Abstract

Several chemo-drugs act as the biocompatible fluorophores. Here, the laser induced fluorescence (LIF) properties of doxorubicin, paclitaxel and bleomycin are investigated. The absorption lines mostly lie over UV range according to the UV-VIS spectra. Therefore, a single XeCl laser provokes the desired transitions of the chemo-drugs of interest at 308 nm. It is shown that LIF spectra are strongly dependent on the fluorophore concentration giving rise to the sensible red shift. This happens when large overlapping area appears between absorption and emission spectra accordingly. The red shift is taken into account as a characteristic parameter of a certain chemo-drug. The fluorescence extinction (α) and self-quenching (k) coefficients are determined based on the best fitting of the adopted Lambert-Beer equation over experimental data. The quantum yield of each chemo-drug is also measured using the linearity of the absorption and emission rates.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Fluorescence properties of doxorubicin coupled carbon nanocarriers

Najmeh Sadat Hosseini Motlagh, Parviz Parvin, Mitra Refahizadeh, and Ali Bavali
Appl. Opt. 56(26) 7498-7503 (2017)

Doxorubicin loaded nanodiamond-silk spheres for fluorescence tracking and controlled drug release

Asma Khalid, Alexander N. Mitropoulos, Benedetto Marelli, Snjezana Tomljenovic-Hanic, and Fiorenzo G. Omenetto
Biomed. Opt. Express 7(1) 132-147 (2016)

Biodegradable polymeric nanoparticles containing gold nanoparticles and Paclitaxel for cancer imaging and drug delivery using photoacoustic methods

Yanjie Wang, Eric M. Strohm, Yang Sun, Zhaoxia Wang, Yuanyi Zheng, Zhigang Wang, and Michael C. Kolios
Biomed. Opt. Express 7(10) 4125-4138 (2016)

References

  • View by:
  • |
  • |
  • |

  1. C. M. Cobley, L. Au, J. Chen, and Y. Xia, “Targeting gold nanocages to cancer cells for photothermal destruction and drug delivery,” Expert Opin. Drug Deliv. 7(5), 577–587 (2010).
    [Crossref] [PubMed]
  2. S. Anwar, S. Firdous, A. Rehman, and M. Nawaz, “Optical diagnostic of breast cancer using Raman, polarimetric and fluorescence spectroscopy,” Laser Phys. Lett. 12(4), 045601 (2015).
    [Crossref]
  3. J. Cordero and P. Tomashefsky, “Native cancerous and normal tissue,” J. Quantum. Electron. 20(12), 1507–1511 (1984).
    [Crossref]
  4. M. A. Hayat, Methods of Cancer Diagnosis, Therapy, and Prognosis (Springer, 2008).
  5. I. J. Bigio and S. G. Bown, “Spectroscopic sensing of cancer and cancer therapy: current status of translational research,” Cancer Biol. Ther. 3(3), 259–267 (2004).
    [Crossref] [PubMed]
  6. M. Olivo, C. J. H. Ho, and C. Y. Fu, “Advances in fluorescence diagnosis to track footprints of cancer progression in vivo,” Laser Photonics Rev. 7(5), 646–662 (2013).
    [Crossref]
  7. B. Valeur, Molecular Fluorescence Principles and Application (Wiley-VCH Verlag Gmbh, 2001).
  8. Z. Medarova, W. Pham, C. Farrar, V. Petkova, and A. Moore, “In vivo imaging of siRNA delivery and silencing in tumors,” Nat. Med. 13(3), 372–377 (2007).
    [Crossref] [PubMed]
  9. L. Angeloni, G. Smulevich, and M. P. Marzocchi, “Absorption, fluorescence and resonance Raman spectra of adriamycin and its complex with DNA,” Spectrochim. Acta 38A(2), 127–213 (1982).
  10. P. Weber, M. Wagner, and H. Schneckenburger, “Cholesterol dependent uptake and interaction of doxorubicin in mcf-7 breast cancer cells,” Int. J. Mol. Sci. 14(4), 8358–8366 (2013).
    [Crossref] [PubMed]
  11. P. Changenet-Barret, T. Gustavsson, D. Markovitsi, I. Manet, and S. Monti, “Unravelling molecular mechanisms in the fluorescence spectra of doxorubicin in aqueous solution by femtosecond fluorescence spectroscopy,” Phys. Chem. Chem. Phys. 15(8), 2937–2944 (2013).
    [Crossref] [PubMed]
  12. L. Trynda-Lemiesz and M. Luczkowski, “Human serum albumin: spectroscopic studies of the paclitaxel binding and proximity relationships with cisplatin and adriamycin,” J. Inorg. Biochem. 98(11), 1851–1856 (2004).
    [Crossref] [PubMed]
  13. M. Chien, A. P. Grollman, and S. B. Horwitz, “Bleomycin-DNA interactions: fluorescence and proton magnetic resonance studies,” Biochemistry 16(16), 2641–2647 (1977).
    [Crossref] [PubMed]
  14. A. Bavali, P. Parvin, S. Z. Mortazavi, M. Mohammadian, and M. R. Mousavi Pour, “Red/blue spectral shifts of laser-induced fluorescence emission due to different nanoparticle suspensions in various dye solutions,” Appl. Opt. 53(24), 5398–5409 (2014).
    [Crossref] [PubMed]
  15. J. R. Lakowicz, Principles of Fluorescence Spectroscopy (Springer, 2006).
  16. J. Georges, “Deviations from Beer’s law due to dimerization equilibria: theoretical comparison of absorbance, fluorescence and thermal lens measurements,” Spectrochim. Acta Part A Mol. Spectrosc. 51(6), 985–994 (1995).
  17. A. Bavali, P. Parvin, S. Z. Mortazavi, and S. S. Nourazar, “Laser induced fluorescence spectroscopy of various carbon nanostructures (GO, G and nanodiamond) in Rd6G solution,” Biomed. Opt. Express 6(5), 1679–1693 (2015).
    [Crossref] [PubMed]
  18. K. Huang and A. Rhys, “Theory of light absorption and non-radiative transitions in F-centres,” Proc. R. Soc. London. Ser. A.  204(1078), 406–423 (1950).
  19. A. Memoli, L. G. Palermiti, V. Travagli, and F. Alhaique, “Effects of surfactants on the spectral behaviour of calcein (II): a method of evaluation,” J. Pharm. Biomed. Anal. 19(3-4), 627–632 (1999).
    [Crossref] [PubMed]
  20. M. W. Allen, “Measurement of fluorescence quantum yields,” Thermo Sci. 1–4 (2010).
  21. A. Penzkofer and W. Leupacher, “Fluorescence behaviour of highly concentrated rhodamine 6G solutions,” J. Lumin. 37(2), 61–72 (1987).
    [Crossref]

2015 (2)

S. Anwar, S. Firdous, A. Rehman, and M. Nawaz, “Optical diagnostic of breast cancer using Raman, polarimetric and fluorescence spectroscopy,” Laser Phys. Lett. 12(4), 045601 (2015).
[Crossref]

A. Bavali, P. Parvin, S. Z. Mortazavi, and S. S. Nourazar, “Laser induced fluorescence spectroscopy of various carbon nanostructures (GO, G and nanodiamond) in Rd6G solution,” Biomed. Opt. Express 6(5), 1679–1693 (2015).
[Crossref] [PubMed]

2014 (1)

2013 (3)

M. Olivo, C. J. H. Ho, and C. Y. Fu, “Advances in fluorescence diagnosis to track footprints of cancer progression in vivo,” Laser Photonics Rev. 7(5), 646–662 (2013).
[Crossref]

P. Weber, M. Wagner, and H. Schneckenburger, “Cholesterol dependent uptake and interaction of doxorubicin in mcf-7 breast cancer cells,” Int. J. Mol. Sci. 14(4), 8358–8366 (2013).
[Crossref] [PubMed]

P. Changenet-Barret, T. Gustavsson, D. Markovitsi, I. Manet, and S. Monti, “Unravelling molecular mechanisms in the fluorescence spectra of doxorubicin in aqueous solution by femtosecond fluorescence spectroscopy,” Phys. Chem. Chem. Phys. 15(8), 2937–2944 (2013).
[Crossref] [PubMed]

2010 (1)

C. M. Cobley, L. Au, J. Chen, and Y. Xia, “Targeting gold nanocages to cancer cells for photothermal destruction and drug delivery,” Expert Opin. Drug Deliv. 7(5), 577–587 (2010).
[Crossref] [PubMed]

2007 (1)

Z. Medarova, W. Pham, C. Farrar, V. Petkova, and A. Moore, “In vivo imaging of siRNA delivery and silencing in tumors,” Nat. Med. 13(3), 372–377 (2007).
[Crossref] [PubMed]

2004 (2)

I. J. Bigio and S. G. Bown, “Spectroscopic sensing of cancer and cancer therapy: current status of translational research,” Cancer Biol. Ther. 3(3), 259–267 (2004).
[Crossref] [PubMed]

L. Trynda-Lemiesz and M. Luczkowski, “Human serum albumin: spectroscopic studies of the paclitaxel binding and proximity relationships with cisplatin and adriamycin,” J. Inorg. Biochem. 98(11), 1851–1856 (2004).
[Crossref] [PubMed]

1999 (1)

A. Memoli, L. G. Palermiti, V. Travagli, and F. Alhaique, “Effects of surfactants on the spectral behaviour of calcein (II): a method of evaluation,” J. Pharm. Biomed. Anal. 19(3-4), 627–632 (1999).
[Crossref] [PubMed]

1995 (1)

J. Georges, “Deviations from Beer’s law due to dimerization equilibria: theoretical comparison of absorbance, fluorescence and thermal lens measurements,” Spectrochim. Acta Part A Mol. Spectrosc. 51(6), 985–994 (1995).

1987 (1)

A. Penzkofer and W. Leupacher, “Fluorescence behaviour of highly concentrated rhodamine 6G solutions,” J. Lumin. 37(2), 61–72 (1987).
[Crossref]

1984 (1)

J. Cordero and P. Tomashefsky, “Native cancerous and normal tissue,” J. Quantum. Electron. 20(12), 1507–1511 (1984).
[Crossref]

1982 (1)

L. Angeloni, G. Smulevich, and M. P. Marzocchi, “Absorption, fluorescence and resonance Raman spectra of adriamycin and its complex with DNA,” Spectrochim. Acta 38A(2), 127–213 (1982).

1977 (1)

M. Chien, A. P. Grollman, and S. B. Horwitz, “Bleomycin-DNA interactions: fluorescence and proton magnetic resonance studies,” Biochemistry 16(16), 2641–2647 (1977).
[Crossref] [PubMed]

1950 (1)

K. Huang and A. Rhys, “Theory of light absorption and non-radiative transitions in F-centres,” Proc. R. Soc. London. Ser. A.  204(1078), 406–423 (1950).

Alhaique, F.

A. Memoli, L. G. Palermiti, V. Travagli, and F. Alhaique, “Effects of surfactants on the spectral behaviour of calcein (II): a method of evaluation,” J. Pharm. Biomed. Anal. 19(3-4), 627–632 (1999).
[Crossref] [PubMed]

Angeloni, L.

L. Angeloni, G. Smulevich, and M. P. Marzocchi, “Absorption, fluorescence and resonance Raman spectra of adriamycin and its complex with DNA,” Spectrochim. Acta 38A(2), 127–213 (1982).

Anwar, S.

S. Anwar, S. Firdous, A. Rehman, and M. Nawaz, “Optical diagnostic of breast cancer using Raman, polarimetric and fluorescence spectroscopy,” Laser Phys. Lett. 12(4), 045601 (2015).
[Crossref]

Au, L.

C. M. Cobley, L. Au, J. Chen, and Y. Xia, “Targeting gold nanocages to cancer cells for photothermal destruction and drug delivery,” Expert Opin. Drug Deliv. 7(5), 577–587 (2010).
[Crossref] [PubMed]

Bavali, A.

Bigio, I. J.

I. J. Bigio and S. G. Bown, “Spectroscopic sensing of cancer and cancer therapy: current status of translational research,” Cancer Biol. Ther. 3(3), 259–267 (2004).
[Crossref] [PubMed]

Bown, S. G.

I. J. Bigio and S. G. Bown, “Spectroscopic sensing of cancer and cancer therapy: current status of translational research,” Cancer Biol. Ther. 3(3), 259–267 (2004).
[Crossref] [PubMed]

Changenet-Barret, P.

P. Changenet-Barret, T. Gustavsson, D. Markovitsi, I. Manet, and S. Monti, “Unravelling molecular mechanisms in the fluorescence spectra of doxorubicin in aqueous solution by femtosecond fluorescence spectroscopy,” Phys. Chem. Chem. Phys. 15(8), 2937–2944 (2013).
[Crossref] [PubMed]

Chen, J.

C. M. Cobley, L. Au, J. Chen, and Y. Xia, “Targeting gold nanocages to cancer cells for photothermal destruction and drug delivery,” Expert Opin. Drug Deliv. 7(5), 577–587 (2010).
[Crossref] [PubMed]

Chien, M.

M. Chien, A. P. Grollman, and S. B. Horwitz, “Bleomycin-DNA interactions: fluorescence and proton magnetic resonance studies,” Biochemistry 16(16), 2641–2647 (1977).
[Crossref] [PubMed]

Cobley, C. M.

C. M. Cobley, L. Au, J. Chen, and Y. Xia, “Targeting gold nanocages to cancer cells for photothermal destruction and drug delivery,” Expert Opin. Drug Deliv. 7(5), 577–587 (2010).
[Crossref] [PubMed]

Cordero, J.

J. Cordero and P. Tomashefsky, “Native cancerous and normal tissue,” J. Quantum. Electron. 20(12), 1507–1511 (1984).
[Crossref]

Farrar, C.

Z. Medarova, W. Pham, C. Farrar, V. Petkova, and A. Moore, “In vivo imaging of siRNA delivery and silencing in tumors,” Nat. Med. 13(3), 372–377 (2007).
[Crossref] [PubMed]

Firdous, S.

S. Anwar, S. Firdous, A. Rehman, and M. Nawaz, “Optical diagnostic of breast cancer using Raman, polarimetric and fluorescence spectroscopy,” Laser Phys. Lett. 12(4), 045601 (2015).
[Crossref]

Fu, C. Y.

M. Olivo, C. J. H. Ho, and C. Y. Fu, “Advances in fluorescence diagnosis to track footprints of cancer progression in vivo,” Laser Photonics Rev. 7(5), 646–662 (2013).
[Crossref]

Georges, J.

J. Georges, “Deviations from Beer’s law due to dimerization equilibria: theoretical comparison of absorbance, fluorescence and thermal lens measurements,” Spectrochim. Acta Part A Mol. Spectrosc. 51(6), 985–994 (1995).

Grollman, A. P.

M. Chien, A. P. Grollman, and S. B. Horwitz, “Bleomycin-DNA interactions: fluorescence and proton magnetic resonance studies,” Biochemistry 16(16), 2641–2647 (1977).
[Crossref] [PubMed]

Gustavsson, T.

P. Changenet-Barret, T. Gustavsson, D. Markovitsi, I. Manet, and S. Monti, “Unravelling molecular mechanisms in the fluorescence spectra of doxorubicin in aqueous solution by femtosecond fluorescence spectroscopy,” Phys. Chem. Chem. Phys. 15(8), 2937–2944 (2013).
[Crossref] [PubMed]

Ho, C. J. H.

M. Olivo, C. J. H. Ho, and C. Y. Fu, “Advances in fluorescence diagnosis to track footprints of cancer progression in vivo,” Laser Photonics Rev. 7(5), 646–662 (2013).
[Crossref]

Horwitz, S. B.

M. Chien, A. P. Grollman, and S. B. Horwitz, “Bleomycin-DNA interactions: fluorescence and proton magnetic resonance studies,” Biochemistry 16(16), 2641–2647 (1977).
[Crossref] [PubMed]

Huang, K.

K. Huang and A. Rhys, “Theory of light absorption and non-radiative transitions in F-centres,” Proc. R. Soc. London. Ser. A.  204(1078), 406–423 (1950).

Leupacher, W.

A. Penzkofer and W. Leupacher, “Fluorescence behaviour of highly concentrated rhodamine 6G solutions,” J. Lumin. 37(2), 61–72 (1987).
[Crossref]

Luczkowski, M.

L. Trynda-Lemiesz and M. Luczkowski, “Human serum albumin: spectroscopic studies of the paclitaxel binding and proximity relationships with cisplatin and adriamycin,” J. Inorg. Biochem. 98(11), 1851–1856 (2004).
[Crossref] [PubMed]

Manet, I.

P. Changenet-Barret, T. Gustavsson, D. Markovitsi, I. Manet, and S. Monti, “Unravelling molecular mechanisms in the fluorescence spectra of doxorubicin in aqueous solution by femtosecond fluorescence spectroscopy,” Phys. Chem. Chem. Phys. 15(8), 2937–2944 (2013).
[Crossref] [PubMed]

Markovitsi, D.

P. Changenet-Barret, T. Gustavsson, D. Markovitsi, I. Manet, and S. Monti, “Unravelling molecular mechanisms in the fluorescence spectra of doxorubicin in aqueous solution by femtosecond fluorescence spectroscopy,” Phys. Chem. Chem. Phys. 15(8), 2937–2944 (2013).
[Crossref] [PubMed]

Marzocchi, M. P.

L. Angeloni, G. Smulevich, and M. P. Marzocchi, “Absorption, fluorescence and resonance Raman spectra of adriamycin and its complex with DNA,” Spectrochim. Acta 38A(2), 127–213 (1982).

Medarova, Z.

Z. Medarova, W. Pham, C. Farrar, V. Petkova, and A. Moore, “In vivo imaging of siRNA delivery and silencing in tumors,” Nat. Med. 13(3), 372–377 (2007).
[Crossref] [PubMed]

Memoli, A.

A. Memoli, L. G. Palermiti, V. Travagli, and F. Alhaique, “Effects of surfactants on the spectral behaviour of calcein (II): a method of evaluation,” J. Pharm. Biomed. Anal. 19(3-4), 627–632 (1999).
[Crossref] [PubMed]

Mohammadian, M.

Monti, S.

P. Changenet-Barret, T. Gustavsson, D. Markovitsi, I. Manet, and S. Monti, “Unravelling molecular mechanisms in the fluorescence spectra of doxorubicin in aqueous solution by femtosecond fluorescence spectroscopy,” Phys. Chem. Chem. Phys. 15(8), 2937–2944 (2013).
[Crossref] [PubMed]

Moore, A.

Z. Medarova, W. Pham, C. Farrar, V. Petkova, and A. Moore, “In vivo imaging of siRNA delivery and silencing in tumors,” Nat. Med. 13(3), 372–377 (2007).
[Crossref] [PubMed]

Mortazavi, S. Z.

Mousavi Pour, M. R.

Nawaz, M.

S. Anwar, S. Firdous, A. Rehman, and M. Nawaz, “Optical diagnostic of breast cancer using Raman, polarimetric and fluorescence spectroscopy,” Laser Phys. Lett. 12(4), 045601 (2015).
[Crossref]

Nourazar, S. S.

Olivo, M.

M. Olivo, C. J. H. Ho, and C. Y. Fu, “Advances in fluorescence diagnosis to track footprints of cancer progression in vivo,” Laser Photonics Rev. 7(5), 646–662 (2013).
[Crossref]

Palermiti, L. G.

A. Memoli, L. G. Palermiti, V. Travagli, and F. Alhaique, “Effects of surfactants on the spectral behaviour of calcein (II): a method of evaluation,” J. Pharm. Biomed. Anal. 19(3-4), 627–632 (1999).
[Crossref] [PubMed]

Parvin, P.

Penzkofer, A.

A. Penzkofer and W. Leupacher, “Fluorescence behaviour of highly concentrated rhodamine 6G solutions,” J. Lumin. 37(2), 61–72 (1987).
[Crossref]

Petkova, V.

Z. Medarova, W. Pham, C. Farrar, V. Petkova, and A. Moore, “In vivo imaging of siRNA delivery and silencing in tumors,” Nat. Med. 13(3), 372–377 (2007).
[Crossref] [PubMed]

Pham, W.

Z. Medarova, W. Pham, C. Farrar, V. Petkova, and A. Moore, “In vivo imaging of siRNA delivery and silencing in tumors,” Nat. Med. 13(3), 372–377 (2007).
[Crossref] [PubMed]

Rehman, A.

S. Anwar, S. Firdous, A. Rehman, and M. Nawaz, “Optical diagnostic of breast cancer using Raman, polarimetric and fluorescence spectroscopy,” Laser Phys. Lett. 12(4), 045601 (2015).
[Crossref]

Rhys, A.

K. Huang and A. Rhys, “Theory of light absorption and non-radiative transitions in F-centres,” Proc. R. Soc. London. Ser. A.  204(1078), 406–423 (1950).

Schneckenburger, H.

P. Weber, M. Wagner, and H. Schneckenburger, “Cholesterol dependent uptake and interaction of doxorubicin in mcf-7 breast cancer cells,” Int. J. Mol. Sci. 14(4), 8358–8366 (2013).
[Crossref] [PubMed]

Smulevich, G.

L. Angeloni, G. Smulevich, and M. P. Marzocchi, “Absorption, fluorescence and resonance Raman spectra of adriamycin and its complex with DNA,” Spectrochim. Acta 38A(2), 127–213 (1982).

Tomashefsky, P.

J. Cordero and P. Tomashefsky, “Native cancerous and normal tissue,” J. Quantum. Electron. 20(12), 1507–1511 (1984).
[Crossref]

Travagli, V.

A. Memoli, L. G. Palermiti, V. Travagli, and F. Alhaique, “Effects of surfactants on the spectral behaviour of calcein (II): a method of evaluation,” J. Pharm. Biomed. Anal. 19(3-4), 627–632 (1999).
[Crossref] [PubMed]

Trynda-Lemiesz, L.

L. Trynda-Lemiesz and M. Luczkowski, “Human serum albumin: spectroscopic studies of the paclitaxel binding and proximity relationships with cisplatin and adriamycin,” J. Inorg. Biochem. 98(11), 1851–1856 (2004).
[Crossref] [PubMed]

Wagner, M.

P. Weber, M. Wagner, and H. Schneckenburger, “Cholesterol dependent uptake and interaction of doxorubicin in mcf-7 breast cancer cells,” Int. J. Mol. Sci. 14(4), 8358–8366 (2013).
[Crossref] [PubMed]

Weber, P.

P. Weber, M. Wagner, and H. Schneckenburger, “Cholesterol dependent uptake and interaction of doxorubicin in mcf-7 breast cancer cells,” Int. J. Mol. Sci. 14(4), 8358–8366 (2013).
[Crossref] [PubMed]

Xia, Y.

C. M. Cobley, L. Au, J. Chen, and Y. Xia, “Targeting gold nanocages to cancer cells for photothermal destruction and drug delivery,” Expert Opin. Drug Deliv. 7(5), 577–587 (2010).
[Crossref] [PubMed]

Appl. Opt. (1)

Biochemistry (1)

M. Chien, A. P. Grollman, and S. B. Horwitz, “Bleomycin-DNA interactions: fluorescence and proton magnetic resonance studies,” Biochemistry 16(16), 2641–2647 (1977).
[Crossref] [PubMed]

Biomed. Opt. Express (1)

Cancer Biol. Ther. (1)

I. J. Bigio and S. G. Bown, “Spectroscopic sensing of cancer and cancer therapy: current status of translational research,” Cancer Biol. Ther. 3(3), 259–267 (2004).
[Crossref] [PubMed]

Expert Opin. Drug Deliv. (1)

C. M. Cobley, L. Au, J. Chen, and Y. Xia, “Targeting gold nanocages to cancer cells for photothermal destruction and drug delivery,” Expert Opin. Drug Deliv. 7(5), 577–587 (2010).
[Crossref] [PubMed]

Int. J. Mol. Sci. (1)

P. Weber, M. Wagner, and H. Schneckenburger, “Cholesterol dependent uptake and interaction of doxorubicin in mcf-7 breast cancer cells,” Int. J. Mol. Sci. 14(4), 8358–8366 (2013).
[Crossref] [PubMed]

J. Inorg. Biochem. (1)

L. Trynda-Lemiesz and M. Luczkowski, “Human serum albumin: spectroscopic studies of the paclitaxel binding and proximity relationships with cisplatin and adriamycin,” J. Inorg. Biochem. 98(11), 1851–1856 (2004).
[Crossref] [PubMed]

J. Lumin. (1)

A. Penzkofer and W. Leupacher, “Fluorescence behaviour of highly concentrated rhodamine 6G solutions,” J. Lumin. 37(2), 61–72 (1987).
[Crossref]

J. Pharm. Biomed. Anal. (1)

A. Memoli, L. G. Palermiti, V. Travagli, and F. Alhaique, “Effects of surfactants on the spectral behaviour of calcein (II): a method of evaluation,” J. Pharm. Biomed. Anal. 19(3-4), 627–632 (1999).
[Crossref] [PubMed]

J. Quantum. Electron. (1)

J. Cordero and P. Tomashefsky, “Native cancerous and normal tissue,” J. Quantum. Electron. 20(12), 1507–1511 (1984).
[Crossref]

Laser Photonics Rev. (1)

M. Olivo, C. J. H. Ho, and C. Y. Fu, “Advances in fluorescence diagnosis to track footprints of cancer progression in vivo,” Laser Photonics Rev. 7(5), 646–662 (2013).
[Crossref]

Laser Phys. Lett. (1)

S. Anwar, S. Firdous, A. Rehman, and M. Nawaz, “Optical diagnostic of breast cancer using Raman, polarimetric and fluorescence spectroscopy,” Laser Phys. Lett. 12(4), 045601 (2015).
[Crossref]

Nat. Med. (1)

Z. Medarova, W. Pham, C. Farrar, V. Petkova, and A. Moore, “In vivo imaging of siRNA delivery and silencing in tumors,” Nat. Med. 13(3), 372–377 (2007).
[Crossref] [PubMed]

Phys. Chem. Chem. Phys. (1)

P. Changenet-Barret, T. Gustavsson, D. Markovitsi, I. Manet, and S. Monti, “Unravelling molecular mechanisms in the fluorescence spectra of doxorubicin in aqueous solution by femtosecond fluorescence spectroscopy,” Phys. Chem. Chem. Phys. 15(8), 2937–2944 (2013).
[Crossref] [PubMed]

Proc. R. Soc. London. Ser. A (1)

K. Huang and A. Rhys, “Theory of light absorption and non-radiative transitions in F-centres,” Proc. R. Soc. London. Ser. A.  204(1078), 406–423 (1950).

Spectrochim. Acta (1)

L. Angeloni, G. Smulevich, and M. P. Marzocchi, “Absorption, fluorescence and resonance Raman spectra of adriamycin and its complex with DNA,” Spectrochim. Acta 38A(2), 127–213 (1982).

Spectrochim. Acta Part A Mol. Spectrosc. (1)

J. Georges, “Deviations from Beer’s law due to dimerization equilibria: theoretical comparison of absorbance, fluorescence and thermal lens measurements,” Spectrochim. Acta Part A Mol. Spectrosc. 51(6), 985–994 (1995).

Other (4)

B. Valeur, Molecular Fluorescence Principles and Application (Wiley-VCH Verlag Gmbh, 2001).

M. A. Hayat, Methods of Cancer Diagnosis, Therapy, and Prognosis (Springer, 2008).

M. W. Allen, “Measurement of fluorescence quantum yields,” Thermo Sci. 1–4 (2010).

J. R. Lakowicz, Principles of Fluorescence Spectroscopy (Springer, 2006).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1 The peak intensity in terms of concentration for (a) DOX, (c) Paclitaxel and (e) Bleomycin and corresponding UV-VIS spectra of the chemo-drugs as an inset. Laser induced fluorescence emission spectra due to various concentrations (0.001-3 mg/ml) for (b) DOX, (d) Paclitaxel and (f) Bleomycin. Whole data are obtained using the excitation by XeCl laser at 308 nm. In fact, Cp as a lucid characteristic parameter of chemo-drugs is inversely correlated with the extinction coefficient.
Fig. 2
Fig. 2 Overlapping area between absorption-emission spectra for (b) DOX (d) Paclitaxel and (f) Bleomycin after XeCl laser shots at 308 nm. Spectral shift versus drug concentration for (a) DOX (c) Paclitaxel and (e) Bleomycin and corresponding FWHM of spectral overlap area as a function of concentration as an inset. The spectral shifts attest that the reabsorption events accompany the agglomeration of fluorophore molecules at higher concentration. Stern-Volmer equation is usually used to determine the thresholds of agglomeration from monomer to dimmer, while it fails to explain the quenching effects when both reabsorption and agglomeration are available. Please note that Cc indicates the concentration of chemo-drugs.
Fig. 3
Fig. 3 (a) Corresponding peak intensity of Rd6G as a function of concentration, inset: Laser induced fluorescence spectra at various concentration, (b) Spectral shift in terms of Rd6G concentration, inset: overlapping area of the normalized absorption-emission spectra. The FWHM of absorption spectra is invariant while that of emission spectra gradually decreases as a function of the concentration emphasizing the commonalities between of DOX and Rd6G.
Fig. 4
Fig. 4 (a) quantum yields of chemo-Drugs of interest as well as those of a standard dye(Rd6G) and a typical biomaterial fluorophore Cy3, (b) Cp and α, (c) spectral shift and (d) Relative LIF intensity at Cp . Inset of Fig. 4(a): The linearity of fluorescence/ absorption rate such that the slopes lead to assess the quantum yields accordingly. Note: PAC: Paclitaxel and BLEO: Bleomycin and DOX: doxorubicin.

Tables (2)

Tables Icon

Table 1 Spectral properties of several chemo-drugs and Rd6G as the reference dye.

Tables Icon

Table 2 Fluorescence properties of chemo-drugs and Rd6G.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

F 0 /F=1+K[Q]
I f = I α η f v ¯ f / v ex peak
Δ=( v ex peak v f peak )
I f = I a η f v ¯ f /(Δ+ v f peak )

Metrics