Abstract

Simultaneous deep macroscopic imaging and microscopic imaging is in urgent demand, but is challenging to achieve experimentally due to the lack of proper fluorescent probes. Herein, we have designed and successfully synthesized simplex Er3+-doped upconversion nanoparticles (UCNPs) with double excitation bands for simultaneous deep macroscopic and microscopic imaging. The material structure and the excitation wavelength of Er3+-singly doped UCNPs were further optimized to enhance the upconversion emission efficiency. After optimization, we found that NaYF4:30%Er3+@NaYF4:2%Er3+ could simultaneously achieve efficient two-photon excitation (2PE) macroscopic tissue imaging and three-photon excitation (3PE) deep microscopic when excited by 808 nm continuous wave (CW) and 1480 nm CW lasers, respectively. In vitro cell imaging and in vivo imaging have also been implemented to demonstrate the feasibility and potential of the proposed simplex Er3+-doped UCNPs as bioprobe.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Deep, high contrast microscopic cell imaging using three-photon luminescence of β-(NaYF4:Er3+/NaYF4) nanoprobe excited by 1480-nm CW laser of only 1.5-mW

Jing Liu, Ruitao Wu, Nana Li, Xin Zhang, Qiuqiang Zhan, and Sailing He
Biomed. Opt. Express 6(5) 1857-1866 (2015)

Controlling the excitation of upconverting luminescence for biomedical theranostics: neodymium sensitizing

Qiuqiang Zhan, Baoju Wang, Xuanyuan Wen, and Sailing He
Opt. Mater. Express 6(4) 1011-1023 (2016)

Sub-5-nm lanthanide-doped ZrO2@NaYF4 nanodots as efficient upconverting probes for rapid scanning microscopy and aptamer-mediated bioimaging

Jing Liu, Nana Li, Ruitao Wu, Yuxiang Zhao, Qiuqiang Zhan, and Sailing He
Opt. Mater. Express 5(8) 1759-1771 (2015)

References

  • View by:
  • |
  • |
  • |

  1. N. G. Horton, K. Wang, D. Kobat, C. G. Clark, F. W. Wise, C. B. Schaffer, and C. Xu, “In vivo three-photon microscopy of subcortical structures within an intact mouse brain,” Nat. Photonics 7(3), 205–209 (2013).
    [Crossref] [PubMed]
  2. Q. Zhan, J. Qian, H. Liang, G. Somesfalean, D. Wang, S. He, Z. Zhang, and S. Andersson-Engels, “Using 915 nm laser excited Tm³+/Er³+/Ho³+- doped NaYbF4 upconversion nanoparticles for in vitro and deeper in vivo bioimaging without overheating irradiation,” ACS Nano 5(5), 3744–3757 (2011).
    [Crossref] [PubMed]
  3. S. V. Eliseeva and J.-C. G. Bünzli, “Lanthanide luminescence for functional materials and bio-sciences,” Chem. Soc. Rev. 39(1), 189–227 (2010).
    [Crossref] [PubMed]
  4. H. Kobayashi, M. Ogawa, R. Alford, P. L. Choyke, and Y. Urano, “New strategies for fluorescent probe design in medical diagnostic imaging,” Chem. Rev. 110(5), 2620–2640 (2010).
    [Crossref] [PubMed]
  5. L. Cheng, K. Yang, Y. Li, J. Chen, C. Wang, M. Shao, S. T. Lee, and Z. Liu, “Facile preparation of multifunctional upconversion nanoprobes for multimodal imaging and dual-targeted photothermal therapy,” Angew. Chem. Int. Ed. Engl. 50(32), 7385–7390 (2011).
    [Crossref] [PubMed]
  6. J. Xie, G. Liu, H. S. Eden, H. Ai, and X. Chen, “Surface-engineered magnetic nanoparticle platforms for cancer imaging and therapy,” Acc. Chem. Res. 44(10), 883–892 (2011).
    [Crossref] [PubMed]
  7. H. S. Mader, P. Kele, S. M. Saleh, and O. S. Wolfbeis, “Upconverting luminescent nanoparticles for use in bioconjugation and bioimaging,” Curr. Opin. Chem. Biol. 14(5), 582–596 (2010).
    [Crossref] [PubMed]
  8. B. Wang, Q. Zhan, Y. Zhao, R. Wu, J. Liu, and S. He, “Visible-to-visible four-photon ultrahigh resolution microscopic imaging with 730-nm diode laser excited nanocrystals,” Opt. Express 24(2), A302–A311 (2016).
    [Crossref] [PubMed]
  9. N. Li, X. Wen, J. Liu, B. Wang, Q. Zhan, and S. He, “Yb3+-enhanced UCNP@ SiO2 nanocomposites for consecutive imaging, photothermal-controlled drug delivery and cancer therapy,” Opt. Mater. Express 6(4), 1161–1171 (2016).
    [Crossref]
  10. Q. Q. Zhan, X. Zhang, Y. X. Zhao, J. Liu, and S. L. He, “Tens of thousands-fold upconversion luminescence enhancement induced by a single gold nanorod,” Laser Photonics Rev. 9(5), 479–487 (2015).
    [Crossref]
  11. M. Haase and H. Schäfer, “Upconverting nanoparticles,” Angew. Chem. Int. Ed. Engl. 50(26), 5808–5829 (2011).
    [Crossref] [PubMed]
  12. F. Auzel, “Upconversion and anti-Stokes processes with f and d ions in solids,” Chem. Rev. 104(1), 139–174 (2004).
    [Crossref] [PubMed]
  13. F. Wang and X. Liu, “Recent advances in the chemistry of lanthanide-doped upconversion nanocrystals,” Chem. Soc. Rev. 38(4), 976–989 (2009).
    [Crossref] [PubMed]
  14. X. Li, F. Zhang, and D. Zhao, “Lab on upconversion nanoparticles: optical properties and applications engineering via designed nanostructure,” Chem. Soc. Rev. 44(6), 1346–1378 (2015).
    [Crossref] [PubMed]
  15. X. Wu, Y. Zhang, K. Takle, O. Bilsel, Z. Li, H. Lee, Z. Zhang, D. Li, W. Fan, C. Duan, E. M. Chan, C. Lois, Y. Xiang, and G. Han, “Dye-Sensitized Core/Active Shell Upconversion Nanoparticles for Optogenetics and Bioimaging Applications,” ACS Nano 10(1), 1060–1066 (2016).
    [Crossref] [PubMed]
  16. Y. Zhang, L. Huang, Z. Li, G. Ma, Y. Zhou, and G. Han, “Illuminating Cell Signaling with Near-Infrared Light-Responsive Nanomaterials,” ACS Nano 10(4), 3881–3885 (2016).
    [Crossref] [PubMed]
  17. L. He, Y. Zhang, G. Ma, P. Tan, Z. Li, S. Zang, X. Wu, J. Jing, S. Fang, L. Zhou, Y. Wang, Y. Huang, P. G. Hogan, G. Han, and Y. Zhou, “Near-infrared photoactivatable control of Ca2+ signaling and optogenetic immunomodulation,” eLife 4, 10024 (2015).
    [PubMed]
  18. X. Wu, H. Lee, O. Bilsel, Y. Zhang, Z. Li, T. Chen, Y. Liu, C. Duan, J. Shen, A. Punjabi, and G. Han, “Tailoring dye-sensitized upconversion nanoparticle excitation bands towards excitation wavelength selective imaging,” Nanoscale 7(44), 18424–18428 (2015).
    [Crossref] [PubMed]
  19. G. Chen, T. Y. Ohulchanskyy, A. Kachynski, H. Agren, and P. N. Prasad, “Intense visible and near-infrared upconversion photoluminescence in colloidal LiYF₄:Er³+ nanocrystals under excitation at 1490 nm,” ACS Nano 5(6), 4981–4986 (2011).
    [Crossref] [PubMed]
  20. J. Liu, R. Wu, N. Li, X. Zhang, Q. Zhan, and S. He, “Deep, high contrast microscopic cell imaging using three-photon luminescence of β-(NaYF4:Er3+/NaYF4) nanoprobe excited by 1480-nm CW laser of only 1.5-mW,” Biomed. Opt. Express 6(5), 1857–1866 (2015).
    [Crossref] [PubMed]
  21. X. Shang, P. Chen, T. Jia, D. Feng, S. Zhang, Z. Sun, and J. Qiu, “Upconversion luminescence mechanisms of Er3+ ions under excitation of an 800 nm laser,” Phys. Chem. Chem. Phys. 17(17), 11481–11489 (2015).
    [Crossref] [PubMed]
  22. D. Wang, B. Xue, X. Kong, L. Tu, X. Liu, Y. Zhang, Y. Chang, Y. Luo, H. Zhao, and H. Zhang, “808 nm driven Nd3+-sensitized upconversion nanostructures for photodynamic therapy and simultaneous fluorescence imaging,” Nanoscale 7(1), 190–197 (2015).
    [Crossref] [PubMed]
  23. Z. Wang, P. Zhang, Q. Yuan, X. Xu, P. Lei, X. Liu, Y. Su, L. Dong, J. Feng, and H. Zhang, “Nd³⁺-sensitized NaLuF₄ luminescent nanoparticles for multimodal imaging and temperature sensing under 808 nm excitation,” Nanoscale 7(42), 17861–17870 (2015).
    [Crossref] [PubMed]
  24. Y. Zhong, G. Tian, Z. Gu, Y. Yang, L. Gu, Y. Zhao, Y. Ma, and J. Yao, “Elimination of photon quenching by a transition layer to fabricate a quenching-shield sandwich structure for 800 nm excited upconversion luminescence of Nd3+-sensitized nanoparticles,” Adv. Mater. 26(18), 2831–2837 (2014).
    [Crossref] [PubMed]
  25. Q. Zhan, B. Wang, X. Wen, and S. He, “Controlling the excitation of upconverting luminescence for biomedical theranostics: neodymium sensitizing,” Opt. Mater. Express 6(4), 1011–1023 (2016).
    [Crossref]
  26. F. Wang, R. Deng, and X. Liu, “Preparation of core-shell NaGdF4 nanoparticles doped with luminescent lanthanide ions to be used as upconversion-based probes,” Nat. Protoc. 9(7), 1634–1644 (2014).
    [Crossref] [PubMed]
  27. N. Bogdan, F. Vetrone, G. A. Ozin, and J. A. Capobianco, “Synthesis of ligand-free colloidally stable water dispersible brightly luminescent lanthanide-doped upconverting nanoparticles,” Nano Lett. 11(2), 835–840 (2011).
    [Crossref] [PubMed]
  28. G. Chen, T. Y. Ohulchanskyy, S. Liu, W. C. Law, F. Wu, M. T. Swihart, H. Agren, and P. N. Prasad, “Core/shell NaGdF4:Nd3+/NaGdF4 nanocrystals with efficient near-infrared to near-infrared downconversion photoluminescence for bioimaging applications,” ACS Nano 6(4), 2969–2977 (2012).
    [Crossref] [PubMed]
  29. G. M. Spirou, A. A. Oraevsky, I. A. Vitkin, and W. M. Whelan, “Optical and acoustic properties at 1064 nm of polyvinyl chloride-plastisol for use as a tissue phantom in biomedical optoacoustics,” Phys. Med. Biol. 50(14), N141–N153 (2005).
    [Crossref] [PubMed]
  30. B. W. Pogue and M. S. Patterson, “Review of tissue simulating phantoms for optical spectroscopy, imaging and dosimetry,” J. Biomed. Opt. 11(4), 041102 (2006).
    [Crossref] [PubMed]
  31. V. V. Tuchin, and Society of Photo-optical Instrumentation Engineers, Tissue optics: light scattering methods and instruments for medical diagnosis (SPIE/International Society for Optical Engineering, Bellingham, Wash., 2007).
  32. J. Shen, G. Y. Chen, A. M. Vu, W. Fan, O. S. Bilsel, C. C. Chang, and G. Han, “Engineering the Upconversion Nanoparticle Excitation Wavelength: Cascade Sensitization of Tri-doped Upconversion Colloidal Nanoparticles at 800 nm,” Adv. Opt. Mater. 1(9), 644–650 (2013).
    [Crossref]
  33. Y. Zhao, Q. Zhan, J. Liu, and S. He, “Optically investigating Nd3+-Yb3+ cascade sensitized upconversion nanoparticles for high resolution, rapid scanning, deep and damage-free bio-imaging,” Biomed. Opt. Express 6(3), 838–848 (2015).
    [Crossref] [PubMed]
  34. M. Pollnau, D. R. Gamelin, S. R. Luthi, H. U. Gudel, and M. P. Hehlen, “Power dependence of upconversion luminescence in lanthanide and transition-metal-ion systems,” Phys. Rev. B 61(5), 3337–3346 (2000).
    [Crossref]
  35. G. Chen, H. Qiu, P. N. Prasad, and X. Chen, “Upconversion nanoparticles: design, nanochemistry, and applications in theranostics,” Chem. Rev. 114(10), 5161–5214 (2014).
    [Crossref] [PubMed]
  36. Z. Li, Y. Zhang, H. La, R. Zhu, G. El-Banna, Y. Wei, and G. Han, “Upconverting NIR Photons for Bioimaging,” Nanomaterials (Basel) 5(4), 2148–2168 (2015).
    [Crossref]

2016 (5)

2015 (10)

J. Liu, R. Wu, N. Li, X. Zhang, Q. Zhan, and S. He, “Deep, high contrast microscopic cell imaging using three-photon luminescence of β-(NaYF4:Er3+/NaYF4) nanoprobe excited by 1480-nm CW laser of only 1.5-mW,” Biomed. Opt. Express 6(5), 1857–1866 (2015).
[Crossref] [PubMed]

X. Shang, P. Chen, T. Jia, D. Feng, S. Zhang, Z. Sun, and J. Qiu, “Upconversion luminescence mechanisms of Er3+ ions under excitation of an 800 nm laser,” Phys. Chem. Chem. Phys. 17(17), 11481–11489 (2015).
[Crossref] [PubMed]

D. Wang, B. Xue, X. Kong, L. Tu, X. Liu, Y. Zhang, Y. Chang, Y. Luo, H. Zhao, and H. Zhang, “808 nm driven Nd3+-sensitized upconversion nanostructures for photodynamic therapy and simultaneous fluorescence imaging,” Nanoscale 7(1), 190–197 (2015).
[Crossref] [PubMed]

Z. Wang, P. Zhang, Q. Yuan, X. Xu, P. Lei, X. Liu, Y. Su, L. Dong, J. Feng, and H. Zhang, “Nd³⁺-sensitized NaLuF₄ luminescent nanoparticles for multimodal imaging and temperature sensing under 808 nm excitation,” Nanoscale 7(42), 17861–17870 (2015).
[Crossref] [PubMed]

Y. Zhao, Q. Zhan, J. Liu, and S. He, “Optically investigating Nd3+-Yb3+ cascade sensitized upconversion nanoparticles for high resolution, rapid scanning, deep and damage-free bio-imaging,” Biomed. Opt. Express 6(3), 838–848 (2015).
[Crossref] [PubMed]

Z. Li, Y. Zhang, H. La, R. Zhu, G. El-Banna, Y. Wei, and G. Han, “Upconverting NIR Photons for Bioimaging,” Nanomaterials (Basel) 5(4), 2148–2168 (2015).
[Crossref]

L. He, Y. Zhang, G. Ma, P. Tan, Z. Li, S. Zang, X. Wu, J. Jing, S. Fang, L. Zhou, Y. Wang, Y. Huang, P. G. Hogan, G. Han, and Y. Zhou, “Near-infrared photoactivatable control of Ca2+ signaling and optogenetic immunomodulation,” eLife 4, 10024 (2015).
[PubMed]

X. Wu, H. Lee, O. Bilsel, Y. Zhang, Z. Li, T. Chen, Y. Liu, C. Duan, J. Shen, A. Punjabi, and G. Han, “Tailoring dye-sensitized upconversion nanoparticle excitation bands towards excitation wavelength selective imaging,” Nanoscale 7(44), 18424–18428 (2015).
[Crossref] [PubMed]

X. Li, F. Zhang, and D. Zhao, “Lab on upconversion nanoparticles: optical properties and applications engineering via designed nanostructure,” Chem. Soc. Rev. 44(6), 1346–1378 (2015).
[Crossref] [PubMed]

Q. Q. Zhan, X. Zhang, Y. X. Zhao, J. Liu, and S. L. He, “Tens of thousands-fold upconversion luminescence enhancement induced by a single gold nanorod,” Laser Photonics Rev. 9(5), 479–487 (2015).
[Crossref]

2014 (3)

G. Chen, H. Qiu, P. N. Prasad, and X. Chen, “Upconversion nanoparticles: design, nanochemistry, and applications in theranostics,” Chem. Rev. 114(10), 5161–5214 (2014).
[Crossref] [PubMed]

Y. Zhong, G. Tian, Z. Gu, Y. Yang, L. Gu, Y. Zhao, Y. Ma, and J. Yao, “Elimination of photon quenching by a transition layer to fabricate a quenching-shield sandwich structure for 800 nm excited upconversion luminescence of Nd3+-sensitized nanoparticles,” Adv. Mater. 26(18), 2831–2837 (2014).
[Crossref] [PubMed]

F. Wang, R. Deng, and X. Liu, “Preparation of core-shell NaGdF4 nanoparticles doped with luminescent lanthanide ions to be used as upconversion-based probes,” Nat. Protoc. 9(7), 1634–1644 (2014).
[Crossref] [PubMed]

2013 (2)

J. Shen, G. Y. Chen, A. M. Vu, W. Fan, O. S. Bilsel, C. C. Chang, and G. Han, “Engineering the Upconversion Nanoparticle Excitation Wavelength: Cascade Sensitization of Tri-doped Upconversion Colloidal Nanoparticles at 800 nm,” Adv. Opt. Mater. 1(9), 644–650 (2013).
[Crossref]

N. G. Horton, K. Wang, D. Kobat, C. G. Clark, F. W. Wise, C. B. Schaffer, and C. Xu, “In vivo three-photon microscopy of subcortical structures within an intact mouse brain,” Nat. Photonics 7(3), 205–209 (2013).
[Crossref] [PubMed]

2012 (1)

G. Chen, T. Y. Ohulchanskyy, S. Liu, W. C. Law, F. Wu, M. T. Swihart, H. Agren, and P. N. Prasad, “Core/shell NaGdF4:Nd3+/NaGdF4 nanocrystals with efficient near-infrared to near-infrared downconversion photoluminescence for bioimaging applications,” ACS Nano 6(4), 2969–2977 (2012).
[Crossref] [PubMed]

2011 (6)

N. Bogdan, F. Vetrone, G. A. Ozin, and J. A. Capobianco, “Synthesis of ligand-free colloidally stable water dispersible brightly luminescent lanthanide-doped upconverting nanoparticles,” Nano Lett. 11(2), 835–840 (2011).
[Crossref] [PubMed]

Q. Zhan, J. Qian, H. Liang, G. Somesfalean, D. Wang, S. He, Z. Zhang, and S. Andersson-Engels, “Using 915 nm laser excited Tm³+/Er³+/Ho³+- doped NaYbF4 upconversion nanoparticles for in vitro and deeper in vivo bioimaging without overheating irradiation,” ACS Nano 5(5), 3744–3757 (2011).
[Crossref] [PubMed]

M. Haase and H. Schäfer, “Upconverting nanoparticles,” Angew. Chem. Int. Ed. Engl. 50(26), 5808–5829 (2011).
[Crossref] [PubMed]

L. Cheng, K. Yang, Y. Li, J. Chen, C. Wang, M. Shao, S. T. Lee, and Z. Liu, “Facile preparation of multifunctional upconversion nanoprobes for multimodal imaging and dual-targeted photothermal therapy,” Angew. Chem. Int. Ed. Engl. 50(32), 7385–7390 (2011).
[Crossref] [PubMed]

J. Xie, G. Liu, H. S. Eden, H. Ai, and X. Chen, “Surface-engineered magnetic nanoparticle platforms for cancer imaging and therapy,” Acc. Chem. Res. 44(10), 883–892 (2011).
[Crossref] [PubMed]

G. Chen, T. Y. Ohulchanskyy, A. Kachynski, H. Agren, and P. N. Prasad, “Intense visible and near-infrared upconversion photoluminescence in colloidal LiYF₄:Er³+ nanocrystals under excitation at 1490 nm,” ACS Nano 5(6), 4981–4986 (2011).
[Crossref] [PubMed]

2010 (3)

H. S. Mader, P. Kele, S. M. Saleh, and O. S. Wolfbeis, “Upconverting luminescent nanoparticles for use in bioconjugation and bioimaging,” Curr. Opin. Chem. Biol. 14(5), 582–596 (2010).
[Crossref] [PubMed]

S. V. Eliseeva and J.-C. G. Bünzli, “Lanthanide luminescence for functional materials and bio-sciences,” Chem. Soc. Rev. 39(1), 189–227 (2010).
[Crossref] [PubMed]

H. Kobayashi, M. Ogawa, R. Alford, P. L. Choyke, and Y. Urano, “New strategies for fluorescent probe design in medical diagnostic imaging,” Chem. Rev. 110(5), 2620–2640 (2010).
[Crossref] [PubMed]

2009 (1)

F. Wang and X. Liu, “Recent advances in the chemistry of lanthanide-doped upconversion nanocrystals,” Chem. Soc. Rev. 38(4), 976–989 (2009).
[Crossref] [PubMed]

2006 (1)

B. W. Pogue and M. S. Patterson, “Review of tissue simulating phantoms for optical spectroscopy, imaging and dosimetry,” J. Biomed. Opt. 11(4), 041102 (2006).
[Crossref] [PubMed]

2005 (1)

G. M. Spirou, A. A. Oraevsky, I. A. Vitkin, and W. M. Whelan, “Optical and acoustic properties at 1064 nm of polyvinyl chloride-plastisol for use as a tissue phantom in biomedical optoacoustics,” Phys. Med. Biol. 50(14), N141–N153 (2005).
[Crossref] [PubMed]

2004 (1)

F. Auzel, “Upconversion and anti-Stokes processes with f and d ions in solids,” Chem. Rev. 104(1), 139–174 (2004).
[Crossref] [PubMed]

2000 (1)

M. Pollnau, D. R. Gamelin, S. R. Luthi, H. U. Gudel, and M. P. Hehlen, “Power dependence of upconversion luminescence in lanthanide and transition-metal-ion systems,” Phys. Rev. B 61(5), 3337–3346 (2000).
[Crossref]

Agren, H.

G. Chen, T. Y. Ohulchanskyy, S. Liu, W. C. Law, F. Wu, M. T. Swihart, H. Agren, and P. N. Prasad, “Core/shell NaGdF4:Nd3+/NaGdF4 nanocrystals with efficient near-infrared to near-infrared downconversion photoluminescence for bioimaging applications,” ACS Nano 6(4), 2969–2977 (2012).
[Crossref] [PubMed]

G. Chen, T. Y. Ohulchanskyy, A. Kachynski, H. Agren, and P. N. Prasad, “Intense visible and near-infrared upconversion photoluminescence in colloidal LiYF₄:Er³+ nanocrystals under excitation at 1490 nm,” ACS Nano 5(6), 4981–4986 (2011).
[Crossref] [PubMed]

Ai, H.

J. Xie, G. Liu, H. S. Eden, H. Ai, and X. Chen, “Surface-engineered magnetic nanoparticle platforms for cancer imaging and therapy,” Acc. Chem. Res. 44(10), 883–892 (2011).
[Crossref] [PubMed]

Alford, R.

H. Kobayashi, M. Ogawa, R. Alford, P. L. Choyke, and Y. Urano, “New strategies for fluorescent probe design in medical diagnostic imaging,” Chem. Rev. 110(5), 2620–2640 (2010).
[Crossref] [PubMed]

Andersson-Engels, S.

Q. Zhan, J. Qian, H. Liang, G. Somesfalean, D. Wang, S. He, Z. Zhang, and S. Andersson-Engels, “Using 915 nm laser excited Tm³+/Er³+/Ho³+- doped NaYbF4 upconversion nanoparticles for in vitro and deeper in vivo bioimaging without overheating irradiation,” ACS Nano 5(5), 3744–3757 (2011).
[Crossref] [PubMed]

Auzel, F.

F. Auzel, “Upconversion and anti-Stokes processes with f and d ions in solids,” Chem. Rev. 104(1), 139–174 (2004).
[Crossref] [PubMed]

Bilsel, O.

X. Wu, Y. Zhang, K. Takle, O. Bilsel, Z. Li, H. Lee, Z. Zhang, D. Li, W. Fan, C. Duan, E. M. Chan, C. Lois, Y. Xiang, and G. Han, “Dye-Sensitized Core/Active Shell Upconversion Nanoparticles for Optogenetics and Bioimaging Applications,” ACS Nano 10(1), 1060–1066 (2016).
[Crossref] [PubMed]

X. Wu, H. Lee, O. Bilsel, Y. Zhang, Z. Li, T. Chen, Y. Liu, C. Duan, J. Shen, A. Punjabi, and G. Han, “Tailoring dye-sensitized upconversion nanoparticle excitation bands towards excitation wavelength selective imaging,” Nanoscale 7(44), 18424–18428 (2015).
[Crossref] [PubMed]

Bilsel, O. S.

J. Shen, G. Y. Chen, A. M. Vu, W. Fan, O. S. Bilsel, C. C. Chang, and G. Han, “Engineering the Upconversion Nanoparticle Excitation Wavelength: Cascade Sensitization of Tri-doped Upconversion Colloidal Nanoparticles at 800 nm,” Adv. Opt. Mater. 1(9), 644–650 (2013).
[Crossref]

Bogdan, N.

N. Bogdan, F. Vetrone, G. A. Ozin, and J. A. Capobianco, “Synthesis of ligand-free colloidally stable water dispersible brightly luminescent lanthanide-doped upconverting nanoparticles,” Nano Lett. 11(2), 835–840 (2011).
[Crossref] [PubMed]

Bünzli, J.-C. G.

S. V. Eliseeva and J.-C. G. Bünzli, “Lanthanide luminescence for functional materials and bio-sciences,” Chem. Soc. Rev. 39(1), 189–227 (2010).
[Crossref] [PubMed]

Capobianco, J. A.

N. Bogdan, F. Vetrone, G. A. Ozin, and J. A. Capobianco, “Synthesis of ligand-free colloidally stable water dispersible brightly luminescent lanthanide-doped upconverting nanoparticles,” Nano Lett. 11(2), 835–840 (2011).
[Crossref] [PubMed]

Chan, E. M.

X. Wu, Y. Zhang, K. Takle, O. Bilsel, Z. Li, H. Lee, Z. Zhang, D. Li, W. Fan, C. Duan, E. M. Chan, C. Lois, Y. Xiang, and G. Han, “Dye-Sensitized Core/Active Shell Upconversion Nanoparticles for Optogenetics and Bioimaging Applications,” ACS Nano 10(1), 1060–1066 (2016).
[Crossref] [PubMed]

Chang, C. C.

J. Shen, G. Y. Chen, A. M. Vu, W. Fan, O. S. Bilsel, C. C. Chang, and G. Han, “Engineering the Upconversion Nanoparticle Excitation Wavelength: Cascade Sensitization of Tri-doped Upconversion Colloidal Nanoparticles at 800 nm,” Adv. Opt. Mater. 1(9), 644–650 (2013).
[Crossref]

Chang, Y.

D. Wang, B. Xue, X. Kong, L. Tu, X. Liu, Y. Zhang, Y. Chang, Y. Luo, H. Zhao, and H. Zhang, “808 nm driven Nd3+-sensitized upconversion nanostructures for photodynamic therapy and simultaneous fluorescence imaging,” Nanoscale 7(1), 190–197 (2015).
[Crossref] [PubMed]

Chen, G.

G. Chen, H. Qiu, P. N. Prasad, and X. Chen, “Upconversion nanoparticles: design, nanochemistry, and applications in theranostics,” Chem. Rev. 114(10), 5161–5214 (2014).
[Crossref] [PubMed]

G. Chen, T. Y. Ohulchanskyy, S. Liu, W. C. Law, F. Wu, M. T. Swihart, H. Agren, and P. N. Prasad, “Core/shell NaGdF4:Nd3+/NaGdF4 nanocrystals with efficient near-infrared to near-infrared downconversion photoluminescence for bioimaging applications,” ACS Nano 6(4), 2969–2977 (2012).
[Crossref] [PubMed]

G. Chen, T. Y. Ohulchanskyy, A. Kachynski, H. Agren, and P. N. Prasad, “Intense visible and near-infrared upconversion photoluminescence in colloidal LiYF₄:Er³+ nanocrystals under excitation at 1490 nm,” ACS Nano 5(6), 4981–4986 (2011).
[Crossref] [PubMed]

Chen, G. Y.

J. Shen, G. Y. Chen, A. M. Vu, W. Fan, O. S. Bilsel, C. C. Chang, and G. Han, “Engineering the Upconversion Nanoparticle Excitation Wavelength: Cascade Sensitization of Tri-doped Upconversion Colloidal Nanoparticles at 800 nm,” Adv. Opt. Mater. 1(9), 644–650 (2013).
[Crossref]

Chen, J.

L. Cheng, K. Yang, Y. Li, J. Chen, C. Wang, M. Shao, S. T. Lee, and Z. Liu, “Facile preparation of multifunctional upconversion nanoprobes for multimodal imaging and dual-targeted photothermal therapy,” Angew. Chem. Int. Ed. Engl. 50(32), 7385–7390 (2011).
[Crossref] [PubMed]

Chen, P.

X. Shang, P. Chen, T. Jia, D. Feng, S. Zhang, Z. Sun, and J. Qiu, “Upconversion luminescence mechanisms of Er3+ ions under excitation of an 800 nm laser,” Phys. Chem. Chem. Phys. 17(17), 11481–11489 (2015).
[Crossref] [PubMed]

Chen, T.

X. Wu, H. Lee, O. Bilsel, Y. Zhang, Z. Li, T. Chen, Y. Liu, C. Duan, J. Shen, A. Punjabi, and G. Han, “Tailoring dye-sensitized upconversion nanoparticle excitation bands towards excitation wavelength selective imaging,” Nanoscale 7(44), 18424–18428 (2015).
[Crossref] [PubMed]

Chen, X.

G. Chen, H. Qiu, P. N. Prasad, and X. Chen, “Upconversion nanoparticles: design, nanochemistry, and applications in theranostics,” Chem. Rev. 114(10), 5161–5214 (2014).
[Crossref] [PubMed]

J. Xie, G. Liu, H. S. Eden, H. Ai, and X. Chen, “Surface-engineered magnetic nanoparticle platforms for cancer imaging and therapy,” Acc. Chem. Res. 44(10), 883–892 (2011).
[Crossref] [PubMed]

Cheng, L.

L. Cheng, K. Yang, Y. Li, J. Chen, C. Wang, M. Shao, S. T. Lee, and Z. Liu, “Facile preparation of multifunctional upconversion nanoprobes for multimodal imaging and dual-targeted photothermal therapy,” Angew. Chem. Int. Ed. Engl. 50(32), 7385–7390 (2011).
[Crossref] [PubMed]

Choyke, P. L.

H. Kobayashi, M. Ogawa, R. Alford, P. L. Choyke, and Y. Urano, “New strategies for fluorescent probe design in medical diagnostic imaging,” Chem. Rev. 110(5), 2620–2640 (2010).
[Crossref] [PubMed]

Clark, C. G.

N. G. Horton, K. Wang, D. Kobat, C. G. Clark, F. W. Wise, C. B. Schaffer, and C. Xu, “In vivo three-photon microscopy of subcortical structures within an intact mouse brain,” Nat. Photonics 7(3), 205–209 (2013).
[Crossref] [PubMed]

Deng, R.

F. Wang, R. Deng, and X. Liu, “Preparation of core-shell NaGdF4 nanoparticles doped with luminescent lanthanide ions to be used as upconversion-based probes,” Nat. Protoc. 9(7), 1634–1644 (2014).
[Crossref] [PubMed]

Dong, L.

Z. Wang, P. Zhang, Q. Yuan, X. Xu, P. Lei, X. Liu, Y. Su, L. Dong, J. Feng, and H. Zhang, “Nd³⁺-sensitized NaLuF₄ luminescent nanoparticles for multimodal imaging and temperature sensing under 808 nm excitation,” Nanoscale 7(42), 17861–17870 (2015).
[Crossref] [PubMed]

Duan, C.

X. Wu, Y. Zhang, K. Takle, O. Bilsel, Z. Li, H. Lee, Z. Zhang, D. Li, W. Fan, C. Duan, E. M. Chan, C. Lois, Y. Xiang, and G. Han, “Dye-Sensitized Core/Active Shell Upconversion Nanoparticles for Optogenetics and Bioimaging Applications,” ACS Nano 10(1), 1060–1066 (2016).
[Crossref] [PubMed]

X. Wu, H. Lee, O. Bilsel, Y. Zhang, Z. Li, T. Chen, Y. Liu, C. Duan, J. Shen, A. Punjabi, and G. Han, “Tailoring dye-sensitized upconversion nanoparticle excitation bands towards excitation wavelength selective imaging,” Nanoscale 7(44), 18424–18428 (2015).
[Crossref] [PubMed]

Eden, H. S.

J. Xie, G. Liu, H. S. Eden, H. Ai, and X. Chen, “Surface-engineered magnetic nanoparticle platforms for cancer imaging and therapy,” Acc. Chem. Res. 44(10), 883–892 (2011).
[Crossref] [PubMed]

El-Banna, G.

Z. Li, Y. Zhang, H. La, R. Zhu, G. El-Banna, Y. Wei, and G. Han, “Upconverting NIR Photons for Bioimaging,” Nanomaterials (Basel) 5(4), 2148–2168 (2015).
[Crossref]

Eliseeva, S. V.

S. V. Eliseeva and J.-C. G. Bünzli, “Lanthanide luminescence for functional materials and bio-sciences,” Chem. Soc. Rev. 39(1), 189–227 (2010).
[Crossref] [PubMed]

Fan, W.

X. Wu, Y. Zhang, K. Takle, O. Bilsel, Z. Li, H. Lee, Z. Zhang, D. Li, W. Fan, C. Duan, E. M. Chan, C. Lois, Y. Xiang, and G. Han, “Dye-Sensitized Core/Active Shell Upconversion Nanoparticles for Optogenetics and Bioimaging Applications,” ACS Nano 10(1), 1060–1066 (2016).
[Crossref] [PubMed]

J. Shen, G. Y. Chen, A. M. Vu, W. Fan, O. S. Bilsel, C. C. Chang, and G. Han, “Engineering the Upconversion Nanoparticle Excitation Wavelength: Cascade Sensitization of Tri-doped Upconversion Colloidal Nanoparticles at 800 nm,” Adv. Opt. Mater. 1(9), 644–650 (2013).
[Crossref]

Fang, S.

L. He, Y. Zhang, G. Ma, P. Tan, Z. Li, S. Zang, X. Wu, J. Jing, S. Fang, L. Zhou, Y. Wang, Y. Huang, P. G. Hogan, G. Han, and Y. Zhou, “Near-infrared photoactivatable control of Ca2+ signaling and optogenetic immunomodulation,” eLife 4, 10024 (2015).
[PubMed]

Feng, D.

X. Shang, P. Chen, T. Jia, D. Feng, S. Zhang, Z. Sun, and J. Qiu, “Upconversion luminescence mechanisms of Er3+ ions under excitation of an 800 nm laser,” Phys. Chem. Chem. Phys. 17(17), 11481–11489 (2015).
[Crossref] [PubMed]

Feng, J.

Z. Wang, P. Zhang, Q. Yuan, X. Xu, P. Lei, X. Liu, Y. Su, L. Dong, J. Feng, and H. Zhang, “Nd³⁺-sensitized NaLuF₄ luminescent nanoparticles for multimodal imaging and temperature sensing under 808 nm excitation,” Nanoscale 7(42), 17861–17870 (2015).
[Crossref] [PubMed]

Gamelin, D. R.

M. Pollnau, D. R. Gamelin, S. R. Luthi, H. U. Gudel, and M. P. Hehlen, “Power dependence of upconversion luminescence in lanthanide and transition-metal-ion systems,” Phys. Rev. B 61(5), 3337–3346 (2000).
[Crossref]

Gu, L.

Y. Zhong, G. Tian, Z. Gu, Y. Yang, L. Gu, Y. Zhao, Y. Ma, and J. Yao, “Elimination of photon quenching by a transition layer to fabricate a quenching-shield sandwich structure for 800 nm excited upconversion luminescence of Nd3+-sensitized nanoparticles,” Adv. Mater. 26(18), 2831–2837 (2014).
[Crossref] [PubMed]

Gu, Z.

Y. Zhong, G. Tian, Z. Gu, Y. Yang, L. Gu, Y. Zhao, Y. Ma, and J. Yao, “Elimination of photon quenching by a transition layer to fabricate a quenching-shield sandwich structure for 800 nm excited upconversion luminescence of Nd3+-sensitized nanoparticles,” Adv. Mater. 26(18), 2831–2837 (2014).
[Crossref] [PubMed]

Gudel, H. U.

M. Pollnau, D. R. Gamelin, S. R. Luthi, H. U. Gudel, and M. P. Hehlen, “Power dependence of upconversion luminescence in lanthanide and transition-metal-ion systems,” Phys. Rev. B 61(5), 3337–3346 (2000).
[Crossref]

Haase, M.

M. Haase and H. Schäfer, “Upconverting nanoparticles,” Angew. Chem. Int. Ed. Engl. 50(26), 5808–5829 (2011).
[Crossref] [PubMed]

Han, G.

X. Wu, Y. Zhang, K. Takle, O. Bilsel, Z. Li, H. Lee, Z. Zhang, D. Li, W. Fan, C. Duan, E. M. Chan, C. Lois, Y. Xiang, and G. Han, “Dye-Sensitized Core/Active Shell Upconversion Nanoparticles for Optogenetics and Bioimaging Applications,” ACS Nano 10(1), 1060–1066 (2016).
[Crossref] [PubMed]

Y. Zhang, L. Huang, Z. Li, G. Ma, Y. Zhou, and G. Han, “Illuminating Cell Signaling with Near-Infrared Light-Responsive Nanomaterials,” ACS Nano 10(4), 3881–3885 (2016).
[Crossref] [PubMed]

L. He, Y. Zhang, G. Ma, P. Tan, Z. Li, S. Zang, X. Wu, J. Jing, S. Fang, L. Zhou, Y. Wang, Y. Huang, P. G. Hogan, G. Han, and Y. Zhou, “Near-infrared photoactivatable control of Ca2+ signaling and optogenetic immunomodulation,” eLife 4, 10024 (2015).
[PubMed]

X. Wu, H. Lee, O. Bilsel, Y. Zhang, Z. Li, T. Chen, Y. Liu, C. Duan, J. Shen, A. Punjabi, and G. Han, “Tailoring dye-sensitized upconversion nanoparticle excitation bands towards excitation wavelength selective imaging,” Nanoscale 7(44), 18424–18428 (2015).
[Crossref] [PubMed]

Z. Li, Y. Zhang, H. La, R. Zhu, G. El-Banna, Y. Wei, and G. Han, “Upconverting NIR Photons for Bioimaging,” Nanomaterials (Basel) 5(4), 2148–2168 (2015).
[Crossref]

J. Shen, G. Y. Chen, A. M. Vu, W. Fan, O. S. Bilsel, C. C. Chang, and G. Han, “Engineering the Upconversion Nanoparticle Excitation Wavelength: Cascade Sensitization of Tri-doped Upconversion Colloidal Nanoparticles at 800 nm,” Adv. Opt. Mater. 1(9), 644–650 (2013).
[Crossref]

He, L.

L. He, Y. Zhang, G. Ma, P. Tan, Z. Li, S. Zang, X. Wu, J. Jing, S. Fang, L. Zhou, Y. Wang, Y. Huang, P. G. Hogan, G. Han, and Y. Zhou, “Near-infrared photoactivatable control of Ca2+ signaling and optogenetic immunomodulation,” eLife 4, 10024 (2015).
[PubMed]

He, S.

N. Li, X. Wen, J. Liu, B. Wang, Q. Zhan, and S. He, “Yb3+-enhanced UCNP@ SiO2 nanocomposites for consecutive imaging, photothermal-controlled drug delivery and cancer therapy,” Opt. Mater. Express 6(4), 1161–1171 (2016).
[Crossref]

B. Wang, Q. Zhan, Y. Zhao, R. Wu, J. Liu, and S. He, “Visible-to-visible four-photon ultrahigh resolution microscopic imaging with 730-nm diode laser excited nanocrystals,” Opt. Express 24(2), A302–A311 (2016).
[Crossref] [PubMed]

Q. Zhan, B. Wang, X. Wen, and S. He, “Controlling the excitation of upconverting luminescence for biomedical theranostics: neodymium sensitizing,” Opt. Mater. Express 6(4), 1011–1023 (2016).
[Crossref]

Y. Zhao, Q. Zhan, J. Liu, and S. He, “Optically investigating Nd3+-Yb3+ cascade sensitized upconversion nanoparticles for high resolution, rapid scanning, deep and damage-free bio-imaging,” Biomed. Opt. Express 6(3), 838–848 (2015).
[Crossref] [PubMed]

J. Liu, R. Wu, N. Li, X. Zhang, Q. Zhan, and S. He, “Deep, high contrast microscopic cell imaging using three-photon luminescence of β-(NaYF4:Er3+/NaYF4) nanoprobe excited by 1480-nm CW laser of only 1.5-mW,” Biomed. Opt. Express 6(5), 1857–1866 (2015).
[Crossref] [PubMed]

Q. Zhan, J. Qian, H. Liang, G. Somesfalean, D. Wang, S. He, Z. Zhang, and S. Andersson-Engels, “Using 915 nm laser excited Tm³+/Er³+/Ho³+- doped NaYbF4 upconversion nanoparticles for in vitro and deeper in vivo bioimaging without overheating irradiation,” ACS Nano 5(5), 3744–3757 (2011).
[Crossref] [PubMed]

He, S. L.

Q. Q. Zhan, X. Zhang, Y. X. Zhao, J. Liu, and S. L. He, “Tens of thousands-fold upconversion luminescence enhancement induced by a single gold nanorod,” Laser Photonics Rev. 9(5), 479–487 (2015).
[Crossref]

Hehlen, M. P.

M. Pollnau, D. R. Gamelin, S. R. Luthi, H. U. Gudel, and M. P. Hehlen, “Power dependence of upconversion luminescence in lanthanide and transition-metal-ion systems,” Phys. Rev. B 61(5), 3337–3346 (2000).
[Crossref]

Hogan, P. G.

L. He, Y. Zhang, G. Ma, P. Tan, Z. Li, S. Zang, X. Wu, J. Jing, S. Fang, L. Zhou, Y. Wang, Y. Huang, P. G. Hogan, G. Han, and Y. Zhou, “Near-infrared photoactivatable control of Ca2+ signaling and optogenetic immunomodulation,” eLife 4, 10024 (2015).
[PubMed]

Horton, N. G.

N. G. Horton, K. Wang, D. Kobat, C. G. Clark, F. W. Wise, C. B. Schaffer, and C. Xu, “In vivo three-photon microscopy of subcortical structures within an intact mouse brain,” Nat. Photonics 7(3), 205–209 (2013).
[Crossref] [PubMed]

Huang, L.

Y. Zhang, L. Huang, Z. Li, G. Ma, Y. Zhou, and G. Han, “Illuminating Cell Signaling with Near-Infrared Light-Responsive Nanomaterials,” ACS Nano 10(4), 3881–3885 (2016).
[Crossref] [PubMed]

Huang, Y.

L. He, Y. Zhang, G. Ma, P. Tan, Z. Li, S. Zang, X. Wu, J. Jing, S. Fang, L. Zhou, Y. Wang, Y. Huang, P. G. Hogan, G. Han, and Y. Zhou, “Near-infrared photoactivatable control of Ca2+ signaling and optogenetic immunomodulation,” eLife 4, 10024 (2015).
[PubMed]

Jia, T.

X. Shang, P. Chen, T. Jia, D. Feng, S. Zhang, Z. Sun, and J. Qiu, “Upconversion luminescence mechanisms of Er3+ ions under excitation of an 800 nm laser,” Phys. Chem. Chem. Phys. 17(17), 11481–11489 (2015).
[Crossref] [PubMed]

Jing, J.

L. He, Y. Zhang, G. Ma, P. Tan, Z. Li, S. Zang, X. Wu, J. Jing, S. Fang, L. Zhou, Y. Wang, Y. Huang, P. G. Hogan, G. Han, and Y. Zhou, “Near-infrared photoactivatable control of Ca2+ signaling and optogenetic immunomodulation,” eLife 4, 10024 (2015).
[PubMed]

Kachynski, A.

G. Chen, T. Y. Ohulchanskyy, A. Kachynski, H. Agren, and P. N. Prasad, “Intense visible and near-infrared upconversion photoluminescence in colloidal LiYF₄:Er³+ nanocrystals under excitation at 1490 nm,” ACS Nano 5(6), 4981–4986 (2011).
[Crossref] [PubMed]

Kele, P.

H. S. Mader, P. Kele, S. M. Saleh, and O. S. Wolfbeis, “Upconverting luminescent nanoparticles for use in bioconjugation and bioimaging,” Curr. Opin. Chem. Biol. 14(5), 582–596 (2010).
[Crossref] [PubMed]

Kobat, D.

N. G. Horton, K. Wang, D. Kobat, C. G. Clark, F. W. Wise, C. B. Schaffer, and C. Xu, “In vivo three-photon microscopy of subcortical structures within an intact mouse brain,” Nat. Photonics 7(3), 205–209 (2013).
[Crossref] [PubMed]

Kobayashi, H.

H. Kobayashi, M. Ogawa, R. Alford, P. L. Choyke, and Y. Urano, “New strategies for fluorescent probe design in medical diagnostic imaging,” Chem. Rev. 110(5), 2620–2640 (2010).
[Crossref] [PubMed]

Kong, X.

D. Wang, B. Xue, X. Kong, L. Tu, X. Liu, Y. Zhang, Y. Chang, Y. Luo, H. Zhao, and H. Zhang, “808 nm driven Nd3+-sensitized upconversion nanostructures for photodynamic therapy and simultaneous fluorescence imaging,” Nanoscale 7(1), 190–197 (2015).
[Crossref] [PubMed]

La, H.

Z. Li, Y. Zhang, H. La, R. Zhu, G. El-Banna, Y. Wei, and G. Han, “Upconverting NIR Photons for Bioimaging,” Nanomaterials (Basel) 5(4), 2148–2168 (2015).
[Crossref]

Law, W. C.

G. Chen, T. Y. Ohulchanskyy, S. Liu, W. C. Law, F. Wu, M. T. Swihart, H. Agren, and P. N. Prasad, “Core/shell NaGdF4:Nd3+/NaGdF4 nanocrystals with efficient near-infrared to near-infrared downconversion photoluminescence for bioimaging applications,” ACS Nano 6(4), 2969–2977 (2012).
[Crossref] [PubMed]

Lee, H.

X. Wu, Y. Zhang, K. Takle, O. Bilsel, Z. Li, H. Lee, Z. Zhang, D. Li, W. Fan, C. Duan, E. M. Chan, C. Lois, Y. Xiang, and G. Han, “Dye-Sensitized Core/Active Shell Upconversion Nanoparticles for Optogenetics and Bioimaging Applications,” ACS Nano 10(1), 1060–1066 (2016).
[Crossref] [PubMed]

X. Wu, H. Lee, O. Bilsel, Y. Zhang, Z. Li, T. Chen, Y. Liu, C. Duan, J. Shen, A. Punjabi, and G. Han, “Tailoring dye-sensitized upconversion nanoparticle excitation bands towards excitation wavelength selective imaging,” Nanoscale 7(44), 18424–18428 (2015).
[Crossref] [PubMed]

Lee, S. T.

L. Cheng, K. Yang, Y. Li, J. Chen, C. Wang, M. Shao, S. T. Lee, and Z. Liu, “Facile preparation of multifunctional upconversion nanoprobes for multimodal imaging and dual-targeted photothermal therapy,” Angew. Chem. Int. Ed. Engl. 50(32), 7385–7390 (2011).
[Crossref] [PubMed]

Lei, P.

Z. Wang, P. Zhang, Q. Yuan, X. Xu, P. Lei, X. Liu, Y. Su, L. Dong, J. Feng, and H. Zhang, “Nd³⁺-sensitized NaLuF₄ luminescent nanoparticles for multimodal imaging and temperature sensing under 808 nm excitation,” Nanoscale 7(42), 17861–17870 (2015).
[Crossref] [PubMed]

Li, D.

X. Wu, Y. Zhang, K. Takle, O. Bilsel, Z. Li, H. Lee, Z. Zhang, D. Li, W. Fan, C. Duan, E. M. Chan, C. Lois, Y. Xiang, and G. Han, “Dye-Sensitized Core/Active Shell Upconversion Nanoparticles for Optogenetics and Bioimaging Applications,” ACS Nano 10(1), 1060–1066 (2016).
[Crossref] [PubMed]

Li, N.

Li, X.

X. Li, F. Zhang, and D. Zhao, “Lab on upconversion nanoparticles: optical properties and applications engineering via designed nanostructure,” Chem. Soc. Rev. 44(6), 1346–1378 (2015).
[Crossref] [PubMed]

Li, Y.

L. Cheng, K. Yang, Y. Li, J. Chen, C. Wang, M. Shao, S. T. Lee, and Z. Liu, “Facile preparation of multifunctional upconversion nanoprobes for multimodal imaging and dual-targeted photothermal therapy,” Angew. Chem. Int. Ed. Engl. 50(32), 7385–7390 (2011).
[Crossref] [PubMed]

Li, Z.

X. Wu, Y. Zhang, K. Takle, O. Bilsel, Z. Li, H. Lee, Z. Zhang, D. Li, W. Fan, C. Duan, E. M. Chan, C. Lois, Y. Xiang, and G. Han, “Dye-Sensitized Core/Active Shell Upconversion Nanoparticles for Optogenetics and Bioimaging Applications,” ACS Nano 10(1), 1060–1066 (2016).
[Crossref] [PubMed]

Y. Zhang, L. Huang, Z. Li, G. Ma, Y. Zhou, and G. Han, “Illuminating Cell Signaling with Near-Infrared Light-Responsive Nanomaterials,” ACS Nano 10(4), 3881–3885 (2016).
[Crossref] [PubMed]

L. He, Y. Zhang, G. Ma, P. Tan, Z. Li, S. Zang, X. Wu, J. Jing, S. Fang, L. Zhou, Y. Wang, Y. Huang, P. G. Hogan, G. Han, and Y. Zhou, “Near-infrared photoactivatable control of Ca2+ signaling and optogenetic immunomodulation,” eLife 4, 10024 (2015).
[PubMed]

X. Wu, H. Lee, O. Bilsel, Y. Zhang, Z. Li, T. Chen, Y. Liu, C. Duan, J. Shen, A. Punjabi, and G. Han, “Tailoring dye-sensitized upconversion nanoparticle excitation bands towards excitation wavelength selective imaging,” Nanoscale 7(44), 18424–18428 (2015).
[Crossref] [PubMed]

Z. Li, Y. Zhang, H. La, R. Zhu, G. El-Banna, Y. Wei, and G. Han, “Upconverting NIR Photons for Bioimaging,” Nanomaterials (Basel) 5(4), 2148–2168 (2015).
[Crossref]

Liang, H.

Q. Zhan, J. Qian, H. Liang, G. Somesfalean, D. Wang, S. He, Z. Zhang, and S. Andersson-Engels, “Using 915 nm laser excited Tm³+/Er³+/Ho³+- doped NaYbF4 upconversion nanoparticles for in vitro and deeper in vivo bioimaging without overheating irradiation,” ACS Nano 5(5), 3744–3757 (2011).
[Crossref] [PubMed]

Liu, G.

J. Xie, G. Liu, H. S. Eden, H. Ai, and X. Chen, “Surface-engineered magnetic nanoparticle platforms for cancer imaging and therapy,” Acc. Chem. Res. 44(10), 883–892 (2011).
[Crossref] [PubMed]

Liu, J.

Liu, S.

G. Chen, T. Y. Ohulchanskyy, S. Liu, W. C. Law, F. Wu, M. T. Swihart, H. Agren, and P. N. Prasad, “Core/shell NaGdF4:Nd3+/NaGdF4 nanocrystals with efficient near-infrared to near-infrared downconversion photoluminescence for bioimaging applications,” ACS Nano 6(4), 2969–2977 (2012).
[Crossref] [PubMed]

Liu, X.

Z. Wang, P. Zhang, Q. Yuan, X. Xu, P. Lei, X. Liu, Y. Su, L. Dong, J. Feng, and H. Zhang, “Nd³⁺-sensitized NaLuF₄ luminescent nanoparticles for multimodal imaging and temperature sensing under 808 nm excitation,” Nanoscale 7(42), 17861–17870 (2015).
[Crossref] [PubMed]

D. Wang, B. Xue, X. Kong, L. Tu, X. Liu, Y. Zhang, Y. Chang, Y. Luo, H. Zhao, and H. Zhang, “808 nm driven Nd3+-sensitized upconversion nanostructures for photodynamic therapy and simultaneous fluorescence imaging,” Nanoscale 7(1), 190–197 (2015).
[Crossref] [PubMed]

F. Wang, R. Deng, and X. Liu, “Preparation of core-shell NaGdF4 nanoparticles doped with luminescent lanthanide ions to be used as upconversion-based probes,” Nat. Protoc. 9(7), 1634–1644 (2014).
[Crossref] [PubMed]

F. Wang and X. Liu, “Recent advances in the chemistry of lanthanide-doped upconversion nanocrystals,” Chem. Soc. Rev. 38(4), 976–989 (2009).
[Crossref] [PubMed]

Liu, Y.

X. Wu, H. Lee, O. Bilsel, Y. Zhang, Z. Li, T. Chen, Y. Liu, C. Duan, J. Shen, A. Punjabi, and G. Han, “Tailoring dye-sensitized upconversion nanoparticle excitation bands towards excitation wavelength selective imaging,” Nanoscale 7(44), 18424–18428 (2015).
[Crossref] [PubMed]

Liu, Z.

L. Cheng, K. Yang, Y. Li, J. Chen, C. Wang, M. Shao, S. T. Lee, and Z. Liu, “Facile preparation of multifunctional upconversion nanoprobes for multimodal imaging and dual-targeted photothermal therapy,” Angew. Chem. Int. Ed. Engl. 50(32), 7385–7390 (2011).
[Crossref] [PubMed]

Lois, C.

X. Wu, Y. Zhang, K. Takle, O. Bilsel, Z. Li, H. Lee, Z. Zhang, D. Li, W. Fan, C. Duan, E. M. Chan, C. Lois, Y. Xiang, and G. Han, “Dye-Sensitized Core/Active Shell Upconversion Nanoparticles for Optogenetics and Bioimaging Applications,” ACS Nano 10(1), 1060–1066 (2016).
[Crossref] [PubMed]

Luo, Y.

D. Wang, B. Xue, X. Kong, L. Tu, X. Liu, Y. Zhang, Y. Chang, Y. Luo, H. Zhao, and H. Zhang, “808 nm driven Nd3+-sensitized upconversion nanostructures for photodynamic therapy and simultaneous fluorescence imaging,” Nanoscale 7(1), 190–197 (2015).
[Crossref] [PubMed]

Luthi, S. R.

M. Pollnau, D. R. Gamelin, S. R. Luthi, H. U. Gudel, and M. P. Hehlen, “Power dependence of upconversion luminescence in lanthanide and transition-metal-ion systems,” Phys. Rev. B 61(5), 3337–3346 (2000).
[Crossref]

Ma, G.

Y. Zhang, L. Huang, Z. Li, G. Ma, Y. Zhou, and G. Han, “Illuminating Cell Signaling with Near-Infrared Light-Responsive Nanomaterials,” ACS Nano 10(4), 3881–3885 (2016).
[Crossref] [PubMed]

L. He, Y. Zhang, G. Ma, P. Tan, Z. Li, S. Zang, X. Wu, J. Jing, S. Fang, L. Zhou, Y. Wang, Y. Huang, P. G. Hogan, G. Han, and Y. Zhou, “Near-infrared photoactivatable control of Ca2+ signaling and optogenetic immunomodulation,” eLife 4, 10024 (2015).
[PubMed]

Ma, Y.

Y. Zhong, G. Tian, Z. Gu, Y. Yang, L. Gu, Y. Zhao, Y. Ma, and J. Yao, “Elimination of photon quenching by a transition layer to fabricate a quenching-shield sandwich structure for 800 nm excited upconversion luminescence of Nd3+-sensitized nanoparticles,” Adv. Mater. 26(18), 2831–2837 (2014).
[Crossref] [PubMed]

Mader, H. S.

H. S. Mader, P. Kele, S. M. Saleh, and O. S. Wolfbeis, “Upconverting luminescent nanoparticles for use in bioconjugation and bioimaging,” Curr. Opin. Chem. Biol. 14(5), 582–596 (2010).
[Crossref] [PubMed]

Ogawa, M.

H. Kobayashi, M. Ogawa, R. Alford, P. L. Choyke, and Y. Urano, “New strategies for fluorescent probe design in medical diagnostic imaging,” Chem. Rev. 110(5), 2620–2640 (2010).
[Crossref] [PubMed]

Ohulchanskyy, T. Y.

G. Chen, T. Y. Ohulchanskyy, S. Liu, W. C. Law, F. Wu, M. T. Swihart, H. Agren, and P. N. Prasad, “Core/shell NaGdF4:Nd3+/NaGdF4 nanocrystals with efficient near-infrared to near-infrared downconversion photoluminescence for bioimaging applications,” ACS Nano 6(4), 2969–2977 (2012).
[Crossref] [PubMed]

G. Chen, T. Y. Ohulchanskyy, A. Kachynski, H. Agren, and P. N. Prasad, “Intense visible and near-infrared upconversion photoluminescence in colloidal LiYF₄:Er³+ nanocrystals under excitation at 1490 nm,” ACS Nano 5(6), 4981–4986 (2011).
[Crossref] [PubMed]

Oraevsky, A. A.

G. M. Spirou, A. A. Oraevsky, I. A. Vitkin, and W. M. Whelan, “Optical and acoustic properties at 1064 nm of polyvinyl chloride-plastisol for use as a tissue phantom in biomedical optoacoustics,” Phys. Med. Biol. 50(14), N141–N153 (2005).
[Crossref] [PubMed]

Ozin, G. A.

N. Bogdan, F. Vetrone, G. A. Ozin, and J. A. Capobianco, “Synthesis of ligand-free colloidally stable water dispersible brightly luminescent lanthanide-doped upconverting nanoparticles,” Nano Lett. 11(2), 835–840 (2011).
[Crossref] [PubMed]

Patterson, M. S.

B. W. Pogue and M. S. Patterson, “Review of tissue simulating phantoms for optical spectroscopy, imaging and dosimetry,” J. Biomed. Opt. 11(4), 041102 (2006).
[Crossref] [PubMed]

Pogue, B. W.

B. W. Pogue and M. S. Patterson, “Review of tissue simulating phantoms for optical spectroscopy, imaging and dosimetry,” J. Biomed. Opt. 11(4), 041102 (2006).
[Crossref] [PubMed]

Pollnau, M.

M. Pollnau, D. R. Gamelin, S. R. Luthi, H. U. Gudel, and M. P. Hehlen, “Power dependence of upconversion luminescence in lanthanide and transition-metal-ion systems,” Phys. Rev. B 61(5), 3337–3346 (2000).
[Crossref]

Prasad, P. N.

G. Chen, H. Qiu, P. N. Prasad, and X. Chen, “Upconversion nanoparticles: design, nanochemistry, and applications in theranostics,” Chem. Rev. 114(10), 5161–5214 (2014).
[Crossref] [PubMed]

G. Chen, T. Y. Ohulchanskyy, S. Liu, W. C. Law, F. Wu, M. T. Swihart, H. Agren, and P. N. Prasad, “Core/shell NaGdF4:Nd3+/NaGdF4 nanocrystals with efficient near-infrared to near-infrared downconversion photoluminescence for bioimaging applications,” ACS Nano 6(4), 2969–2977 (2012).
[Crossref] [PubMed]

G. Chen, T. Y. Ohulchanskyy, A. Kachynski, H. Agren, and P. N. Prasad, “Intense visible and near-infrared upconversion photoluminescence in colloidal LiYF₄:Er³+ nanocrystals under excitation at 1490 nm,” ACS Nano 5(6), 4981–4986 (2011).
[Crossref] [PubMed]

Punjabi, A.

X. Wu, H. Lee, O. Bilsel, Y. Zhang, Z. Li, T. Chen, Y. Liu, C. Duan, J. Shen, A. Punjabi, and G. Han, “Tailoring dye-sensitized upconversion nanoparticle excitation bands towards excitation wavelength selective imaging,” Nanoscale 7(44), 18424–18428 (2015).
[Crossref] [PubMed]

Qian, J.

Q. Zhan, J. Qian, H. Liang, G. Somesfalean, D. Wang, S. He, Z. Zhang, and S. Andersson-Engels, “Using 915 nm laser excited Tm³+/Er³+/Ho³+- doped NaYbF4 upconversion nanoparticles for in vitro and deeper in vivo bioimaging without overheating irradiation,” ACS Nano 5(5), 3744–3757 (2011).
[Crossref] [PubMed]

Qiu, H.

G. Chen, H. Qiu, P. N. Prasad, and X. Chen, “Upconversion nanoparticles: design, nanochemistry, and applications in theranostics,” Chem. Rev. 114(10), 5161–5214 (2014).
[Crossref] [PubMed]

Qiu, J.

X. Shang, P. Chen, T. Jia, D. Feng, S. Zhang, Z. Sun, and J. Qiu, “Upconversion luminescence mechanisms of Er3+ ions under excitation of an 800 nm laser,” Phys. Chem. Chem. Phys. 17(17), 11481–11489 (2015).
[Crossref] [PubMed]

Saleh, S. M.

H. S. Mader, P. Kele, S. M. Saleh, and O. S. Wolfbeis, “Upconverting luminescent nanoparticles for use in bioconjugation and bioimaging,” Curr. Opin. Chem. Biol. 14(5), 582–596 (2010).
[Crossref] [PubMed]

Schäfer, H.

M. Haase and H. Schäfer, “Upconverting nanoparticles,” Angew. Chem. Int. Ed. Engl. 50(26), 5808–5829 (2011).
[Crossref] [PubMed]

Schaffer, C. B.

N. G. Horton, K. Wang, D. Kobat, C. G. Clark, F. W. Wise, C. B. Schaffer, and C. Xu, “In vivo three-photon microscopy of subcortical structures within an intact mouse brain,” Nat. Photonics 7(3), 205–209 (2013).
[Crossref] [PubMed]

Shang, X.

X. Shang, P. Chen, T. Jia, D. Feng, S. Zhang, Z. Sun, and J. Qiu, “Upconversion luminescence mechanisms of Er3+ ions under excitation of an 800 nm laser,” Phys. Chem. Chem. Phys. 17(17), 11481–11489 (2015).
[Crossref] [PubMed]

Shao, M.

L. Cheng, K. Yang, Y. Li, J. Chen, C. Wang, M. Shao, S. T. Lee, and Z. Liu, “Facile preparation of multifunctional upconversion nanoprobes for multimodal imaging and dual-targeted photothermal therapy,” Angew. Chem. Int. Ed. Engl. 50(32), 7385–7390 (2011).
[Crossref] [PubMed]

Shen, J.

X. Wu, H. Lee, O. Bilsel, Y. Zhang, Z. Li, T. Chen, Y. Liu, C. Duan, J. Shen, A. Punjabi, and G. Han, “Tailoring dye-sensitized upconversion nanoparticle excitation bands towards excitation wavelength selective imaging,” Nanoscale 7(44), 18424–18428 (2015).
[Crossref] [PubMed]

J. Shen, G. Y. Chen, A. M. Vu, W. Fan, O. S. Bilsel, C. C. Chang, and G. Han, “Engineering the Upconversion Nanoparticle Excitation Wavelength: Cascade Sensitization of Tri-doped Upconversion Colloidal Nanoparticles at 800 nm,” Adv. Opt. Mater. 1(9), 644–650 (2013).
[Crossref]

Somesfalean, G.

Q. Zhan, J. Qian, H. Liang, G. Somesfalean, D. Wang, S. He, Z. Zhang, and S. Andersson-Engels, “Using 915 nm laser excited Tm³+/Er³+/Ho³+- doped NaYbF4 upconversion nanoparticles for in vitro and deeper in vivo bioimaging without overheating irradiation,” ACS Nano 5(5), 3744–3757 (2011).
[Crossref] [PubMed]

Spirou, G. M.

G. M. Spirou, A. A. Oraevsky, I. A. Vitkin, and W. M. Whelan, “Optical and acoustic properties at 1064 nm of polyvinyl chloride-plastisol for use as a tissue phantom in biomedical optoacoustics,” Phys. Med. Biol. 50(14), N141–N153 (2005).
[Crossref] [PubMed]

Su, Y.

Z. Wang, P. Zhang, Q. Yuan, X. Xu, P. Lei, X. Liu, Y. Su, L. Dong, J. Feng, and H. Zhang, “Nd³⁺-sensitized NaLuF₄ luminescent nanoparticles for multimodal imaging and temperature sensing under 808 nm excitation,” Nanoscale 7(42), 17861–17870 (2015).
[Crossref] [PubMed]

Sun, Z.

X. Shang, P. Chen, T. Jia, D. Feng, S. Zhang, Z. Sun, and J. Qiu, “Upconversion luminescence mechanisms of Er3+ ions under excitation of an 800 nm laser,” Phys. Chem. Chem. Phys. 17(17), 11481–11489 (2015).
[Crossref] [PubMed]

Swihart, M. T.

G. Chen, T. Y. Ohulchanskyy, S. Liu, W. C. Law, F. Wu, M. T. Swihart, H. Agren, and P. N. Prasad, “Core/shell NaGdF4:Nd3+/NaGdF4 nanocrystals with efficient near-infrared to near-infrared downconversion photoluminescence for bioimaging applications,” ACS Nano 6(4), 2969–2977 (2012).
[Crossref] [PubMed]

Takle, K.

X. Wu, Y. Zhang, K. Takle, O. Bilsel, Z. Li, H. Lee, Z. Zhang, D. Li, W. Fan, C. Duan, E. M. Chan, C. Lois, Y. Xiang, and G. Han, “Dye-Sensitized Core/Active Shell Upconversion Nanoparticles for Optogenetics and Bioimaging Applications,” ACS Nano 10(1), 1060–1066 (2016).
[Crossref] [PubMed]

Tan, P.

L. He, Y. Zhang, G. Ma, P. Tan, Z. Li, S. Zang, X. Wu, J. Jing, S. Fang, L. Zhou, Y. Wang, Y. Huang, P. G. Hogan, G. Han, and Y. Zhou, “Near-infrared photoactivatable control of Ca2+ signaling and optogenetic immunomodulation,” eLife 4, 10024 (2015).
[PubMed]

Tian, G.

Y. Zhong, G. Tian, Z. Gu, Y. Yang, L. Gu, Y. Zhao, Y. Ma, and J. Yao, “Elimination of photon quenching by a transition layer to fabricate a quenching-shield sandwich structure for 800 nm excited upconversion luminescence of Nd3+-sensitized nanoparticles,” Adv. Mater. 26(18), 2831–2837 (2014).
[Crossref] [PubMed]

Tu, L.

D. Wang, B. Xue, X. Kong, L. Tu, X. Liu, Y. Zhang, Y. Chang, Y. Luo, H. Zhao, and H. Zhang, “808 nm driven Nd3+-sensitized upconversion nanostructures for photodynamic therapy and simultaneous fluorescence imaging,” Nanoscale 7(1), 190–197 (2015).
[Crossref] [PubMed]

Urano, Y.

H. Kobayashi, M. Ogawa, R. Alford, P. L. Choyke, and Y. Urano, “New strategies for fluorescent probe design in medical diagnostic imaging,” Chem. Rev. 110(5), 2620–2640 (2010).
[Crossref] [PubMed]

Vetrone, F.

N. Bogdan, F. Vetrone, G. A. Ozin, and J. A. Capobianco, “Synthesis of ligand-free colloidally stable water dispersible brightly luminescent lanthanide-doped upconverting nanoparticles,” Nano Lett. 11(2), 835–840 (2011).
[Crossref] [PubMed]

Vitkin, I. A.

G. M. Spirou, A. A. Oraevsky, I. A. Vitkin, and W. M. Whelan, “Optical and acoustic properties at 1064 nm of polyvinyl chloride-plastisol for use as a tissue phantom in biomedical optoacoustics,” Phys. Med. Biol. 50(14), N141–N153 (2005).
[Crossref] [PubMed]

Vu, A. M.

J. Shen, G. Y. Chen, A. M. Vu, W. Fan, O. S. Bilsel, C. C. Chang, and G. Han, “Engineering the Upconversion Nanoparticle Excitation Wavelength: Cascade Sensitization of Tri-doped Upconversion Colloidal Nanoparticles at 800 nm,” Adv. Opt. Mater. 1(9), 644–650 (2013).
[Crossref]

Wang, B.

Wang, C.

L. Cheng, K. Yang, Y. Li, J. Chen, C. Wang, M. Shao, S. T. Lee, and Z. Liu, “Facile preparation of multifunctional upconversion nanoprobes for multimodal imaging and dual-targeted photothermal therapy,” Angew. Chem. Int. Ed. Engl. 50(32), 7385–7390 (2011).
[Crossref] [PubMed]

Wang, D.

D. Wang, B. Xue, X. Kong, L. Tu, X. Liu, Y. Zhang, Y. Chang, Y. Luo, H. Zhao, and H. Zhang, “808 nm driven Nd3+-sensitized upconversion nanostructures for photodynamic therapy and simultaneous fluorescence imaging,” Nanoscale 7(1), 190–197 (2015).
[Crossref] [PubMed]

Q. Zhan, J. Qian, H. Liang, G. Somesfalean, D. Wang, S. He, Z. Zhang, and S. Andersson-Engels, “Using 915 nm laser excited Tm³+/Er³+/Ho³+- doped NaYbF4 upconversion nanoparticles for in vitro and deeper in vivo bioimaging without overheating irradiation,” ACS Nano 5(5), 3744–3757 (2011).
[Crossref] [PubMed]

Wang, F.

F. Wang, R. Deng, and X. Liu, “Preparation of core-shell NaGdF4 nanoparticles doped with luminescent lanthanide ions to be used as upconversion-based probes,” Nat. Protoc. 9(7), 1634–1644 (2014).
[Crossref] [PubMed]

F. Wang and X. Liu, “Recent advances in the chemistry of lanthanide-doped upconversion nanocrystals,” Chem. Soc. Rev. 38(4), 976–989 (2009).
[Crossref] [PubMed]

Wang, K.

N. G. Horton, K. Wang, D. Kobat, C. G. Clark, F. W. Wise, C. B. Schaffer, and C. Xu, “In vivo three-photon microscopy of subcortical structures within an intact mouse brain,” Nat. Photonics 7(3), 205–209 (2013).
[Crossref] [PubMed]

Wang, Y.

L. He, Y. Zhang, G. Ma, P. Tan, Z. Li, S. Zang, X. Wu, J. Jing, S. Fang, L. Zhou, Y. Wang, Y. Huang, P. G. Hogan, G. Han, and Y. Zhou, “Near-infrared photoactivatable control of Ca2+ signaling and optogenetic immunomodulation,” eLife 4, 10024 (2015).
[PubMed]

Wang, Z.

Z. Wang, P. Zhang, Q. Yuan, X. Xu, P. Lei, X. Liu, Y. Su, L. Dong, J. Feng, and H. Zhang, “Nd³⁺-sensitized NaLuF₄ luminescent nanoparticles for multimodal imaging and temperature sensing under 808 nm excitation,” Nanoscale 7(42), 17861–17870 (2015).
[Crossref] [PubMed]

Wei, Y.

Z. Li, Y. Zhang, H. La, R. Zhu, G. El-Banna, Y. Wei, and G. Han, “Upconverting NIR Photons for Bioimaging,” Nanomaterials (Basel) 5(4), 2148–2168 (2015).
[Crossref]

Wen, X.

Whelan, W. M.

G. M. Spirou, A. A. Oraevsky, I. A. Vitkin, and W. M. Whelan, “Optical and acoustic properties at 1064 nm of polyvinyl chloride-plastisol for use as a tissue phantom in biomedical optoacoustics,” Phys. Med. Biol. 50(14), N141–N153 (2005).
[Crossref] [PubMed]

Wise, F. W.

N. G. Horton, K. Wang, D. Kobat, C. G. Clark, F. W. Wise, C. B. Schaffer, and C. Xu, “In vivo three-photon microscopy of subcortical structures within an intact mouse brain,” Nat. Photonics 7(3), 205–209 (2013).
[Crossref] [PubMed]

Wolfbeis, O. S.

H. S. Mader, P. Kele, S. M. Saleh, and O. S. Wolfbeis, “Upconverting luminescent nanoparticles for use in bioconjugation and bioimaging,” Curr. Opin. Chem. Biol. 14(5), 582–596 (2010).
[Crossref] [PubMed]

Wu, F.

G. Chen, T. Y. Ohulchanskyy, S. Liu, W. C. Law, F. Wu, M. T. Swihart, H. Agren, and P. N. Prasad, “Core/shell NaGdF4:Nd3+/NaGdF4 nanocrystals with efficient near-infrared to near-infrared downconversion photoluminescence for bioimaging applications,” ACS Nano 6(4), 2969–2977 (2012).
[Crossref] [PubMed]

Wu, R.

Wu, X.

X. Wu, Y. Zhang, K. Takle, O. Bilsel, Z. Li, H. Lee, Z. Zhang, D. Li, W. Fan, C. Duan, E. M. Chan, C. Lois, Y. Xiang, and G. Han, “Dye-Sensitized Core/Active Shell Upconversion Nanoparticles for Optogenetics and Bioimaging Applications,” ACS Nano 10(1), 1060–1066 (2016).
[Crossref] [PubMed]

X. Wu, H. Lee, O. Bilsel, Y. Zhang, Z. Li, T. Chen, Y. Liu, C. Duan, J. Shen, A. Punjabi, and G. Han, “Tailoring dye-sensitized upconversion nanoparticle excitation bands towards excitation wavelength selective imaging,” Nanoscale 7(44), 18424–18428 (2015).
[Crossref] [PubMed]

L. He, Y. Zhang, G. Ma, P. Tan, Z. Li, S. Zang, X. Wu, J. Jing, S. Fang, L. Zhou, Y. Wang, Y. Huang, P. G. Hogan, G. Han, and Y. Zhou, “Near-infrared photoactivatable control of Ca2+ signaling and optogenetic immunomodulation,” eLife 4, 10024 (2015).
[PubMed]

Xiang, Y.

X. Wu, Y. Zhang, K. Takle, O. Bilsel, Z. Li, H. Lee, Z. Zhang, D. Li, W. Fan, C. Duan, E. M. Chan, C. Lois, Y. Xiang, and G. Han, “Dye-Sensitized Core/Active Shell Upconversion Nanoparticles for Optogenetics and Bioimaging Applications,” ACS Nano 10(1), 1060–1066 (2016).
[Crossref] [PubMed]

Xie, J.

J. Xie, G. Liu, H. S. Eden, H. Ai, and X. Chen, “Surface-engineered magnetic nanoparticle platforms for cancer imaging and therapy,” Acc. Chem. Res. 44(10), 883–892 (2011).
[Crossref] [PubMed]

Xu, C.

N. G. Horton, K. Wang, D. Kobat, C. G. Clark, F. W. Wise, C. B. Schaffer, and C. Xu, “In vivo three-photon microscopy of subcortical structures within an intact mouse brain,” Nat. Photonics 7(3), 205–209 (2013).
[Crossref] [PubMed]

Xu, X.

Z. Wang, P. Zhang, Q. Yuan, X. Xu, P. Lei, X. Liu, Y. Su, L. Dong, J. Feng, and H. Zhang, “Nd³⁺-sensitized NaLuF₄ luminescent nanoparticles for multimodal imaging and temperature sensing under 808 nm excitation,” Nanoscale 7(42), 17861–17870 (2015).
[Crossref] [PubMed]

Xue, B.

D. Wang, B. Xue, X. Kong, L. Tu, X. Liu, Y. Zhang, Y. Chang, Y. Luo, H. Zhao, and H. Zhang, “808 nm driven Nd3+-sensitized upconversion nanostructures for photodynamic therapy and simultaneous fluorescence imaging,” Nanoscale 7(1), 190–197 (2015).
[Crossref] [PubMed]

Yang, K.

L. Cheng, K. Yang, Y. Li, J. Chen, C. Wang, M. Shao, S. T. Lee, and Z. Liu, “Facile preparation of multifunctional upconversion nanoprobes for multimodal imaging and dual-targeted photothermal therapy,” Angew. Chem. Int. Ed. Engl. 50(32), 7385–7390 (2011).
[Crossref] [PubMed]

Yang, Y.

Y. Zhong, G. Tian, Z. Gu, Y. Yang, L. Gu, Y. Zhao, Y. Ma, and J. Yao, “Elimination of photon quenching by a transition layer to fabricate a quenching-shield sandwich structure for 800 nm excited upconversion luminescence of Nd3+-sensitized nanoparticles,” Adv. Mater. 26(18), 2831–2837 (2014).
[Crossref] [PubMed]

Yao, J.

Y. Zhong, G. Tian, Z. Gu, Y. Yang, L. Gu, Y. Zhao, Y. Ma, and J. Yao, “Elimination of photon quenching by a transition layer to fabricate a quenching-shield sandwich structure for 800 nm excited upconversion luminescence of Nd3+-sensitized nanoparticles,” Adv. Mater. 26(18), 2831–2837 (2014).
[Crossref] [PubMed]

Yuan, Q.

Z. Wang, P. Zhang, Q. Yuan, X. Xu, P. Lei, X. Liu, Y. Su, L. Dong, J. Feng, and H. Zhang, “Nd³⁺-sensitized NaLuF₄ luminescent nanoparticles for multimodal imaging and temperature sensing under 808 nm excitation,” Nanoscale 7(42), 17861–17870 (2015).
[Crossref] [PubMed]

Zang, S.

L. He, Y. Zhang, G. Ma, P. Tan, Z. Li, S. Zang, X. Wu, J. Jing, S. Fang, L. Zhou, Y. Wang, Y. Huang, P. G. Hogan, G. Han, and Y. Zhou, “Near-infrared photoactivatable control of Ca2+ signaling and optogenetic immunomodulation,” eLife 4, 10024 (2015).
[PubMed]

Zhan, Q.

B. Wang, Q. Zhan, Y. Zhao, R. Wu, J. Liu, and S. He, “Visible-to-visible four-photon ultrahigh resolution microscopic imaging with 730-nm diode laser excited nanocrystals,” Opt. Express 24(2), A302–A311 (2016).
[Crossref] [PubMed]

N. Li, X. Wen, J. Liu, B. Wang, Q. Zhan, and S. He, “Yb3+-enhanced UCNP@ SiO2 nanocomposites for consecutive imaging, photothermal-controlled drug delivery and cancer therapy,” Opt. Mater. Express 6(4), 1161–1171 (2016).
[Crossref]

Q. Zhan, B. Wang, X. Wen, and S. He, “Controlling the excitation of upconverting luminescence for biomedical theranostics: neodymium sensitizing,” Opt. Mater. Express 6(4), 1011–1023 (2016).
[Crossref]

Y. Zhao, Q. Zhan, J. Liu, and S. He, “Optically investigating Nd3+-Yb3+ cascade sensitized upconversion nanoparticles for high resolution, rapid scanning, deep and damage-free bio-imaging,” Biomed. Opt. Express 6(3), 838–848 (2015).
[Crossref] [PubMed]

J. Liu, R. Wu, N. Li, X. Zhang, Q. Zhan, and S. He, “Deep, high contrast microscopic cell imaging using three-photon luminescence of β-(NaYF4:Er3+/NaYF4) nanoprobe excited by 1480-nm CW laser of only 1.5-mW,” Biomed. Opt. Express 6(5), 1857–1866 (2015).
[Crossref] [PubMed]

Q. Zhan, J. Qian, H. Liang, G. Somesfalean, D. Wang, S. He, Z. Zhang, and S. Andersson-Engels, “Using 915 nm laser excited Tm³+/Er³+/Ho³+- doped NaYbF4 upconversion nanoparticles for in vitro and deeper in vivo bioimaging without overheating irradiation,” ACS Nano 5(5), 3744–3757 (2011).
[Crossref] [PubMed]

Zhan, Q. Q.

Q. Q. Zhan, X. Zhang, Y. X. Zhao, J. Liu, and S. L. He, “Tens of thousands-fold upconversion luminescence enhancement induced by a single gold nanorod,” Laser Photonics Rev. 9(5), 479–487 (2015).
[Crossref]

Zhang, F.

X. Li, F. Zhang, and D. Zhao, “Lab on upconversion nanoparticles: optical properties and applications engineering via designed nanostructure,” Chem. Soc. Rev. 44(6), 1346–1378 (2015).
[Crossref] [PubMed]

Zhang, H.

D. Wang, B. Xue, X. Kong, L. Tu, X. Liu, Y. Zhang, Y. Chang, Y. Luo, H. Zhao, and H. Zhang, “808 nm driven Nd3+-sensitized upconversion nanostructures for photodynamic therapy and simultaneous fluorescence imaging,” Nanoscale 7(1), 190–197 (2015).
[Crossref] [PubMed]

Z. Wang, P. Zhang, Q. Yuan, X. Xu, P. Lei, X. Liu, Y. Su, L. Dong, J. Feng, and H. Zhang, “Nd³⁺-sensitized NaLuF₄ luminescent nanoparticles for multimodal imaging and temperature sensing under 808 nm excitation,” Nanoscale 7(42), 17861–17870 (2015).
[Crossref] [PubMed]

Zhang, P.

Z. Wang, P. Zhang, Q. Yuan, X. Xu, P. Lei, X. Liu, Y. Su, L. Dong, J. Feng, and H. Zhang, “Nd³⁺-sensitized NaLuF₄ luminescent nanoparticles for multimodal imaging and temperature sensing under 808 nm excitation,” Nanoscale 7(42), 17861–17870 (2015).
[Crossref] [PubMed]

Zhang, S.

X. Shang, P. Chen, T. Jia, D. Feng, S. Zhang, Z. Sun, and J. Qiu, “Upconversion luminescence mechanisms of Er3+ ions under excitation of an 800 nm laser,” Phys. Chem. Chem. Phys. 17(17), 11481–11489 (2015).
[Crossref] [PubMed]

Zhang, X.

J. Liu, R. Wu, N. Li, X. Zhang, Q. Zhan, and S. He, “Deep, high contrast microscopic cell imaging using three-photon luminescence of β-(NaYF4:Er3+/NaYF4) nanoprobe excited by 1480-nm CW laser of only 1.5-mW,” Biomed. Opt. Express 6(5), 1857–1866 (2015).
[Crossref] [PubMed]

Q. Q. Zhan, X. Zhang, Y. X. Zhao, J. Liu, and S. L. He, “Tens of thousands-fold upconversion luminescence enhancement induced by a single gold nanorod,” Laser Photonics Rev. 9(5), 479–487 (2015).
[Crossref]

Zhang, Y.

X. Wu, Y. Zhang, K. Takle, O. Bilsel, Z. Li, H. Lee, Z. Zhang, D. Li, W. Fan, C. Duan, E. M. Chan, C. Lois, Y. Xiang, and G. Han, “Dye-Sensitized Core/Active Shell Upconversion Nanoparticles for Optogenetics and Bioimaging Applications,” ACS Nano 10(1), 1060–1066 (2016).
[Crossref] [PubMed]

Y. Zhang, L. Huang, Z. Li, G. Ma, Y. Zhou, and G. Han, “Illuminating Cell Signaling with Near-Infrared Light-Responsive Nanomaterials,” ACS Nano 10(4), 3881–3885 (2016).
[Crossref] [PubMed]

L. He, Y. Zhang, G. Ma, P. Tan, Z. Li, S. Zang, X. Wu, J. Jing, S. Fang, L. Zhou, Y. Wang, Y. Huang, P. G. Hogan, G. Han, and Y. Zhou, “Near-infrared photoactivatable control of Ca2+ signaling and optogenetic immunomodulation,” eLife 4, 10024 (2015).
[PubMed]

X. Wu, H. Lee, O. Bilsel, Y. Zhang, Z. Li, T. Chen, Y. Liu, C. Duan, J. Shen, A. Punjabi, and G. Han, “Tailoring dye-sensitized upconversion nanoparticle excitation bands towards excitation wavelength selective imaging,” Nanoscale 7(44), 18424–18428 (2015).
[Crossref] [PubMed]

D. Wang, B. Xue, X. Kong, L. Tu, X. Liu, Y. Zhang, Y. Chang, Y. Luo, H. Zhao, and H. Zhang, “808 nm driven Nd3+-sensitized upconversion nanostructures for photodynamic therapy and simultaneous fluorescence imaging,” Nanoscale 7(1), 190–197 (2015).
[Crossref] [PubMed]

Z. Li, Y. Zhang, H. La, R. Zhu, G. El-Banna, Y. Wei, and G. Han, “Upconverting NIR Photons for Bioimaging,” Nanomaterials (Basel) 5(4), 2148–2168 (2015).
[Crossref]

Zhang, Z.

X. Wu, Y. Zhang, K. Takle, O. Bilsel, Z. Li, H. Lee, Z. Zhang, D. Li, W. Fan, C. Duan, E. M. Chan, C. Lois, Y. Xiang, and G. Han, “Dye-Sensitized Core/Active Shell Upconversion Nanoparticles for Optogenetics and Bioimaging Applications,” ACS Nano 10(1), 1060–1066 (2016).
[Crossref] [PubMed]

Q. Zhan, J. Qian, H. Liang, G. Somesfalean, D. Wang, S. He, Z. Zhang, and S. Andersson-Engels, “Using 915 nm laser excited Tm³+/Er³+/Ho³+- doped NaYbF4 upconversion nanoparticles for in vitro and deeper in vivo bioimaging without overheating irradiation,” ACS Nano 5(5), 3744–3757 (2011).
[Crossref] [PubMed]

Zhao, D.

X. Li, F. Zhang, and D. Zhao, “Lab on upconversion nanoparticles: optical properties and applications engineering via designed nanostructure,” Chem. Soc. Rev. 44(6), 1346–1378 (2015).
[Crossref] [PubMed]

Zhao, H.

D. Wang, B. Xue, X. Kong, L. Tu, X. Liu, Y. Zhang, Y. Chang, Y. Luo, H. Zhao, and H. Zhang, “808 nm driven Nd3+-sensitized upconversion nanostructures for photodynamic therapy and simultaneous fluorescence imaging,” Nanoscale 7(1), 190–197 (2015).
[Crossref] [PubMed]

Zhao, Y.

Zhao, Y. X.

Q. Q. Zhan, X. Zhang, Y. X. Zhao, J. Liu, and S. L. He, “Tens of thousands-fold upconversion luminescence enhancement induced by a single gold nanorod,” Laser Photonics Rev. 9(5), 479–487 (2015).
[Crossref]

Zhong, Y.

Y. Zhong, G. Tian, Z. Gu, Y. Yang, L. Gu, Y. Zhao, Y. Ma, and J. Yao, “Elimination of photon quenching by a transition layer to fabricate a quenching-shield sandwich structure for 800 nm excited upconversion luminescence of Nd3+-sensitized nanoparticles,” Adv. Mater. 26(18), 2831–2837 (2014).
[Crossref] [PubMed]

Zhou, L.

L. He, Y. Zhang, G. Ma, P. Tan, Z. Li, S. Zang, X. Wu, J. Jing, S. Fang, L. Zhou, Y. Wang, Y. Huang, P. G. Hogan, G. Han, and Y. Zhou, “Near-infrared photoactivatable control of Ca2+ signaling and optogenetic immunomodulation,” eLife 4, 10024 (2015).
[PubMed]

Zhou, Y.

Y. Zhang, L. Huang, Z. Li, G. Ma, Y. Zhou, and G. Han, “Illuminating Cell Signaling with Near-Infrared Light-Responsive Nanomaterials,” ACS Nano 10(4), 3881–3885 (2016).
[Crossref] [PubMed]

L. He, Y. Zhang, G. Ma, P. Tan, Z. Li, S. Zang, X. Wu, J. Jing, S. Fang, L. Zhou, Y. Wang, Y. Huang, P. G. Hogan, G. Han, and Y. Zhou, “Near-infrared photoactivatable control of Ca2+ signaling and optogenetic immunomodulation,” eLife 4, 10024 (2015).
[PubMed]

Zhu, R.

Z. Li, Y. Zhang, H. La, R. Zhu, G. El-Banna, Y. Wei, and G. Han, “Upconverting NIR Photons for Bioimaging,” Nanomaterials (Basel) 5(4), 2148–2168 (2015).
[Crossref]

Acc. Chem. Res. (1)

J. Xie, G. Liu, H. S. Eden, H. Ai, and X. Chen, “Surface-engineered magnetic nanoparticle platforms for cancer imaging and therapy,” Acc. Chem. Res. 44(10), 883–892 (2011).
[Crossref] [PubMed]

ACS Nano (5)

G. Chen, T. Y. Ohulchanskyy, A. Kachynski, H. Agren, and P. N. Prasad, “Intense visible and near-infrared upconversion photoluminescence in colloidal LiYF₄:Er³+ nanocrystals under excitation at 1490 nm,” ACS Nano 5(6), 4981–4986 (2011).
[Crossref] [PubMed]

X. Wu, Y. Zhang, K. Takle, O. Bilsel, Z. Li, H. Lee, Z. Zhang, D. Li, W. Fan, C. Duan, E. M. Chan, C. Lois, Y. Xiang, and G. Han, “Dye-Sensitized Core/Active Shell Upconversion Nanoparticles for Optogenetics and Bioimaging Applications,” ACS Nano 10(1), 1060–1066 (2016).
[Crossref] [PubMed]

Y. Zhang, L. Huang, Z. Li, G. Ma, Y. Zhou, and G. Han, “Illuminating Cell Signaling with Near-Infrared Light-Responsive Nanomaterials,” ACS Nano 10(4), 3881–3885 (2016).
[Crossref] [PubMed]

Q. Zhan, J. Qian, H. Liang, G. Somesfalean, D. Wang, S. He, Z. Zhang, and S. Andersson-Engels, “Using 915 nm laser excited Tm³+/Er³+/Ho³+- doped NaYbF4 upconversion nanoparticles for in vitro and deeper in vivo bioimaging without overheating irradiation,” ACS Nano 5(5), 3744–3757 (2011).
[Crossref] [PubMed]

G. Chen, T. Y. Ohulchanskyy, S. Liu, W. C. Law, F. Wu, M. T. Swihart, H. Agren, and P. N. Prasad, “Core/shell NaGdF4:Nd3+/NaGdF4 nanocrystals with efficient near-infrared to near-infrared downconversion photoluminescence for bioimaging applications,” ACS Nano 6(4), 2969–2977 (2012).
[Crossref] [PubMed]

Adv. Mater. (1)

Y. Zhong, G. Tian, Z. Gu, Y. Yang, L. Gu, Y. Zhao, Y. Ma, and J. Yao, “Elimination of photon quenching by a transition layer to fabricate a quenching-shield sandwich structure for 800 nm excited upconversion luminescence of Nd3+-sensitized nanoparticles,” Adv. Mater. 26(18), 2831–2837 (2014).
[Crossref] [PubMed]

Adv. Opt. Mater. (1)

J. Shen, G. Y. Chen, A. M. Vu, W. Fan, O. S. Bilsel, C. C. Chang, and G. Han, “Engineering the Upconversion Nanoparticle Excitation Wavelength: Cascade Sensitization of Tri-doped Upconversion Colloidal Nanoparticles at 800 nm,” Adv. Opt. Mater. 1(9), 644–650 (2013).
[Crossref]

Angew. Chem. Int. Ed. Engl. (2)

L. Cheng, K. Yang, Y. Li, J. Chen, C. Wang, M. Shao, S. T. Lee, and Z. Liu, “Facile preparation of multifunctional upconversion nanoprobes for multimodal imaging and dual-targeted photothermal therapy,” Angew. Chem. Int. Ed. Engl. 50(32), 7385–7390 (2011).
[Crossref] [PubMed]

M. Haase and H. Schäfer, “Upconverting nanoparticles,” Angew. Chem. Int. Ed. Engl. 50(26), 5808–5829 (2011).
[Crossref] [PubMed]

Biomed. Opt. Express (2)

Chem. Rev. (3)

F. Auzel, “Upconversion and anti-Stokes processes with f and d ions in solids,” Chem. Rev. 104(1), 139–174 (2004).
[Crossref] [PubMed]

H. Kobayashi, M. Ogawa, R. Alford, P. L. Choyke, and Y. Urano, “New strategies for fluorescent probe design in medical diagnostic imaging,” Chem. Rev. 110(5), 2620–2640 (2010).
[Crossref] [PubMed]

G. Chen, H. Qiu, P. N. Prasad, and X. Chen, “Upconversion nanoparticles: design, nanochemistry, and applications in theranostics,” Chem. Rev. 114(10), 5161–5214 (2014).
[Crossref] [PubMed]

Chem. Soc. Rev. (3)

S. V. Eliseeva and J.-C. G. Bünzli, “Lanthanide luminescence for functional materials and bio-sciences,” Chem. Soc. Rev. 39(1), 189–227 (2010).
[Crossref] [PubMed]

F. Wang and X. Liu, “Recent advances in the chemistry of lanthanide-doped upconversion nanocrystals,” Chem. Soc. Rev. 38(4), 976–989 (2009).
[Crossref] [PubMed]

X. Li, F. Zhang, and D. Zhao, “Lab on upconversion nanoparticles: optical properties and applications engineering via designed nanostructure,” Chem. Soc. Rev. 44(6), 1346–1378 (2015).
[Crossref] [PubMed]

Curr. Opin. Chem. Biol. (1)

H. S. Mader, P. Kele, S. M. Saleh, and O. S. Wolfbeis, “Upconverting luminescent nanoparticles for use in bioconjugation and bioimaging,” Curr. Opin. Chem. Biol. 14(5), 582–596 (2010).
[Crossref] [PubMed]

eLife (1)

L. He, Y. Zhang, G. Ma, P. Tan, Z. Li, S. Zang, X. Wu, J. Jing, S. Fang, L. Zhou, Y. Wang, Y. Huang, P. G. Hogan, G. Han, and Y. Zhou, “Near-infrared photoactivatable control of Ca2+ signaling and optogenetic immunomodulation,” eLife 4, 10024 (2015).
[PubMed]

J. Biomed. Opt. (1)

B. W. Pogue and M. S. Patterson, “Review of tissue simulating phantoms for optical spectroscopy, imaging and dosimetry,” J. Biomed. Opt. 11(4), 041102 (2006).
[Crossref] [PubMed]

Laser Photonics Rev. (1)

Q. Q. Zhan, X. Zhang, Y. X. Zhao, J. Liu, and S. L. He, “Tens of thousands-fold upconversion luminescence enhancement induced by a single gold nanorod,” Laser Photonics Rev. 9(5), 479–487 (2015).
[Crossref]

Nano Lett. (1)

N. Bogdan, F. Vetrone, G. A. Ozin, and J. A. Capobianco, “Synthesis of ligand-free colloidally stable water dispersible brightly luminescent lanthanide-doped upconverting nanoparticles,” Nano Lett. 11(2), 835–840 (2011).
[Crossref] [PubMed]

Nanomaterials (Basel) (1)

Z. Li, Y. Zhang, H. La, R. Zhu, G. El-Banna, Y. Wei, and G. Han, “Upconverting NIR Photons for Bioimaging,” Nanomaterials (Basel) 5(4), 2148–2168 (2015).
[Crossref]

Nanoscale (3)

D. Wang, B. Xue, X. Kong, L. Tu, X. Liu, Y. Zhang, Y. Chang, Y. Luo, H. Zhao, and H. Zhang, “808 nm driven Nd3+-sensitized upconversion nanostructures for photodynamic therapy and simultaneous fluorescence imaging,” Nanoscale 7(1), 190–197 (2015).
[Crossref] [PubMed]

Z. Wang, P. Zhang, Q. Yuan, X. Xu, P. Lei, X. Liu, Y. Su, L. Dong, J. Feng, and H. Zhang, “Nd³⁺-sensitized NaLuF₄ luminescent nanoparticles for multimodal imaging and temperature sensing under 808 nm excitation,” Nanoscale 7(42), 17861–17870 (2015).
[Crossref] [PubMed]

X. Wu, H. Lee, O. Bilsel, Y. Zhang, Z. Li, T. Chen, Y. Liu, C. Duan, J. Shen, A. Punjabi, and G. Han, “Tailoring dye-sensitized upconversion nanoparticle excitation bands towards excitation wavelength selective imaging,” Nanoscale 7(44), 18424–18428 (2015).
[Crossref] [PubMed]

Nat. Photonics (1)

N. G. Horton, K. Wang, D. Kobat, C. G. Clark, F. W. Wise, C. B. Schaffer, and C. Xu, “In vivo three-photon microscopy of subcortical structures within an intact mouse brain,” Nat. Photonics 7(3), 205–209 (2013).
[Crossref] [PubMed]

Nat. Protoc. (1)

F. Wang, R. Deng, and X. Liu, “Preparation of core-shell NaGdF4 nanoparticles doped with luminescent lanthanide ions to be used as upconversion-based probes,” Nat. Protoc. 9(7), 1634–1644 (2014).
[Crossref] [PubMed]

Opt. Express (1)

Opt. Mater. Express (2)

Phys. Chem. Chem. Phys. (1)

X. Shang, P. Chen, T. Jia, D. Feng, S. Zhang, Z. Sun, and J. Qiu, “Upconversion luminescence mechanisms of Er3+ ions under excitation of an 800 nm laser,” Phys. Chem. Chem. Phys. 17(17), 11481–11489 (2015).
[Crossref] [PubMed]

Phys. Med. Biol. (1)

G. M. Spirou, A. A. Oraevsky, I. A. Vitkin, and W. M. Whelan, “Optical and acoustic properties at 1064 nm of polyvinyl chloride-plastisol for use as a tissue phantom in biomedical optoacoustics,” Phys. Med. Biol. 50(14), N141–N153 (2005).
[Crossref] [PubMed]

Phys. Rev. B (1)

M. Pollnau, D. R. Gamelin, S. R. Luthi, H. U. Gudel, and M. P. Hehlen, “Power dependence of upconversion luminescence in lanthanide and transition-metal-ion systems,” Phys. Rev. B 61(5), 3337–3346 (2000).
[Crossref]

Other (1)

V. V. Tuchin, and Society of Photo-optical Instrumentation Engineers, Tissue optics: light scattering methods and instruments for medical diagnosis (SPIE/International Society for Optical Engineering, Bellingham, Wash., 2007).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1 (a) Schematic design of the simplex Er3+ -doped UCNPs architecture for simultaneous deep macroscopic and microscopic imaging. The upconverting emission spectra of NaYF4:20%Er3+ @NaYF4:2%Er3+ and NaYF4:2%Er3+@NaYF4:20%Er3+ UCNPs structures under (b) 808 nm CW (1.6 W) and (c) 1480 nm CW (248 mW) excitation, respectively.
Fig. 2
Fig. 2 The home-made optical system for deep macroscopic imaging (in vitro and in vivo). F1:808 nm band pass filter; F2: 700 nm short pass filter; L1: 25 mm focus lens; L2: 50 mm focus lens; M1, M2, M3: silver mirrors.
Fig. 3
Fig. 3 The upconverting emission spectra (a) and the R/G ratio (c) of NaYF4:x%Er3+@NaYF4:y%Er3+ and NaYF4:0.5%Nd3+, 20%Yb3+, 2%Er3+@NaYF4 excited by 808 nm CW laser (1.6 W). (b) The enlarged image of the overlapped part in (a).
Fig. 4
Fig. 4 (a) The upconverting emission spectra of NaYF4:x%Er3+@NaYF4:2%Er3+ and Nd-UCNPs excited with 1480 nm CW (248 mW). The TEM image of (b) the core and (c) core-shell of the as-prepared NaYF4:30%Er3+@NaYF4:2%Er3+ UCNPs.
Fig. 5
Fig. 5 The upconverting emission spectra and the red emission intensity change (inset) of NaYF4:30%Er3+@NaYF4:2%Er3+ UCNPs under different wavelength excitation (1.6 W).
Fig. 6
Fig. 6 Power dependence of NaYF4:30%Er3+@NaYF4:2%Er3+ UCNPs under (a) 808 nm CW and (b) 1480 nm CW excitation, respectively.
Fig. 7
Fig. 7 Tissue penetration depth tests carried out in agarose phantom. The NaYF4:30%Er3+@NaYF4:2%Er3+ NPs sample sealed in a capillary was inserted into the phantom at different depths, and the UC images (a-e) were then took by IVIS, under 808 nm laser irradiation (operated at power density of 2 mW/mm2). (f) Attenuation of the measured fluorescence intensity with depth.
Fig. 8
Fig. 8 In vivo whole-body images of a NaYF4:30%Er3+@NaYF4:2%Er3+ injected nude mouse: (a) bright field image, (b) pseudo-color image obtained from true image (the inset black/white image), and (c) superimpose image (bright field image and pseudo-color image).
Fig. 9
Fig. 9 (a) Schematic diagram for the setup of the objective, phantom and the cells on the coverslip. (b) In vitro cancer cell 3PM imaging without phantom. (c) In vitro cancer cell 3PM image based on a layer of 500 μm phantom (from left to right, red channel, green channel and overlay images, respectively.). The scale bar is 10 μm.

Metrics