Abstract

In vivo photoacoustic flow cytometry (PAFC) has demonstrated potential for early diagnosis of deadly diseases through detection of rare circulating tumor cells, pathogens, and clots in nearly the entire blood volume. Before clinical application, this promising diagnostic platform requires verification and optimization using adequate preclinical models. We show here that this can be addressed by examination of large mouse blood vessels which are similar in size, depth and flow velocity to human vessels used in PAFC. Using this model, we verified the capability of PAFC for ultrasensitive, noninvasive, label-free, rapid malaria diagnosis. The time-resolved detection of delayed PA signals from deep vessels provided complete elimination of background from strongly pigmented skin. We discovered that PAFC’s sensitivity is higher during examination of infected cells in arteries compared to veins at similar flow rate. Our advanced PAFC platform integrating a 1060 nm laser with tunable pulse rate and width, a wearable probe with a focused transducer, and linear and nonlinear nanobubble-amplified signal processing demonstrated detection of parasitemia at the unprecedented level of 0.00000001% within 20 seconds and the potential to further improve the sensitivity 100-fold in humans, that is approximately 106 times better than in existing malaria tests.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Noninvasive label-free detection of circulating white and red blood clots in deep vessels with a focused photoacoustic probe

Mazen A. Juratli, Yulian A. Menyaev, Mustafa Sarimollaoglu, Alexander V. Melerzanov, Dmitry A. Nedosekin, William C. Culp, James Y. Suen, Ekaterina I. Galanzha, and Vladimir P. Zharov
Biomed. Opt. Express 9(11) 5667-5677 (2018)

Dynamic blood flow phantom with negative and positive photoacoustic contrasts

Hind J. Jawad, Mustafa Sarimollaoglu, Alexandru S. Biris, and Vladimir P. Zharov
Biomed. Opt. Express 9(10) 4702-4713 (2018)

Optical clearing in photoacoustic flow cytometry

Yulian A. Menyaev, Dmitry A. Nedosekin, Mustafa Sarimollaoglu, Mazen A. Juratli, Ekaterina I. Galanzha, Valery V. Tuchin, and Vladimir P. Zharov
Biomed. Opt. Express 4(12) 3030-3041 (2013)

References

  • View by:
  • |
  • |
  • |

  1. J. Woo, A. Baumann, and V. Arguello, “Recent advancements of flow cytometry: new applications in hematology and oncology,” Expert Rev. Mol. Diagn. 14(1), 67–81 (2014).
    [Crossref] [PubMed]
  2. V. V. Tuchin, A. Tárnok, and V. P. Zharov, “In vivo flow cytometry: a horizon of opportunities,” Cytometry A 79(10), 737–745 (2011).
    [Crossref] [PubMed]
  3. E. I. Galanzha and V. P. Zharov, “Photoacoustic flow cytometry,” Methods 57(3), 280–296 (2012).
    [Crossref] [PubMed]
  4. E. I. Galanzha, E. V. Shashkov, P. M. Spring, J. Y. Suen, and V. P. Zharov, “In vivo, noninvasive, label-free detection and eradication of circulating metastatic melanoma cells using two-color photoacoustic flow cytometry with a diode laser,” Cancer Res. 69(20), 7926–7934 (2009).
    [Crossref] [PubMed]
  5. M. Sarimollaoglu, D. A. Nedosekin, Y. A. Menyaev, M. A. Juratli, and V. P. Zharov, “Nonlinear photoacoustic signal amplification from single targets in absorption background,” Photoacoustics 2(1), 1–11 (2014).
    [Crossref] [PubMed]
  6. L. Mertz, “Light plus sound: combination technology delivers a one-two punch to disease,” IEEE Pulse 6(3), 28–33 (2015).
    [Crossref] [PubMed]
  7. C. Alix-Panabières and K. Pantel, “Circulating tumor cells: liquid biopsy of cancer,” Clin. Chem. 59(1), 110–118 (2013).
    [Crossref] [PubMed]
  8. Y. Y. Petrov, I. Y. Petrova, I. A. Patrikeev, R. O. Esenaliev, and D. S. Prough, “Multiwavelength optoacoustic system for noninvasive monitoring of cerebral venous oxygenation: a pilot clinical test in the internal jugular vein,” Opt. Lett. 31(12), 1827–1829 (2006).
    [Crossref] [PubMed]
  9. L. V. Wang and S. Hu, “Photoacoustic tomography: in vivo imaging from organelles to organs,” Science 335(6075), 1458–1462 (2012).
    [Crossref] [PubMed]
  10. World Health Organization, World malaria report 2015. Geneva, Switzerland. WHO (2015). http://www.who.int/malaria/publications/world_malaria_report_2015/en/
  11. A. Garley, E. Eckert, A. Sie, M. Ye, K. Malm, E. A. Afari, M. Sawadogo, S. Herrera, E. Ivanovich, and Y. Ye, “Strengthening individual capacity in monitoring and evaluation of malaria control programmes to streamline M&E systems and enhance information use in malaria endemic countries,” Malar. J. 15(1), 300 (2016).
    [Crossref] [PubMed]
  12. S. Cho, S. Kim, Y. Kim, and Y. Park, “Optical imaging techniques for the study of malaria,” Trends Biotechnol. 30(2), 71–79 (2012).
    [Crossref] [PubMed]
  13. J. C. Mouatcho and J. P. Goldring, “Malaria rapid diagnostic tests: challenges and prospects,” J. Med. Microbiol. 62(Pt 10), 1491–1505 (2013).
    [Crossref] [PubMed]
  14. P. A. Zimmerman and R. E. Howes, “Malaria diagnosis for malaria elimination,” Curr. Opin. Infect. Dis. 28(5), 446–454 (2015).
    [Crossref] [PubMed]
  15. T. Hänscheid, T. Carvalho, and M. P. Grobusch, “Hemozoin detection for human malaria diagnosis investigated in rodent models: how similar is similar?” Trends Parasitol. 32(2), 94–96 (2016).
    [Crossref] [PubMed]
  16. M. Rebelo, R. Grenho, A. Orban, and T. Hänscheid, “Transdermal diagnosis of malaria using vapor nanobubbles,” Emerg. Infect. Dis. 22(2), 343–344 (2016).
    [Crossref] [PubMed]
  17. J. L. Burnett, J. L. Carns, and R. Richards-Kortum, “In vivo microscopy of hemozoin: towards a needle free diagnostic for malaria,” Biomed. Opt. Express 6(9), 3462–3474 (2015).
    [Crossref] [PubMed]
  18. C. Cai, K. A. Carey, D. A. Nedosekin, Y. A. Menyaev, M. Sarimollaoglu, E. I. Galanzha, J. S. Stumhofer, and V. P. Zharov, “In vivo photoacoustic flow cytometry for early malaria diagnosis,” Cytometry A 89(6), 531–542 (2016).
    [Crossref] [PubMed]
  19. R. Effros, Microcirculation – Current Physiologic, Medical, and Surgical Concepts (Elsevier, 2012).
  20. W. Harvey, The Circulation of the Blood (Cosimo Classics 2006).
  21. V. P. Zharov, E. I. Galanzha, E. Shashkov, N. Khlebtsov, and V. V. Tuchin, “Photoacoustic flow cytometry monitors cells circulating in vivo,” SPIE Newsroom 10.1117/2. 1200609.0391 (2006).
    [Crossref]
  22. Y. A. Menyaev, D. A. Nedosekin, M. Sarimollaoglu, M. A. Juratli, E. I. Galanzha, V. V. Tuchin, and V. P. Zharov, “Optical clearing in photoacoustic flow cytometry,” Biomed. Opt. Express 4(12), 3030–3041 (2013).
    [Crossref] [PubMed]
  23. M. Terai, Z. Mu, D. J. Eschelman, C. F. Gonsalves, K. Kageyama, I. Chervoneva, M. Orloff, R. Weight, M. J. Mastrangelo, M. Cristofanilli, and T. Sato, “Arterial blood rather than venous blood is a better source for circulating melanoma cells,” EBioMedicine 2(11), 1821–1826 (2015).
    [Crossref] [PubMed]
  24. M. R. Swift and B. M. Weinstein, “Arterial-venous specification during development,” Circ. Res. 104(5), 576–588 (2009).
    [Crossref] [PubMed]
  25. M. Umaña, A. García, L. Bustamante, J. L. Castillo, and J. Sebastián Martínez, “Variations in the anatomical relationship between the common carotid artery and the internal jugular vein: an ultrasonographic study,” Colomb. Med. 46(2), 54–59 (2015).
    [PubMed]
  26. J. W. Kim, E. I. Galanzha, D. A. Zaharoff, R. J. Griffin, and V. P. Zharov, “Nanotheranostics of circulating tumor cells, infections and other pathological features in vivo,” Mol. Pharm. 10(3), 813–830 (2013).
    [Crossref] [PubMed]
  27. M. A. Juratli, E. R. Siegel, D. A. Nedosekin, M. Sarimollaoglu, A. Jamshidi-Parsian, C. Cai, Y. A. Menyaev, J. Y. Suen, E. I. Galanzha, and V. P. Zharov, “In vivo long-term monitoring of circulating tumor cells fluctuation during medical interventions,” PLoS One 10(9), e0137613 (2015).
    [Crossref] [PubMed]
  28. M. A. Juratli, Y. A. Menyaev, M. Sarimollaoglu, E. R. Siegel, D. A. Nedosekin, J. Y. Suen, A. V. Melerzanov, T. A. Juratli, E. I. Galanzha, and V. P. Zharov, “Real-time label-free embolus detection using in vivo photoacoustic flow cytometry,” PLoS One 11(5), e0156269 (2016).
    [Crossref] [PubMed]
  29. ANSI_Z136.1. American National Standard for the Safe Use of Lasers (American National Standards Institute, Washington DC, 2007).

2016 (5)

A. Garley, E. Eckert, A. Sie, M. Ye, K. Malm, E. A. Afari, M. Sawadogo, S. Herrera, E. Ivanovich, and Y. Ye, “Strengthening individual capacity in monitoring and evaluation of malaria control programmes to streamline M&E systems and enhance information use in malaria endemic countries,” Malar. J. 15(1), 300 (2016).
[Crossref] [PubMed]

T. Hänscheid, T. Carvalho, and M. P. Grobusch, “Hemozoin detection for human malaria diagnosis investigated in rodent models: how similar is similar?” Trends Parasitol. 32(2), 94–96 (2016).
[Crossref] [PubMed]

M. Rebelo, R. Grenho, A. Orban, and T. Hänscheid, “Transdermal diagnosis of malaria using vapor nanobubbles,” Emerg. Infect. Dis. 22(2), 343–344 (2016).
[Crossref] [PubMed]

M. A. Juratli, Y. A. Menyaev, M. Sarimollaoglu, E. R. Siegel, D. A. Nedosekin, J. Y. Suen, A. V. Melerzanov, T. A. Juratli, E. I. Galanzha, and V. P. Zharov, “Real-time label-free embolus detection using in vivo photoacoustic flow cytometry,” PLoS One 11(5), e0156269 (2016).
[Crossref] [PubMed]

C. Cai, K. A. Carey, D. A. Nedosekin, Y. A. Menyaev, M. Sarimollaoglu, E. I. Galanzha, J. S. Stumhofer, and V. P. Zharov, “In vivo photoacoustic flow cytometry for early malaria diagnosis,” Cytometry A 89(6), 531–542 (2016).
[Crossref] [PubMed]

2015 (6)

P. A. Zimmerman and R. E. Howes, “Malaria diagnosis for malaria elimination,” Curr. Opin. Infect. Dis. 28(5), 446–454 (2015).
[Crossref] [PubMed]

M. A. Juratli, E. R. Siegel, D. A. Nedosekin, M. Sarimollaoglu, A. Jamshidi-Parsian, C. Cai, Y. A. Menyaev, J. Y. Suen, E. I. Galanzha, and V. P. Zharov, “In vivo long-term monitoring of circulating tumor cells fluctuation during medical interventions,” PLoS One 10(9), e0137613 (2015).
[Crossref] [PubMed]

J. L. Burnett, J. L. Carns, and R. Richards-Kortum, “In vivo microscopy of hemozoin: towards a needle free diagnostic for malaria,” Biomed. Opt. Express 6(9), 3462–3474 (2015).
[Crossref] [PubMed]

M. Terai, Z. Mu, D. J. Eschelman, C. F. Gonsalves, K. Kageyama, I. Chervoneva, M. Orloff, R. Weight, M. J. Mastrangelo, M. Cristofanilli, and T. Sato, “Arterial blood rather than venous blood is a better source for circulating melanoma cells,” EBioMedicine 2(11), 1821–1826 (2015).
[Crossref] [PubMed]

M. Umaña, A. García, L. Bustamante, J. L. Castillo, and J. Sebastián Martínez, “Variations in the anatomical relationship between the common carotid artery and the internal jugular vein: an ultrasonographic study,” Colomb. Med. 46(2), 54–59 (2015).
[PubMed]

L. Mertz, “Light plus sound: combination technology delivers a one-two punch to disease,” IEEE Pulse 6(3), 28–33 (2015).
[Crossref] [PubMed]

2014 (2)

J. Woo, A. Baumann, and V. Arguello, “Recent advancements of flow cytometry: new applications in hematology and oncology,” Expert Rev. Mol. Diagn. 14(1), 67–81 (2014).
[Crossref] [PubMed]

M. Sarimollaoglu, D. A. Nedosekin, Y. A. Menyaev, M. A. Juratli, and V. P. Zharov, “Nonlinear photoacoustic signal amplification from single targets in absorption background,” Photoacoustics 2(1), 1–11 (2014).
[Crossref] [PubMed]

2013 (4)

J. C. Mouatcho and J. P. Goldring, “Malaria rapid diagnostic tests: challenges and prospects,” J. Med. Microbiol. 62(Pt 10), 1491–1505 (2013).
[Crossref] [PubMed]

J. W. Kim, E. I. Galanzha, D. A. Zaharoff, R. J. Griffin, and V. P. Zharov, “Nanotheranostics of circulating tumor cells, infections and other pathological features in vivo,” Mol. Pharm. 10(3), 813–830 (2013).
[Crossref] [PubMed]

C. Alix-Panabières and K. Pantel, “Circulating tumor cells: liquid biopsy of cancer,” Clin. Chem. 59(1), 110–118 (2013).
[Crossref] [PubMed]

Y. A. Menyaev, D. A. Nedosekin, M. Sarimollaoglu, M. A. Juratli, E. I. Galanzha, V. V. Tuchin, and V. P. Zharov, “Optical clearing in photoacoustic flow cytometry,” Biomed. Opt. Express 4(12), 3030–3041 (2013).
[Crossref] [PubMed]

2012 (3)

L. V. Wang and S. Hu, “Photoacoustic tomography: in vivo imaging from organelles to organs,” Science 335(6075), 1458–1462 (2012).
[Crossref] [PubMed]

S. Cho, S. Kim, Y. Kim, and Y. Park, “Optical imaging techniques for the study of malaria,” Trends Biotechnol. 30(2), 71–79 (2012).
[Crossref] [PubMed]

E. I. Galanzha and V. P. Zharov, “Photoacoustic flow cytometry,” Methods 57(3), 280–296 (2012).
[Crossref] [PubMed]

2011 (1)

V. V. Tuchin, A. Tárnok, and V. P. Zharov, “In vivo flow cytometry: a horizon of opportunities,” Cytometry A 79(10), 737–745 (2011).
[Crossref] [PubMed]

2009 (2)

E. I. Galanzha, E. V. Shashkov, P. M. Spring, J. Y. Suen, and V. P. Zharov, “In vivo, noninvasive, label-free detection and eradication of circulating metastatic melanoma cells using two-color photoacoustic flow cytometry with a diode laser,” Cancer Res. 69(20), 7926–7934 (2009).
[Crossref] [PubMed]

M. R. Swift and B. M. Weinstein, “Arterial-venous specification during development,” Circ. Res. 104(5), 576–588 (2009).
[Crossref] [PubMed]

2006 (1)

Afari, E. A.

A. Garley, E. Eckert, A. Sie, M. Ye, K. Malm, E. A. Afari, M. Sawadogo, S. Herrera, E. Ivanovich, and Y. Ye, “Strengthening individual capacity in monitoring and evaluation of malaria control programmes to streamline M&E systems and enhance information use in malaria endemic countries,” Malar. J. 15(1), 300 (2016).
[Crossref] [PubMed]

Alix-Panabières, C.

C. Alix-Panabières and K. Pantel, “Circulating tumor cells: liquid biopsy of cancer,” Clin. Chem. 59(1), 110–118 (2013).
[Crossref] [PubMed]

Arguello, V.

J. Woo, A. Baumann, and V. Arguello, “Recent advancements of flow cytometry: new applications in hematology and oncology,” Expert Rev. Mol. Diagn. 14(1), 67–81 (2014).
[Crossref] [PubMed]

Baumann, A.

J. Woo, A. Baumann, and V. Arguello, “Recent advancements of flow cytometry: new applications in hematology and oncology,” Expert Rev. Mol. Diagn. 14(1), 67–81 (2014).
[Crossref] [PubMed]

Burnett, J. L.

Bustamante, L.

M. Umaña, A. García, L. Bustamante, J. L. Castillo, and J. Sebastián Martínez, “Variations in the anatomical relationship between the common carotid artery and the internal jugular vein: an ultrasonographic study,” Colomb. Med. 46(2), 54–59 (2015).
[PubMed]

Cai, C.

C. Cai, K. A. Carey, D. A. Nedosekin, Y. A. Menyaev, M. Sarimollaoglu, E. I. Galanzha, J. S. Stumhofer, and V. P. Zharov, “In vivo photoacoustic flow cytometry for early malaria diagnosis,” Cytometry A 89(6), 531–542 (2016).
[Crossref] [PubMed]

M. A. Juratli, E. R. Siegel, D. A. Nedosekin, M. Sarimollaoglu, A. Jamshidi-Parsian, C. Cai, Y. A. Menyaev, J. Y. Suen, E. I. Galanzha, and V. P. Zharov, “In vivo long-term monitoring of circulating tumor cells fluctuation during medical interventions,” PLoS One 10(9), e0137613 (2015).
[Crossref] [PubMed]

Carey, K. A.

C. Cai, K. A. Carey, D. A. Nedosekin, Y. A. Menyaev, M. Sarimollaoglu, E. I. Galanzha, J. S. Stumhofer, and V. P. Zharov, “In vivo photoacoustic flow cytometry for early malaria diagnosis,” Cytometry A 89(6), 531–542 (2016).
[Crossref] [PubMed]

Carns, J. L.

Carvalho, T.

T. Hänscheid, T. Carvalho, and M. P. Grobusch, “Hemozoin detection for human malaria diagnosis investigated in rodent models: how similar is similar?” Trends Parasitol. 32(2), 94–96 (2016).
[Crossref] [PubMed]

Castillo, J. L.

M. Umaña, A. García, L. Bustamante, J. L. Castillo, and J. Sebastián Martínez, “Variations in the anatomical relationship between the common carotid artery and the internal jugular vein: an ultrasonographic study,” Colomb. Med. 46(2), 54–59 (2015).
[PubMed]

Chervoneva, I.

M. Terai, Z. Mu, D. J. Eschelman, C. F. Gonsalves, K. Kageyama, I. Chervoneva, M. Orloff, R. Weight, M. J. Mastrangelo, M. Cristofanilli, and T. Sato, “Arterial blood rather than venous blood is a better source for circulating melanoma cells,” EBioMedicine 2(11), 1821–1826 (2015).
[Crossref] [PubMed]

Cho, S.

S. Cho, S. Kim, Y. Kim, and Y. Park, “Optical imaging techniques for the study of malaria,” Trends Biotechnol. 30(2), 71–79 (2012).
[Crossref] [PubMed]

Cristofanilli, M.

M. Terai, Z. Mu, D. J. Eschelman, C. F. Gonsalves, K. Kageyama, I. Chervoneva, M. Orloff, R. Weight, M. J. Mastrangelo, M. Cristofanilli, and T. Sato, “Arterial blood rather than venous blood is a better source for circulating melanoma cells,” EBioMedicine 2(11), 1821–1826 (2015).
[Crossref] [PubMed]

Eckert, E.

A. Garley, E. Eckert, A. Sie, M. Ye, K. Malm, E. A. Afari, M. Sawadogo, S. Herrera, E. Ivanovich, and Y. Ye, “Strengthening individual capacity in monitoring and evaluation of malaria control programmes to streamline M&E systems and enhance information use in malaria endemic countries,” Malar. J. 15(1), 300 (2016).
[Crossref] [PubMed]

Eschelman, D. J.

M. Terai, Z. Mu, D. J. Eschelman, C. F. Gonsalves, K. Kageyama, I. Chervoneva, M. Orloff, R. Weight, M. J. Mastrangelo, M. Cristofanilli, and T. Sato, “Arterial blood rather than venous blood is a better source for circulating melanoma cells,” EBioMedicine 2(11), 1821–1826 (2015).
[Crossref] [PubMed]

Esenaliev, R. O.

Galanzha, E. I.

M. A. Juratli, Y. A. Menyaev, M. Sarimollaoglu, E. R. Siegel, D. A. Nedosekin, J. Y. Suen, A. V. Melerzanov, T. A. Juratli, E. I. Galanzha, and V. P. Zharov, “Real-time label-free embolus detection using in vivo photoacoustic flow cytometry,” PLoS One 11(5), e0156269 (2016).
[Crossref] [PubMed]

C. Cai, K. A. Carey, D. A. Nedosekin, Y. A. Menyaev, M. Sarimollaoglu, E. I. Galanzha, J. S. Stumhofer, and V. P. Zharov, “In vivo photoacoustic flow cytometry for early malaria diagnosis,” Cytometry A 89(6), 531–542 (2016).
[Crossref] [PubMed]

M. A. Juratli, E. R. Siegel, D. A. Nedosekin, M. Sarimollaoglu, A. Jamshidi-Parsian, C. Cai, Y. A. Menyaev, J. Y. Suen, E. I. Galanzha, and V. P. Zharov, “In vivo long-term monitoring of circulating tumor cells fluctuation during medical interventions,” PLoS One 10(9), e0137613 (2015).
[Crossref] [PubMed]

Y. A. Menyaev, D. A. Nedosekin, M. Sarimollaoglu, M. A. Juratli, E. I. Galanzha, V. V. Tuchin, and V. P. Zharov, “Optical clearing in photoacoustic flow cytometry,” Biomed. Opt. Express 4(12), 3030–3041 (2013).
[Crossref] [PubMed]

J. W. Kim, E. I. Galanzha, D. A. Zaharoff, R. J. Griffin, and V. P. Zharov, “Nanotheranostics of circulating tumor cells, infections and other pathological features in vivo,” Mol. Pharm. 10(3), 813–830 (2013).
[Crossref] [PubMed]

E. I. Galanzha and V. P. Zharov, “Photoacoustic flow cytometry,” Methods 57(3), 280–296 (2012).
[Crossref] [PubMed]

E. I. Galanzha, E. V. Shashkov, P. M. Spring, J. Y. Suen, and V. P. Zharov, “In vivo, noninvasive, label-free detection and eradication of circulating metastatic melanoma cells using two-color photoacoustic flow cytometry with a diode laser,” Cancer Res. 69(20), 7926–7934 (2009).
[Crossref] [PubMed]

V. P. Zharov, E. I. Galanzha, E. Shashkov, N. Khlebtsov, and V. V. Tuchin, “Photoacoustic flow cytometry monitors cells circulating in vivo,” SPIE Newsroom 10.1117/2. 1200609.0391 (2006).
[Crossref]

García, A.

M. Umaña, A. García, L. Bustamante, J. L. Castillo, and J. Sebastián Martínez, “Variations in the anatomical relationship between the common carotid artery and the internal jugular vein: an ultrasonographic study,” Colomb. Med. 46(2), 54–59 (2015).
[PubMed]

Garley, A.

A. Garley, E. Eckert, A. Sie, M. Ye, K. Malm, E. A. Afari, M. Sawadogo, S. Herrera, E. Ivanovich, and Y. Ye, “Strengthening individual capacity in monitoring and evaluation of malaria control programmes to streamline M&E systems and enhance information use in malaria endemic countries,” Malar. J. 15(1), 300 (2016).
[Crossref] [PubMed]

Goldring, J. P.

J. C. Mouatcho and J. P. Goldring, “Malaria rapid diagnostic tests: challenges and prospects,” J. Med. Microbiol. 62(Pt 10), 1491–1505 (2013).
[Crossref] [PubMed]

Gonsalves, C. F.

M. Terai, Z. Mu, D. J. Eschelman, C. F. Gonsalves, K. Kageyama, I. Chervoneva, M. Orloff, R. Weight, M. J. Mastrangelo, M. Cristofanilli, and T. Sato, “Arterial blood rather than venous blood is a better source for circulating melanoma cells,” EBioMedicine 2(11), 1821–1826 (2015).
[Crossref] [PubMed]

Grenho, R.

M. Rebelo, R. Grenho, A. Orban, and T. Hänscheid, “Transdermal diagnosis of malaria using vapor nanobubbles,” Emerg. Infect. Dis. 22(2), 343–344 (2016).
[Crossref] [PubMed]

Griffin, R. J.

J. W. Kim, E. I. Galanzha, D. A. Zaharoff, R. J. Griffin, and V. P. Zharov, “Nanotheranostics of circulating tumor cells, infections and other pathological features in vivo,” Mol. Pharm. 10(3), 813–830 (2013).
[Crossref] [PubMed]

Grobusch, M. P.

T. Hänscheid, T. Carvalho, and M. P. Grobusch, “Hemozoin detection for human malaria diagnosis investigated in rodent models: how similar is similar?” Trends Parasitol. 32(2), 94–96 (2016).
[Crossref] [PubMed]

Hänscheid, T.

T. Hänscheid, T. Carvalho, and M. P. Grobusch, “Hemozoin detection for human malaria diagnosis investigated in rodent models: how similar is similar?” Trends Parasitol. 32(2), 94–96 (2016).
[Crossref] [PubMed]

M. Rebelo, R. Grenho, A. Orban, and T. Hänscheid, “Transdermal diagnosis of malaria using vapor nanobubbles,” Emerg. Infect. Dis. 22(2), 343–344 (2016).
[Crossref] [PubMed]

Herrera, S.

A. Garley, E. Eckert, A. Sie, M. Ye, K. Malm, E. A. Afari, M. Sawadogo, S. Herrera, E. Ivanovich, and Y. Ye, “Strengthening individual capacity in monitoring and evaluation of malaria control programmes to streamline M&E systems and enhance information use in malaria endemic countries,” Malar. J. 15(1), 300 (2016).
[Crossref] [PubMed]

Howes, R. E.

P. A. Zimmerman and R. E. Howes, “Malaria diagnosis for malaria elimination,” Curr. Opin. Infect. Dis. 28(5), 446–454 (2015).
[Crossref] [PubMed]

Hu, S.

L. V. Wang and S. Hu, “Photoacoustic tomography: in vivo imaging from organelles to organs,” Science 335(6075), 1458–1462 (2012).
[Crossref] [PubMed]

Ivanovich, E.

A. Garley, E. Eckert, A. Sie, M. Ye, K. Malm, E. A. Afari, M. Sawadogo, S. Herrera, E. Ivanovich, and Y. Ye, “Strengthening individual capacity in monitoring and evaluation of malaria control programmes to streamline M&E systems and enhance information use in malaria endemic countries,” Malar. J. 15(1), 300 (2016).
[Crossref] [PubMed]

Jamshidi-Parsian, A.

M. A. Juratli, E. R. Siegel, D. A. Nedosekin, M. Sarimollaoglu, A. Jamshidi-Parsian, C. Cai, Y. A. Menyaev, J. Y. Suen, E. I. Galanzha, and V. P. Zharov, “In vivo long-term monitoring of circulating tumor cells fluctuation during medical interventions,” PLoS One 10(9), e0137613 (2015).
[Crossref] [PubMed]

Juratli, M. A.

M. A. Juratli, Y. A. Menyaev, M. Sarimollaoglu, E. R. Siegel, D. A. Nedosekin, J. Y. Suen, A. V. Melerzanov, T. A. Juratli, E. I. Galanzha, and V. P. Zharov, “Real-time label-free embolus detection using in vivo photoacoustic flow cytometry,” PLoS One 11(5), e0156269 (2016).
[Crossref] [PubMed]

M. A. Juratli, E. R. Siegel, D. A. Nedosekin, M. Sarimollaoglu, A. Jamshidi-Parsian, C. Cai, Y. A. Menyaev, J. Y. Suen, E. I. Galanzha, and V. P. Zharov, “In vivo long-term monitoring of circulating tumor cells fluctuation during medical interventions,” PLoS One 10(9), e0137613 (2015).
[Crossref] [PubMed]

M. Sarimollaoglu, D. A. Nedosekin, Y. A. Menyaev, M. A. Juratli, and V. P. Zharov, “Nonlinear photoacoustic signal amplification from single targets in absorption background,” Photoacoustics 2(1), 1–11 (2014).
[Crossref] [PubMed]

Y. A. Menyaev, D. A. Nedosekin, M. Sarimollaoglu, M. A. Juratli, E. I. Galanzha, V. V. Tuchin, and V. P. Zharov, “Optical clearing in photoacoustic flow cytometry,” Biomed. Opt. Express 4(12), 3030–3041 (2013).
[Crossref] [PubMed]

Juratli, T. A.

M. A. Juratli, Y. A. Menyaev, M. Sarimollaoglu, E. R. Siegel, D. A. Nedosekin, J. Y. Suen, A. V. Melerzanov, T. A. Juratli, E. I. Galanzha, and V. P. Zharov, “Real-time label-free embolus detection using in vivo photoacoustic flow cytometry,” PLoS One 11(5), e0156269 (2016).
[Crossref] [PubMed]

Kageyama, K.

M. Terai, Z. Mu, D. J. Eschelman, C. F. Gonsalves, K. Kageyama, I. Chervoneva, M. Orloff, R. Weight, M. J. Mastrangelo, M. Cristofanilli, and T. Sato, “Arterial blood rather than venous blood is a better source for circulating melanoma cells,” EBioMedicine 2(11), 1821–1826 (2015).
[Crossref] [PubMed]

Khlebtsov, N.

V. P. Zharov, E. I. Galanzha, E. Shashkov, N. Khlebtsov, and V. V. Tuchin, “Photoacoustic flow cytometry monitors cells circulating in vivo,” SPIE Newsroom 10.1117/2. 1200609.0391 (2006).
[Crossref]

Kim, J. W.

J. W. Kim, E. I. Galanzha, D. A. Zaharoff, R. J. Griffin, and V. P. Zharov, “Nanotheranostics of circulating tumor cells, infections and other pathological features in vivo,” Mol. Pharm. 10(3), 813–830 (2013).
[Crossref] [PubMed]

Kim, S.

S. Cho, S. Kim, Y. Kim, and Y. Park, “Optical imaging techniques for the study of malaria,” Trends Biotechnol. 30(2), 71–79 (2012).
[Crossref] [PubMed]

Kim, Y.

S. Cho, S. Kim, Y. Kim, and Y. Park, “Optical imaging techniques for the study of malaria,” Trends Biotechnol. 30(2), 71–79 (2012).
[Crossref] [PubMed]

Malm, K.

A. Garley, E. Eckert, A. Sie, M. Ye, K. Malm, E. A. Afari, M. Sawadogo, S. Herrera, E. Ivanovich, and Y. Ye, “Strengthening individual capacity in monitoring and evaluation of malaria control programmes to streamline M&E systems and enhance information use in malaria endemic countries,” Malar. J. 15(1), 300 (2016).
[Crossref] [PubMed]

Mastrangelo, M. J.

M. Terai, Z. Mu, D. J. Eschelman, C. F. Gonsalves, K. Kageyama, I. Chervoneva, M. Orloff, R. Weight, M. J. Mastrangelo, M. Cristofanilli, and T. Sato, “Arterial blood rather than venous blood is a better source for circulating melanoma cells,” EBioMedicine 2(11), 1821–1826 (2015).
[Crossref] [PubMed]

Melerzanov, A. V.

M. A. Juratli, Y. A. Menyaev, M. Sarimollaoglu, E. R. Siegel, D. A. Nedosekin, J. Y. Suen, A. V. Melerzanov, T. A. Juratli, E. I. Galanzha, and V. P. Zharov, “Real-time label-free embolus detection using in vivo photoacoustic flow cytometry,” PLoS One 11(5), e0156269 (2016).
[Crossref] [PubMed]

Menyaev, Y. A.

M. A. Juratli, Y. A. Menyaev, M. Sarimollaoglu, E. R. Siegel, D. A. Nedosekin, J. Y. Suen, A. V. Melerzanov, T. A. Juratli, E. I. Galanzha, and V. P. Zharov, “Real-time label-free embolus detection using in vivo photoacoustic flow cytometry,” PLoS One 11(5), e0156269 (2016).
[Crossref] [PubMed]

C. Cai, K. A. Carey, D. A. Nedosekin, Y. A. Menyaev, M. Sarimollaoglu, E. I. Galanzha, J. S. Stumhofer, and V. P. Zharov, “In vivo photoacoustic flow cytometry for early malaria diagnosis,” Cytometry A 89(6), 531–542 (2016).
[Crossref] [PubMed]

M. A. Juratli, E. R. Siegel, D. A. Nedosekin, M. Sarimollaoglu, A. Jamshidi-Parsian, C. Cai, Y. A. Menyaev, J. Y. Suen, E. I. Galanzha, and V. P. Zharov, “In vivo long-term monitoring of circulating tumor cells fluctuation during medical interventions,” PLoS One 10(9), e0137613 (2015).
[Crossref] [PubMed]

M. Sarimollaoglu, D. A. Nedosekin, Y. A. Menyaev, M. A. Juratli, and V. P. Zharov, “Nonlinear photoacoustic signal amplification from single targets in absorption background,” Photoacoustics 2(1), 1–11 (2014).
[Crossref] [PubMed]

Y. A. Menyaev, D. A. Nedosekin, M. Sarimollaoglu, M. A. Juratli, E. I. Galanzha, V. V. Tuchin, and V. P. Zharov, “Optical clearing in photoacoustic flow cytometry,” Biomed. Opt. Express 4(12), 3030–3041 (2013).
[Crossref] [PubMed]

Mertz, L.

L. Mertz, “Light plus sound: combination technology delivers a one-two punch to disease,” IEEE Pulse 6(3), 28–33 (2015).
[Crossref] [PubMed]

Mouatcho, J. C.

J. C. Mouatcho and J. P. Goldring, “Malaria rapid diagnostic tests: challenges and prospects,” J. Med. Microbiol. 62(Pt 10), 1491–1505 (2013).
[Crossref] [PubMed]

Mu, Z.

M. Terai, Z. Mu, D. J. Eschelman, C. F. Gonsalves, K. Kageyama, I. Chervoneva, M. Orloff, R. Weight, M. J. Mastrangelo, M. Cristofanilli, and T. Sato, “Arterial blood rather than venous blood is a better source for circulating melanoma cells,” EBioMedicine 2(11), 1821–1826 (2015).
[Crossref] [PubMed]

Nedosekin, D. A.

M. A. Juratli, Y. A. Menyaev, M. Sarimollaoglu, E. R. Siegel, D. A. Nedosekin, J. Y. Suen, A. V. Melerzanov, T. A. Juratli, E. I. Galanzha, and V. P. Zharov, “Real-time label-free embolus detection using in vivo photoacoustic flow cytometry,” PLoS One 11(5), e0156269 (2016).
[Crossref] [PubMed]

C. Cai, K. A. Carey, D. A. Nedosekin, Y. A. Menyaev, M. Sarimollaoglu, E. I. Galanzha, J. S. Stumhofer, and V. P. Zharov, “In vivo photoacoustic flow cytometry for early malaria diagnosis,” Cytometry A 89(6), 531–542 (2016).
[Crossref] [PubMed]

M. A. Juratli, E. R. Siegel, D. A. Nedosekin, M. Sarimollaoglu, A. Jamshidi-Parsian, C. Cai, Y. A. Menyaev, J. Y. Suen, E. I. Galanzha, and V. P. Zharov, “In vivo long-term monitoring of circulating tumor cells fluctuation during medical interventions,” PLoS One 10(9), e0137613 (2015).
[Crossref] [PubMed]

M. Sarimollaoglu, D. A. Nedosekin, Y. A. Menyaev, M. A. Juratli, and V. P. Zharov, “Nonlinear photoacoustic signal amplification from single targets in absorption background,” Photoacoustics 2(1), 1–11 (2014).
[Crossref] [PubMed]

Y. A. Menyaev, D. A. Nedosekin, M. Sarimollaoglu, M. A. Juratli, E. I. Galanzha, V. V. Tuchin, and V. P. Zharov, “Optical clearing in photoacoustic flow cytometry,” Biomed. Opt. Express 4(12), 3030–3041 (2013).
[Crossref] [PubMed]

Orban, A.

M. Rebelo, R. Grenho, A. Orban, and T. Hänscheid, “Transdermal diagnosis of malaria using vapor nanobubbles,” Emerg. Infect. Dis. 22(2), 343–344 (2016).
[Crossref] [PubMed]

Orloff, M.

M. Terai, Z. Mu, D. J. Eschelman, C. F. Gonsalves, K. Kageyama, I. Chervoneva, M. Orloff, R. Weight, M. J. Mastrangelo, M. Cristofanilli, and T. Sato, “Arterial blood rather than venous blood is a better source for circulating melanoma cells,” EBioMedicine 2(11), 1821–1826 (2015).
[Crossref] [PubMed]

Pantel, K.

C. Alix-Panabières and K. Pantel, “Circulating tumor cells: liquid biopsy of cancer,” Clin. Chem. 59(1), 110–118 (2013).
[Crossref] [PubMed]

Park, Y.

S. Cho, S. Kim, Y. Kim, and Y. Park, “Optical imaging techniques for the study of malaria,” Trends Biotechnol. 30(2), 71–79 (2012).
[Crossref] [PubMed]

Patrikeev, I. A.

Petrov, Y. Y.

Petrova, I. Y.

Prough, D. S.

Rebelo, M.

M. Rebelo, R. Grenho, A. Orban, and T. Hänscheid, “Transdermal diagnosis of malaria using vapor nanobubbles,” Emerg. Infect. Dis. 22(2), 343–344 (2016).
[Crossref] [PubMed]

Richards-Kortum, R.

Sarimollaoglu, M.

C. Cai, K. A. Carey, D. A. Nedosekin, Y. A. Menyaev, M. Sarimollaoglu, E. I. Galanzha, J. S. Stumhofer, and V. P. Zharov, “In vivo photoacoustic flow cytometry for early malaria diagnosis,” Cytometry A 89(6), 531–542 (2016).
[Crossref] [PubMed]

M. A. Juratli, Y. A. Menyaev, M. Sarimollaoglu, E. R. Siegel, D. A. Nedosekin, J. Y. Suen, A. V. Melerzanov, T. A. Juratli, E. I. Galanzha, and V. P. Zharov, “Real-time label-free embolus detection using in vivo photoacoustic flow cytometry,” PLoS One 11(5), e0156269 (2016).
[Crossref] [PubMed]

M. A. Juratli, E. R. Siegel, D. A. Nedosekin, M. Sarimollaoglu, A. Jamshidi-Parsian, C. Cai, Y. A. Menyaev, J. Y. Suen, E. I. Galanzha, and V. P. Zharov, “In vivo long-term monitoring of circulating tumor cells fluctuation during medical interventions,” PLoS One 10(9), e0137613 (2015).
[Crossref] [PubMed]

M. Sarimollaoglu, D. A. Nedosekin, Y. A. Menyaev, M. A. Juratli, and V. P. Zharov, “Nonlinear photoacoustic signal amplification from single targets in absorption background,” Photoacoustics 2(1), 1–11 (2014).
[Crossref] [PubMed]

Y. A. Menyaev, D. A. Nedosekin, M. Sarimollaoglu, M. A. Juratli, E. I. Galanzha, V. V. Tuchin, and V. P. Zharov, “Optical clearing in photoacoustic flow cytometry,” Biomed. Opt. Express 4(12), 3030–3041 (2013).
[Crossref] [PubMed]

Sato, T.

M. Terai, Z. Mu, D. J. Eschelman, C. F. Gonsalves, K. Kageyama, I. Chervoneva, M. Orloff, R. Weight, M. J. Mastrangelo, M. Cristofanilli, and T. Sato, “Arterial blood rather than venous blood is a better source for circulating melanoma cells,” EBioMedicine 2(11), 1821–1826 (2015).
[Crossref] [PubMed]

Sawadogo, M.

A. Garley, E. Eckert, A. Sie, M. Ye, K. Malm, E. A. Afari, M. Sawadogo, S. Herrera, E. Ivanovich, and Y. Ye, “Strengthening individual capacity in monitoring and evaluation of malaria control programmes to streamline M&E systems and enhance information use in malaria endemic countries,” Malar. J. 15(1), 300 (2016).
[Crossref] [PubMed]

Sebastián Martínez, J.

M. Umaña, A. García, L. Bustamante, J. L. Castillo, and J. Sebastián Martínez, “Variations in the anatomical relationship between the common carotid artery and the internal jugular vein: an ultrasonographic study,” Colomb. Med. 46(2), 54–59 (2015).
[PubMed]

Shashkov, E.

V. P. Zharov, E. I. Galanzha, E. Shashkov, N. Khlebtsov, and V. V. Tuchin, “Photoacoustic flow cytometry monitors cells circulating in vivo,” SPIE Newsroom 10.1117/2. 1200609.0391 (2006).
[Crossref]

Shashkov, E. V.

E. I. Galanzha, E. V. Shashkov, P. M. Spring, J. Y. Suen, and V. P. Zharov, “In vivo, noninvasive, label-free detection and eradication of circulating metastatic melanoma cells using two-color photoacoustic flow cytometry with a diode laser,” Cancer Res. 69(20), 7926–7934 (2009).
[Crossref] [PubMed]

Sie, A.

A. Garley, E. Eckert, A. Sie, M. Ye, K. Malm, E. A. Afari, M. Sawadogo, S. Herrera, E. Ivanovich, and Y. Ye, “Strengthening individual capacity in monitoring and evaluation of malaria control programmes to streamline M&E systems and enhance information use in malaria endemic countries,” Malar. J. 15(1), 300 (2016).
[Crossref] [PubMed]

Siegel, E. R.

M. A. Juratli, Y. A. Menyaev, M. Sarimollaoglu, E. R. Siegel, D. A. Nedosekin, J. Y. Suen, A. V. Melerzanov, T. A. Juratli, E. I. Galanzha, and V. P. Zharov, “Real-time label-free embolus detection using in vivo photoacoustic flow cytometry,” PLoS One 11(5), e0156269 (2016).
[Crossref] [PubMed]

M. A. Juratli, E. R. Siegel, D. A. Nedosekin, M. Sarimollaoglu, A. Jamshidi-Parsian, C. Cai, Y. A. Menyaev, J. Y. Suen, E. I. Galanzha, and V. P. Zharov, “In vivo long-term monitoring of circulating tumor cells fluctuation during medical interventions,” PLoS One 10(9), e0137613 (2015).
[Crossref] [PubMed]

Spring, P. M.

E. I. Galanzha, E. V. Shashkov, P. M. Spring, J. Y. Suen, and V. P. Zharov, “In vivo, noninvasive, label-free detection and eradication of circulating metastatic melanoma cells using two-color photoacoustic flow cytometry with a diode laser,” Cancer Res. 69(20), 7926–7934 (2009).
[Crossref] [PubMed]

Stumhofer, J. S.

C. Cai, K. A. Carey, D. A. Nedosekin, Y. A. Menyaev, M. Sarimollaoglu, E. I. Galanzha, J. S. Stumhofer, and V. P. Zharov, “In vivo photoacoustic flow cytometry for early malaria diagnosis,” Cytometry A 89(6), 531–542 (2016).
[Crossref] [PubMed]

Suen, J. Y.

M. A. Juratli, Y. A. Menyaev, M. Sarimollaoglu, E. R. Siegel, D. A. Nedosekin, J. Y. Suen, A. V. Melerzanov, T. A. Juratli, E. I. Galanzha, and V. P. Zharov, “Real-time label-free embolus detection using in vivo photoacoustic flow cytometry,” PLoS One 11(5), e0156269 (2016).
[Crossref] [PubMed]

M. A. Juratli, E. R. Siegel, D. A. Nedosekin, M. Sarimollaoglu, A. Jamshidi-Parsian, C. Cai, Y. A. Menyaev, J. Y. Suen, E. I. Galanzha, and V. P. Zharov, “In vivo long-term monitoring of circulating tumor cells fluctuation during medical interventions,” PLoS One 10(9), e0137613 (2015).
[Crossref] [PubMed]

E. I. Galanzha, E. V. Shashkov, P. M. Spring, J. Y. Suen, and V. P. Zharov, “In vivo, noninvasive, label-free detection and eradication of circulating metastatic melanoma cells using two-color photoacoustic flow cytometry with a diode laser,” Cancer Res. 69(20), 7926–7934 (2009).
[Crossref] [PubMed]

Swift, M. R.

M. R. Swift and B. M. Weinstein, “Arterial-venous specification during development,” Circ. Res. 104(5), 576–588 (2009).
[Crossref] [PubMed]

Tárnok, A.

V. V. Tuchin, A. Tárnok, and V. P. Zharov, “In vivo flow cytometry: a horizon of opportunities,” Cytometry A 79(10), 737–745 (2011).
[Crossref] [PubMed]

Terai, M.

M. Terai, Z. Mu, D. J. Eschelman, C. F. Gonsalves, K. Kageyama, I. Chervoneva, M. Orloff, R. Weight, M. J. Mastrangelo, M. Cristofanilli, and T. Sato, “Arterial blood rather than venous blood is a better source for circulating melanoma cells,” EBioMedicine 2(11), 1821–1826 (2015).
[Crossref] [PubMed]

Tuchin, V. V.

Y. A. Menyaev, D. A. Nedosekin, M. Sarimollaoglu, M. A. Juratli, E. I. Galanzha, V. V. Tuchin, and V. P. Zharov, “Optical clearing in photoacoustic flow cytometry,” Biomed. Opt. Express 4(12), 3030–3041 (2013).
[Crossref] [PubMed]

V. V. Tuchin, A. Tárnok, and V. P. Zharov, “In vivo flow cytometry: a horizon of opportunities,” Cytometry A 79(10), 737–745 (2011).
[Crossref] [PubMed]

V. P. Zharov, E. I. Galanzha, E. Shashkov, N. Khlebtsov, and V. V. Tuchin, “Photoacoustic flow cytometry monitors cells circulating in vivo,” SPIE Newsroom 10.1117/2. 1200609.0391 (2006).
[Crossref]

Umaña, M.

M. Umaña, A. García, L. Bustamante, J. L. Castillo, and J. Sebastián Martínez, “Variations in the anatomical relationship between the common carotid artery and the internal jugular vein: an ultrasonographic study,” Colomb. Med. 46(2), 54–59 (2015).
[PubMed]

Wang, L. V.

L. V. Wang and S. Hu, “Photoacoustic tomography: in vivo imaging from organelles to organs,” Science 335(6075), 1458–1462 (2012).
[Crossref] [PubMed]

Weight, R.

M. Terai, Z. Mu, D. J. Eschelman, C. F. Gonsalves, K. Kageyama, I. Chervoneva, M. Orloff, R. Weight, M. J. Mastrangelo, M. Cristofanilli, and T. Sato, “Arterial blood rather than venous blood is a better source for circulating melanoma cells,” EBioMedicine 2(11), 1821–1826 (2015).
[Crossref] [PubMed]

Weinstein, B. M.

M. R. Swift and B. M. Weinstein, “Arterial-venous specification during development,” Circ. Res. 104(5), 576–588 (2009).
[Crossref] [PubMed]

Woo, J.

J. Woo, A. Baumann, and V. Arguello, “Recent advancements of flow cytometry: new applications in hematology and oncology,” Expert Rev. Mol. Diagn. 14(1), 67–81 (2014).
[Crossref] [PubMed]

Ye, M.

A. Garley, E. Eckert, A. Sie, M. Ye, K. Malm, E. A. Afari, M. Sawadogo, S. Herrera, E. Ivanovich, and Y. Ye, “Strengthening individual capacity in monitoring and evaluation of malaria control programmes to streamline M&E systems and enhance information use in malaria endemic countries,” Malar. J. 15(1), 300 (2016).
[Crossref] [PubMed]

Ye, Y.

A. Garley, E. Eckert, A. Sie, M. Ye, K. Malm, E. A. Afari, M. Sawadogo, S. Herrera, E. Ivanovich, and Y. Ye, “Strengthening individual capacity in monitoring and evaluation of malaria control programmes to streamline M&E systems and enhance information use in malaria endemic countries,” Malar. J. 15(1), 300 (2016).
[Crossref] [PubMed]

Zaharoff, D. A.

J. W. Kim, E. I. Galanzha, D. A. Zaharoff, R. J. Griffin, and V. P. Zharov, “Nanotheranostics of circulating tumor cells, infections and other pathological features in vivo,” Mol. Pharm. 10(3), 813–830 (2013).
[Crossref] [PubMed]

Zharov, V. P.

C. Cai, K. A. Carey, D. A. Nedosekin, Y. A. Menyaev, M. Sarimollaoglu, E. I. Galanzha, J. S. Stumhofer, and V. P. Zharov, “In vivo photoacoustic flow cytometry for early malaria diagnosis,” Cytometry A 89(6), 531–542 (2016).
[Crossref] [PubMed]

M. A. Juratli, Y. A. Menyaev, M. Sarimollaoglu, E. R. Siegel, D. A. Nedosekin, J. Y. Suen, A. V. Melerzanov, T. A. Juratli, E. I. Galanzha, and V. P. Zharov, “Real-time label-free embolus detection using in vivo photoacoustic flow cytometry,” PLoS One 11(5), e0156269 (2016).
[Crossref] [PubMed]

M. A. Juratli, E. R. Siegel, D. A. Nedosekin, M. Sarimollaoglu, A. Jamshidi-Parsian, C. Cai, Y. A. Menyaev, J. Y. Suen, E. I. Galanzha, and V. P. Zharov, “In vivo long-term monitoring of circulating tumor cells fluctuation during medical interventions,” PLoS One 10(9), e0137613 (2015).
[Crossref] [PubMed]

M. Sarimollaoglu, D. A. Nedosekin, Y. A. Menyaev, M. A. Juratli, and V. P. Zharov, “Nonlinear photoacoustic signal amplification from single targets in absorption background,” Photoacoustics 2(1), 1–11 (2014).
[Crossref] [PubMed]

J. W. Kim, E. I. Galanzha, D. A. Zaharoff, R. J. Griffin, and V. P. Zharov, “Nanotheranostics of circulating tumor cells, infections and other pathological features in vivo,” Mol. Pharm. 10(3), 813–830 (2013).
[Crossref] [PubMed]

Y. A. Menyaev, D. A. Nedosekin, M. Sarimollaoglu, M. A. Juratli, E. I. Galanzha, V. V. Tuchin, and V. P. Zharov, “Optical clearing in photoacoustic flow cytometry,” Biomed. Opt. Express 4(12), 3030–3041 (2013).
[Crossref] [PubMed]

E. I. Galanzha and V. P. Zharov, “Photoacoustic flow cytometry,” Methods 57(3), 280–296 (2012).
[Crossref] [PubMed]

V. V. Tuchin, A. Tárnok, and V. P. Zharov, “In vivo flow cytometry: a horizon of opportunities,” Cytometry A 79(10), 737–745 (2011).
[Crossref] [PubMed]

E. I. Galanzha, E. V. Shashkov, P. M. Spring, J. Y. Suen, and V. P. Zharov, “In vivo, noninvasive, label-free detection and eradication of circulating metastatic melanoma cells using two-color photoacoustic flow cytometry with a diode laser,” Cancer Res. 69(20), 7926–7934 (2009).
[Crossref] [PubMed]

V. P. Zharov, E. I. Galanzha, E. Shashkov, N. Khlebtsov, and V. V. Tuchin, “Photoacoustic flow cytometry monitors cells circulating in vivo,” SPIE Newsroom 10.1117/2. 1200609.0391 (2006).
[Crossref]

Zimmerman, P. A.

P. A. Zimmerman and R. E. Howes, “Malaria diagnosis for malaria elimination,” Curr. Opin. Infect. Dis. 28(5), 446–454 (2015).
[Crossref] [PubMed]

Biomed. Opt. Express (2)

Cancer Res. (1)

E. I. Galanzha, E. V. Shashkov, P. M. Spring, J. Y. Suen, and V. P. Zharov, “In vivo, noninvasive, label-free detection and eradication of circulating metastatic melanoma cells using two-color photoacoustic flow cytometry with a diode laser,” Cancer Res. 69(20), 7926–7934 (2009).
[Crossref] [PubMed]

Circ. Res. (1)

M. R. Swift and B. M. Weinstein, “Arterial-venous specification during development,” Circ. Res. 104(5), 576–588 (2009).
[Crossref] [PubMed]

Clin. Chem. (1)

C. Alix-Panabières and K. Pantel, “Circulating tumor cells: liquid biopsy of cancer,” Clin. Chem. 59(1), 110–118 (2013).
[Crossref] [PubMed]

Colomb. Med. (1)

M. Umaña, A. García, L. Bustamante, J. L. Castillo, and J. Sebastián Martínez, “Variations in the anatomical relationship between the common carotid artery and the internal jugular vein: an ultrasonographic study,” Colomb. Med. 46(2), 54–59 (2015).
[PubMed]

Curr. Opin. Infect. Dis. (1)

P. A. Zimmerman and R. E. Howes, “Malaria diagnosis for malaria elimination,” Curr. Opin. Infect. Dis. 28(5), 446–454 (2015).
[Crossref] [PubMed]

Cytometry A (2)

V. V. Tuchin, A. Tárnok, and V. P. Zharov, “In vivo flow cytometry: a horizon of opportunities,” Cytometry A 79(10), 737–745 (2011).
[Crossref] [PubMed]

C. Cai, K. A. Carey, D. A. Nedosekin, Y. A. Menyaev, M. Sarimollaoglu, E. I. Galanzha, J. S. Stumhofer, and V. P. Zharov, “In vivo photoacoustic flow cytometry for early malaria diagnosis,” Cytometry A 89(6), 531–542 (2016).
[Crossref] [PubMed]

EBioMedicine (1)

M. Terai, Z. Mu, D. J. Eschelman, C. F. Gonsalves, K. Kageyama, I. Chervoneva, M. Orloff, R. Weight, M. J. Mastrangelo, M. Cristofanilli, and T. Sato, “Arterial blood rather than venous blood is a better source for circulating melanoma cells,” EBioMedicine 2(11), 1821–1826 (2015).
[Crossref] [PubMed]

Emerg. Infect. Dis. (1)

M. Rebelo, R. Grenho, A. Orban, and T. Hänscheid, “Transdermal diagnosis of malaria using vapor nanobubbles,” Emerg. Infect. Dis. 22(2), 343–344 (2016).
[Crossref] [PubMed]

Expert Rev. Mol. Diagn. (1)

J. Woo, A. Baumann, and V. Arguello, “Recent advancements of flow cytometry: new applications in hematology and oncology,” Expert Rev. Mol. Diagn. 14(1), 67–81 (2014).
[Crossref] [PubMed]

IEEE Pulse (1)

L. Mertz, “Light plus sound: combination technology delivers a one-two punch to disease,” IEEE Pulse 6(3), 28–33 (2015).
[Crossref] [PubMed]

J. Med. Microbiol. (1)

J. C. Mouatcho and J. P. Goldring, “Malaria rapid diagnostic tests: challenges and prospects,” J. Med. Microbiol. 62(Pt 10), 1491–1505 (2013).
[Crossref] [PubMed]

Malar. J. (1)

A. Garley, E. Eckert, A. Sie, M. Ye, K. Malm, E. A. Afari, M. Sawadogo, S. Herrera, E. Ivanovich, and Y. Ye, “Strengthening individual capacity in monitoring and evaluation of malaria control programmes to streamline M&E systems and enhance information use in malaria endemic countries,” Malar. J. 15(1), 300 (2016).
[Crossref] [PubMed]

Methods (1)

E. I. Galanzha and V. P. Zharov, “Photoacoustic flow cytometry,” Methods 57(3), 280–296 (2012).
[Crossref] [PubMed]

Mol. Pharm. (1)

J. W. Kim, E. I. Galanzha, D. A. Zaharoff, R. J. Griffin, and V. P. Zharov, “Nanotheranostics of circulating tumor cells, infections and other pathological features in vivo,” Mol. Pharm. 10(3), 813–830 (2013).
[Crossref] [PubMed]

Opt. Lett. (1)

Photoacoustics (1)

M. Sarimollaoglu, D. A. Nedosekin, Y. A. Menyaev, M. A. Juratli, and V. P. Zharov, “Nonlinear photoacoustic signal amplification from single targets in absorption background,” Photoacoustics 2(1), 1–11 (2014).
[Crossref] [PubMed]

PLoS One (2)

M. A. Juratli, E. R. Siegel, D. A. Nedosekin, M. Sarimollaoglu, A. Jamshidi-Parsian, C. Cai, Y. A. Menyaev, J. Y. Suen, E. I. Galanzha, and V. P. Zharov, “In vivo long-term monitoring of circulating tumor cells fluctuation during medical interventions,” PLoS One 10(9), e0137613 (2015).
[Crossref] [PubMed]

M. A. Juratli, Y. A. Menyaev, M. Sarimollaoglu, E. R. Siegel, D. A. Nedosekin, J. Y. Suen, A. V. Melerzanov, T. A. Juratli, E. I. Galanzha, and V. P. Zharov, “Real-time label-free embolus detection using in vivo photoacoustic flow cytometry,” PLoS One 11(5), e0156269 (2016).
[Crossref] [PubMed]

Science (1)

L. V. Wang and S. Hu, “Photoacoustic tomography: in vivo imaging from organelles to organs,” Science 335(6075), 1458–1462 (2012).
[Crossref] [PubMed]

Trends Biotechnol. (1)

S. Cho, S. Kim, Y. Kim, and Y. Park, “Optical imaging techniques for the study of malaria,” Trends Biotechnol. 30(2), 71–79 (2012).
[Crossref] [PubMed]

Trends Parasitol. (1)

T. Hänscheid, T. Carvalho, and M. P. Grobusch, “Hemozoin detection for human malaria diagnosis investigated in rodent models: how similar is similar?” Trends Parasitol. 32(2), 94–96 (2016).
[Crossref] [PubMed]

Other (5)

World Health Organization, World malaria report 2015. Geneva, Switzerland. WHO (2015). http://www.who.int/malaria/publications/world_malaria_report_2015/en/

ANSI_Z136.1. American National Standard for the Safe Use of Lasers (American National Standards Institute, Washington DC, 2007).

R. Effros, Microcirculation – Current Physiologic, Medical, and Surgical Concepts (Elsevier, 2012).

W. Harvey, The Circulation of the Blood (Cosimo Classics 2006).

V. P. Zharov, E. I. Galanzha, E. Shashkov, N. Khlebtsov, and V. V. Tuchin, “Photoacoustic flow cytometry monitors cells circulating in vivo,” SPIE Newsroom 10.1117/2. 1200609.0391 (2006).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1 (A) Schematic of blood circulatory system and PAFC detection points. The insets show the differences in the artery (left) and vein (right) associated with larger vessel wall thickness and smaller diameter of the lumen (internal space) in the artery. (B) Flow velocity, total internal area of vessels of this type, and monitoring time (“circulation cycle”) in small and large vessels.
Fig. 2
Fig. 2 Detection points in human (left) and rodent (right) for wearable PAFC devices. Top (from left): human ear [21], ventral surface of human wrist with wearable PAFC [3,4], and mouse ear [21]. Middle: wearable (human hand-worn) PAFC [6], and mouse neck area with JV. Bottom: ultrasound images of human vein in dorsal area (left) and mouse JV (right).
Fig. 3
Fig. 3 Absorption spectra of hemozoin [17,18], melanin [4], magnetic beads [3], arterial (oxygenation ~96%) and venous (oxygenation ~70%) blood [18]. Similarity in absorption spectra of hemozoin and magnetic beads indicate a potential to use magnetic beads as hemozoin phantom for calibration of PAFC. Excitation (Ex) and emission (Em) spectra of green fluorescent protein (GFP) expressed by parasites used in the experiments [18]. Arrows indicate laser wavelengths used: 488 nm (for continuous wave fluorescence excitation), and 671 nm and 1060 nm (for pulsed generation of PA signals).
Fig. 4
Fig. 4 Principles of in vivo PAFC. (A) Schematic of OR-PAFC for examination of superficial microvessels. (B) Schematic of AR-PAFC for assessing deep large vessels. The insets illustrate examples of experimental estimation of optical (A) and acoustic (B) resolution. Laser parameters: beam shape, linear; beam size, 6.5 µm x 780 µm; wavelength, 1060 nm. Lateral resolution in B (~90 μm) of the spherical focused transducer is represented as a PA signal distribution from black tape scanned with a focused laser beam with diameter of 2 µm at 532 nm and 10 ns pulse width.
Fig. 5
Fig. 5 Artifacts and their removal in PAFC traces in mouse model. (A) Animal motions during anesthesia. (B) Breathing-related vessel motion. (C) Heartbeat-related artifacts in large arteries. Traces were filtered by a high-pass filter to eliminate low frequency artifacts. Cutoff frequency was 10 Hz (A,B) or 50 Hz (C). PA signal amplitudes and corresponding amplitude spectra of both unfiltered (blue) and filtered (red) traces are presented in left and right columns respectively.
Fig. 6
Fig. 6 PA and fluorescent signal traces from different vessels. (A) Time-resolved detection of PA signals from deep JV and CA coming to transducer with a delay compared to background PA signals from pigmented skin. (B) PA signal traces from uninfected mouse (top), JV (middle) and CA (bottom) in infected mice. (C) Fluorescence (top, FL) and PA (bottom) signal traces from ~70 µm ear vein of infected mice. (D) Fluorescence (top, FL) and PA (bottom) signal traces ~50 µm ear artery of infected mice.
Fig. 7
Fig. 7 In vivo monitoring of number of PA signals per minute (PA signal rate) from iRBCs for 41 days after infection for superficial (A) and deep blood vessels (B). (C) In vivo PA monitoring of PA signal rate from iRBC in superficial vessel with 1060 nm laser. (D) In vitro PA monitoring of PA signal rate from iRBC infected blood in a quartz flow tube for validation of in vivo data for arterial and venous blood samples. Laser parameters: (A) wavelength, 671 nm at energy fluence of 200 mJ/cm2; (B,C) wavelength, 1060 nm at energy fluence of 200 mJ/cm2.
Fig. 8
Fig. 8 PA signal traces for superficial ear artery (30-40 µm in diameter) and deep CA (~0.9 mm in diameter) at (A) the peak of infection (16th day of infection) and (B,C) at low parasitemia levels (32nd and 2nd day) at energy fluence of 200 mJ/cm2
Fig. 9
Fig. 9 PA signal amplitudes in vitro as a function of energy fluence at wavelength 1060 nm for different pulse duration (800 ps, 5 ns, and 10 ns) for blood samples from control (uninfected) mice (A) and infected mice on 6th (B) and 16th day (C) after infection.

Tables (1)

Tables Icon

Table 1 The parameters of selected vessels in mice and humans

Metrics