Abstract

The thyroid is an important hormone regulation organ. Laser induced breakdown spectroscopy (LIBS) is developed to assess iodine and other essential elements in the thyroid (of rats). Subjects are administered 0.05% iodine water for 0, 6, and 12 days before the thyroid is extracted. Pronounced iodine, sodium, calcium, and potassium emissions are observed at approximately 746, 589, 395/422, and 766/770 nm, respectively. Iodine emission is surprisingly highest in 0 day subjects, lowest after 6 days, and recovers by 12 days. This follows the Wolff–Chaikoff effect as ingestion of excess iodine reduces thyroid iodine and iodine is essential for hormone production. LIBS is a promising method for trace elemental analysis of the thyroid.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Differentiation of fibrotic liver tissue using laser-induced breakdown spectroscopy

E. Teran-Hinojosa, H. Sobral, C. Sánchez-Pérez, A. Pérez-García, N. Alemán-García, and J. Hernández-Ruiz
Biomed. Opt. Express 8(8) 3816-3827 (2017)

Rapid and in situ optical detection of trace lithium in tissues

Irfan Ahmed, Jingwei Yang, Alan Wing Lun Law, Francis A. M. Manno, Rafay Ahmed, Yanpeng Zhang, and Condon Lau
Biomed. Opt. Express 9(9) 4459-4471 (2018)

Elemental analysis of cotton by laser-induced breakdown spectroscopy

Emily R. Schenk and Jose R. Almirall
Appl. Opt. 49(13) C153-C160 (2010)

References

  • View by:
  • |
  • |
  • |

  1. S. C. Werner, S. H. Ingbar, L. E. Braverman, and R. D. Utiger, Werner & Ingbar’s the Thyroid : A Fundamental and Clinical Text (Lippincott Williams & Wilkins, 2005).
  2. A. M. Leung and L. E. Braverman, “Consequences of excess iodine,” Nat. Rev. Endocrinol. 10(3), 136–142 (2014).
    [PubMed]
  3. J. Wolff and I. L. Chaikoff, “Plasma inorganic iodide as a homeostatic regulator of thyroid function,” J. Biol. Chem. 174(2), 555–564 (1948).
    [PubMed]
  4. D. W. Hahn and N. Omenetto, “Laser-Induced Breakdown Spectroscopy (LIBS), Part II: Review of Instrumental and Methodological Approaches to Material Analysis and Applications to Different Fields,” Applied Spectroscopy 66(4), 347–419 (2012).
  5. L. Sancey, V. Motto-Ros, B. Busser, S. Kotb, J. M. Benoit, A. Piednoir, F. Lux, O. Tillement, G. Panczer, and J. Yu, “Laser spectrometry for multi-elemental imaging of biological tissues,” Sci. Rep. 4, 6065 (2014).
    [PubMed]
  6. F.-Y. Yueh, H. Zheng, J. P. Singh, and S. Burgess, “Preliminary evaluation of laser-induced breakdown spectroscopy for tissue classification,” Spectrochim. Acta B At. Spectrosc. 64, 1059–1067 (2009).
  7. M. Bahreini and S. H. Tavassoli, “Possibility of thyroidism diagnosis by laser induced breakdown spectroscopy of human fingernail,” Journal of Lasers in Medical Sciences 3, 127–131 (2012).
  8. Z. Hosseinimakarem and S. H. Tavassoli, “Analysis of human nails by laser-induced breakdown spectroscopy,” J. Biomed. Opt. 16(5), 057002 (2011).
    [PubMed]
  9. J. Kaiser, K. Novotny, M. Z. Martin, A. Hrdlica, R. Malina, M. Hartl, V. Adam, and W. H. Weinberg, “Trace elemental analysis by laser-induced breakdown spectroscopy—Biological applications,” Surf. Sci. Rep. 67, 233–243 (2012).
  10. X.-Y. Liu and W.-J. Zhang, “Recent developments in biomedicine fields for laser induced breakdown spectroscopy,” J. Biomed. Sci. Eng. 1, 147–151 (2008).
  11. A. W. Miziolek, V. Palleschi, and I. Schechter, Laser-Induced Breakdown Spectroscopy (LIBS) : Fundamentals and Applications (Cambridge University Press, 2006).
  12. V. K. Unnikrishnan, K. Alti, R. Nayak, R. Bernard, N. Khetarpal, V. B. Kartha, C. Santhosh, G. P. Gupta, and B. M. Suri, “Optimized LIBS setup with echelle spectrograph-ICCD system for multi-elemental analysis,” J. Instrum. 5, 04005 (2010).
  13. D. A. Cremers and L. J. Radziemski, “Front Matter,” in Handbook of Laser-Induced Breakdown Spectroscopy (John Wiley & Sons, Ltd, 2006), pp. i–xviii.
  14. L. Sancey, V. Motto-Ros, S. Kotb, X. Wang, F. Lux, G. Panczer, J. Yu, and O. Tillement, “Laser-induced Breakdown Spectroscopy: A New Approach for Nanoparticle’s Mapping and Quantification in Organ Tissue,” J. Vis. Exp. 88, e51353 (2014).
    [PubMed]
  15. R. D. Chernock, “Immunohistochemistry of thyroid gland carcinomas: clinical utility and diagnostic pitfalls,” Diagn. Histopathol. 22, 184–190 (2016).
  16. C. C. Cheung, S. Ezzat, J. L. Freeman, I. B. Rosen, and S. L. Asa, “Immunohistochemical Diagnosis of Papillary Thyroid Carcinoma,” Mod. Pathol. 14(4), 338–342 (2001).
    [PubMed]
  17. A. W. L. Law, R. Ahmed, T. W. Cheung, C. Y. Mak, and C. Lau, “In situ cellular level Raman spectroscopy of the thyroid,” Biomed. Opt. Express 8(2), 670–678 (2017).
    [PubMed]
  18. A. Taurog and I. L. Chaikoff, “The relation of the thyroxine content of the thyroid gland and of the level of protein-bound iodine of plasma to iodine intake,” J. Biol. Chem. 165(1), 217–222 (1946).
    [PubMed]
  19. P. Hellstern, H. E. Keller, B. Weinheimer, and H. Wesch, “Thyroid iodine concentration and total thyroid iodine in normal subjects and in endemic goitre subjects,” Clin. Endocrinol. (Oxf.) 9(4), 351–356 (1978).
    [PubMed]
  20. P. H. K. Eng, G. R. Cardona, S.-L. Fang, M. Previti, S. Alex, N. Carrasco, W. W. Chin, and L. E. Braverman, “Escape from the Acute Wolff-Chaikoff Effect Is Associated with a Decrease in Thyroid Sodium/Iodide Symporter Messenger Ribonucleic Acid and Protein,” Endocrinology 140(8), 3404–3410 (1999).
    [PubMed]
  21. G. Dai, O. Levy, and N. Carrasco, “Cloning and characterization of the thyroid iodide transporter,” Nature 379(6564), 458–460 (1996).
    [PubMed]
  22. M. Safran and L. E. Braverman, “Effect of chronic douching with polyvinylpyrrolidone-iodine on iodine absorption and thyroid function,” Obstet. Gynecol. 60(1), 35–40 (1982).
    [PubMed]
  23. T. Paul, B. Meyers, R. J. Witorsch, S. Pino, S. Chipkin, S. H. Ingbar, and L. E. Braverman, “The effect of small increases in dietary iodine on thyroid function in euthyroid subjects,” Metabolism 37(2), 121–124 (1988).
    [PubMed]
  24. M. Saberi and R. D. Utiger, “Augmentation of Thyrotropin Responses to Thyrotropin-Releasing Hormone Following Small Decreases in Serum Thyroid Hormone Concentrations,” J. Clin. Endocrinol. Metab. 40(3), 435–441 (1975).
    [PubMed]

2017 (1)

2016 (1)

R. D. Chernock, “Immunohistochemistry of thyroid gland carcinomas: clinical utility and diagnostic pitfalls,” Diagn. Histopathol. 22, 184–190 (2016).

2014 (3)

L. Sancey, V. Motto-Ros, S. Kotb, X. Wang, F. Lux, G. Panczer, J. Yu, and O. Tillement, “Laser-induced Breakdown Spectroscopy: A New Approach for Nanoparticle’s Mapping and Quantification in Organ Tissue,” J. Vis. Exp. 88, e51353 (2014).
[PubMed]

A. M. Leung and L. E. Braverman, “Consequences of excess iodine,” Nat. Rev. Endocrinol. 10(3), 136–142 (2014).
[PubMed]

L. Sancey, V. Motto-Ros, B. Busser, S. Kotb, J. M. Benoit, A. Piednoir, F. Lux, O. Tillement, G. Panczer, and J. Yu, “Laser spectrometry for multi-elemental imaging of biological tissues,” Sci. Rep. 4, 6065 (2014).
[PubMed]

2012 (3)

M. Bahreini and S. H. Tavassoli, “Possibility of thyroidism diagnosis by laser induced breakdown spectroscopy of human fingernail,” Journal of Lasers in Medical Sciences 3, 127–131 (2012).

J. Kaiser, K. Novotny, M. Z. Martin, A. Hrdlica, R. Malina, M. Hartl, V. Adam, and W. H. Weinberg, “Trace elemental analysis by laser-induced breakdown spectroscopy—Biological applications,” Surf. Sci. Rep. 67, 233–243 (2012).

D. W. Hahn and N. Omenetto, “Laser-Induced Breakdown Spectroscopy (LIBS), Part II: Review of Instrumental and Methodological Approaches to Material Analysis and Applications to Different Fields,” Applied Spectroscopy 66(4), 347–419 (2012).

2011 (1)

Z. Hosseinimakarem and S. H. Tavassoli, “Analysis of human nails by laser-induced breakdown spectroscopy,” J. Biomed. Opt. 16(5), 057002 (2011).
[PubMed]

2010 (1)

V. K. Unnikrishnan, K. Alti, R. Nayak, R. Bernard, N. Khetarpal, V. B. Kartha, C. Santhosh, G. P. Gupta, and B. M. Suri, “Optimized LIBS setup with echelle spectrograph-ICCD system for multi-elemental analysis,” J. Instrum. 5, 04005 (2010).

2009 (1)

F.-Y. Yueh, H. Zheng, J. P. Singh, and S. Burgess, “Preliminary evaluation of laser-induced breakdown spectroscopy for tissue classification,” Spectrochim. Acta B At. Spectrosc. 64, 1059–1067 (2009).

2008 (1)

X.-Y. Liu and W.-J. Zhang, “Recent developments in biomedicine fields for laser induced breakdown spectroscopy,” J. Biomed. Sci. Eng. 1, 147–151 (2008).

2001 (1)

C. C. Cheung, S. Ezzat, J. L. Freeman, I. B. Rosen, and S. L. Asa, “Immunohistochemical Diagnosis of Papillary Thyroid Carcinoma,” Mod. Pathol. 14(4), 338–342 (2001).
[PubMed]

1999 (1)

P. H. K. Eng, G. R. Cardona, S.-L. Fang, M. Previti, S. Alex, N. Carrasco, W. W. Chin, and L. E. Braverman, “Escape from the Acute Wolff-Chaikoff Effect Is Associated with a Decrease in Thyroid Sodium/Iodide Symporter Messenger Ribonucleic Acid and Protein,” Endocrinology 140(8), 3404–3410 (1999).
[PubMed]

1996 (1)

G. Dai, O. Levy, and N. Carrasco, “Cloning and characterization of the thyroid iodide transporter,” Nature 379(6564), 458–460 (1996).
[PubMed]

1988 (1)

T. Paul, B. Meyers, R. J. Witorsch, S. Pino, S. Chipkin, S. H. Ingbar, and L. E. Braverman, “The effect of small increases in dietary iodine on thyroid function in euthyroid subjects,” Metabolism 37(2), 121–124 (1988).
[PubMed]

1982 (1)

M. Safran and L. E. Braverman, “Effect of chronic douching with polyvinylpyrrolidone-iodine on iodine absorption and thyroid function,” Obstet. Gynecol. 60(1), 35–40 (1982).
[PubMed]

1978 (1)

P. Hellstern, H. E. Keller, B. Weinheimer, and H. Wesch, “Thyroid iodine concentration and total thyroid iodine in normal subjects and in endemic goitre subjects,” Clin. Endocrinol. (Oxf.) 9(4), 351–356 (1978).
[PubMed]

1975 (1)

M. Saberi and R. D. Utiger, “Augmentation of Thyrotropin Responses to Thyrotropin-Releasing Hormone Following Small Decreases in Serum Thyroid Hormone Concentrations,” J. Clin. Endocrinol. Metab. 40(3), 435–441 (1975).
[PubMed]

1948 (1)

J. Wolff and I. L. Chaikoff, “Plasma inorganic iodide as a homeostatic regulator of thyroid function,” J. Biol. Chem. 174(2), 555–564 (1948).
[PubMed]

1946 (1)

A. Taurog and I. L. Chaikoff, “The relation of the thyroxine content of the thyroid gland and of the level of protein-bound iodine of plasma to iodine intake,” J. Biol. Chem. 165(1), 217–222 (1946).
[PubMed]

Adam, V.

J. Kaiser, K. Novotny, M. Z. Martin, A. Hrdlica, R. Malina, M. Hartl, V. Adam, and W. H. Weinberg, “Trace elemental analysis by laser-induced breakdown spectroscopy—Biological applications,” Surf. Sci. Rep. 67, 233–243 (2012).

Ahmed, R.

Alex, S.

P. H. K. Eng, G. R. Cardona, S.-L. Fang, M. Previti, S. Alex, N. Carrasco, W. W. Chin, and L. E. Braverman, “Escape from the Acute Wolff-Chaikoff Effect Is Associated with a Decrease in Thyroid Sodium/Iodide Symporter Messenger Ribonucleic Acid and Protein,” Endocrinology 140(8), 3404–3410 (1999).
[PubMed]

Alti, K.

V. K. Unnikrishnan, K. Alti, R. Nayak, R. Bernard, N. Khetarpal, V. B. Kartha, C. Santhosh, G. P. Gupta, and B. M. Suri, “Optimized LIBS setup with echelle spectrograph-ICCD system for multi-elemental analysis,” J. Instrum. 5, 04005 (2010).

Asa, S. L.

C. C. Cheung, S. Ezzat, J. L. Freeman, I. B. Rosen, and S. L. Asa, “Immunohistochemical Diagnosis of Papillary Thyroid Carcinoma,” Mod. Pathol. 14(4), 338–342 (2001).
[PubMed]

Bahreini, M.

M. Bahreini and S. H. Tavassoli, “Possibility of thyroidism diagnosis by laser induced breakdown spectroscopy of human fingernail,” Journal of Lasers in Medical Sciences 3, 127–131 (2012).

Benoit, J. M.

L. Sancey, V. Motto-Ros, B. Busser, S. Kotb, J. M. Benoit, A. Piednoir, F. Lux, O. Tillement, G. Panczer, and J. Yu, “Laser spectrometry for multi-elemental imaging of biological tissues,” Sci. Rep. 4, 6065 (2014).
[PubMed]

Bernard, R.

V. K. Unnikrishnan, K. Alti, R. Nayak, R. Bernard, N. Khetarpal, V. B. Kartha, C. Santhosh, G. P. Gupta, and B. M. Suri, “Optimized LIBS setup with echelle spectrograph-ICCD system for multi-elemental analysis,” J. Instrum. 5, 04005 (2010).

Braverman, L. E.

A. M. Leung and L. E. Braverman, “Consequences of excess iodine,” Nat. Rev. Endocrinol. 10(3), 136–142 (2014).
[PubMed]

P. H. K. Eng, G. R. Cardona, S.-L. Fang, M. Previti, S. Alex, N. Carrasco, W. W. Chin, and L. E. Braverman, “Escape from the Acute Wolff-Chaikoff Effect Is Associated with a Decrease in Thyroid Sodium/Iodide Symporter Messenger Ribonucleic Acid and Protein,” Endocrinology 140(8), 3404–3410 (1999).
[PubMed]

T. Paul, B. Meyers, R. J. Witorsch, S. Pino, S. Chipkin, S. H. Ingbar, and L. E. Braverman, “The effect of small increases in dietary iodine on thyroid function in euthyroid subjects,” Metabolism 37(2), 121–124 (1988).
[PubMed]

M. Safran and L. E. Braverman, “Effect of chronic douching with polyvinylpyrrolidone-iodine on iodine absorption and thyroid function,” Obstet. Gynecol. 60(1), 35–40 (1982).
[PubMed]

Burgess, S.

F.-Y. Yueh, H. Zheng, J. P. Singh, and S. Burgess, “Preliminary evaluation of laser-induced breakdown spectroscopy for tissue classification,” Spectrochim. Acta B At. Spectrosc. 64, 1059–1067 (2009).

Busser, B.

L. Sancey, V. Motto-Ros, B. Busser, S. Kotb, J. M. Benoit, A. Piednoir, F. Lux, O. Tillement, G. Panczer, and J. Yu, “Laser spectrometry for multi-elemental imaging of biological tissues,” Sci. Rep. 4, 6065 (2014).
[PubMed]

Cardona, G. R.

P. H. K. Eng, G. R. Cardona, S.-L. Fang, M. Previti, S. Alex, N. Carrasco, W. W. Chin, and L. E. Braverman, “Escape from the Acute Wolff-Chaikoff Effect Is Associated with a Decrease in Thyroid Sodium/Iodide Symporter Messenger Ribonucleic Acid and Protein,” Endocrinology 140(8), 3404–3410 (1999).
[PubMed]

Carrasco, N.

P. H. K. Eng, G. R. Cardona, S.-L. Fang, M. Previti, S. Alex, N. Carrasco, W. W. Chin, and L. E. Braverman, “Escape from the Acute Wolff-Chaikoff Effect Is Associated with a Decrease in Thyroid Sodium/Iodide Symporter Messenger Ribonucleic Acid and Protein,” Endocrinology 140(8), 3404–3410 (1999).
[PubMed]

G. Dai, O. Levy, and N. Carrasco, “Cloning and characterization of the thyroid iodide transporter,” Nature 379(6564), 458–460 (1996).
[PubMed]

Chaikoff, I. L.

J. Wolff and I. L. Chaikoff, “Plasma inorganic iodide as a homeostatic regulator of thyroid function,” J. Biol. Chem. 174(2), 555–564 (1948).
[PubMed]

A. Taurog and I. L. Chaikoff, “The relation of the thyroxine content of the thyroid gland and of the level of protein-bound iodine of plasma to iodine intake,” J. Biol. Chem. 165(1), 217–222 (1946).
[PubMed]

Chernock, R. D.

R. D. Chernock, “Immunohistochemistry of thyroid gland carcinomas: clinical utility and diagnostic pitfalls,” Diagn. Histopathol. 22, 184–190 (2016).

Cheung, C. C.

C. C. Cheung, S. Ezzat, J. L. Freeman, I. B. Rosen, and S. L. Asa, “Immunohistochemical Diagnosis of Papillary Thyroid Carcinoma,” Mod. Pathol. 14(4), 338–342 (2001).
[PubMed]

Cheung, T. W.

Chin, W. W.

P. H. K. Eng, G. R. Cardona, S.-L. Fang, M. Previti, S. Alex, N. Carrasco, W. W. Chin, and L. E. Braverman, “Escape from the Acute Wolff-Chaikoff Effect Is Associated with a Decrease in Thyroid Sodium/Iodide Symporter Messenger Ribonucleic Acid and Protein,” Endocrinology 140(8), 3404–3410 (1999).
[PubMed]

Chipkin, S.

T. Paul, B. Meyers, R. J. Witorsch, S. Pino, S. Chipkin, S. H. Ingbar, and L. E. Braverman, “The effect of small increases in dietary iodine on thyroid function in euthyroid subjects,” Metabolism 37(2), 121–124 (1988).
[PubMed]

Dai, G.

G. Dai, O. Levy, and N. Carrasco, “Cloning and characterization of the thyroid iodide transporter,” Nature 379(6564), 458–460 (1996).
[PubMed]

Eng, P. H. K.

P. H. K. Eng, G. R. Cardona, S.-L. Fang, M. Previti, S. Alex, N. Carrasco, W. W. Chin, and L. E. Braverman, “Escape from the Acute Wolff-Chaikoff Effect Is Associated with a Decrease in Thyroid Sodium/Iodide Symporter Messenger Ribonucleic Acid and Protein,” Endocrinology 140(8), 3404–3410 (1999).
[PubMed]

Ezzat, S.

C. C. Cheung, S. Ezzat, J. L. Freeman, I. B. Rosen, and S. L. Asa, “Immunohistochemical Diagnosis of Papillary Thyroid Carcinoma,” Mod. Pathol. 14(4), 338–342 (2001).
[PubMed]

Fang, S.-L.

P. H. K. Eng, G. R. Cardona, S.-L. Fang, M. Previti, S. Alex, N. Carrasco, W. W. Chin, and L. E. Braverman, “Escape from the Acute Wolff-Chaikoff Effect Is Associated with a Decrease in Thyroid Sodium/Iodide Symporter Messenger Ribonucleic Acid and Protein,” Endocrinology 140(8), 3404–3410 (1999).
[PubMed]

Freeman, J. L.

C. C. Cheung, S. Ezzat, J. L. Freeman, I. B. Rosen, and S. L. Asa, “Immunohistochemical Diagnosis of Papillary Thyroid Carcinoma,” Mod. Pathol. 14(4), 338–342 (2001).
[PubMed]

Gupta, G. P.

V. K. Unnikrishnan, K. Alti, R. Nayak, R. Bernard, N. Khetarpal, V. B. Kartha, C. Santhosh, G. P. Gupta, and B. M. Suri, “Optimized LIBS setup with echelle spectrograph-ICCD system for multi-elemental analysis,” J. Instrum. 5, 04005 (2010).

Hahn, D. W.

D. W. Hahn and N. Omenetto, “Laser-Induced Breakdown Spectroscopy (LIBS), Part II: Review of Instrumental and Methodological Approaches to Material Analysis and Applications to Different Fields,” Applied Spectroscopy 66(4), 347–419 (2012).

Hartl, M.

J. Kaiser, K. Novotny, M. Z. Martin, A. Hrdlica, R. Malina, M. Hartl, V. Adam, and W. H. Weinberg, “Trace elemental analysis by laser-induced breakdown spectroscopy—Biological applications,” Surf. Sci. Rep. 67, 233–243 (2012).

Hellstern, P.

P. Hellstern, H. E. Keller, B. Weinheimer, and H. Wesch, “Thyroid iodine concentration and total thyroid iodine in normal subjects and in endemic goitre subjects,” Clin. Endocrinol. (Oxf.) 9(4), 351–356 (1978).
[PubMed]

Hosseinimakarem, Z.

Z. Hosseinimakarem and S. H. Tavassoli, “Analysis of human nails by laser-induced breakdown spectroscopy,” J. Biomed. Opt. 16(5), 057002 (2011).
[PubMed]

Hrdlica, A.

J. Kaiser, K. Novotny, M. Z. Martin, A. Hrdlica, R. Malina, M. Hartl, V. Adam, and W. H. Weinberg, “Trace elemental analysis by laser-induced breakdown spectroscopy—Biological applications,” Surf. Sci. Rep. 67, 233–243 (2012).

Ingbar, S. H.

T. Paul, B. Meyers, R. J. Witorsch, S. Pino, S. Chipkin, S. H. Ingbar, and L. E. Braverman, “The effect of small increases in dietary iodine on thyroid function in euthyroid subjects,” Metabolism 37(2), 121–124 (1988).
[PubMed]

Kaiser, J.

J. Kaiser, K. Novotny, M. Z. Martin, A. Hrdlica, R. Malina, M. Hartl, V. Adam, and W. H. Weinberg, “Trace elemental analysis by laser-induced breakdown spectroscopy—Biological applications,” Surf. Sci. Rep. 67, 233–243 (2012).

Kartha, V. B.

V. K. Unnikrishnan, K. Alti, R. Nayak, R. Bernard, N. Khetarpal, V. B. Kartha, C. Santhosh, G. P. Gupta, and B. M. Suri, “Optimized LIBS setup with echelle spectrograph-ICCD system for multi-elemental analysis,” J. Instrum. 5, 04005 (2010).

Keller, H. E.

P. Hellstern, H. E. Keller, B. Weinheimer, and H. Wesch, “Thyroid iodine concentration and total thyroid iodine in normal subjects and in endemic goitre subjects,” Clin. Endocrinol. (Oxf.) 9(4), 351–356 (1978).
[PubMed]

Khetarpal, N.

V. K. Unnikrishnan, K. Alti, R. Nayak, R. Bernard, N. Khetarpal, V. B. Kartha, C. Santhosh, G. P. Gupta, and B. M. Suri, “Optimized LIBS setup with echelle spectrograph-ICCD system for multi-elemental analysis,” J. Instrum. 5, 04005 (2010).

Kotb, S.

L. Sancey, V. Motto-Ros, S. Kotb, X. Wang, F. Lux, G. Panczer, J. Yu, and O. Tillement, “Laser-induced Breakdown Spectroscopy: A New Approach for Nanoparticle’s Mapping and Quantification in Organ Tissue,” J. Vis. Exp. 88, e51353 (2014).
[PubMed]

L. Sancey, V. Motto-Ros, B. Busser, S. Kotb, J. M. Benoit, A. Piednoir, F. Lux, O. Tillement, G. Panczer, and J. Yu, “Laser spectrometry for multi-elemental imaging of biological tissues,” Sci. Rep. 4, 6065 (2014).
[PubMed]

Lau, C.

Law, A. W. L.

Leung, A. M.

A. M. Leung and L. E. Braverman, “Consequences of excess iodine,” Nat. Rev. Endocrinol. 10(3), 136–142 (2014).
[PubMed]

Levy, O.

G. Dai, O. Levy, and N. Carrasco, “Cloning and characterization of the thyroid iodide transporter,” Nature 379(6564), 458–460 (1996).
[PubMed]

Liu, X.-Y.

X.-Y. Liu and W.-J. Zhang, “Recent developments in biomedicine fields for laser induced breakdown spectroscopy,” J. Biomed. Sci. Eng. 1, 147–151 (2008).

Lux, F.

L. Sancey, V. Motto-Ros, S. Kotb, X. Wang, F. Lux, G. Panczer, J. Yu, and O. Tillement, “Laser-induced Breakdown Spectroscopy: A New Approach for Nanoparticle’s Mapping and Quantification in Organ Tissue,” J. Vis. Exp. 88, e51353 (2014).
[PubMed]

L. Sancey, V. Motto-Ros, B. Busser, S. Kotb, J. M. Benoit, A. Piednoir, F. Lux, O. Tillement, G. Panczer, and J. Yu, “Laser spectrometry for multi-elemental imaging of biological tissues,” Sci. Rep. 4, 6065 (2014).
[PubMed]

Mak, C. Y.

Malina, R.

J. Kaiser, K. Novotny, M. Z. Martin, A. Hrdlica, R. Malina, M. Hartl, V. Adam, and W. H. Weinberg, “Trace elemental analysis by laser-induced breakdown spectroscopy—Biological applications,” Surf. Sci. Rep. 67, 233–243 (2012).

Martin, M. Z.

J. Kaiser, K. Novotny, M. Z. Martin, A. Hrdlica, R. Malina, M. Hartl, V. Adam, and W. H. Weinberg, “Trace elemental analysis by laser-induced breakdown spectroscopy—Biological applications,” Surf. Sci. Rep. 67, 233–243 (2012).

Meyers, B.

T. Paul, B. Meyers, R. J. Witorsch, S. Pino, S. Chipkin, S. H. Ingbar, and L. E. Braverman, “The effect of small increases in dietary iodine on thyroid function in euthyroid subjects,” Metabolism 37(2), 121–124 (1988).
[PubMed]

Motto-Ros, V.

L. Sancey, V. Motto-Ros, B. Busser, S. Kotb, J. M. Benoit, A. Piednoir, F. Lux, O. Tillement, G. Panczer, and J. Yu, “Laser spectrometry for multi-elemental imaging of biological tissues,” Sci. Rep. 4, 6065 (2014).
[PubMed]

L. Sancey, V. Motto-Ros, S. Kotb, X. Wang, F. Lux, G. Panczer, J. Yu, and O. Tillement, “Laser-induced Breakdown Spectroscopy: A New Approach for Nanoparticle’s Mapping and Quantification in Organ Tissue,” J. Vis. Exp. 88, e51353 (2014).
[PubMed]

Nayak, R.

V. K. Unnikrishnan, K. Alti, R. Nayak, R. Bernard, N. Khetarpal, V. B. Kartha, C. Santhosh, G. P. Gupta, and B. M. Suri, “Optimized LIBS setup with echelle spectrograph-ICCD system for multi-elemental analysis,” J. Instrum. 5, 04005 (2010).

Novotny, K.

J. Kaiser, K. Novotny, M. Z. Martin, A. Hrdlica, R. Malina, M. Hartl, V. Adam, and W. H. Weinberg, “Trace elemental analysis by laser-induced breakdown spectroscopy—Biological applications,” Surf. Sci. Rep. 67, 233–243 (2012).

Omenetto, N.

D. W. Hahn and N. Omenetto, “Laser-Induced Breakdown Spectroscopy (LIBS), Part II: Review of Instrumental and Methodological Approaches to Material Analysis and Applications to Different Fields,” Applied Spectroscopy 66(4), 347–419 (2012).

Panczer, G.

L. Sancey, V. Motto-Ros, B. Busser, S. Kotb, J. M. Benoit, A. Piednoir, F. Lux, O. Tillement, G. Panczer, and J. Yu, “Laser spectrometry for multi-elemental imaging of biological tissues,” Sci. Rep. 4, 6065 (2014).
[PubMed]

L. Sancey, V. Motto-Ros, S. Kotb, X. Wang, F. Lux, G. Panczer, J. Yu, and O. Tillement, “Laser-induced Breakdown Spectroscopy: A New Approach for Nanoparticle’s Mapping and Quantification in Organ Tissue,” J. Vis. Exp. 88, e51353 (2014).
[PubMed]

Paul, T.

T. Paul, B. Meyers, R. J. Witorsch, S. Pino, S. Chipkin, S. H. Ingbar, and L. E. Braverman, “The effect of small increases in dietary iodine on thyroid function in euthyroid subjects,” Metabolism 37(2), 121–124 (1988).
[PubMed]

Piednoir, A.

L. Sancey, V. Motto-Ros, B. Busser, S. Kotb, J. M. Benoit, A. Piednoir, F. Lux, O. Tillement, G. Panczer, and J. Yu, “Laser spectrometry for multi-elemental imaging of biological tissues,” Sci. Rep. 4, 6065 (2014).
[PubMed]

Pino, S.

T. Paul, B. Meyers, R. J. Witorsch, S. Pino, S. Chipkin, S. H. Ingbar, and L. E. Braverman, “The effect of small increases in dietary iodine on thyroid function in euthyroid subjects,” Metabolism 37(2), 121–124 (1988).
[PubMed]

Previti, M.

P. H. K. Eng, G. R. Cardona, S.-L. Fang, M. Previti, S. Alex, N. Carrasco, W. W. Chin, and L. E. Braverman, “Escape from the Acute Wolff-Chaikoff Effect Is Associated with a Decrease in Thyroid Sodium/Iodide Symporter Messenger Ribonucleic Acid and Protein,” Endocrinology 140(8), 3404–3410 (1999).
[PubMed]

Rosen, I. B.

C. C. Cheung, S. Ezzat, J. L. Freeman, I. B. Rosen, and S. L. Asa, “Immunohistochemical Diagnosis of Papillary Thyroid Carcinoma,” Mod. Pathol. 14(4), 338–342 (2001).
[PubMed]

Saberi, M.

M. Saberi and R. D. Utiger, “Augmentation of Thyrotropin Responses to Thyrotropin-Releasing Hormone Following Small Decreases in Serum Thyroid Hormone Concentrations,” J. Clin. Endocrinol. Metab. 40(3), 435–441 (1975).
[PubMed]

Safran, M.

M. Safran and L. E. Braverman, “Effect of chronic douching with polyvinylpyrrolidone-iodine on iodine absorption and thyroid function,” Obstet. Gynecol. 60(1), 35–40 (1982).
[PubMed]

Sancey, L.

L. Sancey, V. Motto-Ros, S. Kotb, X. Wang, F. Lux, G. Panczer, J. Yu, and O. Tillement, “Laser-induced Breakdown Spectroscopy: A New Approach for Nanoparticle’s Mapping and Quantification in Organ Tissue,” J. Vis. Exp. 88, e51353 (2014).
[PubMed]

L. Sancey, V. Motto-Ros, B. Busser, S. Kotb, J. M. Benoit, A. Piednoir, F. Lux, O. Tillement, G. Panczer, and J. Yu, “Laser spectrometry for multi-elemental imaging of biological tissues,” Sci. Rep. 4, 6065 (2014).
[PubMed]

Santhosh, C.

V. K. Unnikrishnan, K. Alti, R. Nayak, R. Bernard, N. Khetarpal, V. B. Kartha, C. Santhosh, G. P. Gupta, and B. M. Suri, “Optimized LIBS setup with echelle spectrograph-ICCD system for multi-elemental analysis,” J. Instrum. 5, 04005 (2010).

Singh, J. P.

F.-Y. Yueh, H. Zheng, J. P. Singh, and S. Burgess, “Preliminary evaluation of laser-induced breakdown spectroscopy for tissue classification,” Spectrochim. Acta B At. Spectrosc. 64, 1059–1067 (2009).

Suri, B. M.

V. K. Unnikrishnan, K. Alti, R. Nayak, R. Bernard, N. Khetarpal, V. B. Kartha, C. Santhosh, G. P. Gupta, and B. M. Suri, “Optimized LIBS setup with echelle spectrograph-ICCD system for multi-elemental analysis,” J. Instrum. 5, 04005 (2010).

Taurog, A.

A. Taurog and I. L. Chaikoff, “The relation of the thyroxine content of the thyroid gland and of the level of protein-bound iodine of plasma to iodine intake,” J. Biol. Chem. 165(1), 217–222 (1946).
[PubMed]

Tavassoli, S. H.

M. Bahreini and S. H. Tavassoli, “Possibility of thyroidism diagnosis by laser induced breakdown spectroscopy of human fingernail,” Journal of Lasers in Medical Sciences 3, 127–131 (2012).

Z. Hosseinimakarem and S. H. Tavassoli, “Analysis of human nails by laser-induced breakdown spectroscopy,” J. Biomed. Opt. 16(5), 057002 (2011).
[PubMed]

Tillement, O.

L. Sancey, V. Motto-Ros, B. Busser, S. Kotb, J. M. Benoit, A. Piednoir, F. Lux, O. Tillement, G. Panczer, and J. Yu, “Laser spectrometry for multi-elemental imaging of biological tissues,” Sci. Rep. 4, 6065 (2014).
[PubMed]

L. Sancey, V. Motto-Ros, S. Kotb, X. Wang, F. Lux, G. Panczer, J. Yu, and O. Tillement, “Laser-induced Breakdown Spectroscopy: A New Approach for Nanoparticle’s Mapping and Quantification in Organ Tissue,” J. Vis. Exp. 88, e51353 (2014).
[PubMed]

Unnikrishnan, V. K.

V. K. Unnikrishnan, K. Alti, R. Nayak, R. Bernard, N. Khetarpal, V. B. Kartha, C. Santhosh, G. P. Gupta, and B. M. Suri, “Optimized LIBS setup with echelle spectrograph-ICCD system for multi-elemental analysis,” J. Instrum. 5, 04005 (2010).

Utiger, R. D.

M. Saberi and R. D. Utiger, “Augmentation of Thyrotropin Responses to Thyrotropin-Releasing Hormone Following Small Decreases in Serum Thyroid Hormone Concentrations,” J. Clin. Endocrinol. Metab. 40(3), 435–441 (1975).
[PubMed]

Wang, X.

L. Sancey, V. Motto-Ros, S. Kotb, X. Wang, F. Lux, G. Panczer, J. Yu, and O. Tillement, “Laser-induced Breakdown Spectroscopy: A New Approach for Nanoparticle’s Mapping and Quantification in Organ Tissue,” J. Vis. Exp. 88, e51353 (2014).
[PubMed]

Weinberg, W. H.

J. Kaiser, K. Novotny, M. Z. Martin, A. Hrdlica, R. Malina, M. Hartl, V. Adam, and W. H. Weinberg, “Trace elemental analysis by laser-induced breakdown spectroscopy—Biological applications,” Surf. Sci. Rep. 67, 233–243 (2012).

Weinheimer, B.

P. Hellstern, H. E. Keller, B. Weinheimer, and H. Wesch, “Thyroid iodine concentration and total thyroid iodine in normal subjects and in endemic goitre subjects,” Clin. Endocrinol. (Oxf.) 9(4), 351–356 (1978).
[PubMed]

Wesch, H.

P. Hellstern, H. E. Keller, B. Weinheimer, and H. Wesch, “Thyroid iodine concentration and total thyroid iodine in normal subjects and in endemic goitre subjects,” Clin. Endocrinol. (Oxf.) 9(4), 351–356 (1978).
[PubMed]

Witorsch, R. J.

T. Paul, B. Meyers, R. J. Witorsch, S. Pino, S. Chipkin, S. H. Ingbar, and L. E. Braverman, “The effect of small increases in dietary iodine on thyroid function in euthyroid subjects,” Metabolism 37(2), 121–124 (1988).
[PubMed]

Wolff, J.

J. Wolff and I. L. Chaikoff, “Plasma inorganic iodide as a homeostatic regulator of thyroid function,” J. Biol. Chem. 174(2), 555–564 (1948).
[PubMed]

Yu, J.

L. Sancey, V. Motto-Ros, B. Busser, S. Kotb, J. M. Benoit, A. Piednoir, F. Lux, O. Tillement, G. Panczer, and J. Yu, “Laser spectrometry for multi-elemental imaging of biological tissues,” Sci. Rep. 4, 6065 (2014).
[PubMed]

L. Sancey, V. Motto-Ros, S. Kotb, X. Wang, F. Lux, G. Panczer, J. Yu, and O. Tillement, “Laser-induced Breakdown Spectroscopy: A New Approach for Nanoparticle’s Mapping and Quantification in Organ Tissue,” J. Vis. Exp. 88, e51353 (2014).
[PubMed]

Yueh, F.-Y.

F.-Y. Yueh, H. Zheng, J. P. Singh, and S. Burgess, “Preliminary evaluation of laser-induced breakdown spectroscopy for tissue classification,” Spectrochim. Acta B At. Spectrosc. 64, 1059–1067 (2009).

Zhang, W.-J.

X.-Y. Liu and W.-J. Zhang, “Recent developments in biomedicine fields for laser induced breakdown spectroscopy,” J. Biomed. Sci. Eng. 1, 147–151 (2008).

Zheng, H.

F.-Y. Yueh, H. Zheng, J. P. Singh, and S. Burgess, “Preliminary evaluation of laser-induced breakdown spectroscopy for tissue classification,” Spectrochim. Acta B At. Spectrosc. 64, 1059–1067 (2009).

Applied Spectroscopy (1)

D. W. Hahn and N. Omenetto, “Laser-Induced Breakdown Spectroscopy (LIBS), Part II: Review of Instrumental and Methodological Approaches to Material Analysis and Applications to Different Fields,” Applied Spectroscopy 66(4), 347–419 (2012).

Biomed. Opt. Express (1)

Clin. Endocrinol. (Oxf.) (1)

P. Hellstern, H. E. Keller, B. Weinheimer, and H. Wesch, “Thyroid iodine concentration and total thyroid iodine in normal subjects and in endemic goitre subjects,” Clin. Endocrinol. (Oxf.) 9(4), 351–356 (1978).
[PubMed]

Diagn. Histopathol. (1)

R. D. Chernock, “Immunohistochemistry of thyroid gland carcinomas: clinical utility and diagnostic pitfalls,” Diagn. Histopathol. 22, 184–190 (2016).

Endocrinology (1)

P. H. K. Eng, G. R. Cardona, S.-L. Fang, M. Previti, S. Alex, N. Carrasco, W. W. Chin, and L. E. Braverman, “Escape from the Acute Wolff-Chaikoff Effect Is Associated with a Decrease in Thyroid Sodium/Iodide Symporter Messenger Ribonucleic Acid and Protein,” Endocrinology 140(8), 3404–3410 (1999).
[PubMed]

J. Biol. Chem. (2)

A. Taurog and I. L. Chaikoff, “The relation of the thyroxine content of the thyroid gland and of the level of protein-bound iodine of plasma to iodine intake,” J. Biol. Chem. 165(1), 217–222 (1946).
[PubMed]

J. Wolff and I. L. Chaikoff, “Plasma inorganic iodide as a homeostatic regulator of thyroid function,” J. Biol. Chem. 174(2), 555–564 (1948).
[PubMed]

J. Biomed. Opt. (1)

Z. Hosseinimakarem and S. H. Tavassoli, “Analysis of human nails by laser-induced breakdown spectroscopy,” J. Biomed. Opt. 16(5), 057002 (2011).
[PubMed]

J. Biomed. Sci. Eng. (1)

X.-Y. Liu and W.-J. Zhang, “Recent developments in biomedicine fields for laser induced breakdown spectroscopy,” J. Biomed. Sci. Eng. 1, 147–151 (2008).

J. Clin. Endocrinol. Metab. (1)

M. Saberi and R. D. Utiger, “Augmentation of Thyrotropin Responses to Thyrotropin-Releasing Hormone Following Small Decreases in Serum Thyroid Hormone Concentrations,” J. Clin. Endocrinol. Metab. 40(3), 435–441 (1975).
[PubMed]

J. Instrum. (1)

V. K. Unnikrishnan, K. Alti, R. Nayak, R. Bernard, N. Khetarpal, V. B. Kartha, C. Santhosh, G. P. Gupta, and B. M. Suri, “Optimized LIBS setup with echelle spectrograph-ICCD system for multi-elemental analysis,” J. Instrum. 5, 04005 (2010).

J. Vis. Exp. (1)

L. Sancey, V. Motto-Ros, S. Kotb, X. Wang, F. Lux, G. Panczer, J. Yu, and O. Tillement, “Laser-induced Breakdown Spectroscopy: A New Approach for Nanoparticle’s Mapping and Quantification in Organ Tissue,” J. Vis. Exp. 88, e51353 (2014).
[PubMed]

Journal of Lasers in Medical Sciences (1)

M. Bahreini and S. H. Tavassoli, “Possibility of thyroidism diagnosis by laser induced breakdown spectroscopy of human fingernail,” Journal of Lasers in Medical Sciences 3, 127–131 (2012).

Metabolism (1)

T. Paul, B. Meyers, R. J. Witorsch, S. Pino, S. Chipkin, S. H. Ingbar, and L. E. Braverman, “The effect of small increases in dietary iodine on thyroid function in euthyroid subjects,” Metabolism 37(2), 121–124 (1988).
[PubMed]

Mod. Pathol. (1)

C. C. Cheung, S. Ezzat, J. L. Freeman, I. B. Rosen, and S. L. Asa, “Immunohistochemical Diagnosis of Papillary Thyroid Carcinoma,” Mod. Pathol. 14(4), 338–342 (2001).
[PubMed]

Nat. Rev. Endocrinol. (1)

A. M. Leung and L. E. Braverman, “Consequences of excess iodine,” Nat. Rev. Endocrinol. 10(3), 136–142 (2014).
[PubMed]

Nature (1)

G. Dai, O. Levy, and N. Carrasco, “Cloning and characterization of the thyroid iodide transporter,” Nature 379(6564), 458–460 (1996).
[PubMed]

Obstet. Gynecol. (1)

M. Safran and L. E. Braverman, “Effect of chronic douching with polyvinylpyrrolidone-iodine on iodine absorption and thyroid function,” Obstet. Gynecol. 60(1), 35–40 (1982).
[PubMed]

Sci. Rep. (1)

L. Sancey, V. Motto-Ros, B. Busser, S. Kotb, J. M. Benoit, A. Piednoir, F. Lux, O. Tillement, G. Panczer, and J. Yu, “Laser spectrometry for multi-elemental imaging of biological tissues,” Sci. Rep. 4, 6065 (2014).
[PubMed]

Spectrochim. Acta B At. Spectrosc. (1)

F.-Y. Yueh, H. Zheng, J. P. Singh, and S. Burgess, “Preliminary evaluation of laser-induced breakdown spectroscopy for tissue classification,” Spectrochim. Acta B At. Spectrosc. 64, 1059–1067 (2009).

Surf. Sci. Rep. (1)

J. Kaiser, K. Novotny, M. Z. Martin, A. Hrdlica, R. Malina, M. Hartl, V. Adam, and W. H. Weinberg, “Trace elemental analysis by laser-induced breakdown spectroscopy—Biological applications,” Surf. Sci. Rep. 67, 233–243 (2012).

Other (3)

S. C. Werner, S. H. Ingbar, L. E. Braverman, and R. D. Utiger, Werner & Ingbar’s the Thyroid : A Fundamental and Clinical Text (Lippincott Williams & Wilkins, 2005).

D. A. Cremers and L. J. Radziemski, “Front Matter,” in Handbook of Laser-Induced Breakdown Spectroscopy (John Wiley & Sons, Ltd, 2006), pp. i–xviii.

A. W. Miziolek, V. Palleschi, and I. Schechter, Laser-Induced Breakdown Spectroscopy (LIBS) : Fundamentals and Applications (Cambridge University Press, 2006).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 Schematic diagram of the laser induced breakdown spectroscopy (LIBS) setup. The laser pulse is focused by the lens (L) onto the sample. The ablated portion of the sample emits light which is collected by the fiber and channeled to the spectrometer. The setup is controlled by a personal computer (PC), which triggers both the laser and the spectrometer, and displays the spectra.
Fig. 2
Fig. 2 (a) The portion of the neck superior to the trachea where the thyroid is located (circled). (b) The harvested thyroid sample showing both lobes. (c) The same portion of the neck after the thyroid was removed.
Fig. 3
Fig. 3 (a) LIBS spectrum from the thyroid of a control subject. (b) Calcium (Ca) emission lines are observed at 393.4, 396.9 and 422.7 nm. (c) Sodium (Na) lines are at 589.0 and 589.5 nm. (d) Iodine (I) line is at 746.9 nm. (e) Potassium (K) lines are at 766.4 and 769.9 nm.
Fig. 4
Fig. 4 (a) Group averaged iodine emission line at 746.9 nm acquired from thyroids (N = 5) immersed in 0 ppm iodine solution (saline only). The intensity has been normalized by that of the hydrogen line at 656.2 nm. (b and c) Iodine lines from thyroids immersed in 500 ppm (N = 5) and 1000 ppm (N = 5) solutions, respectively. Statistical testing was performed with a standard two-tailed t-test. * indicates p < 0.05. Error bars indicate standard deviation of intensity at 746.9 nm. Higher iodine concentration in the thyroid leads to higher LIBS intensity.
Fig. 5
Fig. 5 (a) Normalized and group averaged LIBS spectra from the thyroids of control subjects (N = 5), subjects treated for 6 days with 0.05% iodine solution (N = 5), and subjects treated for 12 days (N = 5). (b-e) Spectra expanded about the I, Na, Ca and K lines, respectively. A high iodine diet initially reduces thyroid iodine concentration before recovery. This is in agreement with the Wolff–Chaikoff effect. The concentrations of other elements are also affected by high iodine intake.
Fig. 6
Fig. 6 Barplot showing the statistical analysis of the LIBS spectra from control, 6 day iodine treated and 12 day treated thyroids. Mean ± standard deviation (error bars) are shown for iodine, calcium, sodium and potassium. For elements with more than one measured emission line, the intensities were averaged. Standard two-tailed t-testing was used to compare normalized emission lines between the three groups. * indicates p < 0.05.

Metrics