Abstract

Here we present a new methodology that investigates the intrinsic structural and hemodynamic characteristics of in vivo brain tissue, in a non-contact fashion, and can be easily incorporated in an intra-operative environment. Within this methodology, relative total diffuse reflectance spectra (RTD(λ)) were acquired from targets using a hybrid spectroscopy imaging system. A spectral interpretation algorithm was subsequently applied to RTD(λ) to retrieve optical properties related to the compositional and structural characteristics of each target. Estimation errors of the proposed methodology were computationally evaluated using a Monte Carlo simulation model for photon migration under various conditions. It was discovered that this new methodology could handle moderate noise and achieve very high accuracy, but only if the refractive index of the target is known. The accuracy of the technique was also validated using a series of tissue phantom studies, and consistent and accurate estimates of μs’(λ)/μa(λ) were obtained from all the phantoms tested. Finally, a small-scale animal study was conducted to demonstrate the clinical utility of the reported method, wherein a forepaw stimulation model was utilized to induce transient hemodynamic responses in somatosensory cortices. With this approach, significant stimulation-related changes (p < 0.001) in cortical hemodynamic and structural characteristics were successfully measured.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Spectral-profile-based algorithm for hemoglobin oxygen saturation determination from diffuse reflectance spectra

Po-Ching Chen and Wei-Chiang Lin
Biomed. Opt. Express 2(5) 1082-1096 (2011)

Oxygen saturation estimation in brain tissue using diffuse reflectance spectroscopy along stereotactic trajectories

Peter Rejmstad, Peter Zsigmond, and Karin Wårdell
Opt. Express 25(7) 8192-8201 (2017)

References

  • View by:
  • |
  • |
  • |

  1. W.-C. Lin, D. I. Sandberg, S. Bhatia, M. Johnson, S. Oh, and J. Ragheb, “Diffuse reflectance spectroscopy for in vivo pediatric brain tumor detection,” J. Biomed. Opt. 15(6), 061709 (2010).
    [Crossref] [PubMed]
  2. B. J. Tromberg, N. Shah, R. Lanning, A. Cerussi, J. Espinoza, T. Pham, L. Svaasand, and J. Butler, “Non-invasive in vivo characterization of breast tumors using photon migration spectroscopy,” Neoplasia 2(1-2), 26–40 (2000).
    [Crossref] [PubMed]
  3. J. B. Fishkin, O. Coquoz, E. R. Anderson, M. Brenner, and B. J. Tromberg, “Frequency-domain photon migration measurements of normal and malignant tissue optical properties in a human subject,” Appl. Opt. 36(1), 10–20 (1997).
    [Crossref] [PubMed]
  4. T. J. Farrell, M. S. Patterson, and B. Wilson, “A diffusion theory model of spatially resolved, steady-state diffuse reflectance for the noninvasive determination of tissue optical properties in vivo,” Med. Phys. 19(4), 879–888 (1992).
    [Crossref] [PubMed]
  5. A. Amelink, H. J. Sterenborg, M. P. Bard, and S. A. Burgers, “In vivo measurement of the local optical properties of tissue by use of differential path-length spectroscopy,” Opt. Lett. 29(10), 1087–1089 (2004).
    [Crossref] [PubMed]
  6. A. I. Kholodnykh, I. Y. Petrova, K. V. Larin, M. Motamedi, and R. O. Esenaliev, “Precision of measurement of tissue optical properties with optical coherence tomography,” Appl. Opt. 42(16), 3027–3037 (2003).
    [Crossref] [PubMed]
  7. D. Levitz, L. Thrane, M. Frosz, P. Andersen, C. Andersen, S. Andersson-Engels, J. Valanciunaite, J. Swartling, and P. Hansen, “Determination of optical scattering properties of highly-scattering media in optical coherence tomography images,” Opt. Express 12(2), 249–259 (2004).
    [Crossref] [PubMed]
  8. V. Turzhitsky, J. D. Rogers, N. N. Mutyal, H. K. Roy, and V. Backman, “Characterization of light transport in scattering media at sub-diffusion length scales with Low-coherence Enhanced Backscattering,” IEEE J. Sel. Top. Quantum Electron. 16(3), 619–626 (2010).
    [Crossref] [PubMed]
  9. V. Turzhitsky, A. J. Radosevich, J. D. Rogers, N. N. Mutyal, and V. Backman, “Measurement of optical scattering properties with low-coherence enhanced backscattering spectroscopy,” J. Biomed. Opt. 16(6), 067007 (2011).
    [Crossref] [PubMed]
  10. F. Bevilacqua, D. Piguet, P. Marquet, J. D. Gross, B. J. Tromberg, and C. Depeursinge, “In Vivo Local Determination of Tissue Optical Properties: Applications to Human Brain,” Appl. Opt. 38(22), 4939–4950 (1999).
    [Crossref] [PubMed]
  11. R. M. Doornbos, R. Lang, M. C. Aalders, F. W. Cross, and H. J. Sterenborg, “The determination of in vivo human tissue optical properties and absolute chromophore concentrations using spatially resolved steady-state diffuse reflectance spectroscopy,” Phys. Med. Biol. 44(4), 967–981 (1999).
    [Crossref] [PubMed]
  12. A. Cerussi, N. Shah, D. Hsiang, A. Durkin, J. Butler, and B. J. Tromberg, “In vivo absorption, scattering, and physiologic properties of 58 malignant breast tumors determined by broadband diffuse optical spectroscopy,” J. Biomed. Opt. 11(4), 044005 (2006).
    [Crossref] [PubMed]
  13. S. J. Matcher, M. Cope, and D. T. Delpy, “In vivo measurements of the wavelength dependence of tissue-scattering coefficients between 760 and 900 nm measured with time-resolved spectroscopy,” Appl. Opt. 36(1), 386–396 (1997).
    [Crossref] [PubMed]
  14. Y. Ti and W.-C. Lin, “Effects of probe contact pressure on in vivo optical spectroscopy,” Opt. Express 16(6), 4250–4262 (2008).
    [Crossref] [PubMed]
  15. L. Lim, B. Nichols, N. Rajaram, and J. W. Tunnell, “Probe pressure effects on human skin diffuse reflectance and fluorescence spectroscopy measurements,” J. Biomed. Opt. 16(1), 011012 (2011).
    [Crossref] [PubMed]
  16. N. Yadav, S. Bhatia, J. Ragheb, Y. Song, A. Romero, S. Oh, and W.-C. Lin, “Evaluating and improving the quality of time-dependent, diffuse reflectance spectroscopic signals measured from in vivo brain during craniotomy,” Med. Eng. Phys. 35(11), 1551–1557 (2013).
    [Crossref] [PubMed]
  17. M. Bregar, M. Bürmen, U. Aljančič, B. Cugmas, F. Pernuš, and B. Likar, “Contact pressure-aided spectroscopy,” J. Biomed. Opt. 19(2), 020501 (2014).
    [Crossref] [PubMed]
  18. D. J. Cuccia, F. Bevilacqua, A. J. Durkin, F. R. Ayers, and B. J. Tromberg, “Quantitation and mapping of tissue optical properties using modulated imaging,” J. Biomed. Opt. 14(2), 024012 (2009).
    [Crossref] [PubMed]
  19. S. F. Bish, N. Rajaram, B. Nichols, and J. W. Tunnell, “Development of a noncontact diffuse optical spectroscopy probe for measuring tissue optical properties,” J. Biomed. Opt. 16(12), 120505 (2011).
    [Crossref] [PubMed]
  20. F. Foschum and A. Kienle, “Broadband absorption spectroscopy of turbid media using a dual step steady-state method,” J. Biomed. Opt. 17(3), 037009 (2012).
    [Crossref] [PubMed]
  21. Y. Song, A. Joasil, and W.-C. Lin, “Optical Spectroscopy for In Vivo Estimation of Hemodynamics and Structural Properties of the Brain,” in Biomedical Engineering Conference (SBEC), 2013 29th Southern(IEEE, 2013), pp. 107–108.
  22. L. Wang, S. L. Jacques, and L. Zheng, “CONV--convolution for responses to a finite diameter photon beam incident on multi-layered tissues,” Comput. Methods Programs Biomed. 54(3), 141–150 (1997).
    [Crossref] [PubMed]
  23. L. Wang, S. L. Jacques, and L. Zheng, “MCML--Monte Carlo modeling of light transport in multi-layered tissues,” Comput. Methods Programs Biomed. 47(2), 131–146 (1995).
    [Crossref] [PubMed]
  24. http://omlc.org/spectra/hemoglobin
  25. S. L. Jacques, “Optical properties of biological tissues: a review,” Phys. Med. Biol. 58(11), R37–R61 (2013).
    [Crossref] [PubMed]
  26. http://omlc.org/~prahl/projects/phantoms.html
  27. S. A. Prahl, M. J. van Gemert, and A. J. Welch, “Determining the optical properties of turbid mediaby using the adding-doubling method,” Appl. Opt. 32(4), 559–568 (1993).
    [Crossref] [PubMed]
  28. T. Moffitt, Y.-C. Chen, and S. A. Prahl, “Preparation and characterization of polyurethane optical phantoms,” J. Biomed. Opt. 11(4), 041103 (2006).
    [Crossref] [PubMed]
  29. Y. Song, R. A. Torres, S. Garcia, Y. Frometa, J. Bae, A. Deshmukh, W.-C. Lin, Y. Zheng, and J. J. Riera, “Dysfunction of Neurovascular/Metabolic Coupling in Chronic Focal Epilepsy,” IEEE Trans. Biomed. Eng. 63(1), 97–110 (2016).
    [Crossref] [PubMed]
  30. G. Paxinos and C. Watson, The Rat Brain in Stereotaxic Coordinates, 6th ed. (Academic Press, 2007).
  31. D. Delpy and M. Cope, “Quantification in tissue near–infrared spectroscopy,” Philos. Trans. R. Soc. Lond. B Biol. Sci. 352(1354), 649–659 (1997).
    [Crossref]
  32. M. Kohl, U. Lindauer, G. Royl, M. Kühl, L. Gold, A. Villringer, and U. Dirnagl, “Physical model for the spectroscopic analysis of cortical intrinsic optical signals,” Phys. Med. Biol. 45(12), 3749–3764 (2000).
    [Crossref] [PubMed]
  33. A. K. Dunn, A. Devor, A. M. Dale, and D. A. Boas, “Spatial extent of oxygen metabolism and hemodynamic changes during functional activation of the rat somatosensory cortex,” Neuroimage 27(2), 279–290 (2005).
    [Crossref] [PubMed]
  34. D. Abookasis, C. C. Lay, M. S. Mathews, M. E. Linskey, R. D. Frostig, and B. J. Tromberg, “Imaging cortical absorption, scattering, and hemodynamic response during ischemic stroke using spatially modulated near-infrared illumination,” J. Biomed. Opt. 14(2), 024033 (2009).
    [Crossref] [PubMed]
  35. A. J. Kennerley, J. Berwick, J. Martindale, D. Johnston, Y. Zheng, and J. E. Mayhew, “Refinement of optical imaging spectroscopy algorithms using concurrent BOLD and CBV fMRI,” Neuroimage 47(4), 1608–1619 (2009).
    [Crossref] [PubMed]
  36. W. Gottschalk, “Ein Messverfahren zur Bestimmung der optischen Parameter biologischer Gewebe in vitro, Diss. 93 HA 8984,” Univ. Fridiriciana Karlsruhe (1992).
  37. Y. Liu, S. L. Jacques, M. Azimipour, J. D. Rogers, R. Pashaie, and K. W. Eliceiri, “OptogenSIM: a 3D Monte Carlo simulation platform for light delivery design in optogenetics,” Biomed. Opt. Express 6(12), 4859–4870 (2015).
    [Crossref] [PubMed]
  38. T. D. O’Sullivan, A. E. Cerussi, D. J. Cuccia, and B. J. Tromberg, “Diffuse optical imaging using spatially and temporally modulated light,” J. Biomed. Opt. 17(7), 071311 (2012).
    [PubMed]
  39. E. Vovenko, “Distribution of oxygen tension on the surface of arterioles, capillaries and venules of brain cortex and in tissue in normoxia: an experimental study on rats,” Pflugers Arch. 437(4), 617–623 (1999).
    [Crossref] [PubMed]
  40. T. A. Baskerville, G. A. Deuchar, C. McCabe, C. A. Robertson, W. M. Holmes, C. Santosh, and I. M. Macrae, “Influence of 100% and 40% oxygen on penumbral blood flow, oxygen level, and T2*-weighted MRI in a rat stroke model,” J. Cereb. Blood Flow Metab. 31(8), 1799–1806 (2011).
    [Crossref] [PubMed]
  41. G. A. Deuchar, D. Brennan, H. Griffiths, I. M. Macrae, and C. Santosh, “Perfluorocarbons enhance a T2*-based MRI technique for identifying the penumbra in a rat model of acute ischemic stroke,” J. Cereb. Blood Flow Metab. 33(9), 1422–1428 (2013).
    [Crossref] [PubMed]
  42. S. Sakadžić, E. T. Mandeville, L. Gagnon, J. J. Musacchia, M. A. Yaseen, M. A. Yucel, J. Lefebvre, F. Lesage, A. M. Dale, K. Eikermann-Haerter, C. Ayata, V. J. Srinivasan, E. H. Lo, A. Devor, and D. A. Boas, “Large arteriolar component of oxygen delivery implies a safe margin of oxygen supply to cerebral tissue,” Nat. Commun. 5, 5734 (2014).
    [Crossref] [PubMed]
  43. J. S. Brahim and P. D. Thut, “Hemodynamic changes during isoflurane anesthesia,” Anesth. Prog. 31(5), 207–212 (1984).
    [PubMed]
  44. M. Moeini, M. S. Tabatabaei, S. Bélanger, P. Avti, A. Castonguay, P. Pouliot, and F. Lesage, “Effects of anesthesia on the cerebral capillary blood flow in young and old mice,” in SPIE BiOS (International Society for Optics and Photonics, 2015), pp. 932929.
  45. M. Moeini, M. Tabatabaei, A. Kakkar, and F. Lesage, “Capillary substrate of brain tissue oxygenation changes with age,” in Optics and the Brain(Optical Society of America, 2016), p. BM4D. 2.
  46. H. Ohata, H. Iida, S. Dohi, and Y. Watanabe, “Intravenous dexmedetomidine inhibits cerebrovascular dilation induced by isoflurane and sevoflurane in dogs,” Anesth. Analg. 89(2), 370–377 (1999).
    [PubMed]
  47. R. D. Sanders, J. Xu, Y. Shu, A. Januszewski, S. Halder, A. Fidalgo, P. Sun, M. Hossain, D. Ma, and M. Maze, “Dexmedetomidine attenuates isoflurane-induced neurocognitive impairment in neonatal rats,” Anesthesiology 110(5), 1077–1085 (2009).
    [Crossref] [PubMed]
  48. Y. Li, M. Zeng, W. Chen, C. Liu, F. Wang, X. Han, Z. Zuo, and S. Peng, “Dexmedetomidine reduces isoflurane-induced neuroapoptosis partly by preserving PI3K/Akt pathway in the hippocampus of neonatal rats,” PLoS One 9(4), e93639 (2014).
    [Crossref] [PubMed]
  49. M. E. Magnuson, G. J. Thompson, W. J. Pan, and S. D. Keilholz, “Time-dependent effects of isoflurane and dexmedetomidine on functional connectivity, spectral characteristics, and spatial distribution of spontaneous BOLD fluctuations,” NMR Biomed. 27(3), 291–303 (2014).
    [Crossref] [PubMed]
  50. M. Desjardins, R. Berti, J. Lefebvre, S. Dubeau, and F. Lesage, “Aging-related differences in cerebral capillary blood flow in anesthetized rats,” Neurobiol. Aging 35(8), 1947–1955 (2014).
    [Crossref] [PubMed]
  51. K. L. Leenders, D. Perani, A. A. Lammertsma, J. D. Heather, P. Buckingham, M. J. Healy, J. M. Gibbs, R. J. Wise, J. Hatazawa, and S. Herold, “Cerebral blood flow, blood volume and oxygen utilization. Normal values and effect of age,” Brain 113(1), 27–47 (1990).
    [Crossref] [PubMed]
  52. G. Marchal, P. Rioux, M.-C. Petit-Taboué, G. Sette, J.-M. Travère, C. Le Poec, P. Courtheoux, J.-M. Derlon, and J.-C. Baron, “Regional cerebral oxygen consumption, blood flow, and blood volume in healthy human aging,” Arch. Neurol. 49(10), 1013–1020 (1992).
    [Crossref] [PubMed]
  53. D. J. Culley, M. Baxter, R. Yukhananov, and G. Crosby, “The memory effects of general anesthesia persist for weeks in young and aged rats,” Anesth. Analg. 96(4), 1004–1009 (2003).
    [Crossref] [PubMed]
  54. N. K. Acharya, E. L. Goldwaser, M. M. Forsberg, G. A. Godsey, C. A. Johnson, A. Sarkar, C. DeMarshall, M. C. Kosciuk, J. M. Dash, C. P. Hale, D. M. Leonard, D. M. Appelt, and R. G. Nagele, “Sevoflurane and Isoflurane induce structural changes in brain vascular endothelial cells and increase blood-brain barrier permeability: Possible link to postoperative delirium and cognitive decline,” Brain Res. 1620, 29–41 (2015).
    [Crossref] [PubMed]

2016 (1)

Y. Song, R. A. Torres, S. Garcia, Y. Frometa, J. Bae, A. Deshmukh, W.-C. Lin, Y. Zheng, and J. J. Riera, “Dysfunction of Neurovascular/Metabolic Coupling in Chronic Focal Epilepsy,” IEEE Trans. Biomed. Eng. 63(1), 97–110 (2016).
[Crossref] [PubMed]

2015 (2)

Y. Liu, S. L. Jacques, M. Azimipour, J. D. Rogers, R. Pashaie, and K. W. Eliceiri, “OptogenSIM: a 3D Monte Carlo simulation platform for light delivery design in optogenetics,” Biomed. Opt. Express 6(12), 4859–4870 (2015).
[Crossref] [PubMed]

N. K. Acharya, E. L. Goldwaser, M. M. Forsberg, G. A. Godsey, C. A. Johnson, A. Sarkar, C. DeMarshall, M. C. Kosciuk, J. M. Dash, C. P. Hale, D. M. Leonard, D. M. Appelt, and R. G. Nagele, “Sevoflurane and Isoflurane induce structural changes in brain vascular endothelial cells and increase blood-brain barrier permeability: Possible link to postoperative delirium and cognitive decline,” Brain Res. 1620, 29–41 (2015).
[Crossref] [PubMed]

2014 (5)

S. Sakadžić, E. T. Mandeville, L. Gagnon, J. J. Musacchia, M. A. Yaseen, M. A. Yucel, J. Lefebvre, F. Lesage, A. M. Dale, K. Eikermann-Haerter, C. Ayata, V. J. Srinivasan, E. H. Lo, A. Devor, and D. A. Boas, “Large arteriolar component of oxygen delivery implies a safe margin of oxygen supply to cerebral tissue,” Nat. Commun. 5, 5734 (2014).
[Crossref] [PubMed]

Y. Li, M. Zeng, W. Chen, C. Liu, F. Wang, X. Han, Z. Zuo, and S. Peng, “Dexmedetomidine reduces isoflurane-induced neuroapoptosis partly by preserving PI3K/Akt pathway in the hippocampus of neonatal rats,” PLoS One 9(4), e93639 (2014).
[Crossref] [PubMed]

M. E. Magnuson, G. J. Thompson, W. J. Pan, and S. D. Keilholz, “Time-dependent effects of isoflurane and dexmedetomidine on functional connectivity, spectral characteristics, and spatial distribution of spontaneous BOLD fluctuations,” NMR Biomed. 27(3), 291–303 (2014).
[Crossref] [PubMed]

M. Desjardins, R. Berti, J. Lefebvre, S. Dubeau, and F. Lesage, “Aging-related differences in cerebral capillary blood flow in anesthetized rats,” Neurobiol. Aging 35(8), 1947–1955 (2014).
[Crossref] [PubMed]

M. Bregar, M. Bürmen, U. Aljančič, B. Cugmas, F. Pernuš, and B. Likar, “Contact pressure-aided spectroscopy,” J. Biomed. Opt. 19(2), 020501 (2014).
[Crossref] [PubMed]

2013 (3)

S. L. Jacques, “Optical properties of biological tissues: a review,” Phys. Med. Biol. 58(11), R37–R61 (2013).
[Crossref] [PubMed]

N. Yadav, S. Bhatia, J. Ragheb, Y. Song, A. Romero, S. Oh, and W.-C. Lin, “Evaluating and improving the quality of time-dependent, diffuse reflectance spectroscopic signals measured from in vivo brain during craniotomy,” Med. Eng. Phys. 35(11), 1551–1557 (2013).
[Crossref] [PubMed]

G. A. Deuchar, D. Brennan, H. Griffiths, I. M. Macrae, and C. Santosh, “Perfluorocarbons enhance a T2*-based MRI technique for identifying the penumbra in a rat model of acute ischemic stroke,” J. Cereb. Blood Flow Metab. 33(9), 1422–1428 (2013).
[Crossref] [PubMed]

2012 (2)

F. Foschum and A. Kienle, “Broadband absorption spectroscopy of turbid media using a dual step steady-state method,” J. Biomed. Opt. 17(3), 037009 (2012).
[Crossref] [PubMed]

T. D. O’Sullivan, A. E. Cerussi, D. J. Cuccia, and B. J. Tromberg, “Diffuse optical imaging using spatially and temporally modulated light,” J. Biomed. Opt. 17(7), 071311 (2012).
[PubMed]

2011 (4)

T. A. Baskerville, G. A. Deuchar, C. McCabe, C. A. Robertson, W. M. Holmes, C. Santosh, and I. M. Macrae, “Influence of 100% and 40% oxygen on penumbral blood flow, oxygen level, and T2*-weighted MRI in a rat stroke model,” J. Cereb. Blood Flow Metab. 31(8), 1799–1806 (2011).
[Crossref] [PubMed]

S. F. Bish, N. Rajaram, B. Nichols, and J. W. Tunnell, “Development of a noncontact diffuse optical spectroscopy probe for measuring tissue optical properties,” J. Biomed. Opt. 16(12), 120505 (2011).
[Crossref] [PubMed]

L. Lim, B. Nichols, N. Rajaram, and J. W. Tunnell, “Probe pressure effects on human skin diffuse reflectance and fluorescence spectroscopy measurements,” J. Biomed. Opt. 16(1), 011012 (2011).
[Crossref] [PubMed]

V. Turzhitsky, A. J. Radosevich, J. D. Rogers, N. N. Mutyal, and V. Backman, “Measurement of optical scattering properties with low-coherence enhanced backscattering spectroscopy,” J. Biomed. Opt. 16(6), 067007 (2011).
[Crossref] [PubMed]

2010 (2)

W.-C. Lin, D. I. Sandberg, S. Bhatia, M. Johnson, S. Oh, and J. Ragheb, “Diffuse reflectance spectroscopy for in vivo pediatric brain tumor detection,” J. Biomed. Opt. 15(6), 061709 (2010).
[Crossref] [PubMed]

V. Turzhitsky, J. D. Rogers, N. N. Mutyal, H. K. Roy, and V. Backman, “Characterization of light transport in scattering media at sub-diffusion length scales with Low-coherence Enhanced Backscattering,” IEEE J. Sel. Top. Quantum Electron. 16(3), 619–626 (2010).
[Crossref] [PubMed]

2009 (4)

D. J. Cuccia, F. Bevilacqua, A. J. Durkin, F. R. Ayers, and B. J. Tromberg, “Quantitation and mapping of tissue optical properties using modulated imaging,” J. Biomed. Opt. 14(2), 024012 (2009).
[Crossref] [PubMed]

D. Abookasis, C. C. Lay, M. S. Mathews, M. E. Linskey, R. D. Frostig, and B. J. Tromberg, “Imaging cortical absorption, scattering, and hemodynamic response during ischemic stroke using spatially modulated near-infrared illumination,” J. Biomed. Opt. 14(2), 024033 (2009).
[Crossref] [PubMed]

A. J. Kennerley, J. Berwick, J. Martindale, D. Johnston, Y. Zheng, and J. E. Mayhew, “Refinement of optical imaging spectroscopy algorithms using concurrent BOLD and CBV fMRI,” Neuroimage 47(4), 1608–1619 (2009).
[Crossref] [PubMed]

R. D. Sanders, J. Xu, Y. Shu, A. Januszewski, S. Halder, A. Fidalgo, P. Sun, M. Hossain, D. Ma, and M. Maze, “Dexmedetomidine attenuates isoflurane-induced neurocognitive impairment in neonatal rats,” Anesthesiology 110(5), 1077–1085 (2009).
[Crossref] [PubMed]

2008 (1)

2006 (2)

A. Cerussi, N. Shah, D. Hsiang, A. Durkin, J. Butler, and B. J. Tromberg, “In vivo absorption, scattering, and physiologic properties of 58 malignant breast tumors determined by broadband diffuse optical spectroscopy,” J. Biomed. Opt. 11(4), 044005 (2006).
[Crossref] [PubMed]

T. Moffitt, Y.-C. Chen, and S. A. Prahl, “Preparation and characterization of polyurethane optical phantoms,” J. Biomed. Opt. 11(4), 041103 (2006).
[Crossref] [PubMed]

2005 (1)

A. K. Dunn, A. Devor, A. M. Dale, and D. A. Boas, “Spatial extent of oxygen metabolism and hemodynamic changes during functional activation of the rat somatosensory cortex,” Neuroimage 27(2), 279–290 (2005).
[Crossref] [PubMed]

2004 (2)

2003 (2)

A. I. Kholodnykh, I. Y. Petrova, K. V. Larin, M. Motamedi, and R. O. Esenaliev, “Precision of measurement of tissue optical properties with optical coherence tomography,” Appl. Opt. 42(16), 3027–3037 (2003).
[Crossref] [PubMed]

D. J. Culley, M. Baxter, R. Yukhananov, and G. Crosby, “The memory effects of general anesthesia persist for weeks in young and aged rats,” Anesth. Analg. 96(4), 1004–1009 (2003).
[Crossref] [PubMed]

2000 (2)

B. J. Tromberg, N. Shah, R. Lanning, A. Cerussi, J. Espinoza, T. Pham, L. Svaasand, and J. Butler, “Non-invasive in vivo characterization of breast tumors using photon migration spectroscopy,” Neoplasia 2(1-2), 26–40 (2000).
[Crossref] [PubMed]

M. Kohl, U. Lindauer, G. Royl, M. Kühl, L. Gold, A. Villringer, and U. Dirnagl, “Physical model for the spectroscopic analysis of cortical intrinsic optical signals,” Phys. Med. Biol. 45(12), 3749–3764 (2000).
[Crossref] [PubMed]

1999 (4)

E. Vovenko, “Distribution of oxygen tension on the surface of arterioles, capillaries and venules of brain cortex and in tissue in normoxia: an experimental study on rats,” Pflugers Arch. 437(4), 617–623 (1999).
[Crossref] [PubMed]

F. Bevilacqua, D. Piguet, P. Marquet, J. D. Gross, B. J. Tromberg, and C. Depeursinge, “In Vivo Local Determination of Tissue Optical Properties: Applications to Human Brain,” Appl. Opt. 38(22), 4939–4950 (1999).
[Crossref] [PubMed]

R. M. Doornbos, R. Lang, M. C. Aalders, F. W. Cross, and H. J. Sterenborg, “The determination of in vivo human tissue optical properties and absolute chromophore concentrations using spatially resolved steady-state diffuse reflectance spectroscopy,” Phys. Med. Biol. 44(4), 967–981 (1999).
[Crossref] [PubMed]

H. Ohata, H. Iida, S. Dohi, and Y. Watanabe, “Intravenous dexmedetomidine inhibits cerebrovascular dilation induced by isoflurane and sevoflurane in dogs,” Anesth. Analg. 89(2), 370–377 (1999).
[PubMed]

1997 (4)

S. J. Matcher, M. Cope, and D. T. Delpy, “In vivo measurements of the wavelength dependence of tissue-scattering coefficients between 760 and 900 nm measured with time-resolved spectroscopy,” Appl. Opt. 36(1), 386–396 (1997).
[Crossref] [PubMed]

J. B. Fishkin, O. Coquoz, E. R. Anderson, M. Brenner, and B. J. Tromberg, “Frequency-domain photon migration measurements of normal and malignant tissue optical properties in a human subject,” Appl. Opt. 36(1), 10–20 (1997).
[Crossref] [PubMed]

L. Wang, S. L. Jacques, and L. Zheng, “CONV--convolution for responses to a finite diameter photon beam incident on multi-layered tissues,” Comput. Methods Programs Biomed. 54(3), 141–150 (1997).
[Crossref] [PubMed]

D. Delpy and M. Cope, “Quantification in tissue near–infrared spectroscopy,” Philos. Trans. R. Soc. Lond. B Biol. Sci. 352(1354), 649–659 (1997).
[Crossref]

1995 (1)

L. Wang, S. L. Jacques, and L. Zheng, “MCML--Monte Carlo modeling of light transport in multi-layered tissues,” Comput. Methods Programs Biomed. 47(2), 131–146 (1995).
[Crossref] [PubMed]

1993 (1)

1992 (2)

T. J. Farrell, M. S. Patterson, and B. Wilson, “A diffusion theory model of spatially resolved, steady-state diffuse reflectance for the noninvasive determination of tissue optical properties in vivo,” Med. Phys. 19(4), 879–888 (1992).
[Crossref] [PubMed]

G. Marchal, P. Rioux, M.-C. Petit-Taboué, G. Sette, J.-M. Travère, C. Le Poec, P. Courtheoux, J.-M. Derlon, and J.-C. Baron, “Regional cerebral oxygen consumption, blood flow, and blood volume in healthy human aging,” Arch. Neurol. 49(10), 1013–1020 (1992).
[Crossref] [PubMed]

1990 (1)

K. L. Leenders, D. Perani, A. A. Lammertsma, J. D. Heather, P. Buckingham, M. J. Healy, J. M. Gibbs, R. J. Wise, J. Hatazawa, and S. Herold, “Cerebral blood flow, blood volume and oxygen utilization. Normal values and effect of age,” Brain 113(1), 27–47 (1990).
[Crossref] [PubMed]

1984 (1)

J. S. Brahim and P. D. Thut, “Hemodynamic changes during isoflurane anesthesia,” Anesth. Prog. 31(5), 207–212 (1984).
[PubMed]

Aalders, M. C.

R. M. Doornbos, R. Lang, M. C. Aalders, F. W. Cross, and H. J. Sterenborg, “The determination of in vivo human tissue optical properties and absolute chromophore concentrations using spatially resolved steady-state diffuse reflectance spectroscopy,” Phys. Med. Biol. 44(4), 967–981 (1999).
[Crossref] [PubMed]

Abookasis, D.

D. Abookasis, C. C. Lay, M. S. Mathews, M. E. Linskey, R. D. Frostig, and B. J. Tromberg, “Imaging cortical absorption, scattering, and hemodynamic response during ischemic stroke using spatially modulated near-infrared illumination,” J. Biomed. Opt. 14(2), 024033 (2009).
[Crossref] [PubMed]

Acharya, N. K.

N. K. Acharya, E. L. Goldwaser, M. M. Forsberg, G. A. Godsey, C. A. Johnson, A. Sarkar, C. DeMarshall, M. C. Kosciuk, J. M. Dash, C. P. Hale, D. M. Leonard, D. M. Appelt, and R. G. Nagele, “Sevoflurane and Isoflurane induce structural changes in brain vascular endothelial cells and increase blood-brain barrier permeability: Possible link to postoperative delirium and cognitive decline,” Brain Res. 1620, 29–41 (2015).
[Crossref] [PubMed]

Aljancic, U.

M. Bregar, M. Bürmen, U. Aljančič, B. Cugmas, F. Pernuš, and B. Likar, “Contact pressure-aided spectroscopy,” J. Biomed. Opt. 19(2), 020501 (2014).
[Crossref] [PubMed]

Amelink, A.

Andersen, C.

Andersen, P.

Anderson, E. R.

Andersson-Engels, S.

Appelt, D. M.

N. K. Acharya, E. L. Goldwaser, M. M. Forsberg, G. A. Godsey, C. A. Johnson, A. Sarkar, C. DeMarshall, M. C. Kosciuk, J. M. Dash, C. P. Hale, D. M. Leonard, D. M. Appelt, and R. G. Nagele, “Sevoflurane and Isoflurane induce structural changes in brain vascular endothelial cells and increase blood-brain barrier permeability: Possible link to postoperative delirium and cognitive decline,” Brain Res. 1620, 29–41 (2015).
[Crossref] [PubMed]

Ayata, C.

S. Sakadžić, E. T. Mandeville, L. Gagnon, J. J. Musacchia, M. A. Yaseen, M. A. Yucel, J. Lefebvre, F. Lesage, A. M. Dale, K. Eikermann-Haerter, C. Ayata, V. J. Srinivasan, E. H. Lo, A. Devor, and D. A. Boas, “Large arteriolar component of oxygen delivery implies a safe margin of oxygen supply to cerebral tissue,” Nat. Commun. 5, 5734 (2014).
[Crossref] [PubMed]

Ayers, F. R.

D. J. Cuccia, F. Bevilacqua, A. J. Durkin, F. R. Ayers, and B. J. Tromberg, “Quantitation and mapping of tissue optical properties using modulated imaging,” J. Biomed. Opt. 14(2), 024012 (2009).
[Crossref] [PubMed]

Azimipour, M.

Backman, V.

V. Turzhitsky, A. J. Radosevich, J. D. Rogers, N. N. Mutyal, and V. Backman, “Measurement of optical scattering properties with low-coherence enhanced backscattering spectroscopy,” J. Biomed. Opt. 16(6), 067007 (2011).
[Crossref] [PubMed]

V. Turzhitsky, J. D. Rogers, N. N. Mutyal, H. K. Roy, and V. Backman, “Characterization of light transport in scattering media at sub-diffusion length scales with Low-coherence Enhanced Backscattering,” IEEE J. Sel. Top. Quantum Electron. 16(3), 619–626 (2010).
[Crossref] [PubMed]

Bae, J.

Y. Song, R. A. Torres, S. Garcia, Y. Frometa, J. Bae, A. Deshmukh, W.-C. Lin, Y. Zheng, and J. J. Riera, “Dysfunction of Neurovascular/Metabolic Coupling in Chronic Focal Epilepsy,” IEEE Trans. Biomed. Eng. 63(1), 97–110 (2016).
[Crossref] [PubMed]

Bard, M. P.

Baron, J.-C.

G. Marchal, P. Rioux, M.-C. Petit-Taboué, G. Sette, J.-M. Travère, C. Le Poec, P. Courtheoux, J.-M. Derlon, and J.-C. Baron, “Regional cerebral oxygen consumption, blood flow, and blood volume in healthy human aging,” Arch. Neurol. 49(10), 1013–1020 (1992).
[Crossref] [PubMed]

Baskerville, T. A.

T. A. Baskerville, G. A. Deuchar, C. McCabe, C. A. Robertson, W. M. Holmes, C. Santosh, and I. M. Macrae, “Influence of 100% and 40% oxygen on penumbral blood flow, oxygen level, and T2*-weighted MRI in a rat stroke model,” J. Cereb. Blood Flow Metab. 31(8), 1799–1806 (2011).
[Crossref] [PubMed]

Baxter, M.

D. J. Culley, M. Baxter, R. Yukhananov, and G. Crosby, “The memory effects of general anesthesia persist for weeks in young and aged rats,” Anesth. Analg. 96(4), 1004–1009 (2003).
[Crossref] [PubMed]

Berti, R.

M. Desjardins, R. Berti, J. Lefebvre, S. Dubeau, and F. Lesage, “Aging-related differences in cerebral capillary blood flow in anesthetized rats,” Neurobiol. Aging 35(8), 1947–1955 (2014).
[Crossref] [PubMed]

Berwick, J.

A. J. Kennerley, J. Berwick, J. Martindale, D. Johnston, Y. Zheng, and J. E. Mayhew, “Refinement of optical imaging spectroscopy algorithms using concurrent BOLD and CBV fMRI,” Neuroimage 47(4), 1608–1619 (2009).
[Crossref] [PubMed]

Bevilacqua, F.

D. J. Cuccia, F. Bevilacqua, A. J. Durkin, F. R. Ayers, and B. J. Tromberg, “Quantitation and mapping of tissue optical properties using modulated imaging,” J. Biomed. Opt. 14(2), 024012 (2009).
[Crossref] [PubMed]

F. Bevilacqua, D. Piguet, P. Marquet, J. D. Gross, B. J. Tromberg, and C. Depeursinge, “In Vivo Local Determination of Tissue Optical Properties: Applications to Human Brain,” Appl. Opt. 38(22), 4939–4950 (1999).
[Crossref] [PubMed]

Bhatia, S.

N. Yadav, S. Bhatia, J. Ragheb, Y. Song, A. Romero, S. Oh, and W.-C. Lin, “Evaluating and improving the quality of time-dependent, diffuse reflectance spectroscopic signals measured from in vivo brain during craniotomy,” Med. Eng. Phys. 35(11), 1551–1557 (2013).
[Crossref] [PubMed]

W.-C. Lin, D. I. Sandberg, S. Bhatia, M. Johnson, S. Oh, and J. Ragheb, “Diffuse reflectance spectroscopy for in vivo pediatric brain tumor detection,” J. Biomed. Opt. 15(6), 061709 (2010).
[Crossref] [PubMed]

Bish, S. F.

S. F. Bish, N. Rajaram, B. Nichols, and J. W. Tunnell, “Development of a noncontact diffuse optical spectroscopy probe for measuring tissue optical properties,” J. Biomed. Opt. 16(12), 120505 (2011).
[Crossref] [PubMed]

Boas, D. A.

S. Sakadžić, E. T. Mandeville, L. Gagnon, J. J. Musacchia, M. A. Yaseen, M. A. Yucel, J. Lefebvre, F. Lesage, A. M. Dale, K. Eikermann-Haerter, C. Ayata, V. J. Srinivasan, E. H. Lo, A. Devor, and D. A. Boas, “Large arteriolar component of oxygen delivery implies a safe margin of oxygen supply to cerebral tissue,” Nat. Commun. 5, 5734 (2014).
[Crossref] [PubMed]

A. K. Dunn, A. Devor, A. M. Dale, and D. A. Boas, “Spatial extent of oxygen metabolism and hemodynamic changes during functional activation of the rat somatosensory cortex,” Neuroimage 27(2), 279–290 (2005).
[Crossref] [PubMed]

Brahim, J. S.

J. S. Brahim and P. D. Thut, “Hemodynamic changes during isoflurane anesthesia,” Anesth. Prog. 31(5), 207–212 (1984).
[PubMed]

Bregar, M.

M. Bregar, M. Bürmen, U. Aljančič, B. Cugmas, F. Pernuš, and B. Likar, “Contact pressure-aided spectroscopy,” J. Biomed. Opt. 19(2), 020501 (2014).
[Crossref] [PubMed]

Brennan, D.

G. A. Deuchar, D. Brennan, H. Griffiths, I. M. Macrae, and C. Santosh, “Perfluorocarbons enhance a T2*-based MRI technique for identifying the penumbra in a rat model of acute ischemic stroke,” J. Cereb. Blood Flow Metab. 33(9), 1422–1428 (2013).
[Crossref] [PubMed]

Brenner, M.

Buckingham, P.

K. L. Leenders, D. Perani, A. A. Lammertsma, J. D. Heather, P. Buckingham, M. J. Healy, J. M. Gibbs, R. J. Wise, J. Hatazawa, and S. Herold, “Cerebral blood flow, blood volume and oxygen utilization. Normal values and effect of age,” Brain 113(1), 27–47 (1990).
[Crossref] [PubMed]

Burgers, S. A.

Bürmen, M.

M. Bregar, M. Bürmen, U. Aljančič, B. Cugmas, F. Pernuš, and B. Likar, “Contact pressure-aided spectroscopy,” J. Biomed. Opt. 19(2), 020501 (2014).
[Crossref] [PubMed]

Butler, J.

A. Cerussi, N. Shah, D. Hsiang, A. Durkin, J. Butler, and B. J. Tromberg, “In vivo absorption, scattering, and physiologic properties of 58 malignant breast tumors determined by broadband diffuse optical spectroscopy,” J. Biomed. Opt. 11(4), 044005 (2006).
[Crossref] [PubMed]

B. J. Tromberg, N. Shah, R. Lanning, A. Cerussi, J. Espinoza, T. Pham, L. Svaasand, and J. Butler, “Non-invasive in vivo characterization of breast tumors using photon migration spectroscopy,” Neoplasia 2(1-2), 26–40 (2000).
[Crossref] [PubMed]

Cerussi, A.

A. Cerussi, N. Shah, D. Hsiang, A. Durkin, J. Butler, and B. J. Tromberg, “In vivo absorption, scattering, and physiologic properties of 58 malignant breast tumors determined by broadband diffuse optical spectroscopy,” J. Biomed. Opt. 11(4), 044005 (2006).
[Crossref] [PubMed]

B. J. Tromberg, N. Shah, R. Lanning, A. Cerussi, J. Espinoza, T. Pham, L. Svaasand, and J. Butler, “Non-invasive in vivo characterization of breast tumors using photon migration spectroscopy,” Neoplasia 2(1-2), 26–40 (2000).
[Crossref] [PubMed]

Cerussi, A. E.

T. D. O’Sullivan, A. E. Cerussi, D. J. Cuccia, and B. J. Tromberg, “Diffuse optical imaging using spatially and temporally modulated light,” J. Biomed. Opt. 17(7), 071311 (2012).
[PubMed]

Chen, W.

Y. Li, M. Zeng, W. Chen, C. Liu, F. Wang, X. Han, Z. Zuo, and S. Peng, “Dexmedetomidine reduces isoflurane-induced neuroapoptosis partly by preserving PI3K/Akt pathway in the hippocampus of neonatal rats,” PLoS One 9(4), e93639 (2014).
[Crossref] [PubMed]

Chen, Y.-C.

T. Moffitt, Y.-C. Chen, and S. A. Prahl, “Preparation and characterization of polyurethane optical phantoms,” J. Biomed. Opt. 11(4), 041103 (2006).
[Crossref] [PubMed]

Cope, M.

Coquoz, O.

Courtheoux, P.

G. Marchal, P. Rioux, M.-C. Petit-Taboué, G. Sette, J.-M. Travère, C. Le Poec, P. Courtheoux, J.-M. Derlon, and J.-C. Baron, “Regional cerebral oxygen consumption, blood flow, and blood volume in healthy human aging,” Arch. Neurol. 49(10), 1013–1020 (1992).
[Crossref] [PubMed]

Crosby, G.

D. J. Culley, M. Baxter, R. Yukhananov, and G. Crosby, “The memory effects of general anesthesia persist for weeks in young and aged rats,” Anesth. Analg. 96(4), 1004–1009 (2003).
[Crossref] [PubMed]

Cross, F. W.

R. M. Doornbos, R. Lang, M. C. Aalders, F. W. Cross, and H. J. Sterenborg, “The determination of in vivo human tissue optical properties and absolute chromophore concentrations using spatially resolved steady-state diffuse reflectance spectroscopy,” Phys. Med. Biol. 44(4), 967–981 (1999).
[Crossref] [PubMed]

Cuccia, D. J.

T. D. O’Sullivan, A. E. Cerussi, D. J. Cuccia, and B. J. Tromberg, “Diffuse optical imaging using spatially and temporally modulated light,” J. Biomed. Opt. 17(7), 071311 (2012).
[PubMed]

D. J. Cuccia, F. Bevilacqua, A. J. Durkin, F. R. Ayers, and B. J. Tromberg, “Quantitation and mapping of tissue optical properties using modulated imaging,” J. Biomed. Opt. 14(2), 024012 (2009).
[Crossref] [PubMed]

Cugmas, B.

M. Bregar, M. Bürmen, U. Aljančič, B. Cugmas, F. Pernuš, and B. Likar, “Contact pressure-aided spectroscopy,” J. Biomed. Opt. 19(2), 020501 (2014).
[Crossref] [PubMed]

Culley, D. J.

D. J. Culley, M. Baxter, R. Yukhananov, and G. Crosby, “The memory effects of general anesthesia persist for weeks in young and aged rats,” Anesth. Analg. 96(4), 1004–1009 (2003).
[Crossref] [PubMed]

Dale, A. M.

S. Sakadžić, E. T. Mandeville, L. Gagnon, J. J. Musacchia, M. A. Yaseen, M. A. Yucel, J. Lefebvre, F. Lesage, A. M. Dale, K. Eikermann-Haerter, C. Ayata, V. J. Srinivasan, E. H. Lo, A. Devor, and D. A. Boas, “Large arteriolar component of oxygen delivery implies a safe margin of oxygen supply to cerebral tissue,” Nat. Commun. 5, 5734 (2014).
[Crossref] [PubMed]

A. K. Dunn, A. Devor, A. M. Dale, and D. A. Boas, “Spatial extent of oxygen metabolism and hemodynamic changes during functional activation of the rat somatosensory cortex,” Neuroimage 27(2), 279–290 (2005).
[Crossref] [PubMed]

Dash, J. M.

N. K. Acharya, E. L. Goldwaser, M. M. Forsberg, G. A. Godsey, C. A. Johnson, A. Sarkar, C. DeMarshall, M. C. Kosciuk, J. M. Dash, C. P. Hale, D. M. Leonard, D. M. Appelt, and R. G. Nagele, “Sevoflurane and Isoflurane induce structural changes in brain vascular endothelial cells and increase blood-brain barrier permeability: Possible link to postoperative delirium and cognitive decline,” Brain Res. 1620, 29–41 (2015).
[Crossref] [PubMed]

Delpy, D.

D. Delpy and M. Cope, “Quantification in tissue near–infrared spectroscopy,” Philos. Trans. R. Soc. Lond. B Biol. Sci. 352(1354), 649–659 (1997).
[Crossref]

Delpy, D. T.

DeMarshall, C.

N. K. Acharya, E. L. Goldwaser, M. M. Forsberg, G. A. Godsey, C. A. Johnson, A. Sarkar, C. DeMarshall, M. C. Kosciuk, J. M. Dash, C. P. Hale, D. M. Leonard, D. M. Appelt, and R. G. Nagele, “Sevoflurane and Isoflurane induce structural changes in brain vascular endothelial cells and increase blood-brain barrier permeability: Possible link to postoperative delirium and cognitive decline,” Brain Res. 1620, 29–41 (2015).
[Crossref] [PubMed]

Depeursinge, C.

Derlon, J.-M.

G. Marchal, P. Rioux, M.-C. Petit-Taboué, G. Sette, J.-M. Travère, C. Le Poec, P. Courtheoux, J.-M. Derlon, and J.-C. Baron, “Regional cerebral oxygen consumption, blood flow, and blood volume in healthy human aging,” Arch. Neurol. 49(10), 1013–1020 (1992).
[Crossref] [PubMed]

Deshmukh, A.

Y. Song, R. A. Torres, S. Garcia, Y. Frometa, J. Bae, A. Deshmukh, W.-C. Lin, Y. Zheng, and J. J. Riera, “Dysfunction of Neurovascular/Metabolic Coupling in Chronic Focal Epilepsy,” IEEE Trans. Biomed. Eng. 63(1), 97–110 (2016).
[Crossref] [PubMed]

Desjardins, M.

M. Desjardins, R. Berti, J. Lefebvre, S. Dubeau, and F. Lesage, “Aging-related differences in cerebral capillary blood flow in anesthetized rats,” Neurobiol. Aging 35(8), 1947–1955 (2014).
[Crossref] [PubMed]

Deuchar, G. A.

G. A. Deuchar, D. Brennan, H. Griffiths, I. M. Macrae, and C. Santosh, “Perfluorocarbons enhance a T2*-based MRI technique for identifying the penumbra in a rat model of acute ischemic stroke,” J. Cereb. Blood Flow Metab. 33(9), 1422–1428 (2013).
[Crossref] [PubMed]

T. A. Baskerville, G. A. Deuchar, C. McCabe, C. A. Robertson, W. M. Holmes, C. Santosh, and I. M. Macrae, “Influence of 100% and 40% oxygen on penumbral blood flow, oxygen level, and T2*-weighted MRI in a rat stroke model,” J. Cereb. Blood Flow Metab. 31(8), 1799–1806 (2011).
[Crossref] [PubMed]

Devor, A.

S. Sakadžić, E. T. Mandeville, L. Gagnon, J. J. Musacchia, M. A. Yaseen, M. A. Yucel, J. Lefebvre, F. Lesage, A. M. Dale, K. Eikermann-Haerter, C. Ayata, V. J. Srinivasan, E. H. Lo, A. Devor, and D. A. Boas, “Large arteriolar component of oxygen delivery implies a safe margin of oxygen supply to cerebral tissue,” Nat. Commun. 5, 5734 (2014).
[Crossref] [PubMed]

A. K. Dunn, A. Devor, A. M. Dale, and D. A. Boas, “Spatial extent of oxygen metabolism and hemodynamic changes during functional activation of the rat somatosensory cortex,” Neuroimage 27(2), 279–290 (2005).
[Crossref] [PubMed]

Dirnagl, U.

M. Kohl, U. Lindauer, G. Royl, M. Kühl, L. Gold, A. Villringer, and U. Dirnagl, “Physical model for the spectroscopic analysis of cortical intrinsic optical signals,” Phys. Med. Biol. 45(12), 3749–3764 (2000).
[Crossref] [PubMed]

Dohi, S.

H. Ohata, H. Iida, S. Dohi, and Y. Watanabe, “Intravenous dexmedetomidine inhibits cerebrovascular dilation induced by isoflurane and sevoflurane in dogs,” Anesth. Analg. 89(2), 370–377 (1999).
[PubMed]

Doornbos, R. M.

R. M. Doornbos, R. Lang, M. C. Aalders, F. W. Cross, and H. J. Sterenborg, “The determination of in vivo human tissue optical properties and absolute chromophore concentrations using spatially resolved steady-state diffuse reflectance spectroscopy,” Phys. Med. Biol. 44(4), 967–981 (1999).
[Crossref] [PubMed]

Dubeau, S.

M. Desjardins, R. Berti, J. Lefebvre, S. Dubeau, and F. Lesage, “Aging-related differences in cerebral capillary blood flow in anesthetized rats,” Neurobiol. Aging 35(8), 1947–1955 (2014).
[Crossref] [PubMed]

Dunn, A. K.

A. K. Dunn, A. Devor, A. M. Dale, and D. A. Boas, “Spatial extent of oxygen metabolism and hemodynamic changes during functional activation of the rat somatosensory cortex,” Neuroimage 27(2), 279–290 (2005).
[Crossref] [PubMed]

Durkin, A.

A. Cerussi, N. Shah, D. Hsiang, A. Durkin, J. Butler, and B. J. Tromberg, “In vivo absorption, scattering, and physiologic properties of 58 malignant breast tumors determined by broadband diffuse optical spectroscopy,” J. Biomed. Opt. 11(4), 044005 (2006).
[Crossref] [PubMed]

Durkin, A. J.

D. J. Cuccia, F. Bevilacqua, A. J. Durkin, F. R. Ayers, and B. J. Tromberg, “Quantitation and mapping of tissue optical properties using modulated imaging,” J. Biomed. Opt. 14(2), 024012 (2009).
[Crossref] [PubMed]

Eikermann-Haerter, K.

S. Sakadžić, E. T. Mandeville, L. Gagnon, J. J. Musacchia, M. A. Yaseen, M. A. Yucel, J. Lefebvre, F. Lesage, A. M. Dale, K. Eikermann-Haerter, C. Ayata, V. J. Srinivasan, E. H. Lo, A. Devor, and D. A. Boas, “Large arteriolar component of oxygen delivery implies a safe margin of oxygen supply to cerebral tissue,” Nat. Commun. 5, 5734 (2014).
[Crossref] [PubMed]

Eliceiri, K. W.

Esenaliev, R. O.

Espinoza, J.

B. J. Tromberg, N. Shah, R. Lanning, A. Cerussi, J. Espinoza, T. Pham, L. Svaasand, and J. Butler, “Non-invasive in vivo characterization of breast tumors using photon migration spectroscopy,” Neoplasia 2(1-2), 26–40 (2000).
[Crossref] [PubMed]

Farrell, T. J.

T. J. Farrell, M. S. Patterson, and B. Wilson, “A diffusion theory model of spatially resolved, steady-state diffuse reflectance for the noninvasive determination of tissue optical properties in vivo,” Med. Phys. 19(4), 879–888 (1992).
[Crossref] [PubMed]

Fidalgo, A.

R. D. Sanders, J. Xu, Y. Shu, A. Januszewski, S. Halder, A. Fidalgo, P. Sun, M. Hossain, D. Ma, and M. Maze, “Dexmedetomidine attenuates isoflurane-induced neurocognitive impairment in neonatal rats,” Anesthesiology 110(5), 1077–1085 (2009).
[Crossref] [PubMed]

Fishkin, J. B.

Forsberg, M. M.

N. K. Acharya, E. L. Goldwaser, M. M. Forsberg, G. A. Godsey, C. A. Johnson, A. Sarkar, C. DeMarshall, M. C. Kosciuk, J. M. Dash, C. P. Hale, D. M. Leonard, D. M. Appelt, and R. G. Nagele, “Sevoflurane and Isoflurane induce structural changes in brain vascular endothelial cells and increase blood-brain barrier permeability: Possible link to postoperative delirium and cognitive decline,” Brain Res. 1620, 29–41 (2015).
[Crossref] [PubMed]

Foschum, F.

F. Foschum and A. Kienle, “Broadband absorption spectroscopy of turbid media using a dual step steady-state method,” J. Biomed. Opt. 17(3), 037009 (2012).
[Crossref] [PubMed]

Frometa, Y.

Y. Song, R. A. Torres, S. Garcia, Y. Frometa, J. Bae, A. Deshmukh, W.-C. Lin, Y. Zheng, and J. J. Riera, “Dysfunction of Neurovascular/Metabolic Coupling in Chronic Focal Epilepsy,” IEEE Trans. Biomed. Eng. 63(1), 97–110 (2016).
[Crossref] [PubMed]

Frostig, R. D.

D. Abookasis, C. C. Lay, M. S. Mathews, M. E. Linskey, R. D. Frostig, and B. J. Tromberg, “Imaging cortical absorption, scattering, and hemodynamic response during ischemic stroke using spatially modulated near-infrared illumination,” J. Biomed. Opt. 14(2), 024033 (2009).
[Crossref] [PubMed]

Frosz, M.

Gagnon, L.

S. Sakadžić, E. T. Mandeville, L. Gagnon, J. J. Musacchia, M. A. Yaseen, M. A. Yucel, J. Lefebvre, F. Lesage, A. M. Dale, K. Eikermann-Haerter, C. Ayata, V. J. Srinivasan, E. H. Lo, A. Devor, and D. A. Boas, “Large arteriolar component of oxygen delivery implies a safe margin of oxygen supply to cerebral tissue,” Nat. Commun. 5, 5734 (2014).
[Crossref] [PubMed]

Garcia, S.

Y. Song, R. A. Torres, S. Garcia, Y. Frometa, J. Bae, A. Deshmukh, W.-C. Lin, Y. Zheng, and J. J. Riera, “Dysfunction of Neurovascular/Metabolic Coupling in Chronic Focal Epilepsy,” IEEE Trans. Biomed. Eng. 63(1), 97–110 (2016).
[Crossref] [PubMed]

Gibbs, J. M.

K. L. Leenders, D. Perani, A. A. Lammertsma, J. D. Heather, P. Buckingham, M. J. Healy, J. M. Gibbs, R. J. Wise, J. Hatazawa, and S. Herold, “Cerebral blood flow, blood volume and oxygen utilization. Normal values and effect of age,” Brain 113(1), 27–47 (1990).
[Crossref] [PubMed]

Godsey, G. A.

N. K. Acharya, E. L. Goldwaser, M. M. Forsberg, G. A. Godsey, C. A. Johnson, A. Sarkar, C. DeMarshall, M. C. Kosciuk, J. M. Dash, C. P. Hale, D. M. Leonard, D. M. Appelt, and R. G. Nagele, “Sevoflurane and Isoflurane induce structural changes in brain vascular endothelial cells and increase blood-brain barrier permeability: Possible link to postoperative delirium and cognitive decline,” Brain Res. 1620, 29–41 (2015).
[Crossref] [PubMed]

Gold, L.

M. Kohl, U. Lindauer, G. Royl, M. Kühl, L. Gold, A. Villringer, and U. Dirnagl, “Physical model for the spectroscopic analysis of cortical intrinsic optical signals,” Phys. Med. Biol. 45(12), 3749–3764 (2000).
[Crossref] [PubMed]

Goldwaser, E. L.

N. K. Acharya, E. L. Goldwaser, M. M. Forsberg, G. A. Godsey, C. A. Johnson, A. Sarkar, C. DeMarshall, M. C. Kosciuk, J. M. Dash, C. P. Hale, D. M. Leonard, D. M. Appelt, and R. G. Nagele, “Sevoflurane and Isoflurane induce structural changes in brain vascular endothelial cells and increase blood-brain barrier permeability: Possible link to postoperative delirium and cognitive decline,” Brain Res. 1620, 29–41 (2015).
[Crossref] [PubMed]

Griffiths, H.

G. A. Deuchar, D. Brennan, H. Griffiths, I. M. Macrae, and C. Santosh, “Perfluorocarbons enhance a T2*-based MRI technique for identifying the penumbra in a rat model of acute ischemic stroke,” J. Cereb. Blood Flow Metab. 33(9), 1422–1428 (2013).
[Crossref] [PubMed]

Gross, J. D.

Halder, S.

R. D. Sanders, J. Xu, Y. Shu, A. Januszewski, S. Halder, A. Fidalgo, P. Sun, M. Hossain, D. Ma, and M. Maze, “Dexmedetomidine attenuates isoflurane-induced neurocognitive impairment in neonatal rats,” Anesthesiology 110(5), 1077–1085 (2009).
[Crossref] [PubMed]

Hale, C. P.

N. K. Acharya, E. L. Goldwaser, M. M. Forsberg, G. A. Godsey, C. A. Johnson, A. Sarkar, C. DeMarshall, M. C. Kosciuk, J. M. Dash, C. P. Hale, D. M. Leonard, D. M. Appelt, and R. G. Nagele, “Sevoflurane and Isoflurane induce structural changes in brain vascular endothelial cells and increase blood-brain barrier permeability: Possible link to postoperative delirium and cognitive decline,” Brain Res. 1620, 29–41 (2015).
[Crossref] [PubMed]

Han, X.

Y. Li, M. Zeng, W. Chen, C. Liu, F. Wang, X. Han, Z. Zuo, and S. Peng, “Dexmedetomidine reduces isoflurane-induced neuroapoptosis partly by preserving PI3K/Akt pathway in the hippocampus of neonatal rats,” PLoS One 9(4), e93639 (2014).
[Crossref] [PubMed]

Hansen, P.

Hatazawa, J.

K. L. Leenders, D. Perani, A. A. Lammertsma, J. D. Heather, P. Buckingham, M. J. Healy, J. M. Gibbs, R. J. Wise, J. Hatazawa, and S. Herold, “Cerebral blood flow, blood volume and oxygen utilization. Normal values and effect of age,” Brain 113(1), 27–47 (1990).
[Crossref] [PubMed]

Healy, M. J.

K. L. Leenders, D. Perani, A. A. Lammertsma, J. D. Heather, P. Buckingham, M. J. Healy, J. M. Gibbs, R. J. Wise, J. Hatazawa, and S. Herold, “Cerebral blood flow, blood volume and oxygen utilization. Normal values and effect of age,” Brain 113(1), 27–47 (1990).
[Crossref] [PubMed]

Heather, J. D.

K. L. Leenders, D. Perani, A. A. Lammertsma, J. D. Heather, P. Buckingham, M. J. Healy, J. M. Gibbs, R. J. Wise, J. Hatazawa, and S. Herold, “Cerebral blood flow, blood volume and oxygen utilization. Normal values and effect of age,” Brain 113(1), 27–47 (1990).
[Crossref] [PubMed]

Herold, S.

K. L. Leenders, D. Perani, A. A. Lammertsma, J. D. Heather, P. Buckingham, M. J. Healy, J. M. Gibbs, R. J. Wise, J. Hatazawa, and S. Herold, “Cerebral blood flow, blood volume and oxygen utilization. Normal values and effect of age,” Brain 113(1), 27–47 (1990).
[Crossref] [PubMed]

Holmes, W. M.

T. A. Baskerville, G. A. Deuchar, C. McCabe, C. A. Robertson, W. M. Holmes, C. Santosh, and I. M. Macrae, “Influence of 100% and 40% oxygen on penumbral blood flow, oxygen level, and T2*-weighted MRI in a rat stroke model,” J. Cereb. Blood Flow Metab. 31(8), 1799–1806 (2011).
[Crossref] [PubMed]

Hossain, M.

R. D. Sanders, J. Xu, Y. Shu, A. Januszewski, S. Halder, A. Fidalgo, P. Sun, M. Hossain, D. Ma, and M. Maze, “Dexmedetomidine attenuates isoflurane-induced neurocognitive impairment in neonatal rats,” Anesthesiology 110(5), 1077–1085 (2009).
[Crossref] [PubMed]

Hsiang, D.

A. Cerussi, N. Shah, D. Hsiang, A. Durkin, J. Butler, and B. J. Tromberg, “In vivo absorption, scattering, and physiologic properties of 58 malignant breast tumors determined by broadband diffuse optical spectroscopy,” J. Biomed. Opt. 11(4), 044005 (2006).
[Crossref] [PubMed]

Iida, H.

H. Ohata, H. Iida, S. Dohi, and Y. Watanabe, “Intravenous dexmedetomidine inhibits cerebrovascular dilation induced by isoflurane and sevoflurane in dogs,” Anesth. Analg. 89(2), 370–377 (1999).
[PubMed]

Jacques, S. L.

Y. Liu, S. L. Jacques, M. Azimipour, J. D. Rogers, R. Pashaie, and K. W. Eliceiri, “OptogenSIM: a 3D Monte Carlo simulation platform for light delivery design in optogenetics,” Biomed. Opt. Express 6(12), 4859–4870 (2015).
[Crossref] [PubMed]

S. L. Jacques, “Optical properties of biological tissues: a review,” Phys. Med. Biol. 58(11), R37–R61 (2013).
[Crossref] [PubMed]

L. Wang, S. L. Jacques, and L. Zheng, “CONV--convolution for responses to a finite diameter photon beam incident on multi-layered tissues,” Comput. Methods Programs Biomed. 54(3), 141–150 (1997).
[Crossref] [PubMed]

L. Wang, S. L. Jacques, and L. Zheng, “MCML--Monte Carlo modeling of light transport in multi-layered tissues,” Comput. Methods Programs Biomed. 47(2), 131–146 (1995).
[Crossref] [PubMed]

Januszewski, A.

R. D. Sanders, J. Xu, Y. Shu, A. Januszewski, S. Halder, A. Fidalgo, P. Sun, M. Hossain, D. Ma, and M. Maze, “Dexmedetomidine attenuates isoflurane-induced neurocognitive impairment in neonatal rats,” Anesthesiology 110(5), 1077–1085 (2009).
[Crossref] [PubMed]

Johnson, C. A.

N. K. Acharya, E. L. Goldwaser, M. M. Forsberg, G. A. Godsey, C. A. Johnson, A. Sarkar, C. DeMarshall, M. C. Kosciuk, J. M. Dash, C. P. Hale, D. M. Leonard, D. M. Appelt, and R. G. Nagele, “Sevoflurane and Isoflurane induce structural changes in brain vascular endothelial cells and increase blood-brain barrier permeability: Possible link to postoperative delirium and cognitive decline,” Brain Res. 1620, 29–41 (2015).
[Crossref] [PubMed]

Johnson, M.

W.-C. Lin, D. I. Sandberg, S. Bhatia, M. Johnson, S. Oh, and J. Ragheb, “Diffuse reflectance spectroscopy for in vivo pediatric brain tumor detection,” J. Biomed. Opt. 15(6), 061709 (2010).
[Crossref] [PubMed]

Johnston, D.

A. J. Kennerley, J. Berwick, J. Martindale, D. Johnston, Y. Zheng, and J. E. Mayhew, “Refinement of optical imaging spectroscopy algorithms using concurrent BOLD and CBV fMRI,” Neuroimage 47(4), 1608–1619 (2009).
[Crossref] [PubMed]

Keilholz, S. D.

M. E. Magnuson, G. J. Thompson, W. J. Pan, and S. D. Keilholz, “Time-dependent effects of isoflurane and dexmedetomidine on functional connectivity, spectral characteristics, and spatial distribution of spontaneous BOLD fluctuations,” NMR Biomed. 27(3), 291–303 (2014).
[Crossref] [PubMed]

Kennerley, A. J.

A. J. Kennerley, J. Berwick, J. Martindale, D. Johnston, Y. Zheng, and J. E. Mayhew, “Refinement of optical imaging spectroscopy algorithms using concurrent BOLD and CBV fMRI,” Neuroimage 47(4), 1608–1619 (2009).
[Crossref] [PubMed]

Kholodnykh, A. I.

Kienle, A.

F. Foschum and A. Kienle, “Broadband absorption spectroscopy of turbid media using a dual step steady-state method,” J. Biomed. Opt. 17(3), 037009 (2012).
[Crossref] [PubMed]

Kohl, M.

M. Kohl, U. Lindauer, G. Royl, M. Kühl, L. Gold, A. Villringer, and U. Dirnagl, “Physical model for the spectroscopic analysis of cortical intrinsic optical signals,” Phys. Med. Biol. 45(12), 3749–3764 (2000).
[Crossref] [PubMed]

Kosciuk, M. C.

N. K. Acharya, E. L. Goldwaser, M. M. Forsberg, G. A. Godsey, C. A. Johnson, A. Sarkar, C. DeMarshall, M. C. Kosciuk, J. M. Dash, C. P. Hale, D. M. Leonard, D. M. Appelt, and R. G. Nagele, “Sevoflurane and Isoflurane induce structural changes in brain vascular endothelial cells and increase blood-brain barrier permeability: Possible link to postoperative delirium and cognitive decline,” Brain Res. 1620, 29–41 (2015).
[Crossref] [PubMed]

Kühl, M.

M. Kohl, U. Lindauer, G. Royl, M. Kühl, L. Gold, A. Villringer, and U. Dirnagl, “Physical model for the spectroscopic analysis of cortical intrinsic optical signals,” Phys. Med. Biol. 45(12), 3749–3764 (2000).
[Crossref] [PubMed]

Lammertsma, A. A.

K. L. Leenders, D. Perani, A. A. Lammertsma, J. D. Heather, P. Buckingham, M. J. Healy, J. M. Gibbs, R. J. Wise, J. Hatazawa, and S. Herold, “Cerebral blood flow, blood volume and oxygen utilization. Normal values and effect of age,” Brain 113(1), 27–47 (1990).
[Crossref] [PubMed]

Lang, R.

R. M. Doornbos, R. Lang, M. C. Aalders, F. W. Cross, and H. J. Sterenborg, “The determination of in vivo human tissue optical properties and absolute chromophore concentrations using spatially resolved steady-state diffuse reflectance spectroscopy,” Phys. Med. Biol. 44(4), 967–981 (1999).
[Crossref] [PubMed]

Lanning, R.

B. J. Tromberg, N. Shah, R. Lanning, A. Cerussi, J. Espinoza, T. Pham, L. Svaasand, and J. Butler, “Non-invasive in vivo characterization of breast tumors using photon migration spectroscopy,” Neoplasia 2(1-2), 26–40 (2000).
[Crossref] [PubMed]

Larin, K. V.

Lay, C. C.

D. Abookasis, C. C. Lay, M. S. Mathews, M. E. Linskey, R. D. Frostig, and B. J. Tromberg, “Imaging cortical absorption, scattering, and hemodynamic response during ischemic stroke using spatially modulated near-infrared illumination,” J. Biomed. Opt. 14(2), 024033 (2009).
[Crossref] [PubMed]

Le Poec, C.

G. Marchal, P. Rioux, M.-C. Petit-Taboué, G. Sette, J.-M. Travère, C. Le Poec, P. Courtheoux, J.-M. Derlon, and J.-C. Baron, “Regional cerebral oxygen consumption, blood flow, and blood volume in healthy human aging,” Arch. Neurol. 49(10), 1013–1020 (1992).
[Crossref] [PubMed]

Leenders, K. L.

K. L. Leenders, D. Perani, A. A. Lammertsma, J. D. Heather, P. Buckingham, M. J. Healy, J. M. Gibbs, R. J. Wise, J. Hatazawa, and S. Herold, “Cerebral blood flow, blood volume and oxygen utilization. Normal values and effect of age,” Brain 113(1), 27–47 (1990).
[Crossref] [PubMed]

Lefebvre, J.

M. Desjardins, R. Berti, J. Lefebvre, S. Dubeau, and F. Lesage, “Aging-related differences in cerebral capillary blood flow in anesthetized rats,” Neurobiol. Aging 35(8), 1947–1955 (2014).
[Crossref] [PubMed]

S. Sakadžić, E. T. Mandeville, L. Gagnon, J. J. Musacchia, M. A. Yaseen, M. A. Yucel, J. Lefebvre, F. Lesage, A. M. Dale, K. Eikermann-Haerter, C. Ayata, V. J. Srinivasan, E. H. Lo, A. Devor, and D. A. Boas, “Large arteriolar component of oxygen delivery implies a safe margin of oxygen supply to cerebral tissue,” Nat. Commun. 5, 5734 (2014).
[Crossref] [PubMed]

Leonard, D. M.

N. K. Acharya, E. L. Goldwaser, M. M. Forsberg, G. A. Godsey, C. A. Johnson, A. Sarkar, C. DeMarshall, M. C. Kosciuk, J. M. Dash, C. P. Hale, D. M. Leonard, D. M. Appelt, and R. G. Nagele, “Sevoflurane and Isoflurane induce structural changes in brain vascular endothelial cells and increase blood-brain barrier permeability: Possible link to postoperative delirium and cognitive decline,” Brain Res. 1620, 29–41 (2015).
[Crossref] [PubMed]

Lesage, F.

S. Sakadžić, E. T. Mandeville, L. Gagnon, J. J. Musacchia, M. A. Yaseen, M. A. Yucel, J. Lefebvre, F. Lesage, A. M. Dale, K. Eikermann-Haerter, C. Ayata, V. J. Srinivasan, E. H. Lo, A. Devor, and D. A. Boas, “Large arteriolar component of oxygen delivery implies a safe margin of oxygen supply to cerebral tissue,” Nat. Commun. 5, 5734 (2014).
[Crossref] [PubMed]

M. Desjardins, R. Berti, J. Lefebvre, S. Dubeau, and F. Lesage, “Aging-related differences in cerebral capillary blood flow in anesthetized rats,” Neurobiol. Aging 35(8), 1947–1955 (2014).
[Crossref] [PubMed]

Levitz, D.

Li, Y.

Y. Li, M. Zeng, W. Chen, C. Liu, F. Wang, X. Han, Z. Zuo, and S. Peng, “Dexmedetomidine reduces isoflurane-induced neuroapoptosis partly by preserving PI3K/Akt pathway in the hippocampus of neonatal rats,” PLoS One 9(4), e93639 (2014).
[Crossref] [PubMed]

Likar, B.

M. Bregar, M. Bürmen, U. Aljančič, B. Cugmas, F. Pernuš, and B. Likar, “Contact pressure-aided spectroscopy,” J. Biomed. Opt. 19(2), 020501 (2014).
[Crossref] [PubMed]

Lim, L.

L. Lim, B. Nichols, N. Rajaram, and J. W. Tunnell, “Probe pressure effects on human skin diffuse reflectance and fluorescence spectroscopy measurements,” J. Biomed. Opt. 16(1), 011012 (2011).
[Crossref] [PubMed]

Lin, W.-C.

Y. Song, R. A. Torres, S. Garcia, Y. Frometa, J. Bae, A. Deshmukh, W.-C. Lin, Y. Zheng, and J. J. Riera, “Dysfunction of Neurovascular/Metabolic Coupling in Chronic Focal Epilepsy,” IEEE Trans. Biomed. Eng. 63(1), 97–110 (2016).
[Crossref] [PubMed]

N. Yadav, S. Bhatia, J. Ragheb, Y. Song, A. Romero, S. Oh, and W.-C. Lin, “Evaluating and improving the quality of time-dependent, diffuse reflectance spectroscopic signals measured from in vivo brain during craniotomy,” Med. Eng. Phys. 35(11), 1551–1557 (2013).
[Crossref] [PubMed]

W.-C. Lin, D. I. Sandberg, S. Bhatia, M. Johnson, S. Oh, and J. Ragheb, “Diffuse reflectance spectroscopy for in vivo pediatric brain tumor detection,” J. Biomed. Opt. 15(6), 061709 (2010).
[Crossref] [PubMed]

Y. Ti and W.-C. Lin, “Effects of probe contact pressure on in vivo optical spectroscopy,” Opt. Express 16(6), 4250–4262 (2008).
[Crossref] [PubMed]

Lindauer, U.

M. Kohl, U. Lindauer, G. Royl, M. Kühl, L. Gold, A. Villringer, and U. Dirnagl, “Physical model for the spectroscopic analysis of cortical intrinsic optical signals,” Phys. Med. Biol. 45(12), 3749–3764 (2000).
[Crossref] [PubMed]

Linskey, M. E.

D. Abookasis, C. C. Lay, M. S. Mathews, M. E. Linskey, R. D. Frostig, and B. J. Tromberg, “Imaging cortical absorption, scattering, and hemodynamic response during ischemic stroke using spatially modulated near-infrared illumination,” J. Biomed. Opt. 14(2), 024033 (2009).
[Crossref] [PubMed]

Liu, C.

Y. Li, M. Zeng, W. Chen, C. Liu, F. Wang, X. Han, Z. Zuo, and S. Peng, “Dexmedetomidine reduces isoflurane-induced neuroapoptosis partly by preserving PI3K/Akt pathway in the hippocampus of neonatal rats,” PLoS One 9(4), e93639 (2014).
[Crossref] [PubMed]

Liu, Y.

Lo, E. H.

S. Sakadžić, E. T. Mandeville, L. Gagnon, J. J. Musacchia, M. A. Yaseen, M. A. Yucel, J. Lefebvre, F. Lesage, A. M. Dale, K. Eikermann-Haerter, C. Ayata, V. J. Srinivasan, E. H. Lo, A. Devor, and D. A. Boas, “Large arteriolar component of oxygen delivery implies a safe margin of oxygen supply to cerebral tissue,” Nat. Commun. 5, 5734 (2014).
[Crossref] [PubMed]

Ma, D.

R. D. Sanders, J. Xu, Y. Shu, A. Januszewski, S. Halder, A. Fidalgo, P. Sun, M. Hossain, D. Ma, and M. Maze, “Dexmedetomidine attenuates isoflurane-induced neurocognitive impairment in neonatal rats,” Anesthesiology 110(5), 1077–1085 (2009).
[Crossref] [PubMed]

Macrae, I. M.

G. A. Deuchar, D. Brennan, H. Griffiths, I. M. Macrae, and C. Santosh, “Perfluorocarbons enhance a T2*-based MRI technique for identifying the penumbra in a rat model of acute ischemic stroke,” J. Cereb. Blood Flow Metab. 33(9), 1422–1428 (2013).
[Crossref] [PubMed]

T. A. Baskerville, G. A. Deuchar, C. McCabe, C. A. Robertson, W. M. Holmes, C. Santosh, and I. M. Macrae, “Influence of 100% and 40% oxygen on penumbral blood flow, oxygen level, and T2*-weighted MRI in a rat stroke model,” J. Cereb. Blood Flow Metab. 31(8), 1799–1806 (2011).
[Crossref] [PubMed]

Magnuson, M. E.

M. E. Magnuson, G. J. Thompson, W. J. Pan, and S. D. Keilholz, “Time-dependent effects of isoflurane and dexmedetomidine on functional connectivity, spectral characteristics, and spatial distribution of spontaneous BOLD fluctuations,” NMR Biomed. 27(3), 291–303 (2014).
[Crossref] [PubMed]

Mandeville, E. T.

S. Sakadžić, E. T. Mandeville, L. Gagnon, J. J. Musacchia, M. A. Yaseen, M. A. Yucel, J. Lefebvre, F. Lesage, A. M. Dale, K. Eikermann-Haerter, C. Ayata, V. J. Srinivasan, E. H. Lo, A. Devor, and D. A. Boas, “Large arteriolar component of oxygen delivery implies a safe margin of oxygen supply to cerebral tissue,” Nat. Commun. 5, 5734 (2014).
[Crossref] [PubMed]

Marchal, G.

G. Marchal, P. Rioux, M.-C. Petit-Taboué, G. Sette, J.-M. Travère, C. Le Poec, P. Courtheoux, J.-M. Derlon, and J.-C. Baron, “Regional cerebral oxygen consumption, blood flow, and blood volume in healthy human aging,” Arch. Neurol. 49(10), 1013–1020 (1992).
[Crossref] [PubMed]

Marquet, P.

Martindale, J.

A. J. Kennerley, J. Berwick, J. Martindale, D. Johnston, Y. Zheng, and J. E. Mayhew, “Refinement of optical imaging spectroscopy algorithms using concurrent BOLD and CBV fMRI,” Neuroimage 47(4), 1608–1619 (2009).
[Crossref] [PubMed]

Matcher, S. J.

Mathews, M. S.

D. Abookasis, C. C. Lay, M. S. Mathews, M. E. Linskey, R. D. Frostig, and B. J. Tromberg, “Imaging cortical absorption, scattering, and hemodynamic response during ischemic stroke using spatially modulated near-infrared illumination,” J. Biomed. Opt. 14(2), 024033 (2009).
[Crossref] [PubMed]

Mayhew, J. E.

A. J. Kennerley, J. Berwick, J. Martindale, D. Johnston, Y. Zheng, and J. E. Mayhew, “Refinement of optical imaging spectroscopy algorithms using concurrent BOLD and CBV fMRI,” Neuroimage 47(4), 1608–1619 (2009).
[Crossref] [PubMed]

Maze, M.

R. D. Sanders, J. Xu, Y. Shu, A. Januszewski, S. Halder, A. Fidalgo, P. Sun, M. Hossain, D. Ma, and M. Maze, “Dexmedetomidine attenuates isoflurane-induced neurocognitive impairment in neonatal rats,” Anesthesiology 110(5), 1077–1085 (2009).
[Crossref] [PubMed]

McCabe, C.

T. A. Baskerville, G. A. Deuchar, C. McCabe, C. A. Robertson, W. M. Holmes, C. Santosh, and I. M. Macrae, “Influence of 100% and 40% oxygen on penumbral blood flow, oxygen level, and T2*-weighted MRI in a rat stroke model,” J. Cereb. Blood Flow Metab. 31(8), 1799–1806 (2011).
[Crossref] [PubMed]

Moffitt, T.

T. Moffitt, Y.-C. Chen, and S. A. Prahl, “Preparation and characterization of polyurethane optical phantoms,” J. Biomed. Opt. 11(4), 041103 (2006).
[Crossref] [PubMed]

Motamedi, M.

Musacchia, J. J.

S. Sakadžić, E. T. Mandeville, L. Gagnon, J. J. Musacchia, M. A. Yaseen, M. A. Yucel, J. Lefebvre, F. Lesage, A. M. Dale, K. Eikermann-Haerter, C. Ayata, V. J. Srinivasan, E. H. Lo, A. Devor, and D. A. Boas, “Large arteriolar component of oxygen delivery implies a safe margin of oxygen supply to cerebral tissue,” Nat. Commun. 5, 5734 (2014).
[Crossref] [PubMed]

Mutyal, N. N.

V. Turzhitsky, A. J. Radosevich, J. D. Rogers, N. N. Mutyal, and V. Backman, “Measurement of optical scattering properties with low-coherence enhanced backscattering spectroscopy,” J. Biomed. Opt. 16(6), 067007 (2011).
[Crossref] [PubMed]

V. Turzhitsky, J. D. Rogers, N. N. Mutyal, H. K. Roy, and V. Backman, “Characterization of light transport in scattering media at sub-diffusion length scales with Low-coherence Enhanced Backscattering,” IEEE J. Sel. Top. Quantum Electron. 16(3), 619–626 (2010).
[Crossref] [PubMed]

Nagele, R. G.

N. K. Acharya, E. L. Goldwaser, M. M. Forsberg, G. A. Godsey, C. A. Johnson, A. Sarkar, C. DeMarshall, M. C. Kosciuk, J. M. Dash, C. P. Hale, D. M. Leonard, D. M. Appelt, and R. G. Nagele, “Sevoflurane and Isoflurane induce structural changes in brain vascular endothelial cells and increase blood-brain barrier permeability: Possible link to postoperative delirium and cognitive decline,” Brain Res. 1620, 29–41 (2015).
[Crossref] [PubMed]

Nichols, B.

L. Lim, B. Nichols, N. Rajaram, and J. W. Tunnell, “Probe pressure effects on human skin diffuse reflectance and fluorescence spectroscopy measurements,” J. Biomed. Opt. 16(1), 011012 (2011).
[Crossref] [PubMed]

S. F. Bish, N. Rajaram, B. Nichols, and J. W. Tunnell, “Development of a noncontact diffuse optical spectroscopy probe for measuring tissue optical properties,” J. Biomed. Opt. 16(12), 120505 (2011).
[Crossref] [PubMed]

O’Sullivan, T. D.

T. D. O’Sullivan, A. E. Cerussi, D. J. Cuccia, and B. J. Tromberg, “Diffuse optical imaging using spatially and temporally modulated light,” J. Biomed. Opt. 17(7), 071311 (2012).
[PubMed]

Oh, S.

N. Yadav, S. Bhatia, J. Ragheb, Y. Song, A. Romero, S. Oh, and W.-C. Lin, “Evaluating and improving the quality of time-dependent, diffuse reflectance spectroscopic signals measured from in vivo brain during craniotomy,” Med. Eng. Phys. 35(11), 1551–1557 (2013).
[Crossref] [PubMed]

W.-C. Lin, D. I. Sandberg, S. Bhatia, M. Johnson, S. Oh, and J. Ragheb, “Diffuse reflectance spectroscopy for in vivo pediatric brain tumor detection,” J. Biomed. Opt. 15(6), 061709 (2010).
[Crossref] [PubMed]

Ohata, H.

H. Ohata, H. Iida, S. Dohi, and Y. Watanabe, “Intravenous dexmedetomidine inhibits cerebrovascular dilation induced by isoflurane and sevoflurane in dogs,” Anesth. Analg. 89(2), 370–377 (1999).
[PubMed]

Pan, W. J.

M. E. Magnuson, G. J. Thompson, W. J. Pan, and S. D. Keilholz, “Time-dependent effects of isoflurane and dexmedetomidine on functional connectivity, spectral characteristics, and spatial distribution of spontaneous BOLD fluctuations,” NMR Biomed. 27(3), 291–303 (2014).
[Crossref] [PubMed]

Pashaie, R.

Patterson, M. S.

T. J. Farrell, M. S. Patterson, and B. Wilson, “A diffusion theory model of spatially resolved, steady-state diffuse reflectance for the noninvasive determination of tissue optical properties in vivo,” Med. Phys. 19(4), 879–888 (1992).
[Crossref] [PubMed]

Peng, S.

Y. Li, M. Zeng, W. Chen, C. Liu, F. Wang, X. Han, Z. Zuo, and S. Peng, “Dexmedetomidine reduces isoflurane-induced neuroapoptosis partly by preserving PI3K/Akt pathway in the hippocampus of neonatal rats,” PLoS One 9(4), e93639 (2014).
[Crossref] [PubMed]

Perani, D.

K. L. Leenders, D. Perani, A. A. Lammertsma, J. D. Heather, P. Buckingham, M. J. Healy, J. M. Gibbs, R. J. Wise, J. Hatazawa, and S. Herold, “Cerebral blood flow, blood volume and oxygen utilization. Normal values and effect of age,” Brain 113(1), 27–47 (1990).
[Crossref] [PubMed]

Pernuš, F.

M. Bregar, M. Bürmen, U. Aljančič, B. Cugmas, F. Pernuš, and B. Likar, “Contact pressure-aided spectroscopy,” J. Biomed. Opt. 19(2), 020501 (2014).
[Crossref] [PubMed]

Petit-Taboué, M.-C.

G. Marchal, P. Rioux, M.-C. Petit-Taboué, G. Sette, J.-M. Travère, C. Le Poec, P. Courtheoux, J.-M. Derlon, and J.-C. Baron, “Regional cerebral oxygen consumption, blood flow, and blood volume in healthy human aging,” Arch. Neurol. 49(10), 1013–1020 (1992).
[Crossref] [PubMed]

Petrova, I. Y.

Pham, T.

B. J. Tromberg, N. Shah, R. Lanning, A. Cerussi, J. Espinoza, T. Pham, L. Svaasand, and J. Butler, “Non-invasive in vivo characterization of breast tumors using photon migration spectroscopy,” Neoplasia 2(1-2), 26–40 (2000).
[Crossref] [PubMed]

Piguet, D.

Prahl, S. A.

T. Moffitt, Y.-C. Chen, and S. A. Prahl, “Preparation and characterization of polyurethane optical phantoms,” J. Biomed. Opt. 11(4), 041103 (2006).
[Crossref] [PubMed]

S. A. Prahl, M. J. van Gemert, and A. J. Welch, “Determining the optical properties of turbid mediaby using the adding-doubling method,” Appl. Opt. 32(4), 559–568 (1993).
[Crossref] [PubMed]

Radosevich, A. J.

V. Turzhitsky, A. J. Radosevich, J. D. Rogers, N. N. Mutyal, and V. Backman, “Measurement of optical scattering properties with low-coherence enhanced backscattering spectroscopy,” J. Biomed. Opt. 16(6), 067007 (2011).
[Crossref] [PubMed]

Ragheb, J.

N. Yadav, S. Bhatia, J. Ragheb, Y. Song, A. Romero, S. Oh, and W.-C. Lin, “Evaluating and improving the quality of time-dependent, diffuse reflectance spectroscopic signals measured from in vivo brain during craniotomy,” Med. Eng. Phys. 35(11), 1551–1557 (2013).
[Crossref] [PubMed]

W.-C. Lin, D. I. Sandberg, S. Bhatia, M. Johnson, S. Oh, and J. Ragheb, “Diffuse reflectance spectroscopy for in vivo pediatric brain tumor detection,” J. Biomed. Opt. 15(6), 061709 (2010).
[Crossref] [PubMed]

Rajaram, N.

L. Lim, B. Nichols, N. Rajaram, and J. W. Tunnell, “Probe pressure effects on human skin diffuse reflectance and fluorescence spectroscopy measurements,” J. Biomed. Opt. 16(1), 011012 (2011).
[Crossref] [PubMed]

S. F. Bish, N. Rajaram, B. Nichols, and J. W. Tunnell, “Development of a noncontact diffuse optical spectroscopy probe for measuring tissue optical properties,” J. Biomed. Opt. 16(12), 120505 (2011).
[Crossref] [PubMed]

Riera, J. J.

Y. Song, R. A. Torres, S. Garcia, Y. Frometa, J. Bae, A. Deshmukh, W.-C. Lin, Y. Zheng, and J. J. Riera, “Dysfunction of Neurovascular/Metabolic Coupling in Chronic Focal Epilepsy,” IEEE Trans. Biomed. Eng. 63(1), 97–110 (2016).
[Crossref] [PubMed]

Rioux, P.

G. Marchal, P. Rioux, M.-C. Petit-Taboué, G. Sette, J.-M. Travère, C. Le Poec, P. Courtheoux, J.-M. Derlon, and J.-C. Baron, “Regional cerebral oxygen consumption, blood flow, and blood volume in healthy human aging,” Arch. Neurol. 49(10), 1013–1020 (1992).
[Crossref] [PubMed]

Robertson, C. A.

T. A. Baskerville, G. A. Deuchar, C. McCabe, C. A. Robertson, W. M. Holmes, C. Santosh, and I. M. Macrae, “Influence of 100% and 40% oxygen on penumbral blood flow, oxygen level, and T2*-weighted MRI in a rat stroke model,” J. Cereb. Blood Flow Metab. 31(8), 1799–1806 (2011).
[Crossref] [PubMed]

Rogers, J. D.

Y. Liu, S. L. Jacques, M. Azimipour, J. D. Rogers, R. Pashaie, and K. W. Eliceiri, “OptogenSIM: a 3D Monte Carlo simulation platform for light delivery design in optogenetics,” Biomed. Opt. Express 6(12), 4859–4870 (2015).
[Crossref] [PubMed]

V. Turzhitsky, A. J. Radosevich, J. D. Rogers, N. N. Mutyal, and V. Backman, “Measurement of optical scattering properties with low-coherence enhanced backscattering spectroscopy,” J. Biomed. Opt. 16(6), 067007 (2011).
[Crossref] [PubMed]

V. Turzhitsky, J. D. Rogers, N. N. Mutyal, H. K. Roy, and V. Backman, “Characterization of light transport in scattering media at sub-diffusion length scales with Low-coherence Enhanced Backscattering,” IEEE J. Sel. Top. Quantum Electron. 16(3), 619–626 (2010).
[Crossref] [PubMed]

Romero, A.

N. Yadav, S. Bhatia, J. Ragheb, Y. Song, A. Romero, S. Oh, and W.-C. Lin, “Evaluating and improving the quality of time-dependent, diffuse reflectance spectroscopic signals measured from in vivo brain during craniotomy,” Med. Eng. Phys. 35(11), 1551–1557 (2013).
[Crossref] [PubMed]

Roy, H. K.

V. Turzhitsky, J. D. Rogers, N. N. Mutyal, H. K. Roy, and V. Backman, “Characterization of light transport in scattering media at sub-diffusion length scales with Low-coherence Enhanced Backscattering,” IEEE J. Sel. Top. Quantum Electron. 16(3), 619–626 (2010).
[Crossref] [PubMed]

Royl, G.

M. Kohl, U. Lindauer, G. Royl, M. Kühl, L. Gold, A. Villringer, and U. Dirnagl, “Physical model for the spectroscopic analysis of cortical intrinsic optical signals,” Phys. Med. Biol. 45(12), 3749–3764 (2000).
[Crossref] [PubMed]

Sakadžic, S.

S. Sakadžić, E. T. Mandeville, L. Gagnon, J. J. Musacchia, M. A. Yaseen, M. A. Yucel, J. Lefebvre, F. Lesage, A. M. Dale, K. Eikermann-Haerter, C. Ayata, V. J. Srinivasan, E. H. Lo, A. Devor, and D. A. Boas, “Large arteriolar component of oxygen delivery implies a safe margin of oxygen supply to cerebral tissue,” Nat. Commun. 5, 5734 (2014).
[Crossref] [PubMed]

Sandberg, D. I.

W.-C. Lin, D. I. Sandberg, S. Bhatia, M. Johnson, S. Oh, and J. Ragheb, “Diffuse reflectance spectroscopy for in vivo pediatric brain tumor detection,” J. Biomed. Opt. 15(6), 061709 (2010).
[Crossref] [PubMed]

Sanders, R. D.

R. D. Sanders, J. Xu, Y. Shu, A. Januszewski, S. Halder, A. Fidalgo, P. Sun, M. Hossain, D. Ma, and M. Maze, “Dexmedetomidine attenuates isoflurane-induced neurocognitive impairment in neonatal rats,” Anesthesiology 110(5), 1077–1085 (2009).
[Crossref] [PubMed]

Santosh, C.

G. A. Deuchar, D. Brennan, H. Griffiths, I. M. Macrae, and C. Santosh, “Perfluorocarbons enhance a T2*-based MRI technique for identifying the penumbra in a rat model of acute ischemic stroke,” J. Cereb. Blood Flow Metab. 33(9), 1422–1428 (2013).
[Crossref] [PubMed]

T. A. Baskerville, G. A. Deuchar, C. McCabe, C. A. Robertson, W. M. Holmes, C. Santosh, and I. M. Macrae, “Influence of 100% and 40% oxygen on penumbral blood flow, oxygen level, and T2*-weighted MRI in a rat stroke model,” J. Cereb. Blood Flow Metab. 31(8), 1799–1806 (2011).
[Crossref] [PubMed]

Sarkar, A.

N. K. Acharya, E. L. Goldwaser, M. M. Forsberg, G. A. Godsey, C. A. Johnson, A. Sarkar, C. DeMarshall, M. C. Kosciuk, J. M. Dash, C. P. Hale, D. M. Leonard, D. M. Appelt, and R. G. Nagele, “Sevoflurane and Isoflurane induce structural changes in brain vascular endothelial cells and increase blood-brain barrier permeability: Possible link to postoperative delirium and cognitive decline,” Brain Res. 1620, 29–41 (2015).
[Crossref] [PubMed]

Sette, G.

G. Marchal, P. Rioux, M.-C. Petit-Taboué, G. Sette, J.-M. Travère, C. Le Poec, P. Courtheoux, J.-M. Derlon, and J.-C. Baron, “Regional cerebral oxygen consumption, blood flow, and blood volume in healthy human aging,” Arch. Neurol. 49(10), 1013–1020 (1992).
[Crossref] [PubMed]

Shah, N.

A. Cerussi, N. Shah, D. Hsiang, A. Durkin, J. Butler, and B. J. Tromberg, “In vivo absorption, scattering, and physiologic properties of 58 malignant breast tumors determined by broadband diffuse optical spectroscopy,” J. Biomed. Opt. 11(4), 044005 (2006).
[Crossref] [PubMed]

B. J. Tromberg, N. Shah, R. Lanning, A. Cerussi, J. Espinoza, T. Pham, L. Svaasand, and J. Butler, “Non-invasive in vivo characterization of breast tumors using photon migration spectroscopy,” Neoplasia 2(1-2), 26–40 (2000).
[Crossref] [PubMed]

Shu, Y.

R. D. Sanders, J. Xu, Y. Shu, A. Januszewski, S. Halder, A. Fidalgo, P. Sun, M. Hossain, D. Ma, and M. Maze, “Dexmedetomidine attenuates isoflurane-induced neurocognitive impairment in neonatal rats,” Anesthesiology 110(5), 1077–1085 (2009).
[Crossref] [PubMed]

Song, Y.

Y. Song, R. A. Torres, S. Garcia, Y. Frometa, J. Bae, A. Deshmukh, W.-C. Lin, Y. Zheng, and J. J. Riera, “Dysfunction of Neurovascular/Metabolic Coupling in Chronic Focal Epilepsy,” IEEE Trans. Biomed. Eng. 63(1), 97–110 (2016).
[Crossref] [PubMed]

N. Yadav, S. Bhatia, J. Ragheb, Y. Song, A. Romero, S. Oh, and W.-C. Lin, “Evaluating and improving the quality of time-dependent, diffuse reflectance spectroscopic signals measured from in vivo brain during craniotomy,” Med. Eng. Phys. 35(11), 1551–1557 (2013).
[Crossref] [PubMed]

Srinivasan, V. J.

S. Sakadžić, E. T. Mandeville, L. Gagnon, J. J. Musacchia, M. A. Yaseen, M. A. Yucel, J. Lefebvre, F. Lesage, A. M. Dale, K. Eikermann-Haerter, C. Ayata, V. J. Srinivasan, E. H. Lo, A. Devor, and D. A. Boas, “Large arteriolar component of oxygen delivery implies a safe margin of oxygen supply to cerebral tissue,” Nat. Commun. 5, 5734 (2014).
[Crossref] [PubMed]

Sterenborg, H. J.

A. Amelink, H. J. Sterenborg, M. P. Bard, and S. A. Burgers, “In vivo measurement of the local optical properties of tissue by use of differential path-length spectroscopy,” Opt. Lett. 29(10), 1087–1089 (2004).
[Crossref] [PubMed]

R. M. Doornbos, R. Lang, M. C. Aalders, F. W. Cross, and H. J. Sterenborg, “The determination of in vivo human tissue optical properties and absolute chromophore concentrations using spatially resolved steady-state diffuse reflectance spectroscopy,” Phys. Med. Biol. 44(4), 967–981 (1999).
[Crossref] [PubMed]

Sun, P.

R. D. Sanders, J. Xu, Y. Shu, A. Januszewski, S. Halder, A. Fidalgo, P. Sun, M. Hossain, D. Ma, and M. Maze, “Dexmedetomidine attenuates isoflurane-induced neurocognitive impairment in neonatal rats,” Anesthesiology 110(5), 1077–1085 (2009).
[Crossref] [PubMed]

Svaasand, L.

B. J. Tromberg, N. Shah, R. Lanning, A. Cerussi, J. Espinoza, T. Pham, L. Svaasand, and J. Butler, “Non-invasive in vivo characterization of breast tumors using photon migration spectroscopy,” Neoplasia 2(1-2), 26–40 (2000).
[Crossref] [PubMed]

Swartling, J.

Thompson, G. J.

M. E. Magnuson, G. J. Thompson, W. J. Pan, and S. D. Keilholz, “Time-dependent effects of isoflurane and dexmedetomidine on functional connectivity, spectral characteristics, and spatial distribution of spontaneous BOLD fluctuations,” NMR Biomed. 27(3), 291–303 (2014).
[Crossref] [PubMed]

Thrane, L.

Thut, P. D.

J. S. Brahim and P. D. Thut, “Hemodynamic changes during isoflurane anesthesia,” Anesth. Prog. 31(5), 207–212 (1984).
[PubMed]

Ti, Y.

Torres, R. A.

Y. Song, R. A. Torres, S. Garcia, Y. Frometa, J. Bae, A. Deshmukh, W.-C. Lin, Y. Zheng, and J. J. Riera, “Dysfunction of Neurovascular/Metabolic Coupling in Chronic Focal Epilepsy,” IEEE Trans. Biomed. Eng. 63(1), 97–110 (2016).
[Crossref] [PubMed]

Travère, J.-M.

G. Marchal, P. Rioux, M.-C. Petit-Taboué, G. Sette, J.-M. Travère, C. Le Poec, P. Courtheoux, J.-M. Derlon, and J.-C. Baron, “Regional cerebral oxygen consumption, blood flow, and blood volume in healthy human aging,” Arch. Neurol. 49(10), 1013–1020 (1992).
[Crossref] [PubMed]

Tromberg, B. J.

T. D. O’Sullivan, A. E. Cerussi, D. J. Cuccia, and B. J. Tromberg, “Diffuse optical imaging using spatially and temporally modulated light,” J. Biomed. Opt. 17(7), 071311 (2012).
[PubMed]

D. J. Cuccia, F. Bevilacqua, A. J. Durkin, F. R. Ayers, and B. J. Tromberg, “Quantitation and mapping of tissue optical properties using modulated imaging,” J. Biomed. Opt. 14(2), 024012 (2009).
[Crossref] [PubMed]

D. Abookasis, C. C. Lay, M. S. Mathews, M. E. Linskey, R. D. Frostig, and B. J. Tromberg, “Imaging cortical absorption, scattering, and hemodynamic response during ischemic stroke using spatially modulated near-infrared illumination,” J. Biomed. Opt. 14(2), 024033 (2009).
[Crossref] [PubMed]

A. Cerussi, N. Shah, D. Hsiang, A. Durkin, J. Butler, and B. J. Tromberg, “In vivo absorption, scattering, and physiologic properties of 58 malignant breast tumors determined by broadband diffuse optical spectroscopy,” J. Biomed. Opt. 11(4), 044005 (2006).
[Crossref] [PubMed]

B. J. Tromberg, N. Shah, R. Lanning, A. Cerussi, J. Espinoza, T. Pham, L. Svaasand, and J. Butler, “Non-invasive in vivo characterization of breast tumors using photon migration spectroscopy,” Neoplasia 2(1-2), 26–40 (2000).
[Crossref] [PubMed]

F. Bevilacqua, D. Piguet, P. Marquet, J. D. Gross, B. J. Tromberg, and C. Depeursinge, “In Vivo Local Determination of Tissue Optical Properties: Applications to Human Brain,” Appl. Opt. 38(22), 4939–4950 (1999).
[Crossref] [PubMed]

J. B. Fishkin, O. Coquoz, E. R. Anderson, M. Brenner, and B. J. Tromberg, “Frequency-domain photon migration measurements of normal and malignant tissue optical properties in a human subject,” Appl. Opt. 36(1), 10–20 (1997).
[Crossref] [PubMed]

Tunnell, J. W.

L. Lim, B. Nichols, N. Rajaram, and J. W. Tunnell, “Probe pressure effects on human skin diffuse reflectance and fluorescence spectroscopy measurements,” J. Biomed. Opt. 16(1), 011012 (2011).
[Crossref] [PubMed]

S. F. Bish, N. Rajaram, B. Nichols, and J. W. Tunnell, “Development of a noncontact diffuse optical spectroscopy probe for measuring tissue optical properties,” J. Biomed. Opt. 16(12), 120505 (2011).
[Crossref] [PubMed]

Turzhitsky, V.

V. Turzhitsky, A. J. Radosevich, J. D. Rogers, N. N. Mutyal, and V. Backman, “Measurement of optical scattering properties with low-coherence enhanced backscattering spectroscopy,” J. Biomed. Opt. 16(6), 067007 (2011).
[Crossref] [PubMed]

V. Turzhitsky, J. D. Rogers, N. N. Mutyal, H. K. Roy, and V. Backman, “Characterization of light transport in scattering media at sub-diffusion length scales with Low-coherence Enhanced Backscattering,” IEEE J. Sel. Top. Quantum Electron. 16(3), 619–626 (2010).
[Crossref] [PubMed]

Valanciunaite, J.

van Gemert, M. J.

Villringer, A.

M. Kohl, U. Lindauer, G. Royl, M. Kühl, L. Gold, A. Villringer, and U. Dirnagl, “Physical model for the spectroscopic analysis of cortical intrinsic optical signals,” Phys. Med. Biol. 45(12), 3749–3764 (2000).
[Crossref] [PubMed]

Vovenko, E.

E. Vovenko, “Distribution of oxygen tension on the surface of arterioles, capillaries and venules of brain cortex and in tissue in normoxia: an experimental study on rats,” Pflugers Arch. 437(4), 617–623 (1999).
[Crossref] [PubMed]

Wang, F.

Y. Li, M. Zeng, W. Chen, C. Liu, F. Wang, X. Han, Z. Zuo, and S. Peng, “Dexmedetomidine reduces isoflurane-induced neuroapoptosis partly by preserving PI3K/Akt pathway in the hippocampus of neonatal rats,” PLoS One 9(4), e93639 (2014).
[Crossref] [PubMed]

Wang, L.

L. Wang, S. L. Jacques, and L. Zheng, “CONV--convolution for responses to a finite diameter photon beam incident on multi-layered tissues,” Comput. Methods Programs Biomed. 54(3), 141–150 (1997).
[Crossref] [PubMed]

L. Wang, S. L. Jacques, and L. Zheng, “MCML--Monte Carlo modeling of light transport in multi-layered tissues,” Comput. Methods Programs Biomed. 47(2), 131–146 (1995).
[Crossref] [PubMed]

Watanabe, Y.

H. Ohata, H. Iida, S. Dohi, and Y. Watanabe, “Intravenous dexmedetomidine inhibits cerebrovascular dilation induced by isoflurane and sevoflurane in dogs,” Anesth. Analg. 89(2), 370–377 (1999).
[PubMed]

Welch, A. J.

Wilson, B.

T. J. Farrell, M. S. Patterson, and B. Wilson, “A diffusion theory model of spatially resolved, steady-state diffuse reflectance for the noninvasive determination of tissue optical properties in vivo,” Med. Phys. 19(4), 879–888 (1992).
[Crossref] [PubMed]

Wise, R. J.

K. L. Leenders, D. Perani, A. A. Lammertsma, J. D. Heather, P. Buckingham, M. J. Healy, J. M. Gibbs, R. J. Wise, J. Hatazawa, and S. Herold, “Cerebral blood flow, blood volume and oxygen utilization. Normal values and effect of age,” Brain 113(1), 27–47 (1990).
[Crossref] [PubMed]

Xu, J.

R. D. Sanders, J. Xu, Y. Shu, A. Januszewski, S. Halder, A. Fidalgo, P. Sun, M. Hossain, D. Ma, and M. Maze, “Dexmedetomidine attenuates isoflurane-induced neurocognitive impairment in neonatal rats,” Anesthesiology 110(5), 1077–1085 (2009).
[Crossref] [PubMed]

Yadav, N.

N. Yadav, S. Bhatia, J. Ragheb, Y. Song, A. Romero, S. Oh, and W.-C. Lin, “Evaluating and improving the quality of time-dependent, diffuse reflectance spectroscopic signals measured from in vivo brain during craniotomy,” Med. Eng. Phys. 35(11), 1551–1557 (2013).
[Crossref] [PubMed]

Yaseen, M. A.

S. Sakadžić, E. T. Mandeville, L. Gagnon, J. J. Musacchia, M. A. Yaseen, M. A. Yucel, J. Lefebvre, F. Lesage, A. M. Dale, K. Eikermann-Haerter, C. Ayata, V. J. Srinivasan, E. H. Lo, A. Devor, and D. A. Boas, “Large arteriolar component of oxygen delivery implies a safe margin of oxygen supply to cerebral tissue,” Nat. Commun. 5, 5734 (2014).
[Crossref] [PubMed]

Yucel, M. A.

S. Sakadžić, E. T. Mandeville, L. Gagnon, J. J. Musacchia, M. A. Yaseen, M. A. Yucel, J. Lefebvre, F. Lesage, A. M. Dale, K. Eikermann-Haerter, C. Ayata, V. J. Srinivasan, E. H. Lo, A. Devor, and D. A. Boas, “Large arteriolar component of oxygen delivery implies a safe margin of oxygen supply to cerebral tissue,” Nat. Commun. 5, 5734 (2014).
[Crossref] [PubMed]

Yukhananov, R.

D. J. Culley, M. Baxter, R. Yukhananov, and G. Crosby, “The memory effects of general anesthesia persist for weeks in young and aged rats,” Anesth. Analg. 96(4), 1004–1009 (2003).
[Crossref] [PubMed]

Zeng, M.

Y. Li, M. Zeng, W. Chen, C. Liu, F. Wang, X. Han, Z. Zuo, and S. Peng, “Dexmedetomidine reduces isoflurane-induced neuroapoptosis partly by preserving PI3K/Akt pathway in the hippocampus of neonatal rats,” PLoS One 9(4), e93639 (2014).
[Crossref] [PubMed]

Zheng, L.

L. Wang, S. L. Jacques, and L. Zheng, “CONV--convolution for responses to a finite diameter photon beam incident on multi-layered tissues,” Comput. Methods Programs Biomed. 54(3), 141–150 (1997).
[Crossref] [PubMed]

L. Wang, S. L. Jacques, and L. Zheng, “MCML--Monte Carlo modeling of light transport in multi-layered tissues,” Comput. Methods Programs Biomed. 47(2), 131–146 (1995).
[Crossref] [PubMed]

Zheng, Y.

Y. Song, R. A. Torres, S. Garcia, Y. Frometa, J. Bae, A. Deshmukh, W.-C. Lin, Y. Zheng, and J. J. Riera, “Dysfunction of Neurovascular/Metabolic Coupling in Chronic Focal Epilepsy,” IEEE Trans. Biomed. Eng. 63(1), 97–110 (2016).
[Crossref] [PubMed]

A. J. Kennerley, J. Berwick, J. Martindale, D. Johnston, Y. Zheng, and J. E. Mayhew, “Refinement of optical imaging spectroscopy algorithms using concurrent BOLD and CBV fMRI,” Neuroimage 47(4), 1608–1619 (2009).
[Crossref] [PubMed]

Zuo, Z.

Y. Li, M. Zeng, W. Chen, C. Liu, F. Wang, X. Han, Z. Zuo, and S. Peng, “Dexmedetomidine reduces isoflurane-induced neuroapoptosis partly by preserving PI3K/Akt pathway in the hippocampus of neonatal rats,” PLoS One 9(4), e93639 (2014).
[Crossref] [PubMed]

Anesth. Analg. (2)

H. Ohata, H. Iida, S. Dohi, and Y. Watanabe, “Intravenous dexmedetomidine inhibits cerebrovascular dilation induced by isoflurane and sevoflurane in dogs,” Anesth. Analg. 89(2), 370–377 (1999).
[PubMed]

D. J. Culley, M. Baxter, R. Yukhananov, and G. Crosby, “The memory effects of general anesthesia persist for weeks in young and aged rats,” Anesth. Analg. 96(4), 1004–1009 (2003).
[Crossref] [PubMed]

Anesth. Prog. (1)

J. S. Brahim and P. D. Thut, “Hemodynamic changes during isoflurane anesthesia,” Anesth. Prog. 31(5), 207–212 (1984).
[PubMed]

Anesthesiology (1)

R. D. Sanders, J. Xu, Y. Shu, A. Januszewski, S. Halder, A. Fidalgo, P. Sun, M. Hossain, D. Ma, and M. Maze, “Dexmedetomidine attenuates isoflurane-induced neurocognitive impairment in neonatal rats,” Anesthesiology 110(5), 1077–1085 (2009).
[Crossref] [PubMed]

Appl. Opt. (5)

Arch. Neurol. (1)

G. Marchal, P. Rioux, M.-C. Petit-Taboué, G. Sette, J.-M. Travère, C. Le Poec, P. Courtheoux, J.-M. Derlon, and J.-C. Baron, “Regional cerebral oxygen consumption, blood flow, and blood volume in healthy human aging,” Arch. Neurol. 49(10), 1013–1020 (1992).
[Crossref] [PubMed]

Biomed. Opt. Express (1)

Brain (1)

K. L. Leenders, D. Perani, A. A. Lammertsma, J. D. Heather, P. Buckingham, M. J. Healy, J. M. Gibbs, R. J. Wise, J. Hatazawa, and S. Herold, “Cerebral blood flow, blood volume and oxygen utilization. Normal values and effect of age,” Brain 113(1), 27–47 (1990).
[Crossref] [PubMed]

Brain Res. (1)

N. K. Acharya, E. L. Goldwaser, M. M. Forsberg, G. A. Godsey, C. A. Johnson, A. Sarkar, C. DeMarshall, M. C. Kosciuk, J. M. Dash, C. P. Hale, D. M. Leonard, D. M. Appelt, and R. G. Nagele, “Sevoflurane and Isoflurane induce structural changes in brain vascular endothelial cells and increase blood-brain barrier permeability: Possible link to postoperative delirium and cognitive decline,” Brain Res. 1620, 29–41 (2015).
[Crossref] [PubMed]

Comput. Methods Programs Biomed. (2)

L. Wang, S. L. Jacques, and L. Zheng, “CONV--convolution for responses to a finite diameter photon beam incident on multi-layered tissues,” Comput. Methods Programs Biomed. 54(3), 141–150 (1997).
[Crossref] [PubMed]

L. Wang, S. L. Jacques, and L. Zheng, “MCML--Monte Carlo modeling of light transport in multi-layered tissues,” Comput. Methods Programs Biomed. 47(2), 131–146 (1995).
[Crossref] [PubMed]

IEEE J. Sel. Top. Quantum Electron. (1)

V. Turzhitsky, J. D. Rogers, N. N. Mutyal, H. K. Roy, and V. Backman, “Characterization of light transport in scattering media at sub-diffusion length scales with Low-coherence Enhanced Backscattering,” IEEE J. Sel. Top. Quantum Electron. 16(3), 619–626 (2010).
[Crossref] [PubMed]

IEEE Trans. Biomed. Eng. (1)

Y. Song, R. A. Torres, S. Garcia, Y. Frometa, J. Bae, A. Deshmukh, W.-C. Lin, Y. Zheng, and J. J. Riera, “Dysfunction of Neurovascular/Metabolic Coupling in Chronic Focal Epilepsy,” IEEE Trans. Biomed. Eng. 63(1), 97–110 (2016).
[Crossref] [PubMed]

J. Biomed. Opt. (11)

T. Moffitt, Y.-C. Chen, and S. A. Prahl, “Preparation and characterization of polyurethane optical phantoms,” J. Biomed. Opt. 11(4), 041103 (2006).
[Crossref] [PubMed]

V. Turzhitsky, A. J. Radosevich, J. D. Rogers, N. N. Mutyal, and V. Backman, “Measurement of optical scattering properties with low-coherence enhanced backscattering spectroscopy,” J. Biomed. Opt. 16(6), 067007 (2011).
[Crossref] [PubMed]

L. Lim, B. Nichols, N. Rajaram, and J. W. Tunnell, “Probe pressure effects on human skin diffuse reflectance and fluorescence spectroscopy measurements,” J. Biomed. Opt. 16(1), 011012 (2011).
[Crossref] [PubMed]

M. Bregar, M. Bürmen, U. Aljančič, B. Cugmas, F. Pernuš, and B. Likar, “Contact pressure-aided spectroscopy,” J. Biomed. Opt. 19(2), 020501 (2014).
[Crossref] [PubMed]

D. J. Cuccia, F. Bevilacqua, A. J. Durkin, F. R. Ayers, and B. J. Tromberg, “Quantitation and mapping of tissue optical properties using modulated imaging,” J. Biomed. Opt. 14(2), 024012 (2009).
[Crossref] [PubMed]

S. F. Bish, N. Rajaram, B. Nichols, and J. W. Tunnell, “Development of a noncontact diffuse optical spectroscopy probe for measuring tissue optical properties,” J. Biomed. Opt. 16(12), 120505 (2011).
[Crossref] [PubMed]

F. Foschum and A. Kienle, “Broadband absorption spectroscopy of turbid media using a dual step steady-state method,” J. Biomed. Opt. 17(3), 037009 (2012).
[Crossref] [PubMed]

W.-C. Lin, D. I. Sandberg, S. Bhatia, M. Johnson, S. Oh, and J. Ragheb, “Diffuse reflectance spectroscopy for in vivo pediatric brain tumor detection,” J. Biomed. Opt. 15(6), 061709 (2010).
[Crossref] [PubMed]

T. D. O’Sullivan, A. E. Cerussi, D. J. Cuccia, and B. J. Tromberg, “Diffuse optical imaging using spatially and temporally modulated light,” J. Biomed. Opt. 17(7), 071311 (2012).
[PubMed]

A. Cerussi, N. Shah, D. Hsiang, A. Durkin, J. Butler, and B. J. Tromberg, “In vivo absorption, scattering, and physiologic properties of 58 malignant breast tumors determined by broadband diffuse optical spectroscopy,” J. Biomed. Opt. 11(4), 044005 (2006).
[Crossref] [PubMed]

D. Abookasis, C. C. Lay, M. S. Mathews, M. E. Linskey, R. D. Frostig, and B. J. Tromberg, “Imaging cortical absorption, scattering, and hemodynamic response during ischemic stroke using spatially modulated near-infrared illumination,” J. Biomed. Opt. 14(2), 024033 (2009).
[Crossref] [PubMed]

J. Cereb. Blood Flow Metab. (2)

T. A. Baskerville, G. A. Deuchar, C. McCabe, C. A. Robertson, W. M. Holmes, C. Santosh, and I. M. Macrae, “Influence of 100% and 40% oxygen on penumbral blood flow, oxygen level, and T2*-weighted MRI in a rat stroke model,” J. Cereb. Blood Flow Metab. 31(8), 1799–1806 (2011).
[Crossref] [PubMed]

G. A. Deuchar, D. Brennan, H. Griffiths, I. M. Macrae, and C. Santosh, “Perfluorocarbons enhance a T2*-based MRI technique for identifying the penumbra in a rat model of acute ischemic stroke,” J. Cereb. Blood Flow Metab. 33(9), 1422–1428 (2013).
[Crossref] [PubMed]

Med. Eng. Phys. (1)

N. Yadav, S. Bhatia, J. Ragheb, Y. Song, A. Romero, S. Oh, and W.-C. Lin, “Evaluating and improving the quality of time-dependent, diffuse reflectance spectroscopic signals measured from in vivo brain during craniotomy,” Med. Eng. Phys. 35(11), 1551–1557 (2013).
[Crossref] [PubMed]

Med. Phys. (1)

T. J. Farrell, M. S. Patterson, and B. Wilson, “A diffusion theory model of spatially resolved, steady-state diffuse reflectance for the noninvasive determination of tissue optical properties in vivo,” Med. Phys. 19(4), 879–888 (1992).
[Crossref] [PubMed]

Nat. Commun. (1)

S. Sakadžić, E. T. Mandeville, L. Gagnon, J. J. Musacchia, M. A. Yaseen, M. A. Yucel, J. Lefebvre, F. Lesage, A. M. Dale, K. Eikermann-Haerter, C. Ayata, V. J. Srinivasan, E. H. Lo, A. Devor, and D. A. Boas, “Large arteriolar component of oxygen delivery implies a safe margin of oxygen supply to cerebral tissue,” Nat. Commun. 5, 5734 (2014).
[Crossref] [PubMed]

Neoplasia (1)

B. J. Tromberg, N. Shah, R. Lanning, A. Cerussi, J. Espinoza, T. Pham, L. Svaasand, and J. Butler, “Non-invasive in vivo characterization of breast tumors using photon migration spectroscopy,” Neoplasia 2(1-2), 26–40 (2000).
[Crossref] [PubMed]

Neurobiol. Aging (1)

M. Desjardins, R. Berti, J. Lefebvre, S. Dubeau, and F. Lesage, “Aging-related differences in cerebral capillary blood flow in anesthetized rats,” Neurobiol. Aging 35(8), 1947–1955 (2014).
[Crossref] [PubMed]

Neuroimage (2)

A. J. Kennerley, J. Berwick, J. Martindale, D. Johnston, Y. Zheng, and J. E. Mayhew, “Refinement of optical imaging spectroscopy algorithms using concurrent BOLD and CBV fMRI,” Neuroimage 47(4), 1608–1619 (2009).
[Crossref] [PubMed]

A. K. Dunn, A. Devor, A. M. Dale, and D. A. Boas, “Spatial extent of oxygen metabolism and hemodynamic changes during functional activation of the rat somatosensory cortex,” Neuroimage 27(2), 279–290 (2005).
[Crossref] [PubMed]

NMR Biomed. (1)

M. E. Magnuson, G. J. Thompson, W. J. Pan, and S. D. Keilholz, “Time-dependent effects of isoflurane and dexmedetomidine on functional connectivity, spectral characteristics, and spatial distribution of spontaneous BOLD fluctuations,” NMR Biomed. 27(3), 291–303 (2014).
[Crossref] [PubMed]

Opt. Express (2)

Opt. Lett. (1)

Pflugers Arch. (1)

E. Vovenko, “Distribution of oxygen tension on the surface of arterioles, capillaries and venules of brain cortex and in tissue in normoxia: an experimental study on rats,” Pflugers Arch. 437(4), 617–623 (1999).
[Crossref] [PubMed]

Philos. Trans. R. Soc. Lond. B Biol. Sci. (1)

D. Delpy and M. Cope, “Quantification in tissue near–infrared spectroscopy,” Philos. Trans. R. Soc. Lond. B Biol. Sci. 352(1354), 649–659 (1997).
[Crossref]

Phys. Med. Biol. (3)

M. Kohl, U. Lindauer, G. Royl, M. Kühl, L. Gold, A. Villringer, and U. Dirnagl, “Physical model for the spectroscopic analysis of cortical intrinsic optical signals,” Phys. Med. Biol. 45(12), 3749–3764 (2000).
[Crossref] [PubMed]

S. L. Jacques, “Optical properties of biological tissues: a review,” Phys. Med. Biol. 58(11), R37–R61 (2013).
[Crossref] [PubMed]

R. M. Doornbos, R. Lang, M. C. Aalders, F. W. Cross, and H. J. Sterenborg, “The determination of in vivo human tissue optical properties and absolute chromophore concentrations using spatially resolved steady-state diffuse reflectance spectroscopy,” Phys. Med. Biol. 44(4), 967–981 (1999).
[Crossref] [PubMed]

PLoS One (1)

Y. Li, M. Zeng, W. Chen, C. Liu, F. Wang, X. Han, Z. Zuo, and S. Peng, “Dexmedetomidine reduces isoflurane-induced neuroapoptosis partly by preserving PI3K/Akt pathway in the hippocampus of neonatal rats,” PLoS One 9(4), e93639 (2014).
[Crossref] [PubMed]

Other (7)

M. Moeini, M. S. Tabatabaei, S. Bélanger, P. Avti, A. Castonguay, P. Pouliot, and F. Lesage, “Effects of anesthesia on the cerebral capillary blood flow in young and old mice,” in SPIE BiOS (International Society for Optics and Photonics, 2015), pp. 932929.

M. Moeini, M. Tabatabaei, A. Kakkar, and F. Lesage, “Capillary substrate of brain tissue oxygenation changes with age,” in Optics and the Brain(Optical Society of America, 2016), p. BM4D. 2.

G. Paxinos and C. Watson, The Rat Brain in Stereotaxic Coordinates, 6th ed. (Academic Press, 2007).

http://omlc.org/~prahl/projects/phantoms.html

http://omlc.org/spectra/hemoglobin

Y. Song, A. Joasil, and W.-C. Lin, “Optical Spectroscopy for In Vivo Estimation of Hemodynamics and Structural Properties of the Brain,” in Biomedical Engineering Conference (SBEC), 2013 29th Southern(IEEE, 2013), pp. 107–108.

W. Gottschalk, “Ein Messverfahren zur Bestimmung der optischen Parameter biologischer Gewebe in vitro, Diss. 93 HA 8984,” Univ. Fridiriciana Karlsruhe (1992).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (15)

Fig. 1
Fig. 1 The schematic of the hybrid spectroscopy imaging system.
Fig. 2
Fig. 2 Relationships between total diffuse reflectance RTD and μs’/μa. Black dots are RTD derived from the MC simulations. The blue line is the fitted curve obtained using the Curve Fitting Toolbox of Matlab. The area highlighted in yellow is the range of μs’/μa (~3-60) that is relevant to human brain tissue.
Fig. 3
Fig. 3 Experimental setup for evaluating the function of the spectroscopic point-detection of the hybrid system. The flow chart on the top shows the measurement procedure. RTD_paper(λ) only needs to be carried out once for each paper standard.
Fig. 4
Fig. 4 (a) Absolute percentage error |ΔE| in μs’/μa estimations as a function of RTD and anisotropy factor (g). (b) Absolute percentage error |ΔE| in RTD estimations as a function of μs’/μa and g. The look-up table of μs’/μa verse RTD with g = 0.90 was used for the conversion process, and |ΔE| was calculated using Eq. (5).
Fig. 5
Fig. 5 (a) Absolute percentage error |ΔE| in μs’/μa estimations as a function of RTD and refractive index (n). (b) Absolute percentage error |ΔE| in RTD estimations as a function of μs’/μa and n. The look-up table of μs’/μa verse RTD with n = 1.4 was used in all conversion processes, and |ΔE| was calculated using Eq. (5).
Fig. 6
Fig. 6 (a) Absolute percentage error |ΔE| in μs’/μa estimations and (b) correlation coefficients of the linear fitting between the input and the estimated μs’/μa values under four different conditions of n and g (Table 2 and Appendix C.3), over the range of μs’/μa depicted in Table 1.
Fig. 7
Fig. 7 Absolute percentage error |ΔE| in μs’/μa estimations when n and g are fixed. Three different percentage levels of noise, 1%, 5%, and 10%, were added to the total diffuse reflectance RTD, which yielded signal-to-noise ratios of 100, 20, and 10, respectively.
Fig. 8
Fig. 8 Validation of the proposed RTD spectral interpretation algorithm using Monte Carlo (MC) simulation. (a) Estimation error of each indicative parameter under influences of different levels of noise. (b) Estimation error of each indicative parameter under influences of noise at 5% (i.e., signal-to-noise ratio is 20).
Fig. 9
Fig. 9 Representative results from the experimental evaluation study of the point spectroscopic detection modality of the hybrid system on 10 phantoms. The spectral acquisition procedure is depicted Fig. 3; a total of five investigated sites were used for each phantom. (a) Absolute percentage error |ΔE| in μs’(λ)/μa(λ) estimations using RTD_unknown(λ) between 500 nm and 640 nm. The reference μs’(λ)/μa(λ) used here are those determined by the double-integrating-sphere technique. The middle line represents the mean |ΔE| calculated from all the phantoms studied; the error bars the standard deviation. (b) Measured μs’(λ)/μa(λ) were plotted against reference μs’(λ)/μa(λ) between 500 nm and 640 nm from all the phantoms studied (black dots). Area highlighted in yellow shows the range of μs’/μa (~3-60) that is relevant to human brain. Red crosses represent μs’(λ)/μa(λ) of the reference phantom O38.
Fig. 10
Fig. 10 Sample image taken by the imaging modality of the hybrid system. (a) A snapshot of the cortical surface. (b) The bright spot was from a red laser used for aiming purposes. The total diffuse reflectance spectra were acquired from the same location.
Fig. 11
Fig. 11 Comparing indicative parameters measured from S1FL cortices at resting state in all 7 rats. The data distributions suggest that there may be a correlation between the baseline values and the age/weight of the rats. For display purposes, A/[Hb] was inverted to [Hb]/A. The values of each indicative parameter at resting state were randomly selected every minute and displayed along with the corresponding boxplot. The number of selected resting-state values of each rat is displayed on top of each boxplot.
Fig. 12
Fig. 12 Results with forepaw stimulation in 4 rats (Rats 1, 2, 4 and 5). (a) The time histories of changes in each indicative parameter (noted as Δ([Hb]/A), ΔB, and ΔSatO2, calculated by Eq. (10)) were obtained from multiple events induced by 16-second stimulations with 44 seconds of rest. The vertical black dotted line marks the onset and end of the stimulation. The solid line curves are the averaged time histories. The shades in corresponding color behind them represent standard deviations. The numbers of events that were used in the calculation for each rat are provided at the bottom of the figure. For display purposes, the parameter A/[Hb] was inverted to [Hb]/A; (b) The paired differences between the stimulated responses and baseline values of each stimulation event were significantly different from 0 (p<0.001, marked as “***”), which indicated significant responses induced by forepaw stimulation were detected by the system. It seems that there is a correlation between two indicative parameters (i.e., B and SatO2) and the age/weight of the rats.
Fig. 13
Fig. 13 Diffuse reflectance (Rd) as a function of radius (r) at three different wavelengths (a-500 nm, b-600 nm, and c-700 nm). The red curve demonstrated the narrowest diffuse reflectance profile, while the blue one is the widest one. The dash lines represent the cutoffs within which 95% of total diffuse reflectance is observed. To generate these Rd(r), the Monte Carlo simulation was carried out with the optical properties of human brain [25]. Specifically, n is 1.395, g is 0.88, µa is 1.6-4.5 cm−1 at 500 nm, 0.6-1.7 cm−1 at 600 nm and 0.07-0.19 cm−1 at 700 nm, and µs = 83-250 cm−1 at 500 nm, 52-228 cm−1 at 600 nm and 35-211 cm−1 at 700 nm.
Fig. 14
Fig. 14 Graphic illustrations of (a) total diffuse reflectance measured from an arbitrary point on a tissue surface illuminated by a broad uniform beam and (b) the fraction f associated with the collection geometry.
Fig. 15
Fig. 15 Algorithm to estimate hemodynamic and structural characteristics

Tables (5)

Tables Icon

Table 1 Ranges of μs’/μa used in look-up table building

Tables Icon

Table 2 Monte Carlo simulation-based evaluation on the look-up table of μs’/μa

Tables Icon

Table 3 Ranges of parameters used in the Monte Carlo simulation to generate RTD spectra

Tables Icon

Table 4 Optical Properties of Ten Polyurethane Optical Phantoms (500-640 nm)

Tables Icon

Table 5 Animal information

Equations (24)

Equations on this page are rendered with MathJax. Learn more.

μ a (λ)=[Hb]( ε oxy ( λ )Sat O 2 + ε deoxy ( λ )(1Sat O 2 ) )ln(10)/MW,
μ s '(λ)=A ( λ λ 500 ) B ,
μ s '(λ) μ a (λ) = A (λ/ λ 500 ) B [Hb]( ε oxy (λ)Sat O 2 + ε deoxy (λ)(1Sat O 2 ))ln(10)/MW .
C(λ)=( ε oxy (λ)Sat O 2 + ε deoxy (λ)(1Sat O 2 ))ln(10)/MW = μ s '(λ) μ a (λ) ( A [Hb] ) 1 ( λ λ 500 ) B .
| ΔE |=| v 2 v 1 v 1 |×100%,
Noise(λ)= R TD (λ)Level(rand0.5),
f= R paper (λ) R TD_paper (λ) ,
R TD_unknown (λ)= R unknown (λ) f .
R TD_cortex (λ,t)= R cortex (λ,t) f .
Δx(t)=x(t) x 0 ,
R TD = 0 R d ( r ) dr.
R( x,y )= 0 0 2π [ R d ( r ) 2πr ]rdθdr ,
f= 2π( d 2 + ( D 2 ) 2 )( 1 d ( d 2 + ( D 2 ) 2 ) ) 1 2 4π( d 2 + ( D 2 ) 2 ) =1 d ( d 2 + ( D 2 ) 2 )
f= αatan D 2d α+atan D 2d Icos( Ω )dΩ π 2 π 2 Icos( Ω )dΩ = sin( Ω ) | αatan D 2d α+atan D 2d sin( Ω ) | π 2 π 2 = 2sinαcos( atan D 2d ) 2 = d d 2 + ( D 2 ) 2 sinα.
R xxx ( λ )=f R TD_xxx ( λ ).
R unknown (λ) R paper (λ) R TD_peper (λ)= f R TD_unknown (λ) f R TD_paper (λ) R TD_paper (λ)= R TD_unknown (λ).
μ a (λ)=[Hb]( ε oxy (λ)Sat O 2 + ε deoxy (λ)(1Sat O 2 ))ln(10)/M W [ 24 ] ,
μ s '(λ)=A ( λ λ 500 ) B [ 25 ] ,
μ s '(λ) μ a (λ) = A (λ/ λ 500 ) B [Hb]( ε oxy (λ)Sat O 2 + ε deoxy (λ)(1Sat O 2 ))ln(10)/MW .
( μ s '( λ i1 ) μ a ( λ i1 ) μ s '( λ i2 ) μ a ( λ i2 ) μ s '( λ i5 ) μ a ( λ i5 ) )= A [Hb] ( ( λ i1 /500) B C( λ i1 ) ( λ i2 /500) B C( λ i2 ) ( λ i5 /500) B C( λ i5 ) )
C( λ i )= ε oxy ( λ i )+ ε deoxy ( λ i ) 2 ln(10)/MW.
log( μ s '( λ i1 ) μ a ( λ i1 ) μ s '( λ i2 ) μ a ( λ i2 ) μ s '( λ i5 ) μ a ( λ i5 ) )=log( A [Hb]C( λ i1 ) A [Hb]C( λ i2 ) A [Hb]C( λ i5 ) )+(B)log( λ i1 500 λ i2 500 λ i5 500 ).
C(λ)= μ s '(λ) μ a (λ) ( A [Hb] ) 1 ( λ 500 ) B .
C(λ)=( ε oxy (λ)Sat O 2 + ε deoxy (λ)(1Sat O 2 ))ln(10)/MW.

Metrics