Abstract

Abstract: Two SD-OCT systems and a dual channel accommodation target were combined and precisely synchronized to simultaneously image the anterior segment and the ciliary muscle during dynamic accommodation. The imaging system simultaneously generates two synchronized OCT image sequences of the anterior segment and ciliary muscle with an imaging speed of 13 frames per second. The system was used to acquire OCT image sequences of a non-presbyopic and a pre-presbyopic subject accommodating in response to step changes in vergence. The image sequences were processed to extract dynamic morphological data from the crystalline lens and the ciliary muscle. The synchronization between the OCT systems allowed the precise correlation of anatomical changes occurring in the crystalline lens and ciliary muscle at identical time points during accommodation. To describe the dynamic interaction between the crystalline lens and ciliary muscle, we introduce accommodation state diagrams that display the relation between anatomical changes occurring in the accommodating crystalline lens and ciliary muscle.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Simultaneous real-time imaging of the ocular anterior segment including the ciliary muscle during accommodation

Yilei Shao, Aizhu Tao, Hong Jiang, Meixiao Shen, Jianguang Zhong, Fan Lu, and Jianhua Wang
Biomed. Opt. Express 4(3) 466-480 (2013)

Assessment of eye length changes in accommodation using dynamic extended-depth OCT

Yu-Cherng Chang, Keke Liu, Carolina de Freitas, Alex Pham, Florence Cabot, Siobhan Williams, Ethan Adre, Giovanni Gregori, Marco Ruggeri, Sonia H. Yoo, Arthur Ho, Jean-Marie Parel, and Fabrice Manns
Biomed. Opt. Express 8(5) 2709-2719 (2017)

Variability of manual ciliary muscle segmentation in optical coherence tomography images

Yu-Cherng Chang, Keke Liu, Florence Cabot, Sonia H. Yoo, Marco Ruggeri, Arthur Ho, Jean-Marie Parel, and Fabrice Manns
Biomed. Opt. Express 9(2) 791-800 (2018)

References

  • View by:
  • |
  • |
  • |

  1. W. N. Charman, “Developments in the correction of presbyopia I: spectacle and contact lenses,” Ophthalmic Physiol. Opt. 34(1), 8–29 (2014).
    [Crossref] [PubMed]
  2. W. N. Charman, “Developments in the correction of presbyopia II: surgical approaches,” Ophthalmic Physiol. Opt. 34(4), 397–426 (2014).
    [Crossref] [PubMed]
  3. S. Marcos, S. Ortiz, P. Pérez-Merino, J. Birkenfeld, S. Durán, and I. Jiménez-Alfaro, “Three-dimensional evaluation of accommodating intraocular lens shift and alignment in vivo,” Ophthalmology 121(1), 45–55 (2014).
    [Crossref] [PubMed]
  4. S. Kasthurirangan, E. L. Markwell, D. A. Atchison, and J. M. Pope, “In vivo study of changes in refractive index distribution in the human crystalline lens with age and accommodation,” Invest. Ophthalmol. Vis. Sci. 49(6), 2531–2540 (2008).
    [Crossref] [PubMed]
  5. S. Kasthurirangan, E. L. Markwell, D. A. Atchison, and J. M. Pope, “MRI study of the changes in crystalline lens shape with accommodation and aging in humans,” J. Vis. 11(3), 19 (2011).
    [Crossref] [PubMed]
  6. S. A. Strenk, L. M. Strenk, and S. Guo, “Magnetic resonance imaging of aging, accommodating, phakic, and pseudophakic ciliary muscle diameters,” J. Cataract Refract. Surg. 32(11), 1792–1798 (2006).
    [Crossref] [PubMed]
  7. S. A. Strenk, L. M. Strenk, and J. F. Koretz, “The mechanism of presbyopia,” Prog. Retin. Eye Res. 24(3), 379–393 (2005).
    [Crossref] [PubMed]
  8. S. A. Strenk, L. M. Strenk, J. L. Semmlow, and J. K. DeMarco, “Magnetic resonance imaging study of the effects of age and accommodation on the human lens cross-sectional area,” Invest. Ophthalmol. Vis. Sci. 45(2), 539–545 (2004).
    [Crossref] [PubMed]
  9. L. Ostrin, S. Kasthurirangan, D. Win-Hall, and A. Glasser, “Simultaneous measurements of refraction and A-scan biometry during accommodation in humans,” Optom. Vis. Sci. 83(9), 657–665 (2006).
    [Crossref] [PubMed]
  10. O. Stachs, H. Martin, A. Kirchhoff, J. Stave, T. Terwee, and R. Guthoff, “Monitoring accommodative ciliary muscle function using three-dimensional ultrasound,” Graefes Arch. Clin. Exp. Ophthalmol. 240(11), 906–912 (2002).
    [Crossref] [PubMed]
  11. J. K. Storey and E. P. Rabie, “Ultrasound--a research tool in the study of accommodation,” Ophthalmic Physiol. Opt. 3(3), 315–320 (1983).
    [Crossref] [PubMed]
  12. M. Dubbelman and G. L. Van der Heijde, “The shape of the aging human lens: curvature, equivalent refractive index and the lens paradox,” Vision Res. 41(14), 1867–1877 (2001).
    [Crossref] [PubMed]
  13. M. Dubbelman, G. L. van der Heijde, and H. A. Weeber, “The thickness of the aging human lens obtained from corrected Scheimpflug images,” Optom. Vis. Sci. 78(6), 411–416 (2001).
    [Crossref] [PubMed]
  14. M. Dubbelman, G. L. Van der Heijde, and H. A. Weeber, “Change in shape of the aging human crystalline lens with accommodation,” Vision Res. 45(1), 117–132 (2005).
    [Crossref] [PubMed]
  15. M. Dubbelman, G. L. Van der Heijde, H. A. Weeber, and G. F. Vrensen, “Changes in the internal structure of the human crystalline lens with age and accommodation,” Vision Res. 43(22), 2363–2375 (2003).
    [Crossref] [PubMed]
  16. J. E. Koretz, S. A. Strenk, L. M. Strenk, and J. L. Semmlow, “Scheimpflug and high-resolution magnetic resonance imaging of the anterior segment: a comparative study,” J. Opt. Soc. Am. A 21(3), 346–354 (2004).
    [Crossref] [PubMed]
  17. J. F. Koretz, C. A. Cook, and P. L. Kaufman, “Aging of the human lens: changes in lens shape upon accommodation and with accommodative loss,” J. Opt. Soc. Am. A 19(1), 144–151 (2002).
    [Crossref] [PubMed]
  18. J. F. Koretz, G. H. Handelman, and N. P. Brown, “Analysis of human crystalline lens curvature as a function of accommodative state and age,” Vision Res. 24(10), 1141–1151 (1984).
    [Crossref] [PubMed]
  19. D. S. Laughton, B. J. Coldrick, A. L. Sheppard, and L. N. Davies, “A program to analyse optical coherence tomography images of the ciliary muscle,” Cont. Lens Anterior Eye 38(6), 402–408 (2015).
    [Crossref] [PubMed]
  20. H. A. Lewis, C. Y. Kao, L. T. Sinnott, and M. D. Bailey, “Changes in ciliary muscle thickness during accommodation in children,” Optom. Vis. Sci. 89(5), 727–737 (2012).
    [Crossref] [PubMed]
  21. L. A. Lossing, L. T. Sinnott, C. Y. Kao, K. Richdale, and M. D. Bailey, “Measuring changes in ciliary muscle thickness with accommodation in young adults,” Optom. Vis. Sci. 89(5), 719–726 (2012).
    [Crossref] [PubMed]
  22. K. Richdale, M. D. Bailey, L. T. Sinnott, C. Y. Kao, K. Zadnik, and M. A. Bullimore, “The effect of phenylephrine on the ciliary muscle and accommodation,” Optom. Vis. Sci. 89(10), e1507 (2012).
    [Crossref] [PubMed]
  23. A. L. Sheppard and L. N. Davies, “In vivo analysis of ciliary muscle morphologic changes with accommodation and axial ametropia,” Invest. Ophthalmol. Vis. Sci. 51(12), 6882–6889 (2010).
    [Crossref] [PubMed]
  24. A. L. Sheppard and L. N. Davies, “The effect of ageing on in vivo human ciliary muscle morphology and contractility,” Invest. Ophthalmol. Vis. Sci. 52(3), 1809–1816 (2011).
    [Crossref] [PubMed]
  25. S. A. Strenk, J. L. Semmlow, L. M. Strenk, P. Munoz, J. Gronlund-Jacob, and J. K. DeMarco, “Age-related changes in human ciliary muscle and lens: a magnetic resonance imaging study,” Invest. Ophthalmol. Vis. Sci. 40(6), 1162–1169 (1999).
    [PubMed]
  26. Y. Shao, A. Tao, H. Jiang, X. Mao, J. Zhong, M. Shen, F. Lu, Z. Xu, C. L. Karp, and J. Wang, “Age-related changes in the anterior segment biometry during accommodation,” Invest. Ophthalmol. Vis. Sci. 56(6), 3522–3530 (2015).
    [Crossref] [PubMed]
  27. Y. Shao, A. Tao, H. Jiang, M. Shen, J. Zhong, F. Lu, and J. Wang, “Simultaneous real-time imaging of the ocular anterior segment including the ciliary muscle during accommodation,” Biomed. Opt. Express 4(3), 466–480 (2013).
    [Crossref] [PubMed]
  28. M. Ruggeri, S. R. Uhlhorn, C. De Freitas, A. Ho, F. Manns, and J. M. Parel, “Imaging and full-length biometry of the eye during accommodation using spectral domain OCT with an optical switch,” Biomed. Opt. Express 3(7), 1506–1520 (2012).
    [Crossref] [PubMed]
  29. M. Ruggeri, V. Hernandez, C. de Freitas, F. Manns, and J.-M. Parel, “Biometry of the ciliary muscle during dynamic accommodation assessed with OCT,” Proc. SPIE 8930, 89300W (2014).
    [Crossref]
  30. P. Thévenaz, U. E. Ruttimann, and M. Unser, “A pyramid approach to subpixel registration based on intensity,” IEEE Trans. Image Process. 7(1), 27–41 (1998).
    [Crossref] [PubMed]
  31. A. P. Beers and G. L. Van Der Heijde, “In vivo determination of the biomechanical properties of the component elements of the accommodation mechanism,” Vision Res. 34(21), 2897–2905 (1994).
    [Crossref] [PubMed]
  32. A. P. Beers and G. L. van der Heijde, “Analysis of accommodation function with ultrasonography,” Doc. Ophthalmol. 92(1), 1–10 (1996).
    [Crossref] [PubMed]
  33. D. Shirachi, J. Liu, M. Lee, J. Jang, J. Wong, and L. Stark, “Accommodation dynamics I. Range nonlinearity,” Am. J. Optom. Physiol. Opt. 55(9), 631–641 (1978).
    [Crossref] [PubMed]
  34. M. D. Bailey, “How should we measure the ciliary muscle?” Invest. Ophthalmol. Vis. Sci. 52(3), 1817–1818 (2011).
    [Crossref] [PubMed]
  35. C. Y. Kao, K. Richdale, L. T. Sinnott, L. E. Grillott, and M. D. Bailey, “Semiautomatic extraction algorithm for images of the ciliary muscle,” Optom. Vis. Sci. 88(2), 275–289 (2011).
    [Crossref] [PubMed]

2015 (2)

D. S. Laughton, B. J. Coldrick, A. L. Sheppard, and L. N. Davies, “A program to analyse optical coherence tomography images of the ciliary muscle,” Cont. Lens Anterior Eye 38(6), 402–408 (2015).
[Crossref] [PubMed]

Y. Shao, A. Tao, H. Jiang, X. Mao, J. Zhong, M. Shen, F. Lu, Z. Xu, C. L. Karp, and J. Wang, “Age-related changes in the anterior segment biometry during accommodation,” Invest. Ophthalmol. Vis. Sci. 56(6), 3522–3530 (2015).
[Crossref] [PubMed]

2014 (4)

M. Ruggeri, V. Hernandez, C. de Freitas, F. Manns, and J.-M. Parel, “Biometry of the ciliary muscle during dynamic accommodation assessed with OCT,” Proc. SPIE 8930, 89300W (2014).
[Crossref]

W. N. Charman, “Developments in the correction of presbyopia I: spectacle and contact lenses,” Ophthalmic Physiol. Opt. 34(1), 8–29 (2014).
[Crossref] [PubMed]

W. N. Charman, “Developments in the correction of presbyopia II: surgical approaches,” Ophthalmic Physiol. Opt. 34(4), 397–426 (2014).
[Crossref] [PubMed]

S. Marcos, S. Ortiz, P. Pérez-Merino, J. Birkenfeld, S. Durán, and I. Jiménez-Alfaro, “Three-dimensional evaluation of accommodating intraocular lens shift and alignment in vivo,” Ophthalmology 121(1), 45–55 (2014).
[Crossref] [PubMed]

2013 (1)

2012 (4)

M. Ruggeri, S. R. Uhlhorn, C. De Freitas, A. Ho, F. Manns, and J. M. Parel, “Imaging and full-length biometry of the eye during accommodation using spectral domain OCT with an optical switch,” Biomed. Opt. Express 3(7), 1506–1520 (2012).
[Crossref] [PubMed]

H. A. Lewis, C. Y. Kao, L. T. Sinnott, and M. D. Bailey, “Changes in ciliary muscle thickness during accommodation in children,” Optom. Vis. Sci. 89(5), 727–737 (2012).
[Crossref] [PubMed]

L. A. Lossing, L. T. Sinnott, C. Y. Kao, K. Richdale, and M. D. Bailey, “Measuring changes in ciliary muscle thickness with accommodation in young adults,” Optom. Vis. Sci. 89(5), 719–726 (2012).
[Crossref] [PubMed]

K. Richdale, M. D. Bailey, L. T. Sinnott, C. Y. Kao, K. Zadnik, and M. A. Bullimore, “The effect of phenylephrine on the ciliary muscle and accommodation,” Optom. Vis. Sci. 89(10), e1507 (2012).
[Crossref] [PubMed]

2011 (4)

A. L. Sheppard and L. N. Davies, “The effect of ageing on in vivo human ciliary muscle morphology and contractility,” Invest. Ophthalmol. Vis. Sci. 52(3), 1809–1816 (2011).
[Crossref] [PubMed]

M. D. Bailey, “How should we measure the ciliary muscle?” Invest. Ophthalmol. Vis. Sci. 52(3), 1817–1818 (2011).
[Crossref] [PubMed]

C. Y. Kao, K. Richdale, L. T. Sinnott, L. E. Grillott, and M. D. Bailey, “Semiautomatic extraction algorithm for images of the ciliary muscle,” Optom. Vis. Sci. 88(2), 275–289 (2011).
[Crossref] [PubMed]

S. Kasthurirangan, E. L. Markwell, D. A. Atchison, and J. M. Pope, “MRI study of the changes in crystalline lens shape with accommodation and aging in humans,” J. Vis. 11(3), 19 (2011).
[Crossref] [PubMed]

2010 (1)

A. L. Sheppard and L. N. Davies, “In vivo analysis of ciliary muscle morphologic changes with accommodation and axial ametropia,” Invest. Ophthalmol. Vis. Sci. 51(12), 6882–6889 (2010).
[Crossref] [PubMed]

2008 (1)

S. Kasthurirangan, E. L. Markwell, D. A. Atchison, and J. M. Pope, “In vivo study of changes in refractive index distribution in the human crystalline lens with age and accommodation,” Invest. Ophthalmol. Vis. Sci. 49(6), 2531–2540 (2008).
[Crossref] [PubMed]

2006 (2)

S. A. Strenk, L. M. Strenk, and S. Guo, “Magnetic resonance imaging of aging, accommodating, phakic, and pseudophakic ciliary muscle diameters,” J. Cataract Refract. Surg. 32(11), 1792–1798 (2006).
[Crossref] [PubMed]

L. Ostrin, S. Kasthurirangan, D. Win-Hall, and A. Glasser, “Simultaneous measurements of refraction and A-scan biometry during accommodation in humans,” Optom. Vis. Sci. 83(9), 657–665 (2006).
[Crossref] [PubMed]

2005 (2)

M. Dubbelman, G. L. Van der Heijde, and H. A. Weeber, “Change in shape of the aging human crystalline lens with accommodation,” Vision Res. 45(1), 117–132 (2005).
[Crossref] [PubMed]

S. A. Strenk, L. M. Strenk, and J. F. Koretz, “The mechanism of presbyopia,” Prog. Retin. Eye Res. 24(3), 379–393 (2005).
[Crossref] [PubMed]

2004 (2)

S. A. Strenk, L. M. Strenk, J. L. Semmlow, and J. K. DeMarco, “Magnetic resonance imaging study of the effects of age and accommodation on the human lens cross-sectional area,” Invest. Ophthalmol. Vis. Sci. 45(2), 539–545 (2004).
[Crossref] [PubMed]

J. E. Koretz, S. A. Strenk, L. M. Strenk, and J. L. Semmlow, “Scheimpflug and high-resolution magnetic resonance imaging of the anterior segment: a comparative study,” J. Opt. Soc. Am. A 21(3), 346–354 (2004).
[Crossref] [PubMed]

2003 (1)

M. Dubbelman, G. L. Van der Heijde, H. A. Weeber, and G. F. Vrensen, “Changes in the internal structure of the human crystalline lens with age and accommodation,” Vision Res. 43(22), 2363–2375 (2003).
[Crossref] [PubMed]

2002 (2)

J. F. Koretz, C. A. Cook, and P. L. Kaufman, “Aging of the human lens: changes in lens shape upon accommodation and with accommodative loss,” J. Opt. Soc. Am. A 19(1), 144–151 (2002).
[Crossref] [PubMed]

O. Stachs, H. Martin, A. Kirchhoff, J. Stave, T. Terwee, and R. Guthoff, “Monitoring accommodative ciliary muscle function using three-dimensional ultrasound,” Graefes Arch. Clin. Exp. Ophthalmol. 240(11), 906–912 (2002).
[Crossref] [PubMed]

2001 (2)

M. Dubbelman and G. L. Van der Heijde, “The shape of the aging human lens: curvature, equivalent refractive index and the lens paradox,” Vision Res. 41(14), 1867–1877 (2001).
[Crossref] [PubMed]

M. Dubbelman, G. L. van der Heijde, and H. A. Weeber, “The thickness of the aging human lens obtained from corrected Scheimpflug images,” Optom. Vis. Sci. 78(6), 411–416 (2001).
[Crossref] [PubMed]

1999 (1)

S. A. Strenk, J. L. Semmlow, L. M. Strenk, P. Munoz, J. Gronlund-Jacob, and J. K. DeMarco, “Age-related changes in human ciliary muscle and lens: a magnetic resonance imaging study,” Invest. Ophthalmol. Vis. Sci. 40(6), 1162–1169 (1999).
[PubMed]

1998 (1)

P. Thévenaz, U. E. Ruttimann, and M. Unser, “A pyramid approach to subpixel registration based on intensity,” IEEE Trans. Image Process. 7(1), 27–41 (1998).
[Crossref] [PubMed]

1996 (1)

A. P. Beers and G. L. van der Heijde, “Analysis of accommodation function with ultrasonography,” Doc. Ophthalmol. 92(1), 1–10 (1996).
[Crossref] [PubMed]

1994 (1)

A. P. Beers and G. L. Van Der Heijde, “In vivo determination of the biomechanical properties of the component elements of the accommodation mechanism,” Vision Res. 34(21), 2897–2905 (1994).
[Crossref] [PubMed]

1984 (1)

J. F. Koretz, G. H. Handelman, and N. P. Brown, “Analysis of human crystalline lens curvature as a function of accommodative state and age,” Vision Res. 24(10), 1141–1151 (1984).
[Crossref] [PubMed]

1983 (1)

J. K. Storey and E. P. Rabie, “Ultrasound--a research tool in the study of accommodation,” Ophthalmic Physiol. Opt. 3(3), 315–320 (1983).
[Crossref] [PubMed]

1978 (1)

D. Shirachi, J. Liu, M. Lee, J. Jang, J. Wong, and L. Stark, “Accommodation dynamics I. Range nonlinearity,” Am. J. Optom. Physiol. Opt. 55(9), 631–641 (1978).
[Crossref] [PubMed]

Atchison, D. A.

S. Kasthurirangan, E. L. Markwell, D. A. Atchison, and J. M. Pope, “MRI study of the changes in crystalline lens shape with accommodation and aging in humans,” J. Vis. 11(3), 19 (2011).
[Crossref] [PubMed]

S. Kasthurirangan, E. L. Markwell, D. A. Atchison, and J. M. Pope, “In vivo study of changes in refractive index distribution in the human crystalline lens with age and accommodation,” Invest. Ophthalmol. Vis. Sci. 49(6), 2531–2540 (2008).
[Crossref] [PubMed]

Bailey, M. D.

H. A. Lewis, C. Y. Kao, L. T. Sinnott, and M. D. Bailey, “Changes in ciliary muscle thickness during accommodation in children,” Optom. Vis. Sci. 89(5), 727–737 (2012).
[Crossref] [PubMed]

L. A. Lossing, L. T. Sinnott, C. Y. Kao, K. Richdale, and M. D. Bailey, “Measuring changes in ciliary muscle thickness with accommodation in young adults,” Optom. Vis. Sci. 89(5), 719–726 (2012).
[Crossref] [PubMed]

K. Richdale, M. D. Bailey, L. T. Sinnott, C. Y. Kao, K. Zadnik, and M. A. Bullimore, “The effect of phenylephrine on the ciliary muscle and accommodation,” Optom. Vis. Sci. 89(10), e1507 (2012).
[Crossref] [PubMed]

M. D. Bailey, “How should we measure the ciliary muscle?” Invest. Ophthalmol. Vis. Sci. 52(3), 1817–1818 (2011).
[Crossref] [PubMed]

C. Y. Kao, K. Richdale, L. T. Sinnott, L. E. Grillott, and M. D. Bailey, “Semiautomatic extraction algorithm for images of the ciliary muscle,” Optom. Vis. Sci. 88(2), 275–289 (2011).
[Crossref] [PubMed]

Beers, A. P.

A. P. Beers and G. L. van der Heijde, “Analysis of accommodation function with ultrasonography,” Doc. Ophthalmol. 92(1), 1–10 (1996).
[Crossref] [PubMed]

A. P. Beers and G. L. Van Der Heijde, “In vivo determination of the biomechanical properties of the component elements of the accommodation mechanism,” Vision Res. 34(21), 2897–2905 (1994).
[Crossref] [PubMed]

Birkenfeld, J.

S. Marcos, S. Ortiz, P. Pérez-Merino, J. Birkenfeld, S. Durán, and I. Jiménez-Alfaro, “Three-dimensional evaluation of accommodating intraocular lens shift and alignment in vivo,” Ophthalmology 121(1), 45–55 (2014).
[Crossref] [PubMed]

Brown, N. P.

J. F. Koretz, G. H. Handelman, and N. P. Brown, “Analysis of human crystalline lens curvature as a function of accommodative state and age,” Vision Res. 24(10), 1141–1151 (1984).
[Crossref] [PubMed]

Bullimore, M. A.

K. Richdale, M. D. Bailey, L. T. Sinnott, C. Y. Kao, K. Zadnik, and M. A. Bullimore, “The effect of phenylephrine on the ciliary muscle and accommodation,” Optom. Vis. Sci. 89(10), e1507 (2012).
[Crossref] [PubMed]

Charman, W. N.

W. N. Charman, “Developments in the correction of presbyopia I: spectacle and contact lenses,” Ophthalmic Physiol. Opt. 34(1), 8–29 (2014).
[Crossref] [PubMed]

W. N. Charman, “Developments in the correction of presbyopia II: surgical approaches,” Ophthalmic Physiol. Opt. 34(4), 397–426 (2014).
[Crossref] [PubMed]

Coldrick, B. J.

D. S. Laughton, B. J. Coldrick, A. L. Sheppard, and L. N. Davies, “A program to analyse optical coherence tomography images of the ciliary muscle,” Cont. Lens Anterior Eye 38(6), 402–408 (2015).
[Crossref] [PubMed]

Cook, C. A.

Davies, L. N.

D. S. Laughton, B. J. Coldrick, A. L. Sheppard, and L. N. Davies, “A program to analyse optical coherence tomography images of the ciliary muscle,” Cont. Lens Anterior Eye 38(6), 402–408 (2015).
[Crossref] [PubMed]

A. L. Sheppard and L. N. Davies, “The effect of ageing on in vivo human ciliary muscle morphology and contractility,” Invest. Ophthalmol. Vis. Sci. 52(3), 1809–1816 (2011).
[Crossref] [PubMed]

A. L. Sheppard and L. N. Davies, “In vivo analysis of ciliary muscle morphologic changes with accommodation and axial ametropia,” Invest. Ophthalmol. Vis. Sci. 51(12), 6882–6889 (2010).
[Crossref] [PubMed]

de Freitas, C.

M. Ruggeri, V. Hernandez, C. de Freitas, F. Manns, and J.-M. Parel, “Biometry of the ciliary muscle during dynamic accommodation assessed with OCT,” Proc. SPIE 8930, 89300W (2014).
[Crossref]

M. Ruggeri, S. R. Uhlhorn, C. De Freitas, A. Ho, F. Manns, and J. M. Parel, “Imaging and full-length biometry of the eye during accommodation using spectral domain OCT with an optical switch,” Biomed. Opt. Express 3(7), 1506–1520 (2012).
[Crossref] [PubMed]

DeMarco, J. K.

S. A. Strenk, L. M. Strenk, J. L. Semmlow, and J. K. DeMarco, “Magnetic resonance imaging study of the effects of age and accommodation on the human lens cross-sectional area,” Invest. Ophthalmol. Vis. Sci. 45(2), 539–545 (2004).
[Crossref] [PubMed]

S. A. Strenk, J. L. Semmlow, L. M. Strenk, P. Munoz, J. Gronlund-Jacob, and J. K. DeMarco, “Age-related changes in human ciliary muscle and lens: a magnetic resonance imaging study,” Invest. Ophthalmol. Vis. Sci. 40(6), 1162–1169 (1999).
[PubMed]

Dubbelman, M.

M. Dubbelman, G. L. Van der Heijde, and H. A. Weeber, “Change in shape of the aging human crystalline lens with accommodation,” Vision Res. 45(1), 117–132 (2005).
[Crossref] [PubMed]

M. Dubbelman, G. L. Van der Heijde, H. A. Weeber, and G. F. Vrensen, “Changes in the internal structure of the human crystalline lens with age and accommodation,” Vision Res. 43(22), 2363–2375 (2003).
[Crossref] [PubMed]

M. Dubbelman, G. L. van der Heijde, and H. A. Weeber, “The thickness of the aging human lens obtained from corrected Scheimpflug images,” Optom. Vis. Sci. 78(6), 411–416 (2001).
[Crossref] [PubMed]

M. Dubbelman and G. L. Van der Heijde, “The shape of the aging human lens: curvature, equivalent refractive index and the lens paradox,” Vision Res. 41(14), 1867–1877 (2001).
[Crossref] [PubMed]

Durán, S.

S. Marcos, S. Ortiz, P. Pérez-Merino, J. Birkenfeld, S. Durán, and I. Jiménez-Alfaro, “Three-dimensional evaluation of accommodating intraocular lens shift and alignment in vivo,” Ophthalmology 121(1), 45–55 (2014).
[Crossref] [PubMed]

Glasser, A.

L. Ostrin, S. Kasthurirangan, D. Win-Hall, and A. Glasser, “Simultaneous measurements of refraction and A-scan biometry during accommodation in humans,” Optom. Vis. Sci. 83(9), 657–665 (2006).
[Crossref] [PubMed]

Grillott, L. E.

C. Y. Kao, K. Richdale, L. T. Sinnott, L. E. Grillott, and M. D. Bailey, “Semiautomatic extraction algorithm for images of the ciliary muscle,” Optom. Vis. Sci. 88(2), 275–289 (2011).
[Crossref] [PubMed]

Gronlund-Jacob, J.

S. A. Strenk, J. L. Semmlow, L. M. Strenk, P. Munoz, J. Gronlund-Jacob, and J. K. DeMarco, “Age-related changes in human ciliary muscle and lens: a magnetic resonance imaging study,” Invest. Ophthalmol. Vis. Sci. 40(6), 1162–1169 (1999).
[PubMed]

Guo, S.

S. A. Strenk, L. M. Strenk, and S. Guo, “Magnetic resonance imaging of aging, accommodating, phakic, and pseudophakic ciliary muscle diameters,” J. Cataract Refract. Surg. 32(11), 1792–1798 (2006).
[Crossref] [PubMed]

Guthoff, R.

O. Stachs, H. Martin, A. Kirchhoff, J. Stave, T. Terwee, and R. Guthoff, “Monitoring accommodative ciliary muscle function using three-dimensional ultrasound,” Graefes Arch. Clin. Exp. Ophthalmol. 240(11), 906–912 (2002).
[Crossref] [PubMed]

Handelman, G. H.

J. F. Koretz, G. H. Handelman, and N. P. Brown, “Analysis of human crystalline lens curvature as a function of accommodative state and age,” Vision Res. 24(10), 1141–1151 (1984).
[Crossref] [PubMed]

Hernandez, V.

M. Ruggeri, V. Hernandez, C. de Freitas, F. Manns, and J.-M. Parel, “Biometry of the ciliary muscle during dynamic accommodation assessed with OCT,” Proc. SPIE 8930, 89300W (2014).
[Crossref]

Ho, A.

Jang, J.

D. Shirachi, J. Liu, M. Lee, J. Jang, J. Wong, and L. Stark, “Accommodation dynamics I. Range nonlinearity,” Am. J. Optom. Physiol. Opt. 55(9), 631–641 (1978).
[Crossref] [PubMed]

Jiang, H.

Y. Shao, A. Tao, H. Jiang, X. Mao, J. Zhong, M. Shen, F. Lu, Z. Xu, C. L. Karp, and J. Wang, “Age-related changes in the anterior segment biometry during accommodation,” Invest. Ophthalmol. Vis. Sci. 56(6), 3522–3530 (2015).
[Crossref] [PubMed]

Y. Shao, A. Tao, H. Jiang, M. Shen, J. Zhong, F. Lu, and J. Wang, “Simultaneous real-time imaging of the ocular anterior segment including the ciliary muscle during accommodation,” Biomed. Opt. Express 4(3), 466–480 (2013).
[Crossref] [PubMed]

Jiménez-Alfaro, I.

S. Marcos, S. Ortiz, P. Pérez-Merino, J. Birkenfeld, S. Durán, and I. Jiménez-Alfaro, “Three-dimensional evaluation of accommodating intraocular lens shift and alignment in vivo,” Ophthalmology 121(1), 45–55 (2014).
[Crossref] [PubMed]

Kao, C. Y.

H. A. Lewis, C. Y. Kao, L. T. Sinnott, and M. D. Bailey, “Changes in ciliary muscle thickness during accommodation in children,” Optom. Vis. Sci. 89(5), 727–737 (2012).
[Crossref] [PubMed]

L. A. Lossing, L. T. Sinnott, C. Y. Kao, K. Richdale, and M. D. Bailey, “Measuring changes in ciliary muscle thickness with accommodation in young adults,” Optom. Vis. Sci. 89(5), 719–726 (2012).
[Crossref] [PubMed]

K. Richdale, M. D. Bailey, L. T. Sinnott, C. Y. Kao, K. Zadnik, and M. A. Bullimore, “The effect of phenylephrine on the ciliary muscle and accommodation,” Optom. Vis. Sci. 89(10), e1507 (2012).
[Crossref] [PubMed]

C. Y. Kao, K. Richdale, L. T. Sinnott, L. E. Grillott, and M. D. Bailey, “Semiautomatic extraction algorithm for images of the ciliary muscle,” Optom. Vis. Sci. 88(2), 275–289 (2011).
[Crossref] [PubMed]

Karp, C. L.

Y. Shao, A. Tao, H. Jiang, X. Mao, J. Zhong, M. Shen, F. Lu, Z. Xu, C. L. Karp, and J. Wang, “Age-related changes in the anterior segment biometry during accommodation,” Invest. Ophthalmol. Vis. Sci. 56(6), 3522–3530 (2015).
[Crossref] [PubMed]

Kasthurirangan, S.

S. Kasthurirangan, E. L. Markwell, D. A. Atchison, and J. M. Pope, “MRI study of the changes in crystalline lens shape with accommodation and aging in humans,” J. Vis. 11(3), 19 (2011).
[Crossref] [PubMed]

S. Kasthurirangan, E. L. Markwell, D. A. Atchison, and J. M. Pope, “In vivo study of changes in refractive index distribution in the human crystalline lens with age and accommodation,” Invest. Ophthalmol. Vis. Sci. 49(6), 2531–2540 (2008).
[Crossref] [PubMed]

L. Ostrin, S. Kasthurirangan, D. Win-Hall, and A. Glasser, “Simultaneous measurements of refraction and A-scan biometry during accommodation in humans,” Optom. Vis. Sci. 83(9), 657–665 (2006).
[Crossref] [PubMed]

Kaufman, P. L.

Kirchhoff, A.

O. Stachs, H. Martin, A. Kirchhoff, J. Stave, T. Terwee, and R. Guthoff, “Monitoring accommodative ciliary muscle function using three-dimensional ultrasound,” Graefes Arch. Clin. Exp. Ophthalmol. 240(11), 906–912 (2002).
[Crossref] [PubMed]

Koretz, J. E.

Koretz, J. F.

S. A. Strenk, L. M. Strenk, and J. F. Koretz, “The mechanism of presbyopia,” Prog. Retin. Eye Res. 24(3), 379–393 (2005).
[Crossref] [PubMed]

J. F. Koretz, C. A. Cook, and P. L. Kaufman, “Aging of the human lens: changes in lens shape upon accommodation and with accommodative loss,” J. Opt. Soc. Am. A 19(1), 144–151 (2002).
[Crossref] [PubMed]

J. F. Koretz, G. H. Handelman, and N. P. Brown, “Analysis of human crystalline lens curvature as a function of accommodative state and age,” Vision Res. 24(10), 1141–1151 (1984).
[Crossref] [PubMed]

Laughton, D. S.

D. S. Laughton, B. J. Coldrick, A. L. Sheppard, and L. N. Davies, “A program to analyse optical coherence tomography images of the ciliary muscle,” Cont. Lens Anterior Eye 38(6), 402–408 (2015).
[Crossref] [PubMed]

Lee, M.

D. Shirachi, J. Liu, M. Lee, J. Jang, J. Wong, and L. Stark, “Accommodation dynamics I. Range nonlinearity,” Am. J. Optom. Physiol. Opt. 55(9), 631–641 (1978).
[Crossref] [PubMed]

Lewis, H. A.

H. A. Lewis, C. Y. Kao, L. T. Sinnott, and M. D. Bailey, “Changes in ciliary muscle thickness during accommodation in children,” Optom. Vis. Sci. 89(5), 727–737 (2012).
[Crossref] [PubMed]

Liu, J.

D. Shirachi, J. Liu, M. Lee, J. Jang, J. Wong, and L. Stark, “Accommodation dynamics I. Range nonlinearity,” Am. J. Optom. Physiol. Opt. 55(9), 631–641 (1978).
[Crossref] [PubMed]

Lossing, L. A.

L. A. Lossing, L. T. Sinnott, C. Y. Kao, K. Richdale, and M. D. Bailey, “Measuring changes in ciliary muscle thickness with accommodation in young adults,” Optom. Vis. Sci. 89(5), 719–726 (2012).
[Crossref] [PubMed]

Lu, F.

Y. Shao, A. Tao, H. Jiang, X. Mao, J. Zhong, M. Shen, F. Lu, Z. Xu, C. L. Karp, and J. Wang, “Age-related changes in the anterior segment biometry during accommodation,” Invest. Ophthalmol. Vis. Sci. 56(6), 3522–3530 (2015).
[Crossref] [PubMed]

Y. Shao, A. Tao, H. Jiang, M. Shen, J. Zhong, F. Lu, and J. Wang, “Simultaneous real-time imaging of the ocular anterior segment including the ciliary muscle during accommodation,” Biomed. Opt. Express 4(3), 466–480 (2013).
[Crossref] [PubMed]

Manns, F.

M. Ruggeri, V. Hernandez, C. de Freitas, F. Manns, and J.-M. Parel, “Biometry of the ciliary muscle during dynamic accommodation assessed with OCT,” Proc. SPIE 8930, 89300W (2014).
[Crossref]

M. Ruggeri, S. R. Uhlhorn, C. De Freitas, A. Ho, F. Manns, and J. M. Parel, “Imaging and full-length biometry of the eye during accommodation using spectral domain OCT with an optical switch,” Biomed. Opt. Express 3(7), 1506–1520 (2012).
[Crossref] [PubMed]

Mao, X.

Y. Shao, A. Tao, H. Jiang, X. Mao, J. Zhong, M. Shen, F. Lu, Z. Xu, C. L. Karp, and J. Wang, “Age-related changes in the anterior segment biometry during accommodation,” Invest. Ophthalmol. Vis. Sci. 56(6), 3522–3530 (2015).
[Crossref] [PubMed]

Marcos, S.

S. Marcos, S. Ortiz, P. Pérez-Merino, J. Birkenfeld, S. Durán, and I. Jiménez-Alfaro, “Three-dimensional evaluation of accommodating intraocular lens shift and alignment in vivo,” Ophthalmology 121(1), 45–55 (2014).
[Crossref] [PubMed]

Markwell, E. L.

S. Kasthurirangan, E. L. Markwell, D. A. Atchison, and J. M. Pope, “MRI study of the changes in crystalline lens shape with accommodation and aging in humans,” J. Vis. 11(3), 19 (2011).
[Crossref] [PubMed]

S. Kasthurirangan, E. L. Markwell, D. A. Atchison, and J. M. Pope, “In vivo study of changes in refractive index distribution in the human crystalline lens with age and accommodation,” Invest. Ophthalmol. Vis. Sci. 49(6), 2531–2540 (2008).
[Crossref] [PubMed]

Martin, H.

O. Stachs, H. Martin, A. Kirchhoff, J. Stave, T. Terwee, and R. Guthoff, “Monitoring accommodative ciliary muscle function using three-dimensional ultrasound,” Graefes Arch. Clin. Exp. Ophthalmol. 240(11), 906–912 (2002).
[Crossref] [PubMed]

Munoz, P.

S. A. Strenk, J. L. Semmlow, L. M. Strenk, P. Munoz, J. Gronlund-Jacob, and J. K. DeMarco, “Age-related changes in human ciliary muscle and lens: a magnetic resonance imaging study,” Invest. Ophthalmol. Vis. Sci. 40(6), 1162–1169 (1999).
[PubMed]

Ortiz, S.

S. Marcos, S. Ortiz, P. Pérez-Merino, J. Birkenfeld, S. Durán, and I. Jiménez-Alfaro, “Three-dimensional evaluation of accommodating intraocular lens shift and alignment in vivo,” Ophthalmology 121(1), 45–55 (2014).
[Crossref] [PubMed]

Ostrin, L.

L. Ostrin, S. Kasthurirangan, D. Win-Hall, and A. Glasser, “Simultaneous measurements of refraction and A-scan biometry during accommodation in humans,” Optom. Vis. Sci. 83(9), 657–665 (2006).
[Crossref] [PubMed]

Parel, J. M.

Parel, J.-M.

M. Ruggeri, V. Hernandez, C. de Freitas, F. Manns, and J.-M. Parel, “Biometry of the ciliary muscle during dynamic accommodation assessed with OCT,” Proc. SPIE 8930, 89300W (2014).
[Crossref]

Pérez-Merino, P.

S. Marcos, S. Ortiz, P. Pérez-Merino, J. Birkenfeld, S. Durán, and I. Jiménez-Alfaro, “Three-dimensional evaluation of accommodating intraocular lens shift and alignment in vivo,” Ophthalmology 121(1), 45–55 (2014).
[Crossref] [PubMed]

Pope, J. M.

S. Kasthurirangan, E. L. Markwell, D. A. Atchison, and J. M. Pope, “MRI study of the changes in crystalline lens shape with accommodation and aging in humans,” J. Vis. 11(3), 19 (2011).
[Crossref] [PubMed]

S. Kasthurirangan, E. L. Markwell, D. A. Atchison, and J. M. Pope, “In vivo study of changes in refractive index distribution in the human crystalline lens with age and accommodation,” Invest. Ophthalmol. Vis. Sci. 49(6), 2531–2540 (2008).
[Crossref] [PubMed]

Rabie, E. P.

J. K. Storey and E. P. Rabie, “Ultrasound--a research tool in the study of accommodation,” Ophthalmic Physiol. Opt. 3(3), 315–320 (1983).
[Crossref] [PubMed]

Richdale, K.

L. A. Lossing, L. T. Sinnott, C. Y. Kao, K. Richdale, and M. D. Bailey, “Measuring changes in ciliary muscle thickness with accommodation in young adults,” Optom. Vis. Sci. 89(5), 719–726 (2012).
[Crossref] [PubMed]

K. Richdale, M. D. Bailey, L. T. Sinnott, C. Y. Kao, K. Zadnik, and M. A. Bullimore, “The effect of phenylephrine on the ciliary muscle and accommodation,” Optom. Vis. Sci. 89(10), e1507 (2012).
[Crossref] [PubMed]

C. Y. Kao, K. Richdale, L. T. Sinnott, L. E. Grillott, and M. D. Bailey, “Semiautomatic extraction algorithm for images of the ciliary muscle,” Optom. Vis. Sci. 88(2), 275–289 (2011).
[Crossref] [PubMed]

Ruggeri, M.

M. Ruggeri, V. Hernandez, C. de Freitas, F. Manns, and J.-M. Parel, “Biometry of the ciliary muscle during dynamic accommodation assessed with OCT,” Proc. SPIE 8930, 89300W (2014).
[Crossref]

M. Ruggeri, S. R. Uhlhorn, C. De Freitas, A. Ho, F. Manns, and J. M. Parel, “Imaging and full-length biometry of the eye during accommodation using spectral domain OCT with an optical switch,” Biomed. Opt. Express 3(7), 1506–1520 (2012).
[Crossref] [PubMed]

Ruttimann, U. E.

P. Thévenaz, U. E. Ruttimann, and M. Unser, “A pyramid approach to subpixel registration based on intensity,” IEEE Trans. Image Process. 7(1), 27–41 (1998).
[Crossref] [PubMed]

Semmlow, J. L.

J. E. Koretz, S. A. Strenk, L. M. Strenk, and J. L. Semmlow, “Scheimpflug and high-resolution magnetic resonance imaging of the anterior segment: a comparative study,” J. Opt. Soc. Am. A 21(3), 346–354 (2004).
[Crossref] [PubMed]

S. A. Strenk, L. M. Strenk, J. L. Semmlow, and J. K. DeMarco, “Magnetic resonance imaging study of the effects of age and accommodation on the human lens cross-sectional area,” Invest. Ophthalmol. Vis. Sci. 45(2), 539–545 (2004).
[Crossref] [PubMed]

S. A. Strenk, J. L. Semmlow, L. M. Strenk, P. Munoz, J. Gronlund-Jacob, and J. K. DeMarco, “Age-related changes in human ciliary muscle and lens: a magnetic resonance imaging study,” Invest. Ophthalmol. Vis. Sci. 40(6), 1162–1169 (1999).
[PubMed]

Shao, Y.

Y. Shao, A. Tao, H. Jiang, X. Mao, J. Zhong, M. Shen, F. Lu, Z. Xu, C. L. Karp, and J. Wang, “Age-related changes in the anterior segment biometry during accommodation,” Invest. Ophthalmol. Vis. Sci. 56(6), 3522–3530 (2015).
[Crossref] [PubMed]

Y. Shao, A. Tao, H. Jiang, M. Shen, J. Zhong, F. Lu, and J. Wang, “Simultaneous real-time imaging of the ocular anterior segment including the ciliary muscle during accommodation,” Biomed. Opt. Express 4(3), 466–480 (2013).
[Crossref] [PubMed]

Shen, M.

Y. Shao, A. Tao, H. Jiang, X. Mao, J. Zhong, M. Shen, F. Lu, Z. Xu, C. L. Karp, and J. Wang, “Age-related changes in the anterior segment biometry during accommodation,” Invest. Ophthalmol. Vis. Sci. 56(6), 3522–3530 (2015).
[Crossref] [PubMed]

Y. Shao, A. Tao, H. Jiang, M. Shen, J. Zhong, F. Lu, and J. Wang, “Simultaneous real-time imaging of the ocular anterior segment including the ciliary muscle during accommodation,” Biomed. Opt. Express 4(3), 466–480 (2013).
[Crossref] [PubMed]

Sheppard, A. L.

D. S. Laughton, B. J. Coldrick, A. L. Sheppard, and L. N. Davies, “A program to analyse optical coherence tomography images of the ciliary muscle,” Cont. Lens Anterior Eye 38(6), 402–408 (2015).
[Crossref] [PubMed]

A. L. Sheppard and L. N. Davies, “The effect of ageing on in vivo human ciliary muscle morphology and contractility,” Invest. Ophthalmol. Vis. Sci. 52(3), 1809–1816 (2011).
[Crossref] [PubMed]

A. L. Sheppard and L. N. Davies, “In vivo analysis of ciliary muscle morphologic changes with accommodation and axial ametropia,” Invest. Ophthalmol. Vis. Sci. 51(12), 6882–6889 (2010).
[Crossref] [PubMed]

Shirachi, D.

D. Shirachi, J. Liu, M. Lee, J. Jang, J. Wong, and L. Stark, “Accommodation dynamics I. Range nonlinearity,” Am. J. Optom. Physiol. Opt. 55(9), 631–641 (1978).
[Crossref] [PubMed]

Sinnott, L. T.

K. Richdale, M. D. Bailey, L. T. Sinnott, C. Y. Kao, K. Zadnik, and M. A. Bullimore, “The effect of phenylephrine on the ciliary muscle and accommodation,” Optom. Vis. Sci. 89(10), e1507 (2012).
[Crossref] [PubMed]

L. A. Lossing, L. T. Sinnott, C. Y. Kao, K. Richdale, and M. D. Bailey, “Measuring changes in ciliary muscle thickness with accommodation in young adults,” Optom. Vis. Sci. 89(5), 719–726 (2012).
[Crossref] [PubMed]

H. A. Lewis, C. Y. Kao, L. T. Sinnott, and M. D. Bailey, “Changes in ciliary muscle thickness during accommodation in children,” Optom. Vis. Sci. 89(5), 727–737 (2012).
[Crossref] [PubMed]

C. Y. Kao, K. Richdale, L. T. Sinnott, L. E. Grillott, and M. D. Bailey, “Semiautomatic extraction algorithm for images of the ciliary muscle,” Optom. Vis. Sci. 88(2), 275–289 (2011).
[Crossref] [PubMed]

Stachs, O.

O. Stachs, H. Martin, A. Kirchhoff, J. Stave, T. Terwee, and R. Guthoff, “Monitoring accommodative ciliary muscle function using three-dimensional ultrasound,” Graefes Arch. Clin. Exp. Ophthalmol. 240(11), 906–912 (2002).
[Crossref] [PubMed]

Stark, L.

D. Shirachi, J. Liu, M. Lee, J. Jang, J. Wong, and L. Stark, “Accommodation dynamics I. Range nonlinearity,” Am. J. Optom. Physiol. Opt. 55(9), 631–641 (1978).
[Crossref] [PubMed]

Stave, J.

O. Stachs, H. Martin, A. Kirchhoff, J. Stave, T. Terwee, and R. Guthoff, “Monitoring accommodative ciliary muscle function using three-dimensional ultrasound,” Graefes Arch. Clin. Exp. Ophthalmol. 240(11), 906–912 (2002).
[Crossref] [PubMed]

Storey, J. K.

J. K. Storey and E. P. Rabie, “Ultrasound--a research tool in the study of accommodation,” Ophthalmic Physiol. Opt. 3(3), 315–320 (1983).
[Crossref] [PubMed]

Strenk, L. M.

S. A. Strenk, L. M. Strenk, and S. Guo, “Magnetic resonance imaging of aging, accommodating, phakic, and pseudophakic ciliary muscle diameters,” J. Cataract Refract. Surg. 32(11), 1792–1798 (2006).
[Crossref] [PubMed]

S. A. Strenk, L. M. Strenk, and J. F. Koretz, “The mechanism of presbyopia,” Prog. Retin. Eye Res. 24(3), 379–393 (2005).
[Crossref] [PubMed]

S. A. Strenk, L. M. Strenk, J. L. Semmlow, and J. K. DeMarco, “Magnetic resonance imaging study of the effects of age and accommodation on the human lens cross-sectional area,” Invest. Ophthalmol. Vis. Sci. 45(2), 539–545 (2004).
[Crossref] [PubMed]

J. E. Koretz, S. A. Strenk, L. M. Strenk, and J. L. Semmlow, “Scheimpflug and high-resolution magnetic resonance imaging of the anterior segment: a comparative study,” J. Opt. Soc. Am. A 21(3), 346–354 (2004).
[Crossref] [PubMed]

S. A. Strenk, J. L. Semmlow, L. M. Strenk, P. Munoz, J. Gronlund-Jacob, and J. K. DeMarco, “Age-related changes in human ciliary muscle and lens: a magnetic resonance imaging study,” Invest. Ophthalmol. Vis. Sci. 40(6), 1162–1169 (1999).
[PubMed]

Strenk, S. A.

S. A. Strenk, L. M. Strenk, and S. Guo, “Magnetic resonance imaging of aging, accommodating, phakic, and pseudophakic ciliary muscle diameters,” J. Cataract Refract. Surg. 32(11), 1792–1798 (2006).
[Crossref] [PubMed]

S. A. Strenk, L. M. Strenk, and J. F. Koretz, “The mechanism of presbyopia,” Prog. Retin. Eye Res. 24(3), 379–393 (2005).
[Crossref] [PubMed]

S. A. Strenk, L. M. Strenk, J. L. Semmlow, and J. K. DeMarco, “Magnetic resonance imaging study of the effects of age and accommodation on the human lens cross-sectional area,” Invest. Ophthalmol. Vis. Sci. 45(2), 539–545 (2004).
[Crossref] [PubMed]

J. E. Koretz, S. A. Strenk, L. M. Strenk, and J. L. Semmlow, “Scheimpflug and high-resolution magnetic resonance imaging of the anterior segment: a comparative study,” J. Opt. Soc. Am. A 21(3), 346–354 (2004).
[Crossref] [PubMed]

S. A. Strenk, J. L. Semmlow, L. M. Strenk, P. Munoz, J. Gronlund-Jacob, and J. K. DeMarco, “Age-related changes in human ciliary muscle and lens: a magnetic resonance imaging study,” Invest. Ophthalmol. Vis. Sci. 40(6), 1162–1169 (1999).
[PubMed]

Tao, A.

Y. Shao, A. Tao, H. Jiang, X. Mao, J. Zhong, M. Shen, F. Lu, Z. Xu, C. L. Karp, and J. Wang, “Age-related changes in the anterior segment biometry during accommodation,” Invest. Ophthalmol. Vis. Sci. 56(6), 3522–3530 (2015).
[Crossref] [PubMed]

Y. Shao, A. Tao, H. Jiang, M. Shen, J. Zhong, F. Lu, and J. Wang, “Simultaneous real-time imaging of the ocular anterior segment including the ciliary muscle during accommodation,” Biomed. Opt. Express 4(3), 466–480 (2013).
[Crossref] [PubMed]

Terwee, T.

O. Stachs, H. Martin, A. Kirchhoff, J. Stave, T. Terwee, and R. Guthoff, “Monitoring accommodative ciliary muscle function using three-dimensional ultrasound,” Graefes Arch. Clin. Exp. Ophthalmol. 240(11), 906–912 (2002).
[Crossref] [PubMed]

Thévenaz, P.

P. Thévenaz, U. E. Ruttimann, and M. Unser, “A pyramid approach to subpixel registration based on intensity,” IEEE Trans. Image Process. 7(1), 27–41 (1998).
[Crossref] [PubMed]

Uhlhorn, S. R.

Unser, M.

P. Thévenaz, U. E. Ruttimann, and M. Unser, “A pyramid approach to subpixel registration based on intensity,” IEEE Trans. Image Process. 7(1), 27–41 (1998).
[Crossref] [PubMed]

Van der Heijde, G. L.

M. Dubbelman, G. L. Van der Heijde, and H. A. Weeber, “Change in shape of the aging human crystalline lens with accommodation,” Vision Res. 45(1), 117–132 (2005).
[Crossref] [PubMed]

M. Dubbelman, G. L. Van der Heijde, H. A. Weeber, and G. F. Vrensen, “Changes in the internal structure of the human crystalline lens with age and accommodation,” Vision Res. 43(22), 2363–2375 (2003).
[Crossref] [PubMed]

M. Dubbelman, G. L. van der Heijde, and H. A. Weeber, “The thickness of the aging human lens obtained from corrected Scheimpflug images,” Optom. Vis. Sci. 78(6), 411–416 (2001).
[Crossref] [PubMed]

M. Dubbelman and G. L. Van der Heijde, “The shape of the aging human lens: curvature, equivalent refractive index and the lens paradox,” Vision Res. 41(14), 1867–1877 (2001).
[Crossref] [PubMed]

A. P. Beers and G. L. van der Heijde, “Analysis of accommodation function with ultrasonography,” Doc. Ophthalmol. 92(1), 1–10 (1996).
[Crossref] [PubMed]

A. P. Beers and G. L. Van Der Heijde, “In vivo determination of the biomechanical properties of the component elements of the accommodation mechanism,” Vision Res. 34(21), 2897–2905 (1994).
[Crossref] [PubMed]

Vrensen, G. F.

M. Dubbelman, G. L. Van der Heijde, H. A. Weeber, and G. F. Vrensen, “Changes in the internal structure of the human crystalline lens with age and accommodation,” Vision Res. 43(22), 2363–2375 (2003).
[Crossref] [PubMed]

Wang, J.

Y. Shao, A. Tao, H. Jiang, X. Mao, J. Zhong, M. Shen, F. Lu, Z. Xu, C. L. Karp, and J. Wang, “Age-related changes in the anterior segment biometry during accommodation,” Invest. Ophthalmol. Vis. Sci. 56(6), 3522–3530 (2015).
[Crossref] [PubMed]

Y. Shao, A. Tao, H. Jiang, M. Shen, J. Zhong, F. Lu, and J. Wang, “Simultaneous real-time imaging of the ocular anterior segment including the ciliary muscle during accommodation,” Biomed. Opt. Express 4(3), 466–480 (2013).
[Crossref] [PubMed]

Weeber, H. A.

M. Dubbelman, G. L. Van der Heijde, and H. A. Weeber, “Change in shape of the aging human crystalline lens with accommodation,” Vision Res. 45(1), 117–132 (2005).
[Crossref] [PubMed]

M. Dubbelman, G. L. Van der Heijde, H. A. Weeber, and G. F. Vrensen, “Changes in the internal structure of the human crystalline lens with age and accommodation,” Vision Res. 43(22), 2363–2375 (2003).
[Crossref] [PubMed]

M. Dubbelman, G. L. van der Heijde, and H. A. Weeber, “The thickness of the aging human lens obtained from corrected Scheimpflug images,” Optom. Vis. Sci. 78(6), 411–416 (2001).
[Crossref] [PubMed]

Win-Hall, D.

L. Ostrin, S. Kasthurirangan, D. Win-Hall, and A. Glasser, “Simultaneous measurements of refraction and A-scan biometry during accommodation in humans,” Optom. Vis. Sci. 83(9), 657–665 (2006).
[Crossref] [PubMed]

Wong, J.

D. Shirachi, J. Liu, M. Lee, J. Jang, J. Wong, and L. Stark, “Accommodation dynamics I. Range nonlinearity,” Am. J. Optom. Physiol. Opt. 55(9), 631–641 (1978).
[Crossref] [PubMed]

Xu, Z.

Y. Shao, A. Tao, H. Jiang, X. Mao, J. Zhong, M. Shen, F. Lu, Z. Xu, C. L. Karp, and J. Wang, “Age-related changes in the anterior segment biometry during accommodation,” Invest. Ophthalmol. Vis. Sci. 56(6), 3522–3530 (2015).
[Crossref] [PubMed]

Zadnik, K.

K. Richdale, M. D. Bailey, L. T. Sinnott, C. Y. Kao, K. Zadnik, and M. A. Bullimore, “The effect of phenylephrine on the ciliary muscle and accommodation,” Optom. Vis. Sci. 89(10), e1507 (2012).
[Crossref] [PubMed]

Zhong, J.

Y. Shao, A. Tao, H. Jiang, X. Mao, J. Zhong, M. Shen, F. Lu, Z. Xu, C. L. Karp, and J. Wang, “Age-related changes in the anterior segment biometry during accommodation,” Invest. Ophthalmol. Vis. Sci. 56(6), 3522–3530 (2015).
[Crossref] [PubMed]

Y. Shao, A. Tao, H. Jiang, M. Shen, J. Zhong, F. Lu, and J. Wang, “Simultaneous real-time imaging of the ocular anterior segment including the ciliary muscle during accommodation,” Biomed. Opt. Express 4(3), 466–480 (2013).
[Crossref] [PubMed]

Am. J. Optom. Physiol. Opt. (1)

D. Shirachi, J. Liu, M. Lee, J. Jang, J. Wong, and L. Stark, “Accommodation dynamics I. Range nonlinearity,” Am. J. Optom. Physiol. Opt. 55(9), 631–641 (1978).
[Crossref] [PubMed]

Biomed. Opt. Express (2)

Cont. Lens Anterior Eye (1)

D. S. Laughton, B. J. Coldrick, A. L. Sheppard, and L. N. Davies, “A program to analyse optical coherence tomography images of the ciliary muscle,” Cont. Lens Anterior Eye 38(6), 402–408 (2015).
[Crossref] [PubMed]

Doc. Ophthalmol. (1)

A. P. Beers and G. L. van der Heijde, “Analysis of accommodation function with ultrasonography,” Doc. Ophthalmol. 92(1), 1–10 (1996).
[Crossref] [PubMed]

Graefes Arch. Clin. Exp. Ophthalmol. (1)

O. Stachs, H. Martin, A. Kirchhoff, J. Stave, T. Terwee, and R. Guthoff, “Monitoring accommodative ciliary muscle function using three-dimensional ultrasound,” Graefes Arch. Clin. Exp. Ophthalmol. 240(11), 906–912 (2002).
[Crossref] [PubMed]

IEEE Trans. Image Process. (1)

P. Thévenaz, U. E. Ruttimann, and M. Unser, “A pyramid approach to subpixel registration based on intensity,” IEEE Trans. Image Process. 7(1), 27–41 (1998).
[Crossref] [PubMed]

Invest. Ophthalmol. Vis. Sci. (7)

M. D. Bailey, “How should we measure the ciliary muscle?” Invest. Ophthalmol. Vis. Sci. 52(3), 1817–1818 (2011).
[Crossref] [PubMed]

A. L. Sheppard and L. N. Davies, “In vivo analysis of ciliary muscle morphologic changes with accommodation and axial ametropia,” Invest. Ophthalmol. Vis. Sci. 51(12), 6882–6889 (2010).
[Crossref] [PubMed]

A. L. Sheppard and L. N. Davies, “The effect of ageing on in vivo human ciliary muscle morphology and contractility,” Invest. Ophthalmol. Vis. Sci. 52(3), 1809–1816 (2011).
[Crossref] [PubMed]

S. A. Strenk, J. L. Semmlow, L. M. Strenk, P. Munoz, J. Gronlund-Jacob, and J. K. DeMarco, “Age-related changes in human ciliary muscle and lens: a magnetic resonance imaging study,” Invest. Ophthalmol. Vis. Sci. 40(6), 1162–1169 (1999).
[PubMed]

Y. Shao, A. Tao, H. Jiang, X. Mao, J. Zhong, M. Shen, F. Lu, Z. Xu, C. L. Karp, and J. Wang, “Age-related changes in the anterior segment biometry during accommodation,” Invest. Ophthalmol. Vis. Sci. 56(6), 3522–3530 (2015).
[Crossref] [PubMed]

S. Kasthurirangan, E. L. Markwell, D. A. Atchison, and J. M. Pope, “In vivo study of changes in refractive index distribution in the human crystalline lens with age and accommodation,” Invest. Ophthalmol. Vis. Sci. 49(6), 2531–2540 (2008).
[Crossref] [PubMed]

S. A. Strenk, L. M. Strenk, J. L. Semmlow, and J. K. DeMarco, “Magnetic resonance imaging study of the effects of age and accommodation on the human lens cross-sectional area,” Invest. Ophthalmol. Vis. Sci. 45(2), 539–545 (2004).
[Crossref] [PubMed]

J. Cataract Refract. Surg. (1)

S. A. Strenk, L. M. Strenk, and S. Guo, “Magnetic resonance imaging of aging, accommodating, phakic, and pseudophakic ciliary muscle diameters,” J. Cataract Refract. Surg. 32(11), 1792–1798 (2006).
[Crossref] [PubMed]

J. Opt. Soc. Am. A (2)

J. Vis. (1)

S. Kasthurirangan, E. L. Markwell, D. A. Atchison, and J. M. Pope, “MRI study of the changes in crystalline lens shape with accommodation and aging in humans,” J. Vis. 11(3), 19 (2011).
[Crossref] [PubMed]

Ophthalmic Physiol. Opt. (3)

W. N. Charman, “Developments in the correction of presbyopia I: spectacle and contact lenses,” Ophthalmic Physiol. Opt. 34(1), 8–29 (2014).
[Crossref] [PubMed]

W. N. Charman, “Developments in the correction of presbyopia II: surgical approaches,” Ophthalmic Physiol. Opt. 34(4), 397–426 (2014).
[Crossref] [PubMed]

J. K. Storey and E. P. Rabie, “Ultrasound--a research tool in the study of accommodation,” Ophthalmic Physiol. Opt. 3(3), 315–320 (1983).
[Crossref] [PubMed]

Ophthalmology (1)

S. Marcos, S. Ortiz, P. Pérez-Merino, J. Birkenfeld, S. Durán, and I. Jiménez-Alfaro, “Three-dimensional evaluation of accommodating intraocular lens shift and alignment in vivo,” Ophthalmology 121(1), 45–55 (2014).
[Crossref] [PubMed]

Optom. Vis. Sci. (6)

L. Ostrin, S. Kasthurirangan, D. Win-Hall, and A. Glasser, “Simultaneous measurements of refraction and A-scan biometry during accommodation in humans,” Optom. Vis. Sci. 83(9), 657–665 (2006).
[Crossref] [PubMed]

M. Dubbelman, G. L. van der Heijde, and H. A. Weeber, “The thickness of the aging human lens obtained from corrected Scheimpflug images,” Optom. Vis. Sci. 78(6), 411–416 (2001).
[Crossref] [PubMed]

H. A. Lewis, C. Y. Kao, L. T. Sinnott, and M. D. Bailey, “Changes in ciliary muscle thickness during accommodation in children,” Optom. Vis. Sci. 89(5), 727–737 (2012).
[Crossref] [PubMed]

L. A. Lossing, L. T. Sinnott, C. Y. Kao, K. Richdale, and M. D. Bailey, “Measuring changes in ciliary muscle thickness with accommodation in young adults,” Optom. Vis. Sci. 89(5), 719–726 (2012).
[Crossref] [PubMed]

K. Richdale, M. D. Bailey, L. T. Sinnott, C. Y. Kao, K. Zadnik, and M. A. Bullimore, “The effect of phenylephrine on the ciliary muscle and accommodation,” Optom. Vis. Sci. 89(10), e1507 (2012).
[Crossref] [PubMed]

C. Y. Kao, K. Richdale, L. T. Sinnott, L. E. Grillott, and M. D. Bailey, “Semiautomatic extraction algorithm for images of the ciliary muscle,” Optom. Vis. Sci. 88(2), 275–289 (2011).
[Crossref] [PubMed]

Proc. SPIE (1)

M. Ruggeri, V. Hernandez, C. de Freitas, F. Manns, and J.-M. Parel, “Biometry of the ciliary muscle during dynamic accommodation assessed with OCT,” Proc. SPIE 8930, 89300W (2014).
[Crossref]

Prog. Retin. Eye Res. (1)

S. A. Strenk, L. M. Strenk, and J. F. Koretz, “The mechanism of presbyopia,” Prog. Retin. Eye Res. 24(3), 379–393 (2005).
[Crossref] [PubMed]

Vision Res. (5)

M. Dubbelman, G. L. Van der Heijde, and H. A. Weeber, “Change in shape of the aging human crystalline lens with accommodation,” Vision Res. 45(1), 117–132 (2005).
[Crossref] [PubMed]

M. Dubbelman, G. L. Van der Heijde, H. A. Weeber, and G. F. Vrensen, “Changes in the internal structure of the human crystalline lens with age and accommodation,” Vision Res. 43(22), 2363–2375 (2003).
[Crossref] [PubMed]

M. Dubbelman and G. L. Van der Heijde, “The shape of the aging human lens: curvature, equivalent refractive index and the lens paradox,” Vision Res. 41(14), 1867–1877 (2001).
[Crossref] [PubMed]

J. F. Koretz, G. H. Handelman, and N. P. Brown, “Analysis of human crystalline lens curvature as a function of accommodative state and age,” Vision Res. 24(10), 1141–1151 (1984).
[Crossref] [PubMed]

A. P. Beers and G. L. Van Der Heijde, “In vivo determination of the biomechanical properties of the component elements of the accommodation mechanism,” Vision Res. 34(21), 2897–2905 (1994).
[Crossref] [PubMed]

Supplementary Material (3)

NameDescription
» Visualization 1: MP4 (3665 KB)      lens and ciliary muscle response during accommodation in a 22 year-old subject for a 2 D step stimulus
» Visualization 2: MP4 (3393 KB)      lens and ciliary muscle response during accommodation in a 22 year-old subject for a 4 D step stimulus
» Visualization 3: MP4 (4181 KB)      lens and ciliary muscle response during accommodation in a 45 year-old subject for a 2 D step stimulus

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 Schematic of the accommodation OCT system. (A) The SD-OCT system at 1325 nm (CM-OCT). (B) The delivery probes of the OCT systems and the accommodation unit. (C) The SD-OCT system at 840nm (AS-OCT). (D) Schematic of the anterior segment and OCT images of the ciliary muscle (CM) (red) and cornea, anterior chamber and lens (blue) generated by the system. Scale bar = 1mm (in air).
Fig. 2
Fig. 2 (A) Schematic of the timing unit and synchronization operations between the SD-OCT systems operating at 840 nm and 1325 nm. (B) Time diagram of the synchronous acquisition between the two OCT systems.
Fig. 3
Fig. 3 Schematic of the image processing applied on the OCT temporal sequence acquired over the anterior segment. (A) 160 images alternately acquired at two different depths over the anterior segment. (B) 80 images of the anterior segment ranging from the cornea to the posterior lens. (C) Intraocular distances including central corneal thickness (CCT), anterior chamber depth (ACD) and lens thickness (LT) extracted from automatic segmentation.
Fig. 4
Fig. 4 Schematic of the image processing applied on the OCT temporal sequence acquired over the ciliary muscle (CM). (A) 160 consecutive images of the ciliary muscle. (B) 80 averaged ( × 2) images of the ciliary muscle obtained from (B). (C) Manual segmentation of the ocular surface boundaries applied to the images in (B). Segmentation sample of the conjunctival surface (blue), CM outer surface (red), CM inner surface (green), anterior chamber boundary (yellow). (D) Distortion correction of the segmented boundaries in (C). (E) Ciliary muscle maximal thickness.
Fig. 5
Fig. 5 Real-time display of lens and ciliary muscle response during accommodation in a 22 year-old subject for (A) a 2D (see Visualization 1) and (B) a 4D (see Visualization 2) step stimulus and in a 45 year-old subject (see Visualization 3) for a 2D step stimulus. The OCT images were acquired at 13 fps during the accommodative responses from the relaxed state to the accommodative state. The movies are displayed at twice the acquisition speed (26 fps).
Fig. 6
Fig. 6 Dynamics of the crystalline lens position (A-C) and thickness (D-F), and ciliary muscle thickness maximal thickness (G-I) in a 22 year-old and a 45 year-old in response to step accommodation stimuli. The ciliary muscle thickness data points and error bars represent the average and standard deviation of measurements obtained by three independent operators on the same OCT images using a custom-made manual segmentation program. (A-C) Time response of the anterior (ALS), posterior (PLS) and central (LS) lens position. (D-F) Time response of the lens thickness (LT). Red squares indicate changes occurring during the LT rising phase (between 5% and 95% of the final lens thickness). Black squares indicate steady states or LT changes occurring outside the rising phase. (G-I) Time course of ciliary muscle maximal thickness (CMT). Red squares indicate CMT changes occurring during the rising phase of LT. Black squares indicate steady states or CMT changes occurring outside the LT rising phase. Exponential fit of LT and CMT traces according to Eq. (1) are reported in blue. (J-L) Accommodation state diagrams reporting LT changes (D-F) as a function of CMT changes (G-I). Data points (LT, CMT) corresponding to the rising phase of LT are indicated with red empty squares. The relaxed and accommodated states of the lens are indicated with red, solid squares. The transition path from the relaxed to the accommodated state is indicated with a red line. Steady states or LT changes occurring outside the rising phase are indicated with black, empty squares. Linear regression of the rising phase plot is reported in blue.

Tables (2)

Tables Icon

Table 1 Mean and standard deviation of the change in crystalline lens thickness (LT), anterior (ALS), posterior (PLS) and central (LS) axial shift of the crystalline lens and maximum thickness of the ciliary muscle (CMT) during accommodation in 22 year-old and 45 year-old subjects.

Tables Icon

Table 2 Parameters of the exponential fits of the changes in the lens and ciliary muscle thickness during accommodation for the 22 year-old and 45 year-old subjectsa

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

x(t)= x 0 +Δx×( 1e | t(Δt+ t s ) |+t(Δt+ t s ) 2τ ).

Metrics