Abstract

High-throughput imaging and screening is essential for biomedical research and drug discovery using miniature model organisms such as zebrafish. This study introduces a high-speed imaging system which illuminates zebrafish embryos flowing through a capillary tube with a sheet of light and captures them using a linear charge-coupled device (CCD). This system can image dozens of zebrafish embryos per second. An image algorithm was developed to recognize each embryo and to perform automatic analysis. We distinguished dead and living embryos according to the gray level distribution and conducted statistics of morphological characteristics of embryos at different growing stages.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
In vivo imaging and quantitative analysis of zebrafish embryos by digital holographic microscopy

Jian Gao, Joseph A. Lyon, Daniel P. Szeto, and Jun Chen
Biomed. Opt. Express 3(10) 2623-2635 (2012)

Three-dimensional reconstruction and measurements of zebrafish larvae from high-throughput axial-view in vivo imaging

Yuanhao Guo, Wouter J. Veneman, Herman P. Spaink, and Fons J. Verbeek
Biomed. Opt. Express 8(5) 2611-2634 (2017)

Time-stretch microscopy on a DVD for high-throughput imaging cell-based assay

Anson H. L. Tang, P. Yeung, Godfrey C. F. Chan, Barbara P. Chan, Kenneth K. Y. Wong, and Kevin K. Tsia
Biomed. Opt. Express 8(2) 640-652 (2017)

References

  • View by:
  • |
  • |
  • |

  1. L. I. Zon and R. T. Peterson, “In vivo drug discovery in the zebrafish,” Nat. Rev. Drug Discov. 4(1), 35–44 (2005).
    [PubMed]
  2. A. J. Hill, H. Teraoka, W. Heideman, and R. E. Peterson, “Zebrafish as a model vertebrate for investigating chemical toxicity,” Toxicol. Sci. 86(1), 6–19 (2005).
    [PubMed]
  3. D. Li, X. Zhao, and W. Qin, “Toxicity assessment and long-term three-photon fluorescence imaging of bright aggregation-induced emission nanodots in zebrafish,” Nano Res. 9(7), 1921–1933 (2016).
  4. J. Giacomotto and L. Ségalat, “High-throughput screening and small animal models, where are we?” Br. J. Pharmacol. 160(2), 204–216 (2010).
    [PubMed]
  5. E. Ellertsdóttir, A. Lenard, Y. Blum, A. Krudewig, L. Herwig, M. Affolter, and H. G. Belting, “Vascular morphogenesis in the zebrafish embryo,” Dev. Biol. 341(1), 56–65 (2010).
    [PubMed]
  6. K. Kissa and P. Herbomel, “Blood stem cells emerge from aortic endothelium by a novel type of cell transition,” Nature 464(7285), 112–115 (2010).
    [PubMed]
  7. Y. Han, Y. Gu, A. C. Zhang, and Y. H. Lo, “Review: imaging technologies for flow cytometry,” Lab Chip 16(24), 4639–4647 (2016).
  8. D. A. Basiji, W. E. Ortyn, L. Liang, V. Venkatachalam, and P. Morrissey, “Cellular image analysis and imaging by flow cytometry,” Clin. Lab. Med. 27(3), 653–665 (2007).
  9. J. Cosette, A. Moussy, A. Paldi, and D. Stockholm, “Combination of imaging flow cytometry and time-lapse microscopy for the study of label-free morphology dynamics of hematopoietic cells,” Cytometry A 91(3), 254–260 (2017).
  10. I. Wortzel, G. Koifman, V. Rotter, R. Seger, and Z. Porat, “High Throughput Analysis of Golgi Structure by Imaging Flow Cytometry,” Sci. Rep. 7(1), 788–802 (2017).
  11. K. Goda, A. Ayazi, D. R. Gossett, J. Sadasivam, C. K. Lonappan, E. Sollier, A. M. Fard, S. C. Hur, J. Adam, C. Murray, C. Wang, N. Brackbill, D. Di Carlo, and B. Jalali, “High-throughput single-microparticle imaging flow analyzer,” Proc. Natl. Acad. Sci. U.S.A. 109(29), 11630–11680 (2012).
  12. A. K. Lau, H. C. Shum, K. K. Wong, and K. K. Tsia, “Optofluidic time-stretch imaging - an emerging tool for high-throughput imaging flow cytometry,” Lab Chip 16(10), 1743–1896 (2016).
  13. Y. Zeng, J. Xu, D. Li, L. Li, Z. Wen, and J. Y. Qu, “Label-free in vivo flow cytometry in zebrafish using two-photon autofluorescence imaging,” Opt. Lett. 37(13), 2490–2492 (2012).
  14. C. Pardo-Martin, T.-Y. Chang, B. K. Koo, C. L. Gilleland, S. C. Wasserman, and M. F. Yanik, “High-throughput in vivo vertebrate screening,” Nat. Methods 7(8), 634–636 (2010).
  15. T.-Y. Chang, C. Pardo-Martin, A. Allalou, C. Waehlby, and M. F. Yanik, “Fully automated cellular-resolution vertebrate screening platform with parallel animal processing,” Lab Chip 12(4), 711–716 (2013).
  16. J. Huisken, J. Swpger, B. F. Del, J. Wittbrodt, and E. H. Stelzer, “Optical sectioning deep inside live embryos by selective plane illumination microscopy,” Science 305(5686), 1007–1009 (2004).
  17. T. Panier, S. A. Romano, R. Olive, T. Pietri, G. Sumbre, R. Candelier, and G. Debregeas, “Fast functional imaging of multiple brain regions in intact zebrafish larvae using selective plane illumination microscopy,” Front. Neural Circuits 7, 65 (2013).
  18. R. Regmi, K. Mohan, and P. P. Mondal, “Light sheet based imaging flow cytometry on a microfluidic platform,” Microsc. Res. Tech. 76(11), 1101–1107 (2013).
  19. T. C. Poon, “Optical Scanning Holography: Principles” in: Optical Scanning Holography with MATLAB. Springer, Boston, MA (2007).
  20. N. C. Pégard, M. L. Toth, M. Driscoll, and J. W. Fleischer, “Flow-scanning optical tomography,” Lab Chip 14, 4447–4450 (2014).
  21. V. Bianco, M. Paturzo, and P. Ferraro, “Spatio-temporal scanning modality for synthesizing interferograms and digital holograms,” Opt. Express 22(19), 22328–22339 (2014).
  22. V. Bianco, M. Paturzo, V. Marchesano, I. Gallotta, E. Di Schiavi, and P. Ferraro, “Optofluidic holographic microscopy with custom field of view (FoV) using a linear array detector,” Lab Chip 15(9), 2117–2124 (2015).
  23. B. Mandracchia, V. Bianco, Z. Wang, M. Mugnano, A. Bramanti, M. Paturzo, and P. Ferraro, “Holographic microscope slide in a spatio-temporal imaging modality for reliable 3D cell counting,” Lab Chip 17(16), 2831–2838 (2017).
  24. M. Ulrich, C. Steger, and A. Baumgartner, “Real-time object recognition using a modified generalized Hough transform,” Pattern Recognit. 36(11), 2557–2570 (2003).
  25. P. Shi, Y. Huang, and J. Hong, “Automated three-dimensional reconstruction and morphological analysis of dendritic spines based on semi-supervised learning,” Biomed. Opt. Express 5(5), 1541–1553 (2014).
  26. C. B. Kimmel, W. W. Ballard, S. R. Kimmel, B. Ullmann, and T. F. Schilling, “Stages of embryonic development of the zebrafish,” Dev. Dyn. 203(3), 253–310 (1995).
  27. L. Li, B. Yan, Y. Q. Shi, W. Q. Zhang, and Z. L. Wen, “Live imaging reveals differing roles of macrophages and neutrophils during zebrafish tail fin regeneration,” J. Biol. Chem. 287(30), 25353–25360 (2012).
  28. N. I. zur Nieden, L. A. Davis, and D. E. Rancourt, “Comparing three novel endpoints for developmental osteo toxicity in the embryonic stem cell test,” Toxicol. Appl. Pharmacol. 247(2), 91–97 (2010).
  29. K. C. Cheng, X. Xin, D. P. Clark, and P. La Riviere, “Whole-animal imaging, gene function, and the Zebrafish Phenome Project,” Curr. Opin. Genet. Dev. 21(5), 620–629 (2011).
  30. J. Zhang, M. Liss, H. Wolburg, I. E. Blasig, and S. Abdelilah-Seyfried, “Involvement of claudins in zebrafish brain ventricle morphogenesis,” Ann. N. Y. Acad. Sci. 1257(1), 193–198 (2012).
  31. G. Weidinger, J. Stebler, K. Slanchev, K. D. Umstrei, C. Wise, R. Lovelladge, C. Thisse, B. Thisse, and E. Raz, “Dead end, a novel vertebrate germ plasm component, is required for zebrafish primordial germ cell migration and survival,” Curr. Biol. 13(16), 1429–1434 (2003).
  32. L. Klimaschewski, W. Nindl, M. Pimpl, P. Waltomger, and K. Pfaller, “Biolistic transfection and morphological analysis of cultured sympathetic neurons,” J. Neurosci. Methods 113(1), 63–71 (2002).
  33. A. Benali, I. Leefken, U. T. Eysel, and E. Weiler, “A computerized image analysis system for quantitative analysis of cells in histological brain sections,” J. Neurosci. Methods 125(1/2), 33–43 (2003).
  34. J. H. Su, M. D. Xing, and Z. Bao, “Wideband radar detection for maneuvering target,” J. Electron. Inform. Technol. 31(6), 1283–1287 (2009).
  35. R. P. Perry, R. C. DiPietro, and R. L. Fante, “SAR imaging of moving targets,” IEEE Trans. Aerosp. Electron. Syst. 35(1), 188–200 (1999).
  36. D. Zhu, Y. Li, and Z. Zhu, “A keystone transform without interpolation for SAR ground moving target imaging,” IEEE Geosci. Remote 18-22(1), 4 (2007).
  37. R. M. Warga and C. B. Kimmel, “Cell movements during epiboly and gastrulation in zebrafish,” Development 108(4), 569–580 (1990).
  38. K. T. Kim, T. Zaikova, J. E. Hutchison, and R. L. Tanguay, “Gold nanoparticles disrupt zebrafish eye development and pigmentation,” Toxicol. Sci. 133(2), 275 (2013).

2017 (3)

J. Cosette, A. Moussy, A. Paldi, and D. Stockholm, “Combination of imaging flow cytometry and time-lapse microscopy for the study of label-free morphology dynamics of hematopoietic cells,” Cytometry A 91(3), 254–260 (2017).

I. Wortzel, G. Koifman, V. Rotter, R. Seger, and Z. Porat, “High Throughput Analysis of Golgi Structure by Imaging Flow Cytometry,” Sci. Rep. 7(1), 788–802 (2017).

B. Mandracchia, V. Bianco, Z. Wang, M. Mugnano, A. Bramanti, M. Paturzo, and P. Ferraro, “Holographic microscope slide in a spatio-temporal imaging modality for reliable 3D cell counting,” Lab Chip 17(16), 2831–2838 (2017).

2016 (3)

A. K. Lau, H. C. Shum, K. K. Wong, and K. K. Tsia, “Optofluidic time-stretch imaging - an emerging tool for high-throughput imaging flow cytometry,” Lab Chip 16(10), 1743–1896 (2016).

D. Li, X. Zhao, and W. Qin, “Toxicity assessment and long-term three-photon fluorescence imaging of bright aggregation-induced emission nanodots in zebrafish,” Nano Res. 9(7), 1921–1933 (2016).

Y. Han, Y. Gu, A. C. Zhang, and Y. H. Lo, “Review: imaging technologies for flow cytometry,” Lab Chip 16(24), 4639–4647 (2016).

2015 (1)

V. Bianco, M. Paturzo, V. Marchesano, I. Gallotta, E. Di Schiavi, and P. Ferraro, “Optofluidic holographic microscopy with custom field of view (FoV) using a linear array detector,” Lab Chip 15(9), 2117–2124 (2015).

2014 (3)

2013 (4)

K. T. Kim, T. Zaikova, J. E. Hutchison, and R. L. Tanguay, “Gold nanoparticles disrupt zebrafish eye development and pigmentation,” Toxicol. Sci. 133(2), 275 (2013).

T.-Y. Chang, C. Pardo-Martin, A. Allalou, C. Waehlby, and M. F. Yanik, “Fully automated cellular-resolution vertebrate screening platform with parallel animal processing,” Lab Chip 12(4), 711–716 (2013).

T. Panier, S. A. Romano, R. Olive, T. Pietri, G. Sumbre, R. Candelier, and G. Debregeas, “Fast functional imaging of multiple brain regions in intact zebrafish larvae using selective plane illumination microscopy,” Front. Neural Circuits 7, 65 (2013).

R. Regmi, K. Mohan, and P. P. Mondal, “Light sheet based imaging flow cytometry on a microfluidic platform,” Microsc. Res. Tech. 76(11), 1101–1107 (2013).

2012 (4)

K. Goda, A. Ayazi, D. R. Gossett, J. Sadasivam, C. K. Lonappan, E. Sollier, A. M. Fard, S. C. Hur, J. Adam, C. Murray, C. Wang, N. Brackbill, D. Di Carlo, and B. Jalali, “High-throughput single-microparticle imaging flow analyzer,” Proc. Natl. Acad. Sci. U.S.A. 109(29), 11630–11680 (2012).

Y. Zeng, J. Xu, D. Li, L. Li, Z. Wen, and J. Y. Qu, “Label-free in vivo flow cytometry in zebrafish using two-photon autofluorescence imaging,” Opt. Lett. 37(13), 2490–2492 (2012).

L. Li, B. Yan, Y. Q. Shi, W. Q. Zhang, and Z. L. Wen, “Live imaging reveals differing roles of macrophages and neutrophils during zebrafish tail fin regeneration,” J. Biol. Chem. 287(30), 25353–25360 (2012).

J. Zhang, M. Liss, H. Wolburg, I. E. Blasig, and S. Abdelilah-Seyfried, “Involvement of claudins in zebrafish brain ventricle morphogenesis,” Ann. N. Y. Acad. Sci. 1257(1), 193–198 (2012).

2011 (1)

K. C. Cheng, X. Xin, D. P. Clark, and P. La Riviere, “Whole-animal imaging, gene function, and the Zebrafish Phenome Project,” Curr. Opin. Genet. Dev. 21(5), 620–629 (2011).

2010 (5)

N. I. zur Nieden, L. A. Davis, and D. E. Rancourt, “Comparing three novel endpoints for developmental osteo toxicity in the embryonic stem cell test,” Toxicol. Appl. Pharmacol. 247(2), 91–97 (2010).

C. Pardo-Martin, T.-Y. Chang, B. K. Koo, C. L. Gilleland, S. C. Wasserman, and M. F. Yanik, “High-throughput in vivo vertebrate screening,” Nat. Methods 7(8), 634–636 (2010).

J. Giacomotto and L. Ségalat, “High-throughput screening and small animal models, where are we?” Br. J. Pharmacol. 160(2), 204–216 (2010).
[PubMed]

E. Ellertsdóttir, A. Lenard, Y. Blum, A. Krudewig, L. Herwig, M. Affolter, and H. G. Belting, “Vascular morphogenesis in the zebrafish embryo,” Dev. Biol. 341(1), 56–65 (2010).
[PubMed]

K. Kissa and P. Herbomel, “Blood stem cells emerge from aortic endothelium by a novel type of cell transition,” Nature 464(7285), 112–115 (2010).
[PubMed]

2009 (1)

J. H. Su, M. D. Xing, and Z. Bao, “Wideband radar detection for maneuvering target,” J. Electron. Inform. Technol. 31(6), 1283–1287 (2009).

2007 (2)

D. Zhu, Y. Li, and Z. Zhu, “A keystone transform without interpolation for SAR ground moving target imaging,” IEEE Geosci. Remote 18-22(1), 4 (2007).

D. A. Basiji, W. E. Ortyn, L. Liang, V. Venkatachalam, and P. Morrissey, “Cellular image analysis and imaging by flow cytometry,” Clin. Lab. Med. 27(3), 653–665 (2007).

2005 (2)

L. I. Zon and R. T. Peterson, “In vivo drug discovery in the zebrafish,” Nat. Rev. Drug Discov. 4(1), 35–44 (2005).
[PubMed]

A. J. Hill, H. Teraoka, W. Heideman, and R. E. Peterson, “Zebrafish as a model vertebrate for investigating chemical toxicity,” Toxicol. Sci. 86(1), 6–19 (2005).
[PubMed]

2004 (1)

J. Huisken, J. Swpger, B. F. Del, J. Wittbrodt, and E. H. Stelzer, “Optical sectioning deep inside live embryos by selective plane illumination microscopy,” Science 305(5686), 1007–1009 (2004).

2003 (3)

A. Benali, I. Leefken, U. T. Eysel, and E. Weiler, “A computerized image analysis system for quantitative analysis of cells in histological brain sections,” J. Neurosci. Methods 125(1/2), 33–43 (2003).

G. Weidinger, J. Stebler, K. Slanchev, K. D. Umstrei, C. Wise, R. Lovelladge, C. Thisse, B. Thisse, and E. Raz, “Dead end, a novel vertebrate germ plasm component, is required for zebrafish primordial germ cell migration and survival,” Curr. Biol. 13(16), 1429–1434 (2003).

M. Ulrich, C. Steger, and A. Baumgartner, “Real-time object recognition using a modified generalized Hough transform,” Pattern Recognit. 36(11), 2557–2570 (2003).

2002 (1)

L. Klimaschewski, W. Nindl, M. Pimpl, P. Waltomger, and K. Pfaller, “Biolistic transfection and morphological analysis of cultured sympathetic neurons,” J. Neurosci. Methods 113(1), 63–71 (2002).

1999 (1)

R. P. Perry, R. C. DiPietro, and R. L. Fante, “SAR imaging of moving targets,” IEEE Trans. Aerosp. Electron. Syst. 35(1), 188–200 (1999).

1995 (1)

C. B. Kimmel, W. W. Ballard, S. R. Kimmel, B. Ullmann, and T. F. Schilling, “Stages of embryonic development of the zebrafish,” Dev. Dyn. 203(3), 253–310 (1995).

1990 (1)

R. M. Warga and C. B. Kimmel, “Cell movements during epiboly and gastrulation in zebrafish,” Development 108(4), 569–580 (1990).

Abdelilah-Seyfried, S.

J. Zhang, M. Liss, H. Wolburg, I. E. Blasig, and S. Abdelilah-Seyfried, “Involvement of claudins in zebrafish brain ventricle morphogenesis,” Ann. N. Y. Acad. Sci. 1257(1), 193–198 (2012).

Adam, J.

K. Goda, A. Ayazi, D. R. Gossett, J. Sadasivam, C. K. Lonappan, E. Sollier, A. M. Fard, S. C. Hur, J. Adam, C. Murray, C. Wang, N. Brackbill, D. Di Carlo, and B. Jalali, “High-throughput single-microparticle imaging flow analyzer,” Proc. Natl. Acad. Sci. U.S.A. 109(29), 11630–11680 (2012).

Affolter, M.

E. Ellertsdóttir, A. Lenard, Y. Blum, A. Krudewig, L. Herwig, M. Affolter, and H. G. Belting, “Vascular morphogenesis in the zebrafish embryo,” Dev. Biol. 341(1), 56–65 (2010).
[PubMed]

Allalou, A.

T.-Y. Chang, C. Pardo-Martin, A. Allalou, C. Waehlby, and M. F. Yanik, “Fully automated cellular-resolution vertebrate screening platform with parallel animal processing,” Lab Chip 12(4), 711–716 (2013).

Ayazi, A.

K. Goda, A. Ayazi, D. R. Gossett, J. Sadasivam, C. K. Lonappan, E. Sollier, A. M. Fard, S. C. Hur, J. Adam, C. Murray, C. Wang, N. Brackbill, D. Di Carlo, and B. Jalali, “High-throughput single-microparticle imaging flow analyzer,” Proc. Natl. Acad. Sci. U.S.A. 109(29), 11630–11680 (2012).

Ballard, W. W.

C. B. Kimmel, W. W. Ballard, S. R. Kimmel, B. Ullmann, and T. F. Schilling, “Stages of embryonic development of the zebrafish,” Dev. Dyn. 203(3), 253–310 (1995).

Bao, Z.

J. H. Su, M. D. Xing, and Z. Bao, “Wideband radar detection for maneuvering target,” J. Electron. Inform. Technol. 31(6), 1283–1287 (2009).

Basiji, D. A.

D. A. Basiji, W. E. Ortyn, L. Liang, V. Venkatachalam, and P. Morrissey, “Cellular image analysis and imaging by flow cytometry,” Clin. Lab. Med. 27(3), 653–665 (2007).

Baumgartner, A.

M. Ulrich, C. Steger, and A. Baumgartner, “Real-time object recognition using a modified generalized Hough transform,” Pattern Recognit. 36(11), 2557–2570 (2003).

Belting, H. G.

E. Ellertsdóttir, A. Lenard, Y. Blum, A. Krudewig, L. Herwig, M. Affolter, and H. G. Belting, “Vascular morphogenesis in the zebrafish embryo,” Dev. Biol. 341(1), 56–65 (2010).
[PubMed]

Benali, A.

A. Benali, I. Leefken, U. T. Eysel, and E. Weiler, “A computerized image analysis system for quantitative analysis of cells in histological brain sections,” J. Neurosci. Methods 125(1/2), 33–43 (2003).

Bianco, V.

B. Mandracchia, V. Bianco, Z. Wang, M. Mugnano, A. Bramanti, M. Paturzo, and P. Ferraro, “Holographic microscope slide in a spatio-temporal imaging modality for reliable 3D cell counting,” Lab Chip 17(16), 2831–2838 (2017).

V. Bianco, M. Paturzo, V. Marchesano, I. Gallotta, E. Di Schiavi, and P. Ferraro, “Optofluidic holographic microscopy with custom field of view (FoV) using a linear array detector,” Lab Chip 15(9), 2117–2124 (2015).

V. Bianco, M. Paturzo, and P. Ferraro, “Spatio-temporal scanning modality for synthesizing interferograms and digital holograms,” Opt. Express 22(19), 22328–22339 (2014).

Blasig, I. E.

J. Zhang, M. Liss, H. Wolburg, I. E. Blasig, and S. Abdelilah-Seyfried, “Involvement of claudins in zebrafish brain ventricle morphogenesis,” Ann. N. Y. Acad. Sci. 1257(1), 193–198 (2012).

Blum, Y.

E. Ellertsdóttir, A. Lenard, Y. Blum, A. Krudewig, L. Herwig, M. Affolter, and H. G. Belting, “Vascular morphogenesis in the zebrafish embryo,” Dev. Biol. 341(1), 56–65 (2010).
[PubMed]

Brackbill, N.

K. Goda, A. Ayazi, D. R. Gossett, J. Sadasivam, C. K. Lonappan, E. Sollier, A. M. Fard, S. C. Hur, J. Adam, C. Murray, C. Wang, N. Brackbill, D. Di Carlo, and B. Jalali, “High-throughput single-microparticle imaging flow analyzer,” Proc. Natl. Acad. Sci. U.S.A. 109(29), 11630–11680 (2012).

Bramanti, A.

B. Mandracchia, V. Bianco, Z. Wang, M. Mugnano, A. Bramanti, M. Paturzo, and P. Ferraro, “Holographic microscope slide in a spatio-temporal imaging modality for reliable 3D cell counting,” Lab Chip 17(16), 2831–2838 (2017).

Candelier, R.

T. Panier, S. A. Romano, R. Olive, T. Pietri, G. Sumbre, R. Candelier, and G. Debregeas, “Fast functional imaging of multiple brain regions in intact zebrafish larvae using selective plane illumination microscopy,” Front. Neural Circuits 7, 65 (2013).

Chang, T.-Y.

T.-Y. Chang, C. Pardo-Martin, A. Allalou, C. Waehlby, and M. F. Yanik, “Fully automated cellular-resolution vertebrate screening platform with parallel animal processing,” Lab Chip 12(4), 711–716 (2013).

C. Pardo-Martin, T.-Y. Chang, B. K. Koo, C. L. Gilleland, S. C. Wasserman, and M. F. Yanik, “High-throughput in vivo vertebrate screening,” Nat. Methods 7(8), 634–636 (2010).

Cheng, K. C.

K. C. Cheng, X. Xin, D. P. Clark, and P. La Riviere, “Whole-animal imaging, gene function, and the Zebrafish Phenome Project,” Curr. Opin. Genet. Dev. 21(5), 620–629 (2011).

Clark, D. P.

K. C. Cheng, X. Xin, D. P. Clark, and P. La Riviere, “Whole-animal imaging, gene function, and the Zebrafish Phenome Project,” Curr. Opin. Genet. Dev. 21(5), 620–629 (2011).

Cosette, J.

J. Cosette, A. Moussy, A. Paldi, and D. Stockholm, “Combination of imaging flow cytometry and time-lapse microscopy for the study of label-free morphology dynamics of hematopoietic cells,” Cytometry A 91(3), 254–260 (2017).

Davis, L. A.

N. I. zur Nieden, L. A. Davis, and D. E. Rancourt, “Comparing three novel endpoints for developmental osteo toxicity in the embryonic stem cell test,” Toxicol. Appl. Pharmacol. 247(2), 91–97 (2010).

Debregeas, G.

T. Panier, S. A. Romano, R. Olive, T. Pietri, G. Sumbre, R. Candelier, and G. Debregeas, “Fast functional imaging of multiple brain regions in intact zebrafish larvae using selective plane illumination microscopy,” Front. Neural Circuits 7, 65 (2013).

Del, B. F.

J. Huisken, J. Swpger, B. F. Del, J. Wittbrodt, and E. H. Stelzer, “Optical sectioning deep inside live embryos by selective plane illumination microscopy,” Science 305(5686), 1007–1009 (2004).

Di Carlo, D.

K. Goda, A. Ayazi, D. R. Gossett, J. Sadasivam, C. K. Lonappan, E. Sollier, A. M. Fard, S. C. Hur, J. Adam, C. Murray, C. Wang, N. Brackbill, D. Di Carlo, and B. Jalali, “High-throughput single-microparticle imaging flow analyzer,” Proc. Natl. Acad. Sci. U.S.A. 109(29), 11630–11680 (2012).

Di Schiavi, E.

V. Bianco, M. Paturzo, V. Marchesano, I. Gallotta, E. Di Schiavi, and P. Ferraro, “Optofluidic holographic microscopy with custom field of view (FoV) using a linear array detector,” Lab Chip 15(9), 2117–2124 (2015).

DiPietro, R. C.

R. P. Perry, R. C. DiPietro, and R. L. Fante, “SAR imaging of moving targets,” IEEE Trans. Aerosp. Electron. Syst. 35(1), 188–200 (1999).

Driscoll, M.

N. C. Pégard, M. L. Toth, M. Driscoll, and J. W. Fleischer, “Flow-scanning optical tomography,” Lab Chip 14, 4447–4450 (2014).

Ellertsdóttir, E.

E. Ellertsdóttir, A. Lenard, Y. Blum, A. Krudewig, L. Herwig, M. Affolter, and H. G. Belting, “Vascular morphogenesis in the zebrafish embryo,” Dev. Biol. 341(1), 56–65 (2010).
[PubMed]

Eysel, U. T.

A. Benali, I. Leefken, U. T. Eysel, and E. Weiler, “A computerized image analysis system for quantitative analysis of cells in histological brain sections,” J. Neurosci. Methods 125(1/2), 33–43 (2003).

Fante, R. L.

R. P. Perry, R. C. DiPietro, and R. L. Fante, “SAR imaging of moving targets,” IEEE Trans. Aerosp. Electron. Syst. 35(1), 188–200 (1999).

Fard, A. M.

K. Goda, A. Ayazi, D. R. Gossett, J. Sadasivam, C. K. Lonappan, E. Sollier, A. M. Fard, S. C. Hur, J. Adam, C. Murray, C. Wang, N. Brackbill, D. Di Carlo, and B. Jalali, “High-throughput single-microparticle imaging flow analyzer,” Proc. Natl. Acad. Sci. U.S.A. 109(29), 11630–11680 (2012).

Ferraro, P.

B. Mandracchia, V. Bianco, Z. Wang, M. Mugnano, A. Bramanti, M. Paturzo, and P. Ferraro, “Holographic microscope slide in a spatio-temporal imaging modality for reliable 3D cell counting,” Lab Chip 17(16), 2831–2838 (2017).

V. Bianco, M. Paturzo, V. Marchesano, I. Gallotta, E. Di Schiavi, and P. Ferraro, “Optofluidic holographic microscopy with custom field of view (FoV) using a linear array detector,” Lab Chip 15(9), 2117–2124 (2015).

V. Bianco, M. Paturzo, and P. Ferraro, “Spatio-temporal scanning modality for synthesizing interferograms and digital holograms,” Opt. Express 22(19), 22328–22339 (2014).

Fleischer, J. W.

N. C. Pégard, M. L. Toth, M. Driscoll, and J. W. Fleischer, “Flow-scanning optical tomography,” Lab Chip 14, 4447–4450 (2014).

Gallotta, I.

V. Bianco, M. Paturzo, V. Marchesano, I. Gallotta, E. Di Schiavi, and P. Ferraro, “Optofluidic holographic microscopy with custom field of view (FoV) using a linear array detector,” Lab Chip 15(9), 2117–2124 (2015).

Giacomotto, J.

J. Giacomotto and L. Ségalat, “High-throughput screening and small animal models, where are we?” Br. J. Pharmacol. 160(2), 204–216 (2010).
[PubMed]

Gilleland, C. L.

C. Pardo-Martin, T.-Y. Chang, B. K. Koo, C. L. Gilleland, S. C. Wasserman, and M. F. Yanik, “High-throughput in vivo vertebrate screening,” Nat. Methods 7(8), 634–636 (2010).

Goda, K.

K. Goda, A. Ayazi, D. R. Gossett, J. Sadasivam, C. K. Lonappan, E. Sollier, A. M. Fard, S. C. Hur, J. Adam, C. Murray, C. Wang, N. Brackbill, D. Di Carlo, and B. Jalali, “High-throughput single-microparticle imaging flow analyzer,” Proc. Natl. Acad. Sci. U.S.A. 109(29), 11630–11680 (2012).

Gossett, D. R.

K. Goda, A. Ayazi, D. R. Gossett, J. Sadasivam, C. K. Lonappan, E. Sollier, A. M. Fard, S. C. Hur, J. Adam, C. Murray, C. Wang, N. Brackbill, D. Di Carlo, and B. Jalali, “High-throughput single-microparticle imaging flow analyzer,” Proc. Natl. Acad. Sci. U.S.A. 109(29), 11630–11680 (2012).

Gu, Y.

Y. Han, Y. Gu, A. C. Zhang, and Y. H. Lo, “Review: imaging technologies for flow cytometry,” Lab Chip 16(24), 4639–4647 (2016).

Han, Y.

Y. Han, Y. Gu, A. C. Zhang, and Y. H. Lo, “Review: imaging technologies for flow cytometry,” Lab Chip 16(24), 4639–4647 (2016).

Heideman, W.

A. J. Hill, H. Teraoka, W. Heideman, and R. E. Peterson, “Zebrafish as a model vertebrate for investigating chemical toxicity,” Toxicol. Sci. 86(1), 6–19 (2005).
[PubMed]

Herbomel, P.

K. Kissa and P. Herbomel, “Blood stem cells emerge from aortic endothelium by a novel type of cell transition,” Nature 464(7285), 112–115 (2010).
[PubMed]

Herwig, L.

E. Ellertsdóttir, A. Lenard, Y. Blum, A. Krudewig, L. Herwig, M. Affolter, and H. G. Belting, “Vascular morphogenesis in the zebrafish embryo,” Dev. Biol. 341(1), 56–65 (2010).
[PubMed]

Hill, A. J.

A. J. Hill, H. Teraoka, W. Heideman, and R. E. Peterson, “Zebrafish as a model vertebrate for investigating chemical toxicity,” Toxicol. Sci. 86(1), 6–19 (2005).
[PubMed]

Hong, J.

Huang, Y.

Huisken, J.

J. Huisken, J. Swpger, B. F. Del, J. Wittbrodt, and E. H. Stelzer, “Optical sectioning deep inside live embryos by selective plane illumination microscopy,” Science 305(5686), 1007–1009 (2004).

Hur, S. C.

K. Goda, A. Ayazi, D. R. Gossett, J. Sadasivam, C. K. Lonappan, E. Sollier, A. M. Fard, S. C. Hur, J. Adam, C. Murray, C. Wang, N. Brackbill, D. Di Carlo, and B. Jalali, “High-throughput single-microparticle imaging flow analyzer,” Proc. Natl. Acad. Sci. U.S.A. 109(29), 11630–11680 (2012).

Hutchison, J. E.

K. T. Kim, T. Zaikova, J. E. Hutchison, and R. L. Tanguay, “Gold nanoparticles disrupt zebrafish eye development and pigmentation,” Toxicol. Sci. 133(2), 275 (2013).

Jalali, B.

K. Goda, A. Ayazi, D. R. Gossett, J. Sadasivam, C. K. Lonappan, E. Sollier, A. M. Fard, S. C. Hur, J. Adam, C. Murray, C. Wang, N. Brackbill, D. Di Carlo, and B. Jalali, “High-throughput single-microparticle imaging flow analyzer,” Proc. Natl. Acad. Sci. U.S.A. 109(29), 11630–11680 (2012).

Kim, K. T.

K. T. Kim, T. Zaikova, J. E. Hutchison, and R. L. Tanguay, “Gold nanoparticles disrupt zebrafish eye development and pigmentation,” Toxicol. Sci. 133(2), 275 (2013).

Kimmel, C. B.

C. B. Kimmel, W. W. Ballard, S. R. Kimmel, B. Ullmann, and T. F. Schilling, “Stages of embryonic development of the zebrafish,” Dev. Dyn. 203(3), 253–310 (1995).

R. M. Warga and C. B. Kimmel, “Cell movements during epiboly and gastrulation in zebrafish,” Development 108(4), 569–580 (1990).

Kimmel, S. R.

C. B. Kimmel, W. W. Ballard, S. R. Kimmel, B. Ullmann, and T. F. Schilling, “Stages of embryonic development of the zebrafish,” Dev. Dyn. 203(3), 253–310 (1995).

Kissa, K.

K. Kissa and P. Herbomel, “Blood stem cells emerge from aortic endothelium by a novel type of cell transition,” Nature 464(7285), 112–115 (2010).
[PubMed]

Klimaschewski, L.

L. Klimaschewski, W. Nindl, M. Pimpl, P. Waltomger, and K. Pfaller, “Biolistic transfection and morphological analysis of cultured sympathetic neurons,” J. Neurosci. Methods 113(1), 63–71 (2002).

Koifman, G.

I. Wortzel, G. Koifman, V. Rotter, R. Seger, and Z. Porat, “High Throughput Analysis of Golgi Structure by Imaging Flow Cytometry,” Sci. Rep. 7(1), 788–802 (2017).

Koo, B. K.

C. Pardo-Martin, T.-Y. Chang, B. K. Koo, C. L. Gilleland, S. C. Wasserman, and M. F. Yanik, “High-throughput in vivo vertebrate screening,” Nat. Methods 7(8), 634–636 (2010).

Krudewig, A.

E. Ellertsdóttir, A. Lenard, Y. Blum, A. Krudewig, L. Herwig, M. Affolter, and H. G. Belting, “Vascular morphogenesis in the zebrafish embryo,” Dev. Biol. 341(1), 56–65 (2010).
[PubMed]

La Riviere, P.

K. C. Cheng, X. Xin, D. P. Clark, and P. La Riviere, “Whole-animal imaging, gene function, and the Zebrafish Phenome Project,” Curr. Opin. Genet. Dev. 21(5), 620–629 (2011).

Lau, A. K.

A. K. Lau, H. C. Shum, K. K. Wong, and K. K. Tsia, “Optofluidic time-stretch imaging - an emerging tool for high-throughput imaging flow cytometry,” Lab Chip 16(10), 1743–1896 (2016).

Leefken, I.

A. Benali, I. Leefken, U. T. Eysel, and E. Weiler, “A computerized image analysis system for quantitative analysis of cells in histological brain sections,” J. Neurosci. Methods 125(1/2), 33–43 (2003).

Lenard, A.

E. Ellertsdóttir, A. Lenard, Y. Blum, A. Krudewig, L. Herwig, M. Affolter, and H. G. Belting, “Vascular morphogenesis in the zebrafish embryo,” Dev. Biol. 341(1), 56–65 (2010).
[PubMed]

Li, D.

D. Li, X. Zhao, and W. Qin, “Toxicity assessment and long-term three-photon fluorescence imaging of bright aggregation-induced emission nanodots in zebrafish,” Nano Res. 9(7), 1921–1933 (2016).

Y. Zeng, J. Xu, D. Li, L. Li, Z. Wen, and J. Y. Qu, “Label-free in vivo flow cytometry in zebrafish using two-photon autofluorescence imaging,” Opt. Lett. 37(13), 2490–2492 (2012).

Li, L.

Y. Zeng, J. Xu, D. Li, L. Li, Z. Wen, and J. Y. Qu, “Label-free in vivo flow cytometry in zebrafish using two-photon autofluorescence imaging,” Opt. Lett. 37(13), 2490–2492 (2012).

L. Li, B. Yan, Y. Q. Shi, W. Q. Zhang, and Z. L. Wen, “Live imaging reveals differing roles of macrophages and neutrophils during zebrafish tail fin regeneration,” J. Biol. Chem. 287(30), 25353–25360 (2012).

Li, Y.

D. Zhu, Y. Li, and Z. Zhu, “A keystone transform without interpolation for SAR ground moving target imaging,” IEEE Geosci. Remote 18-22(1), 4 (2007).

Liang, L.

D. A. Basiji, W. E. Ortyn, L. Liang, V. Venkatachalam, and P. Morrissey, “Cellular image analysis and imaging by flow cytometry,” Clin. Lab. Med. 27(3), 653–665 (2007).

Liss, M.

J. Zhang, M. Liss, H. Wolburg, I. E. Blasig, and S. Abdelilah-Seyfried, “Involvement of claudins in zebrafish brain ventricle morphogenesis,” Ann. N. Y. Acad. Sci. 1257(1), 193–198 (2012).

Lo, Y. H.

Y. Han, Y. Gu, A. C. Zhang, and Y. H. Lo, “Review: imaging technologies for flow cytometry,” Lab Chip 16(24), 4639–4647 (2016).

Lonappan, C. K.

K. Goda, A. Ayazi, D. R. Gossett, J. Sadasivam, C. K. Lonappan, E. Sollier, A. M. Fard, S. C. Hur, J. Adam, C. Murray, C. Wang, N. Brackbill, D. Di Carlo, and B. Jalali, “High-throughput single-microparticle imaging flow analyzer,” Proc. Natl. Acad. Sci. U.S.A. 109(29), 11630–11680 (2012).

Lovelladge, R.

G. Weidinger, J. Stebler, K. Slanchev, K. D. Umstrei, C. Wise, R. Lovelladge, C. Thisse, B. Thisse, and E. Raz, “Dead end, a novel vertebrate germ plasm component, is required for zebrafish primordial germ cell migration and survival,” Curr. Biol. 13(16), 1429–1434 (2003).

Mandracchia, B.

B. Mandracchia, V. Bianco, Z. Wang, M. Mugnano, A. Bramanti, M. Paturzo, and P. Ferraro, “Holographic microscope slide in a spatio-temporal imaging modality for reliable 3D cell counting,” Lab Chip 17(16), 2831–2838 (2017).

Marchesano, V.

V. Bianco, M. Paturzo, V. Marchesano, I. Gallotta, E. Di Schiavi, and P. Ferraro, “Optofluidic holographic microscopy with custom field of view (FoV) using a linear array detector,” Lab Chip 15(9), 2117–2124 (2015).

Mohan, K.

R. Regmi, K. Mohan, and P. P. Mondal, “Light sheet based imaging flow cytometry on a microfluidic platform,” Microsc. Res. Tech. 76(11), 1101–1107 (2013).

Mondal, P. P.

R. Regmi, K. Mohan, and P. P. Mondal, “Light sheet based imaging flow cytometry on a microfluidic platform,” Microsc. Res. Tech. 76(11), 1101–1107 (2013).

Morrissey, P.

D. A. Basiji, W. E. Ortyn, L. Liang, V. Venkatachalam, and P. Morrissey, “Cellular image analysis and imaging by flow cytometry,” Clin. Lab. Med. 27(3), 653–665 (2007).

Moussy, A.

J. Cosette, A. Moussy, A. Paldi, and D. Stockholm, “Combination of imaging flow cytometry and time-lapse microscopy for the study of label-free morphology dynamics of hematopoietic cells,” Cytometry A 91(3), 254–260 (2017).

Mugnano, M.

B. Mandracchia, V. Bianco, Z. Wang, M. Mugnano, A. Bramanti, M. Paturzo, and P. Ferraro, “Holographic microscope slide in a spatio-temporal imaging modality for reliable 3D cell counting,” Lab Chip 17(16), 2831–2838 (2017).

Murray, C.

K. Goda, A. Ayazi, D. R. Gossett, J. Sadasivam, C. K. Lonappan, E. Sollier, A. M. Fard, S. C. Hur, J. Adam, C. Murray, C. Wang, N. Brackbill, D. Di Carlo, and B. Jalali, “High-throughput single-microparticle imaging flow analyzer,” Proc. Natl. Acad. Sci. U.S.A. 109(29), 11630–11680 (2012).

Nindl, W.

L. Klimaschewski, W. Nindl, M. Pimpl, P. Waltomger, and K. Pfaller, “Biolistic transfection and morphological analysis of cultured sympathetic neurons,” J. Neurosci. Methods 113(1), 63–71 (2002).

Olive, R.

T. Panier, S. A. Romano, R. Olive, T. Pietri, G. Sumbre, R. Candelier, and G. Debregeas, “Fast functional imaging of multiple brain regions in intact zebrafish larvae using selective plane illumination microscopy,” Front. Neural Circuits 7, 65 (2013).

Ortyn, W. E.

D. A. Basiji, W. E. Ortyn, L. Liang, V. Venkatachalam, and P. Morrissey, “Cellular image analysis and imaging by flow cytometry,” Clin. Lab. Med. 27(3), 653–665 (2007).

Paldi, A.

J. Cosette, A. Moussy, A. Paldi, and D. Stockholm, “Combination of imaging flow cytometry and time-lapse microscopy for the study of label-free morphology dynamics of hematopoietic cells,” Cytometry A 91(3), 254–260 (2017).

Panier, T.

T. Panier, S. A. Romano, R. Olive, T. Pietri, G. Sumbre, R. Candelier, and G. Debregeas, “Fast functional imaging of multiple brain regions in intact zebrafish larvae using selective plane illumination microscopy,” Front. Neural Circuits 7, 65 (2013).

Pardo-Martin, C.

T.-Y. Chang, C. Pardo-Martin, A. Allalou, C. Waehlby, and M. F. Yanik, “Fully automated cellular-resolution vertebrate screening platform with parallel animal processing,” Lab Chip 12(4), 711–716 (2013).

C. Pardo-Martin, T.-Y. Chang, B. K. Koo, C. L. Gilleland, S. C. Wasserman, and M. F. Yanik, “High-throughput in vivo vertebrate screening,” Nat. Methods 7(8), 634–636 (2010).

Paturzo, M.

B. Mandracchia, V. Bianco, Z. Wang, M. Mugnano, A. Bramanti, M. Paturzo, and P. Ferraro, “Holographic microscope slide in a spatio-temporal imaging modality for reliable 3D cell counting,” Lab Chip 17(16), 2831–2838 (2017).

V. Bianco, M. Paturzo, V. Marchesano, I. Gallotta, E. Di Schiavi, and P. Ferraro, “Optofluidic holographic microscopy with custom field of view (FoV) using a linear array detector,” Lab Chip 15(9), 2117–2124 (2015).

V. Bianco, M. Paturzo, and P. Ferraro, “Spatio-temporal scanning modality for synthesizing interferograms and digital holograms,” Opt. Express 22(19), 22328–22339 (2014).

Pégard, N. C.

N. C. Pégard, M. L. Toth, M. Driscoll, and J. W. Fleischer, “Flow-scanning optical tomography,” Lab Chip 14, 4447–4450 (2014).

Perry, R. P.

R. P. Perry, R. C. DiPietro, and R. L. Fante, “SAR imaging of moving targets,” IEEE Trans. Aerosp. Electron. Syst. 35(1), 188–200 (1999).

Peterson, R. E.

A. J. Hill, H. Teraoka, W. Heideman, and R. E. Peterson, “Zebrafish as a model vertebrate for investigating chemical toxicity,” Toxicol. Sci. 86(1), 6–19 (2005).
[PubMed]

Peterson, R. T.

L. I. Zon and R. T. Peterson, “In vivo drug discovery in the zebrafish,” Nat. Rev. Drug Discov. 4(1), 35–44 (2005).
[PubMed]

Pfaller, K.

L. Klimaschewski, W. Nindl, M. Pimpl, P. Waltomger, and K. Pfaller, “Biolistic transfection and morphological analysis of cultured sympathetic neurons,” J. Neurosci. Methods 113(1), 63–71 (2002).

Pietri, T.

T. Panier, S. A. Romano, R. Olive, T. Pietri, G. Sumbre, R. Candelier, and G. Debregeas, “Fast functional imaging of multiple brain regions in intact zebrafish larvae using selective plane illumination microscopy,” Front. Neural Circuits 7, 65 (2013).

Pimpl, M.

L. Klimaschewski, W. Nindl, M. Pimpl, P. Waltomger, and K. Pfaller, “Biolistic transfection and morphological analysis of cultured sympathetic neurons,” J. Neurosci. Methods 113(1), 63–71 (2002).

Porat, Z.

I. Wortzel, G. Koifman, V. Rotter, R. Seger, and Z. Porat, “High Throughput Analysis of Golgi Structure by Imaging Flow Cytometry,” Sci. Rep. 7(1), 788–802 (2017).

Qin, W.

D. Li, X. Zhao, and W. Qin, “Toxicity assessment and long-term three-photon fluorescence imaging of bright aggregation-induced emission nanodots in zebrafish,” Nano Res. 9(7), 1921–1933 (2016).

Qu, J. Y.

Rancourt, D. E.

N. I. zur Nieden, L. A. Davis, and D. E. Rancourt, “Comparing three novel endpoints for developmental osteo toxicity in the embryonic stem cell test,” Toxicol. Appl. Pharmacol. 247(2), 91–97 (2010).

Raz, E.

G. Weidinger, J. Stebler, K. Slanchev, K. D. Umstrei, C. Wise, R. Lovelladge, C. Thisse, B. Thisse, and E. Raz, “Dead end, a novel vertebrate germ plasm component, is required for zebrafish primordial germ cell migration and survival,” Curr. Biol. 13(16), 1429–1434 (2003).

Regmi, R.

R. Regmi, K. Mohan, and P. P. Mondal, “Light sheet based imaging flow cytometry on a microfluidic platform,” Microsc. Res. Tech. 76(11), 1101–1107 (2013).

Romano, S. A.

T. Panier, S. A. Romano, R. Olive, T. Pietri, G. Sumbre, R. Candelier, and G. Debregeas, “Fast functional imaging of multiple brain regions in intact zebrafish larvae using selective plane illumination microscopy,” Front. Neural Circuits 7, 65 (2013).

Rotter, V.

I. Wortzel, G. Koifman, V. Rotter, R. Seger, and Z. Porat, “High Throughput Analysis of Golgi Structure by Imaging Flow Cytometry,” Sci. Rep. 7(1), 788–802 (2017).

Sadasivam, J.

K. Goda, A. Ayazi, D. R. Gossett, J. Sadasivam, C. K. Lonappan, E. Sollier, A. M. Fard, S. C. Hur, J. Adam, C. Murray, C. Wang, N. Brackbill, D. Di Carlo, and B. Jalali, “High-throughput single-microparticle imaging flow analyzer,” Proc. Natl. Acad. Sci. U.S.A. 109(29), 11630–11680 (2012).

Schilling, T. F.

C. B. Kimmel, W. W. Ballard, S. R. Kimmel, B. Ullmann, and T. F. Schilling, “Stages of embryonic development of the zebrafish,” Dev. Dyn. 203(3), 253–310 (1995).

Ségalat, L.

J. Giacomotto and L. Ségalat, “High-throughput screening and small animal models, where are we?” Br. J. Pharmacol. 160(2), 204–216 (2010).
[PubMed]

Seger, R.

I. Wortzel, G. Koifman, V. Rotter, R. Seger, and Z. Porat, “High Throughput Analysis of Golgi Structure by Imaging Flow Cytometry,” Sci. Rep. 7(1), 788–802 (2017).

Shi, P.

Shi, Y. Q.

L. Li, B. Yan, Y. Q. Shi, W. Q. Zhang, and Z. L. Wen, “Live imaging reveals differing roles of macrophages and neutrophils during zebrafish tail fin regeneration,” J. Biol. Chem. 287(30), 25353–25360 (2012).

Shum, H. C.

A. K. Lau, H. C. Shum, K. K. Wong, and K. K. Tsia, “Optofluidic time-stretch imaging - an emerging tool for high-throughput imaging flow cytometry,” Lab Chip 16(10), 1743–1896 (2016).

Slanchev, K.

G. Weidinger, J. Stebler, K. Slanchev, K. D. Umstrei, C. Wise, R. Lovelladge, C. Thisse, B. Thisse, and E. Raz, “Dead end, a novel vertebrate germ plasm component, is required for zebrafish primordial germ cell migration and survival,” Curr. Biol. 13(16), 1429–1434 (2003).

Sollier, E.

K. Goda, A. Ayazi, D. R. Gossett, J. Sadasivam, C. K. Lonappan, E. Sollier, A. M. Fard, S. C. Hur, J. Adam, C. Murray, C. Wang, N. Brackbill, D. Di Carlo, and B. Jalali, “High-throughput single-microparticle imaging flow analyzer,” Proc. Natl. Acad. Sci. U.S.A. 109(29), 11630–11680 (2012).

Stebler, J.

G. Weidinger, J. Stebler, K. Slanchev, K. D. Umstrei, C. Wise, R. Lovelladge, C. Thisse, B. Thisse, and E. Raz, “Dead end, a novel vertebrate germ plasm component, is required for zebrafish primordial germ cell migration and survival,” Curr. Biol. 13(16), 1429–1434 (2003).

Steger, C.

M. Ulrich, C. Steger, and A. Baumgartner, “Real-time object recognition using a modified generalized Hough transform,” Pattern Recognit. 36(11), 2557–2570 (2003).

Stelzer, E. H.

J. Huisken, J. Swpger, B. F. Del, J. Wittbrodt, and E. H. Stelzer, “Optical sectioning deep inside live embryos by selective plane illumination microscopy,” Science 305(5686), 1007–1009 (2004).

Stockholm, D.

J. Cosette, A. Moussy, A. Paldi, and D. Stockholm, “Combination of imaging flow cytometry and time-lapse microscopy for the study of label-free morphology dynamics of hematopoietic cells,” Cytometry A 91(3), 254–260 (2017).

Su, J. H.

J. H. Su, M. D. Xing, and Z. Bao, “Wideband radar detection for maneuvering target,” J. Electron. Inform. Technol. 31(6), 1283–1287 (2009).

Sumbre, G.

T. Panier, S. A. Romano, R. Olive, T. Pietri, G. Sumbre, R. Candelier, and G. Debregeas, “Fast functional imaging of multiple brain regions in intact zebrafish larvae using selective plane illumination microscopy,” Front. Neural Circuits 7, 65 (2013).

Swpger, J.

J. Huisken, J. Swpger, B. F. Del, J. Wittbrodt, and E. H. Stelzer, “Optical sectioning deep inside live embryos by selective plane illumination microscopy,” Science 305(5686), 1007–1009 (2004).

Tanguay, R. L.

K. T. Kim, T. Zaikova, J. E. Hutchison, and R. L. Tanguay, “Gold nanoparticles disrupt zebrafish eye development and pigmentation,” Toxicol. Sci. 133(2), 275 (2013).

Teraoka, H.

A. J. Hill, H. Teraoka, W. Heideman, and R. E. Peterson, “Zebrafish as a model vertebrate for investigating chemical toxicity,” Toxicol. Sci. 86(1), 6–19 (2005).
[PubMed]

Thisse, B.

G. Weidinger, J. Stebler, K. Slanchev, K. D. Umstrei, C. Wise, R. Lovelladge, C. Thisse, B. Thisse, and E. Raz, “Dead end, a novel vertebrate germ plasm component, is required for zebrafish primordial germ cell migration and survival,” Curr. Biol. 13(16), 1429–1434 (2003).

Thisse, C.

G. Weidinger, J. Stebler, K. Slanchev, K. D. Umstrei, C. Wise, R. Lovelladge, C. Thisse, B. Thisse, and E. Raz, “Dead end, a novel vertebrate germ plasm component, is required for zebrafish primordial germ cell migration and survival,” Curr. Biol. 13(16), 1429–1434 (2003).

Toth, M. L.

N. C. Pégard, M. L. Toth, M. Driscoll, and J. W. Fleischer, “Flow-scanning optical tomography,” Lab Chip 14, 4447–4450 (2014).

Tsia, K. K.

A. K. Lau, H. C. Shum, K. K. Wong, and K. K. Tsia, “Optofluidic time-stretch imaging - an emerging tool for high-throughput imaging flow cytometry,” Lab Chip 16(10), 1743–1896 (2016).

Ullmann, B.

C. B. Kimmel, W. W. Ballard, S. R. Kimmel, B. Ullmann, and T. F. Schilling, “Stages of embryonic development of the zebrafish,” Dev. Dyn. 203(3), 253–310 (1995).

Ulrich, M.

M. Ulrich, C. Steger, and A. Baumgartner, “Real-time object recognition using a modified generalized Hough transform,” Pattern Recognit. 36(11), 2557–2570 (2003).

Umstrei, K. D.

G. Weidinger, J. Stebler, K. Slanchev, K. D. Umstrei, C. Wise, R. Lovelladge, C. Thisse, B. Thisse, and E. Raz, “Dead end, a novel vertebrate germ plasm component, is required for zebrafish primordial germ cell migration and survival,” Curr. Biol. 13(16), 1429–1434 (2003).

Venkatachalam, V.

D. A. Basiji, W. E. Ortyn, L. Liang, V. Venkatachalam, and P. Morrissey, “Cellular image analysis and imaging by flow cytometry,” Clin. Lab. Med. 27(3), 653–665 (2007).

Waehlby, C.

T.-Y. Chang, C. Pardo-Martin, A. Allalou, C. Waehlby, and M. F. Yanik, “Fully automated cellular-resolution vertebrate screening platform with parallel animal processing,” Lab Chip 12(4), 711–716 (2013).

Waltomger, P.

L. Klimaschewski, W. Nindl, M. Pimpl, P. Waltomger, and K. Pfaller, “Biolistic transfection and morphological analysis of cultured sympathetic neurons,” J. Neurosci. Methods 113(1), 63–71 (2002).

Wang, C.

K. Goda, A. Ayazi, D. R. Gossett, J. Sadasivam, C. K. Lonappan, E. Sollier, A. M. Fard, S. C. Hur, J. Adam, C. Murray, C. Wang, N. Brackbill, D. Di Carlo, and B. Jalali, “High-throughput single-microparticle imaging flow analyzer,” Proc. Natl. Acad. Sci. U.S.A. 109(29), 11630–11680 (2012).

Wang, Z.

B. Mandracchia, V. Bianco, Z. Wang, M. Mugnano, A. Bramanti, M. Paturzo, and P. Ferraro, “Holographic microscope slide in a spatio-temporal imaging modality for reliable 3D cell counting,” Lab Chip 17(16), 2831–2838 (2017).

Warga, R. M.

R. M. Warga and C. B. Kimmel, “Cell movements during epiboly and gastrulation in zebrafish,” Development 108(4), 569–580 (1990).

Wasserman, S. C.

C. Pardo-Martin, T.-Y. Chang, B. K. Koo, C. L. Gilleland, S. C. Wasserman, and M. F. Yanik, “High-throughput in vivo vertebrate screening,” Nat. Methods 7(8), 634–636 (2010).

Weidinger, G.

G. Weidinger, J. Stebler, K. Slanchev, K. D. Umstrei, C. Wise, R. Lovelladge, C. Thisse, B. Thisse, and E. Raz, “Dead end, a novel vertebrate germ plasm component, is required for zebrafish primordial germ cell migration and survival,” Curr. Biol. 13(16), 1429–1434 (2003).

Weiler, E.

A. Benali, I. Leefken, U. T. Eysel, and E. Weiler, “A computerized image analysis system for quantitative analysis of cells in histological brain sections,” J. Neurosci. Methods 125(1/2), 33–43 (2003).

Wen, Z.

Wen, Z. L.

L. Li, B. Yan, Y. Q. Shi, W. Q. Zhang, and Z. L. Wen, “Live imaging reveals differing roles of macrophages and neutrophils during zebrafish tail fin regeneration,” J. Biol. Chem. 287(30), 25353–25360 (2012).

Wise, C.

G. Weidinger, J. Stebler, K. Slanchev, K. D. Umstrei, C. Wise, R. Lovelladge, C. Thisse, B. Thisse, and E. Raz, “Dead end, a novel vertebrate germ plasm component, is required for zebrafish primordial germ cell migration and survival,” Curr. Biol. 13(16), 1429–1434 (2003).

Wittbrodt, J.

J. Huisken, J. Swpger, B. F. Del, J. Wittbrodt, and E. H. Stelzer, “Optical sectioning deep inside live embryos by selective plane illumination microscopy,” Science 305(5686), 1007–1009 (2004).

Wolburg, H.

J. Zhang, M. Liss, H. Wolburg, I. E. Blasig, and S. Abdelilah-Seyfried, “Involvement of claudins in zebrafish brain ventricle morphogenesis,” Ann. N. Y. Acad. Sci. 1257(1), 193–198 (2012).

Wong, K. K.

A. K. Lau, H. C. Shum, K. K. Wong, and K. K. Tsia, “Optofluidic time-stretch imaging - an emerging tool for high-throughput imaging flow cytometry,” Lab Chip 16(10), 1743–1896 (2016).

Wortzel, I.

I. Wortzel, G. Koifman, V. Rotter, R. Seger, and Z. Porat, “High Throughput Analysis of Golgi Structure by Imaging Flow Cytometry,” Sci. Rep. 7(1), 788–802 (2017).

Xin, X.

K. C. Cheng, X. Xin, D. P. Clark, and P. La Riviere, “Whole-animal imaging, gene function, and the Zebrafish Phenome Project,” Curr. Opin. Genet. Dev. 21(5), 620–629 (2011).

Xing, M. D.

J. H. Su, M. D. Xing, and Z. Bao, “Wideband radar detection for maneuvering target,” J. Electron. Inform. Technol. 31(6), 1283–1287 (2009).

Xu, J.

Yan, B.

L. Li, B. Yan, Y. Q. Shi, W. Q. Zhang, and Z. L. Wen, “Live imaging reveals differing roles of macrophages and neutrophils during zebrafish tail fin regeneration,” J. Biol. Chem. 287(30), 25353–25360 (2012).

Yanik, M. F.

T.-Y. Chang, C. Pardo-Martin, A. Allalou, C. Waehlby, and M. F. Yanik, “Fully automated cellular-resolution vertebrate screening platform with parallel animal processing,” Lab Chip 12(4), 711–716 (2013).

C. Pardo-Martin, T.-Y. Chang, B. K. Koo, C. L. Gilleland, S. C. Wasserman, and M. F. Yanik, “High-throughput in vivo vertebrate screening,” Nat. Methods 7(8), 634–636 (2010).

Zaikova, T.

K. T. Kim, T. Zaikova, J. E. Hutchison, and R. L. Tanguay, “Gold nanoparticles disrupt zebrafish eye development and pigmentation,” Toxicol. Sci. 133(2), 275 (2013).

Zeng, Y.

Zhang, A. C.

Y. Han, Y. Gu, A. C. Zhang, and Y. H. Lo, “Review: imaging technologies for flow cytometry,” Lab Chip 16(24), 4639–4647 (2016).

Zhang, J.

J. Zhang, M. Liss, H. Wolburg, I. E. Blasig, and S. Abdelilah-Seyfried, “Involvement of claudins in zebrafish brain ventricle morphogenesis,” Ann. N. Y. Acad. Sci. 1257(1), 193–198 (2012).

Zhang, W. Q.

L. Li, B. Yan, Y. Q. Shi, W. Q. Zhang, and Z. L. Wen, “Live imaging reveals differing roles of macrophages and neutrophils during zebrafish tail fin regeneration,” J. Biol. Chem. 287(30), 25353–25360 (2012).

Zhao, X.

D. Li, X. Zhao, and W. Qin, “Toxicity assessment and long-term three-photon fluorescence imaging of bright aggregation-induced emission nanodots in zebrafish,” Nano Res. 9(7), 1921–1933 (2016).

Zhu, D.

D. Zhu, Y. Li, and Z. Zhu, “A keystone transform without interpolation for SAR ground moving target imaging,” IEEE Geosci. Remote 18-22(1), 4 (2007).

Zhu, Z.

D. Zhu, Y. Li, and Z. Zhu, “A keystone transform without interpolation for SAR ground moving target imaging,” IEEE Geosci. Remote 18-22(1), 4 (2007).

Zon, L. I.

L. I. Zon and R. T. Peterson, “In vivo drug discovery in the zebrafish,” Nat. Rev. Drug Discov. 4(1), 35–44 (2005).
[PubMed]

zur Nieden, N. I.

N. I. zur Nieden, L. A. Davis, and D. E. Rancourt, “Comparing three novel endpoints for developmental osteo toxicity in the embryonic stem cell test,” Toxicol. Appl. Pharmacol. 247(2), 91–97 (2010).

Ann. N. Y. Acad. Sci. (1)

J. Zhang, M. Liss, H. Wolburg, I. E. Blasig, and S. Abdelilah-Seyfried, “Involvement of claudins in zebrafish brain ventricle morphogenesis,” Ann. N. Y. Acad. Sci. 1257(1), 193–198 (2012).

Biomed. Opt. Express (1)

Br. J. Pharmacol. (1)

J. Giacomotto and L. Ségalat, “High-throughput screening and small animal models, where are we?” Br. J. Pharmacol. 160(2), 204–216 (2010).
[PubMed]

Clin. Lab. Med. (1)

D. A. Basiji, W. E. Ortyn, L. Liang, V. Venkatachalam, and P. Morrissey, “Cellular image analysis and imaging by flow cytometry,” Clin. Lab. Med. 27(3), 653–665 (2007).

Curr. Biol. (1)

G. Weidinger, J. Stebler, K. Slanchev, K. D. Umstrei, C. Wise, R. Lovelladge, C. Thisse, B. Thisse, and E. Raz, “Dead end, a novel vertebrate germ plasm component, is required for zebrafish primordial germ cell migration and survival,” Curr. Biol. 13(16), 1429–1434 (2003).

Curr. Opin. Genet. Dev. (1)

K. C. Cheng, X. Xin, D. P. Clark, and P. La Riviere, “Whole-animal imaging, gene function, and the Zebrafish Phenome Project,” Curr. Opin. Genet. Dev. 21(5), 620–629 (2011).

Cytometry A (1)

J. Cosette, A. Moussy, A. Paldi, and D. Stockholm, “Combination of imaging flow cytometry and time-lapse microscopy for the study of label-free morphology dynamics of hematopoietic cells,” Cytometry A 91(3), 254–260 (2017).

Dev. Biol. (1)

E. Ellertsdóttir, A. Lenard, Y. Blum, A. Krudewig, L. Herwig, M. Affolter, and H. G. Belting, “Vascular morphogenesis in the zebrafish embryo,” Dev. Biol. 341(1), 56–65 (2010).
[PubMed]

Dev. Dyn. (1)

C. B. Kimmel, W. W. Ballard, S. R. Kimmel, B. Ullmann, and T. F. Schilling, “Stages of embryonic development of the zebrafish,” Dev. Dyn. 203(3), 253–310 (1995).

Development (1)

R. M. Warga and C. B. Kimmel, “Cell movements during epiboly and gastrulation in zebrafish,” Development 108(4), 569–580 (1990).

Front. Neural Circuits (1)

T. Panier, S. A. Romano, R. Olive, T. Pietri, G. Sumbre, R. Candelier, and G. Debregeas, “Fast functional imaging of multiple brain regions in intact zebrafish larvae using selective plane illumination microscopy,” Front. Neural Circuits 7, 65 (2013).

IEEE Geosci. Remote (1)

D. Zhu, Y. Li, and Z. Zhu, “A keystone transform without interpolation for SAR ground moving target imaging,” IEEE Geosci. Remote 18-22(1), 4 (2007).

IEEE Trans. Aerosp. Electron. Syst. (1)

R. P. Perry, R. C. DiPietro, and R. L. Fante, “SAR imaging of moving targets,” IEEE Trans. Aerosp. Electron. Syst. 35(1), 188–200 (1999).

J. Biol. Chem. (1)

L. Li, B. Yan, Y. Q. Shi, W. Q. Zhang, and Z. L. Wen, “Live imaging reveals differing roles of macrophages and neutrophils during zebrafish tail fin regeneration,” J. Biol. Chem. 287(30), 25353–25360 (2012).

J. Electron. Inform. Technol. (1)

J. H. Su, M. D. Xing, and Z. Bao, “Wideband radar detection for maneuvering target,” J. Electron. Inform. Technol. 31(6), 1283–1287 (2009).

J. Neurosci. Methods (2)

L. Klimaschewski, W. Nindl, M. Pimpl, P. Waltomger, and K. Pfaller, “Biolistic transfection and morphological analysis of cultured sympathetic neurons,” J. Neurosci. Methods 113(1), 63–71 (2002).

A. Benali, I. Leefken, U. T. Eysel, and E. Weiler, “A computerized image analysis system for quantitative analysis of cells in histological brain sections,” J. Neurosci. Methods 125(1/2), 33–43 (2003).

Lab Chip (6)

N. C. Pégard, M. L. Toth, M. Driscoll, and J. W. Fleischer, “Flow-scanning optical tomography,” Lab Chip 14, 4447–4450 (2014).

V. Bianco, M. Paturzo, V. Marchesano, I. Gallotta, E. Di Schiavi, and P. Ferraro, “Optofluidic holographic microscopy with custom field of view (FoV) using a linear array detector,” Lab Chip 15(9), 2117–2124 (2015).

B. Mandracchia, V. Bianco, Z. Wang, M. Mugnano, A. Bramanti, M. Paturzo, and P. Ferraro, “Holographic microscope slide in a spatio-temporal imaging modality for reliable 3D cell counting,” Lab Chip 17(16), 2831–2838 (2017).

T.-Y. Chang, C. Pardo-Martin, A. Allalou, C. Waehlby, and M. F. Yanik, “Fully automated cellular-resolution vertebrate screening platform with parallel animal processing,” Lab Chip 12(4), 711–716 (2013).

A. K. Lau, H. C. Shum, K. K. Wong, and K. K. Tsia, “Optofluidic time-stretch imaging - an emerging tool for high-throughput imaging flow cytometry,” Lab Chip 16(10), 1743–1896 (2016).

Y. Han, Y. Gu, A. C. Zhang, and Y. H. Lo, “Review: imaging technologies for flow cytometry,” Lab Chip 16(24), 4639–4647 (2016).

Microsc. Res. Tech. (1)

R. Regmi, K. Mohan, and P. P. Mondal, “Light sheet based imaging flow cytometry on a microfluidic platform,” Microsc. Res. Tech. 76(11), 1101–1107 (2013).

Nano Res. (1)

D. Li, X. Zhao, and W. Qin, “Toxicity assessment and long-term three-photon fluorescence imaging of bright aggregation-induced emission nanodots in zebrafish,” Nano Res. 9(7), 1921–1933 (2016).

Nat. Methods (1)

C. Pardo-Martin, T.-Y. Chang, B. K. Koo, C. L. Gilleland, S. C. Wasserman, and M. F. Yanik, “High-throughput in vivo vertebrate screening,” Nat. Methods 7(8), 634–636 (2010).

Nat. Rev. Drug Discov. (1)

L. I. Zon and R. T. Peterson, “In vivo drug discovery in the zebrafish,” Nat. Rev. Drug Discov. 4(1), 35–44 (2005).
[PubMed]

Nature (1)

K. Kissa and P. Herbomel, “Blood stem cells emerge from aortic endothelium by a novel type of cell transition,” Nature 464(7285), 112–115 (2010).
[PubMed]

Opt. Express (1)

Opt. Lett. (1)

Pattern Recognit. (1)

M. Ulrich, C. Steger, and A. Baumgartner, “Real-time object recognition using a modified generalized Hough transform,” Pattern Recognit. 36(11), 2557–2570 (2003).

Proc. Natl. Acad. Sci. U.S.A. (1)

K. Goda, A. Ayazi, D. R. Gossett, J. Sadasivam, C. K. Lonappan, E. Sollier, A. M. Fard, S. C. Hur, J. Adam, C. Murray, C. Wang, N. Brackbill, D. Di Carlo, and B. Jalali, “High-throughput single-microparticle imaging flow analyzer,” Proc. Natl. Acad. Sci. U.S.A. 109(29), 11630–11680 (2012).

Sci. Rep. (1)

I. Wortzel, G. Koifman, V. Rotter, R. Seger, and Z. Porat, “High Throughput Analysis of Golgi Structure by Imaging Flow Cytometry,” Sci. Rep. 7(1), 788–802 (2017).

Science (1)

J. Huisken, J. Swpger, B. F. Del, J. Wittbrodt, and E. H. Stelzer, “Optical sectioning deep inside live embryos by selective plane illumination microscopy,” Science 305(5686), 1007–1009 (2004).

Toxicol. Appl. Pharmacol. (1)

N. I. zur Nieden, L. A. Davis, and D. E. Rancourt, “Comparing three novel endpoints for developmental osteo toxicity in the embryonic stem cell test,” Toxicol. Appl. Pharmacol. 247(2), 91–97 (2010).

Toxicol. Sci. (2)

A. J. Hill, H. Teraoka, W. Heideman, and R. E. Peterson, “Zebrafish as a model vertebrate for investigating chemical toxicity,” Toxicol. Sci. 86(1), 6–19 (2005).
[PubMed]

K. T. Kim, T. Zaikova, J. E. Hutchison, and R. L. Tanguay, “Gold nanoparticles disrupt zebrafish eye development and pigmentation,” Toxicol. Sci. 133(2), 275 (2013).

Other (1)

T. C. Poon, “Optical Scanning Holography: Principles” in: Optical Scanning Holography with MATLAB. Springer, Boston, MA (2007).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 Principle of Lc-FIS. (a) A sheet of light was focused by an objective to illuminate the section of a capillary tube while embryos flowed through. The transmitted light signal was recorded by a fast linear CCD at the other side of the tube. Inset shows the intensity profile of the light sheet at focus plane. (b) Arranging time series 1D linear CCD data into a 2D image. The black arrow indicates the flow direction.
Fig. 2
Fig. 2 Schematic illustration of Lc-FIS. In the fluidic part, samples were loaded to a funnel reservoir and driven through a capillary tube by a stable syringe pump. Air blower was used to prevent blocking. In the imaging part, a light sheet created by a cylindrical lens was focused on the center of capillary tube perpendicularly. Transmitted light signal was recorded by a linear CCD. VNDF, variable neutral density filter; BE, beam expander; CL, cylindrical lens; TPS, three-axis position stage.
Fig. 3
Fig. 3 (a) Original image of zebrafish embryos obtained by Lc-FIS. The white arrow indicates the flow direction. (b) Preprocessed image after substracting the background.
Fig. 4
Fig. 4 Segmentation of zebrafish embryos with chorion using Hough-transformation circle detection algorithm. (a–c) Zebrafish embryos at different development stages: 3, 13, and 21.5 hpf, respectively. (d–f) Detailed structure of yolk, head, and tail of zebrafish embryos. H, head; T, tail; Y, yolk. The scale bars in (a)–(c) represent 1 mm, and those in (d)–(f) represent 0.3 mm.
Fig. 5
Fig. 5 Discrimination of live and dead embryos by Lc-FIS. (a) Normal and (b) dead embryos (4 hpf) detected using the Hough-transformation algorithm. (c) and (d) Intensity distributions within the circle of the live and dead embryos, respectively. (e) Cumulative mortality rate of zebrafish embryos at temperatures of 24°C, 26°C, 28°C, 30°C, and 32°C.
Fig. 6
Fig. 6 Flowchart of segmentation for zebrafish embryos without chorion.
Fig. 7
Fig. 7 Morphology statistics of live zebrafish embryos (72 hpf) without chorion. (a) Preprocessed image after subtracting background from the original image. (b) Binary image obtained after segmentation. The vertical and horizontal arrows indicate the EL and EW, respectively. (c) EL and (d) EW distributions of 100 zebrafish embryos (72 hpf). H, head; F, fin; I, intestine; S, somites; Y, yolk. The scale bars in (a) and (b) represent 1 mm

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

G= G 0 2 + G 45 2 + G 90 2 + G 135 2
V l = V v S cap
N= V l l dis ( l dis d em )
l dis =3 d em .
R v = V l × 1 f
R collect = 0.61λ NA

Metrics