,s 2 (LW x b n b 2 ) 2 + ].

Metrics