Abstract

Due to its simplicity and low cost, laser speckle imaging (LSI) has achieved widespread use in biomedical applications. However, interpretation of the blood-flow maps remains ambiguous, as LSI enables only limited visualization of vasculature below scattering layers such as the epidermis and skull. Here, we describe a computational model that enables flexible in-silico study of the impact of these factors on LSI measurements. The model uses Monte Carlo methods to simulate light and momentum transport in a heterogeneous tissue geometry. The virtual detectors of the model track several important characteristics of light. This model enables study of LSI aspects that may be difficult or unwieldy to address in an experimental setting, and enables detailed study of the fundamental origins of speckle contrast modulation in tissue-specific geometries. We applied the model to an in-depth exploration of the spectral dependence of speckle contrast signal in the skin, the effects of epidermal melanin content on LSI, and the depth-dependent origins of our signal. We found that LSI of transmitted light allows for a more homogeneous integration of the signal from the entire bulk of the tissue, whereas epi-illumination measurements of contrast are limited to a fraction of the light penetration depth. We quantified the spectral depth dependence of our contrast signal in the skin, and did not observe a statistically significant effect of epidermal melanin on speckle contrast. Finally, we corroborated these simulated results with experimental LSI measurements of flow beneath a thin absorbing layer. The results of this study suggest the use of LSI in the clinic to monitor perfusion in patients with different skin types, or inhomogeneous epidermal melanin distributions.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Laser speckle imaging in the spatial frequency domain

Amaan Mazhar, David J. Cuccia, Tyler B. Rice, Stefan A. Carp, Anthony J. Durkin, David A. Boas, Bernard Choi, and Bruce J. Tromberg
Biomed. Opt. Express 2(6) 1553-1563 (2011)

Quantitative, depth-resolved determination of particle motion using multi-exposure, spatial frequency domain laser speckle imaging

Tyler B. Rice, Elliott Kwan, Carole K. Hayakawa, Anthony J. Durkin, Bernard Choi, and Bruce J. Tromberg
Biomed. Opt. Express 4(12) 2880-2892 (2013)

Comparison of speckleplethysmographic (SPG) and photoplethysmographic (PPG) imaging by Monte Carlo simulations and in vivo measurements

Cody E. Dunn, Ben Lertsakdadet, Christian Crouzet, Adrian Bahani, and Bernard Choi
Biomed. Opt. Express 9(9) 4306-4316 (2018)

References

  • View by:
  • |
  • |
  • |

  1. A. K. Dunn, H. Bolay, M. A. Moskowitz, and D. A. Boas, “Dynamic imaging of cerebral blood flow using laser speckle,” J. Cereb. Blood Flow Metab. 21(3), 195–201 (2001).
    [PubMed]
  2. A. F. Fercher and J. D. Briers, “Flow visualization by means of single-exposure speckle photography,” Opt. Commun. 37, 326–330 (1981).
  3. B. Yang, O. Yang, J. Guzman, P. Nguyen, C. Crouzet, K. E. Osann, K. M. Kelly, J. S. Nelson, and B. Choi, “Intraoperative, real-time monitoring of blood flow dynamics associated with laser surgery of port wine stain birthmarks,” Lasers Surg. Med. 47(6), 469–475 (2015).
    [PubMed]
  4. C. Crouzet, R. H. Wilson, A. Bazrafkan, M. H. Farahabadi, D. Lee, J. Alcocer, B. J. Tromberg, B. Choi, and Y. Akbari, “Cerebral blood flow is decoupled from blood pressure and linked to EEG bursting after resuscitation from cardiac arrest,” Biomed. Opt. Express 7(11), 4660–4673 (2016).
    [PubMed]
  5. C. Crouzet, J. Q. Nguyen, A. Ponticorvo, N. P. Bernal, A. J. Durkin, and B. Choi, “Acute discrimination between superficial-partial and deep-partial thickness burns in a preclinical model with laser speckle imaging,” Burns 41(5), 1058–1063 (2015).
    [PubMed]
  6. S. M. White, R. Hingorani, R. P. Arora, C. C. Hughes, S. C. George, and B. Choi, “Longitudinal In Vivo Imaging to Assess Blood Flow and Oxygenation in Implantable Engineered Tissues,” Tissue Eng. Part C Methods 18(9), 697–709 (2012).
    [PubMed]
  7. D. A. Boas and A. K. Dunn, “Laser speckle contrast imaging in biomedical optics,” J. Biomed. Opt. 15(1), 011109 (2010).
    [PubMed]
  8. J. D. Briers, “Time-varying laser speckle for measuring motion and flow,” Proc. SPIE 4242, 25–39 (2001).
  9. D. Briers, D. D. Duncan, E. Hirst, S. J. Kirkpatrick, M. Larsson, W. Steenbergen, T. Stromberg, and O. B. Thompson, “Laser speckle contrast imaging: theoretical and practical limitations,” J. Biomed. Opt. 18(6), 066018 (2013).
    [PubMed]
  10. Y.-C. Huang, T. L. Ringold, J. S. Nelson, and B. Choi, “Noninvasive blood flow imaging for real-time feedback during laser therapy of port wine stain birthmarks,” Lasers Surg. Med. 40(3), 167–173 (2008).
    [PubMed]
  11. O. Yang, D. Cuccia, and B. Choi, “Real-time blood flow visualization using the graphics processing unit,” J. Biomed. Opt. 16(1), 016009 (2011).
    [PubMed]
  12. Y. C. Huang, N. Tran, P. R. Shumaker, K. Kelly, E. V. Ross, J. S. Nelson, and B. Choi, “Blood flow dynamics after laser therapy of port wine stain birthmarks,” Lasers Surg. Med. 41(8), 563–571 (2009).
    [PubMed]
  13. M. A. Davis, L. Gagnon, D. A. Boas, and A. K. Dunn, “Sensitivity of laser speckle contrast imaging to flow perturbations in the cortex,” Biomed. Opt. Express 7(3), 759–775 (2016).
    [PubMed]
  14. L. M. Richards, S. S. Kazmi, K. E. Olin, J. S. Waldron, D. J. Fox, and A. K. Dunn, “Intraoperative multi-exposure speckle imaging of cerebral blood flow,” J. Cereb. Blood Flow Metab. 37(9), 3097–3109 (2017).
    [PubMed]
  15. S. M. Kazmi, L. M. Richards, C. J. Schrandt, M. A. Davis, and A. K. Dunn, “Expanding Applications, Accuracy, and Interpretation of Laser Speckle Contrast Imaging of Cerebral Blood Flow,” J. Cereb. Blood Flow Metab. 35(7), 1076–1084 (2015).
    [PubMed]
  16. L. M. Richards, E. L. Towle, D. J. Fox, and A. K. Dunn, “Intraoperative laser speckle contrast imaging with retrospective motion correction for quantitative assessment of cerebral blood flow,” Neurophotonics 1(1), 015006 (2014).
    [PubMed]
  17. K. M. Kelly, W. J. Moy, A. J. Moy, B. S. Lertsakdadet, J. J. Moy, E. Nguyen, A. Nguyen, K. E. Osann, and B. Choi, “Talaporfin sodium-mediated photodynamic therapy alone and in combination with pulsed dye laser on cutaneous vasculature,” J. Invest. Dermatol. 135(1), 302–304 (2015).
    [PubMed]
  18. W. J. Moy, S. J. Patel, B. S. Lertsakdadet, R. P. Arora, K. M. Nielsen, K. M. Kelly, and B. Choi, “Preclinical in vivo evaluation of NPe6-mediated photodynamic therapy on normal vasculature,” Lasers Surg. Med. 44(2), 158–162 (2012).
    [PubMed]
  19. P. Li, S. Ni, L. Zhang, S. Zeng, and Q. Luo, “Imaging cerebral blood flow through the intact rat skull with temporal laser speckle imaging,” Opt. Lett. 31(12), 1824–1826 (2006).
    [PubMed]
  20. C. Regan, J. C. Ramirez-San-Juan, and B. Choi, “Photothermal laser speckle imaging,” Opt. Lett. 39(17), 5006–5009 (2014).
    [PubMed]
  21. J. C. Ramirez-San-Juan, C. Regan, B. Coyotl-Ocelotl, and B. Choi, “Spatial versus temporal laser speckle contrast analyses in the presence of static optical scatterers,” J. Biomed. Opt. 19(10), 106009 (2014).
    [PubMed]
  22. J. C. Ramirez-San-Juan, E. Mendez-Aguilar, N. Salazar-Hermenegildo, A. Fuentes-Garcia, R. Ramos-Garcia, and B. Choi, “Effects of speckle/pixel size ratio on temporal and spatial speckle-contrast analysis of dynamic scattering systems: Implications for measurements of blood-flow dynamics,” Biomed. Opt. Express 4(10), 1883–1889 (2013).
    [PubMed]
  23. A. B. Parthasarathy, W. J. Tom, A. Gopal, X. Zhang, and A. K. Dunn, “Robust flow measurement with multi-exposure speckle imaging,” Opt. Express 16(3), 1975–1989 (2008).
    [PubMed]
  24. H. Cheng, Y. Yan, and T. Q. Duong, “Temporal statistical analysis of laser speckle images and its application to retinal blood-flow imaging,” Opt. Express 16(14), 10214–10219 (2008).
    [PubMed]
  25. T. Lister, P. Wright, and P. Chappell, “Spectrophotometers for the clinical assessment of port-wine stain skin lesions: a review,” Lasers Med. Sci. 25(3), 449–457 (2010).
    [PubMed]
  26. A. Mazhar, D. J. Cuccia, T. B. Rice, S. A. Carp, A. J. Durkin, D. A. Boas, B. Choi, and B. J. Tromberg, “Laser speckle imaging in the spatial frequency domain,” Biomed. Opt. Express 2(6), 1553–1563 (2011).
    [PubMed]
  27. K. Khaksari and S. J. Kirkpatrick, “Combined effects of scattering and absorption on laser speckle contrast imaging,” J. Biomed. Opt. 21(7), 76002 (2016).
    [PubMed]
  28. Z. Hajjarian and S. K. Nadkarni, “Correction of optical absorption and scattering variations in laser speckle rheology measurements,” Opt. Express 22, 6349–6361 (2014).
  29. D. Yudovsky and A. J. Durkin, “Spatial frequency domain spectroscopy of two layer media,” J. Biomed. Opt. 16(10), 107005 (2011).
    [PubMed]
  30. S. A. Sharif, E. Taydas, A. Mazhar, R. Rahimian, K. M. Kelly, B. Choi, and A. J. Durkin, “Noninvasive clinical assessment of port-wine stain birthmarks using current and future optical imaging technology: A review,” Br. J. Dermatol. 167(6), 1215–1223 (2012).
    [PubMed]
  31. T. Lister, P. A. Wright, and P. H. Chappell, “Optical properties of human skin,” J. Biomed. Opt. 17(9), 90901 (2012).
    [PubMed]
  32. S. L. Jacques and D. J. McAuliffe, “The melanosome: Threshold Temperature for Explosive Vaporization and Internal Absorption Coefficient During Pulsed Laser Irradiation,” Photochem. Photobiol. 53(6), 769–775 (1991).
    [PubMed]
  33. L. Wang, S. L. Jacques, and L. Zheng, “MCML-Monte Carlo modeling of light transport in multi-layered tissues,” Comput. Methods Programs Biomed. 47(2), 131–146 (1995).
    [PubMed]
  34. Laser Microbeam and Medical Program. Virtual Photonics Technology Initiative. (2014). Available at: http://www.virtualphotonics.org/ .
  35. C. Hayakawa, J. Spanier, and V. Venugopalan, Computational Engine for a Virtual Tissue Simulator. in Monte Carlo and Quasi-Monte Carlo Methods 2006 eds. A. Keller, S. Heinrich, and H. Niederreiter (Springer, Berlin, 2008).
  36. C. K. Hayakawa, J. Spanier, and V. Venugopalan, “Comparative analysis of discrete and continuous absorption weighting estimators used in Monte Carlo simulations of radiative transport in turbid media,” J. Opt. Soc. Am. A 31(2), 301–311 (2014).
    [PubMed]
  37. M. Martinelli, “Analysis of single Monte Carlo methods for prediction of reflectance from turbid media,” Opt. Express   19, 19627–19642 (2011).
  38. C. K. Hayakawa, “Perturbation Monte Carlo methods to solve inverse photon migration problems in heterogeneous tissues,” Opt. Lett. 26, 1335–1337 (2001).
  39. D. A. Boas and A. G. Yodh, “Spatially varying dynamical properties of turbid media probed with diffusing temporal light correlation,” J. Opt. Soc. Am. A 14, 192–215 (1997).
  40. T. B. Rice, S. D. Konecky, A. Mazhar, D. J. Cuccia, A. J. Durkin, B. Choi, and B. J. Tromberg, “Quantitative determination of dynamical properties using coherent spatial frequency domain imaging,” J. Opt. Soc. Am. A 28(10), 2108–2114 (2011).
    [PubMed]
  41. T. B. Rice, E. Kwan, C. K. Hayakawa, A. J. Durkin, B. Choi, and B. J. Tromberg, “Quantitative, depth-resolved determination of particle motion using multi-exposure, spatial frequency domain laser speckle imaging,” Biomed. Opt. Express 4(12), 2880–2892 (2013).
    [PubMed]
  42. G. Maret and P. E. Wolf, “Multiple light scattering from disordered media. The effect of brownian motion of scatterers,” Z. Phys. B Condens. Matter 65, 409–413 (1987).
  43. D. J. Pine, D. A. Weitz, P. M. Chaikin, and E. Herbolzheimer, “Diffusing wave spectroscopy,” Phys. Rev. Lett. 60(12), 1134–1137 (1988).
    [PubMed]
  44. J. Goodman, Speckle Phenomena in Optics: Theory and Applications. (Roberts and Company, 2007).
  45. R. Bandyopadhyay, A. S. Gittings, S. S. Suh, P. K. Dixon, and D. J. Durian, “Speckle-visibility spectroscopy: A tool to study time-varying dynamics,” Rev. Sci. Instrum. 76, 093110 (2005).
  46. P. Lemieux and D. J. Durian, “Investigating non-Gaussian scattering processes by using n th-order intensity correlation functions,” J. Opt. Soc. Am. A. 16, 1651–1664 (1999).
  47. M. Davis, S. M. S. Kazmi, and A. K. Dunn, “Imaging depth and multiple scattering in laser speckle contrast imaging,” J. Biomed. Opt. 19, 86001 (2014).
  48. F. Ayers, A. Grant, D. Kuo, D. J. Cuccia, and A. J. Durkin, “Fabrication and characterization of silicone-based tissue phantoms with tunable optical properties in the visible and near infrared domain,” Proc. SPIE 6870, 71 (2008).
  49. S. L. Jacques, Origins of tissue optical properties in the UVA, visible, and NIR regions. OSA TOPS Adv. Opt. Imaging Phot. Migr. 364–371 (1996).
  50. S. L. Jacques, “Optical Properties of Biological Tissues: A Review,” Phys. Med. Biol. 58(11), R37–R61 (2013).
    [PubMed]
  51. I. Fredriksson, M. Larsson, and T. Strömberg, “Optical microcirculatory skin model: assessed by Monte Carlo simulations paired with in vivo laser Doppler flowmetry,” J. Biomed. Opt. 13(1), 014015 (2008).
    [PubMed]
  52. R. Michels, F. Foschum, and A. Kienle, “Optical properties of fat emulsions,” Opt. Express 16(8), 5907–5925 (2008).
    [PubMed]
  53. S. Jacques, maketissue.m. (2014).
  54. I. Fredriksson, O. Burdakov, M. Larsson, and T. Strömberg, “Inverse Monte Carlo in a multilayered tissue model: merging diffuse reflectance spectroscopy and laser Doppler flowmetry,” J. Biomed. Opt. 18(12), 127004 (2013).
    [PubMed]
  55. A. Ponticorvo, D. M. Burmeister, R. Rowland, M. Baldado, G. T. Kennedy, R. Saager, N. Bernal, B. Choi, and A. J. Durkin, “Quantitative long-term measurements of burns in a rat model using Spatial Frequency Domain Imaging (SFDI) and Laser Speckle Imaging (LSI),” Lasers Surg. Med. 49(3), 293–304 (2017).
    [PubMed]

2017 (2)

L. M. Richards, S. S. Kazmi, K. E. Olin, J. S. Waldron, D. J. Fox, and A. K. Dunn, “Intraoperative multi-exposure speckle imaging of cerebral blood flow,” J. Cereb. Blood Flow Metab. 37(9), 3097–3109 (2017).
[PubMed]

A. Ponticorvo, D. M. Burmeister, R. Rowland, M. Baldado, G. T. Kennedy, R. Saager, N. Bernal, B. Choi, and A. J. Durkin, “Quantitative long-term measurements of burns in a rat model using Spatial Frequency Domain Imaging (SFDI) and Laser Speckle Imaging (LSI),” Lasers Surg. Med. 49(3), 293–304 (2017).
[PubMed]

2016 (3)

2015 (4)

C. Crouzet, J. Q. Nguyen, A. Ponticorvo, N. P. Bernal, A. J. Durkin, and B. Choi, “Acute discrimination between superficial-partial and deep-partial thickness burns in a preclinical model with laser speckle imaging,” Burns 41(5), 1058–1063 (2015).
[PubMed]

B. Yang, O. Yang, J. Guzman, P. Nguyen, C. Crouzet, K. E. Osann, K. M. Kelly, J. S. Nelson, and B. Choi, “Intraoperative, real-time monitoring of blood flow dynamics associated with laser surgery of port wine stain birthmarks,” Lasers Surg. Med. 47(6), 469–475 (2015).
[PubMed]

S. M. Kazmi, L. M. Richards, C. J. Schrandt, M. A. Davis, and A. K. Dunn, “Expanding Applications, Accuracy, and Interpretation of Laser Speckle Contrast Imaging of Cerebral Blood Flow,” J. Cereb. Blood Flow Metab. 35(7), 1076–1084 (2015).
[PubMed]

K. M. Kelly, W. J. Moy, A. J. Moy, B. S. Lertsakdadet, J. J. Moy, E. Nguyen, A. Nguyen, K. E. Osann, and B. Choi, “Talaporfin sodium-mediated photodynamic therapy alone and in combination with pulsed dye laser on cutaneous vasculature,” J. Invest. Dermatol. 135(1), 302–304 (2015).
[PubMed]

2014 (6)

L. M. Richards, E. L. Towle, D. J. Fox, and A. K. Dunn, “Intraoperative laser speckle contrast imaging with retrospective motion correction for quantitative assessment of cerebral blood flow,” Neurophotonics 1(1), 015006 (2014).
[PubMed]

Z. Hajjarian and S. K. Nadkarni, “Correction of optical absorption and scattering variations in laser speckle rheology measurements,” Opt. Express 22, 6349–6361 (2014).

C. Regan, J. C. Ramirez-San-Juan, and B. Choi, “Photothermal laser speckle imaging,” Opt. Lett. 39(17), 5006–5009 (2014).
[PubMed]

J. C. Ramirez-San-Juan, C. Regan, B. Coyotl-Ocelotl, and B. Choi, “Spatial versus temporal laser speckle contrast analyses in the presence of static optical scatterers,” J. Biomed. Opt. 19(10), 106009 (2014).
[PubMed]

C. K. Hayakawa, J. Spanier, and V. Venugopalan, “Comparative analysis of discrete and continuous absorption weighting estimators used in Monte Carlo simulations of radiative transport in turbid media,” J. Opt. Soc. Am. A 31(2), 301–311 (2014).
[PubMed]

M. Davis, S. M. S. Kazmi, and A. K. Dunn, “Imaging depth and multiple scattering in laser speckle contrast imaging,” J. Biomed. Opt. 19, 86001 (2014).

2013 (5)

S. L. Jacques, “Optical Properties of Biological Tissues: A Review,” Phys. Med. Biol. 58(11), R37–R61 (2013).
[PubMed]

T. B. Rice, E. Kwan, C. K. Hayakawa, A. J. Durkin, B. Choi, and B. J. Tromberg, “Quantitative, depth-resolved determination of particle motion using multi-exposure, spatial frequency domain laser speckle imaging,” Biomed. Opt. Express 4(12), 2880–2892 (2013).
[PubMed]

I. Fredriksson, O. Burdakov, M. Larsson, and T. Strömberg, “Inverse Monte Carlo in a multilayered tissue model: merging diffuse reflectance spectroscopy and laser Doppler flowmetry,” J. Biomed. Opt. 18(12), 127004 (2013).
[PubMed]

J. C. Ramirez-San-Juan, E. Mendez-Aguilar, N. Salazar-Hermenegildo, A. Fuentes-Garcia, R. Ramos-Garcia, and B. Choi, “Effects of speckle/pixel size ratio on temporal and spatial speckle-contrast analysis of dynamic scattering systems: Implications for measurements of blood-flow dynamics,” Biomed. Opt. Express 4(10), 1883–1889 (2013).
[PubMed]

D. Briers, D. D. Duncan, E. Hirst, S. J. Kirkpatrick, M. Larsson, W. Steenbergen, T. Stromberg, and O. B. Thompson, “Laser speckle contrast imaging: theoretical and practical limitations,” J. Biomed. Opt. 18(6), 066018 (2013).
[PubMed]

2012 (4)

S. M. White, R. Hingorani, R. P. Arora, C. C. Hughes, S. C. George, and B. Choi, “Longitudinal In Vivo Imaging to Assess Blood Flow and Oxygenation in Implantable Engineered Tissues,” Tissue Eng. Part C Methods 18(9), 697–709 (2012).
[PubMed]

W. J. Moy, S. J. Patel, B. S. Lertsakdadet, R. P. Arora, K. M. Nielsen, K. M. Kelly, and B. Choi, “Preclinical in vivo evaluation of NPe6-mediated photodynamic therapy on normal vasculature,” Lasers Surg. Med. 44(2), 158–162 (2012).
[PubMed]

S. A. Sharif, E. Taydas, A. Mazhar, R. Rahimian, K. M. Kelly, B. Choi, and A. J. Durkin, “Noninvasive clinical assessment of port-wine stain birthmarks using current and future optical imaging technology: A review,” Br. J. Dermatol. 167(6), 1215–1223 (2012).
[PubMed]

T. Lister, P. A. Wright, and P. H. Chappell, “Optical properties of human skin,” J. Biomed. Opt. 17(9), 90901 (2012).
[PubMed]

2011 (5)

2010 (2)

D. A. Boas and A. K. Dunn, “Laser speckle contrast imaging in biomedical optics,” J. Biomed. Opt. 15(1), 011109 (2010).
[PubMed]

T. Lister, P. Wright, and P. Chappell, “Spectrophotometers for the clinical assessment of port-wine stain skin lesions: a review,” Lasers Med. Sci. 25(3), 449–457 (2010).
[PubMed]

2009 (1)

Y. C. Huang, N. Tran, P. R. Shumaker, K. Kelly, E. V. Ross, J. S. Nelson, and B. Choi, “Blood flow dynamics after laser therapy of port wine stain birthmarks,” Lasers Surg. Med. 41(8), 563–571 (2009).
[PubMed]

2008 (6)

Y.-C. Huang, T. L. Ringold, J. S. Nelson, and B. Choi, “Noninvasive blood flow imaging for real-time feedback during laser therapy of port wine stain birthmarks,” Lasers Surg. Med. 40(3), 167–173 (2008).
[PubMed]

A. B. Parthasarathy, W. J. Tom, A. Gopal, X. Zhang, and A. K. Dunn, “Robust flow measurement with multi-exposure speckle imaging,” Opt. Express 16(3), 1975–1989 (2008).
[PubMed]

H. Cheng, Y. Yan, and T. Q. Duong, “Temporal statistical analysis of laser speckle images and its application to retinal blood-flow imaging,” Opt. Express 16(14), 10214–10219 (2008).
[PubMed]

I. Fredriksson, M. Larsson, and T. Strömberg, “Optical microcirculatory skin model: assessed by Monte Carlo simulations paired with in vivo laser Doppler flowmetry,” J. Biomed. Opt. 13(1), 014015 (2008).
[PubMed]

R. Michels, F. Foschum, and A. Kienle, “Optical properties of fat emulsions,” Opt. Express 16(8), 5907–5925 (2008).
[PubMed]

F. Ayers, A. Grant, D. Kuo, D. J. Cuccia, and A. J. Durkin, “Fabrication and characterization of silicone-based tissue phantoms with tunable optical properties in the visible and near infrared domain,” Proc. SPIE 6870, 71 (2008).

2006 (1)

2005 (1)

R. Bandyopadhyay, A. S. Gittings, S. S. Suh, P. K. Dixon, and D. J. Durian, “Speckle-visibility spectroscopy: A tool to study time-varying dynamics,” Rev. Sci. Instrum. 76, 093110 (2005).

2001 (3)

A. K. Dunn, H. Bolay, M. A. Moskowitz, and D. A. Boas, “Dynamic imaging of cerebral blood flow using laser speckle,” J. Cereb. Blood Flow Metab. 21(3), 195–201 (2001).
[PubMed]

J. D. Briers, “Time-varying laser speckle for measuring motion and flow,” Proc. SPIE 4242, 25–39 (2001).

C. K. Hayakawa, “Perturbation Monte Carlo methods to solve inverse photon migration problems in heterogeneous tissues,” Opt. Lett. 26, 1335–1337 (2001).

1999 (1)

P. Lemieux and D. J. Durian, “Investigating non-Gaussian scattering processes by using n th-order intensity correlation functions,” J. Opt. Soc. Am. A. 16, 1651–1664 (1999).

1997 (1)

1995 (1)

L. Wang, S. L. Jacques, and L. Zheng, “MCML-Monte Carlo modeling of light transport in multi-layered tissues,” Comput. Methods Programs Biomed. 47(2), 131–146 (1995).
[PubMed]

1991 (1)

S. L. Jacques and D. J. McAuliffe, “The melanosome: Threshold Temperature for Explosive Vaporization and Internal Absorption Coefficient During Pulsed Laser Irradiation,” Photochem. Photobiol. 53(6), 769–775 (1991).
[PubMed]

1988 (1)

D. J. Pine, D. A. Weitz, P. M. Chaikin, and E. Herbolzheimer, “Diffusing wave spectroscopy,” Phys. Rev. Lett. 60(12), 1134–1137 (1988).
[PubMed]

1987 (1)

G. Maret and P. E. Wolf, “Multiple light scattering from disordered media. The effect of brownian motion of scatterers,” Z. Phys. B Condens. Matter 65, 409–413 (1987).

1981 (1)

A. F. Fercher and J. D. Briers, “Flow visualization by means of single-exposure speckle photography,” Opt. Commun. 37, 326–330 (1981).

Akbari, Y.

Alcocer, J.

Arora, R. P.

S. M. White, R. Hingorani, R. P. Arora, C. C. Hughes, S. C. George, and B. Choi, “Longitudinal In Vivo Imaging to Assess Blood Flow and Oxygenation in Implantable Engineered Tissues,” Tissue Eng. Part C Methods 18(9), 697–709 (2012).
[PubMed]

W. J. Moy, S. J. Patel, B. S. Lertsakdadet, R. P. Arora, K. M. Nielsen, K. M. Kelly, and B. Choi, “Preclinical in vivo evaluation of NPe6-mediated photodynamic therapy on normal vasculature,” Lasers Surg. Med. 44(2), 158–162 (2012).
[PubMed]

Ayers, F.

F. Ayers, A. Grant, D. Kuo, D. J. Cuccia, and A. J. Durkin, “Fabrication and characterization of silicone-based tissue phantoms with tunable optical properties in the visible and near infrared domain,” Proc. SPIE 6870, 71 (2008).

Baldado, M.

A. Ponticorvo, D. M. Burmeister, R. Rowland, M. Baldado, G. T. Kennedy, R. Saager, N. Bernal, B. Choi, and A. J. Durkin, “Quantitative long-term measurements of burns in a rat model using Spatial Frequency Domain Imaging (SFDI) and Laser Speckle Imaging (LSI),” Lasers Surg. Med. 49(3), 293–304 (2017).
[PubMed]

Bandyopadhyay, R.

R. Bandyopadhyay, A. S. Gittings, S. S. Suh, P. K. Dixon, and D. J. Durian, “Speckle-visibility spectroscopy: A tool to study time-varying dynamics,” Rev. Sci. Instrum. 76, 093110 (2005).

Bazrafkan, A.

Bernal, N.

A. Ponticorvo, D. M. Burmeister, R. Rowland, M. Baldado, G. T. Kennedy, R. Saager, N. Bernal, B. Choi, and A. J. Durkin, “Quantitative long-term measurements of burns in a rat model using Spatial Frequency Domain Imaging (SFDI) and Laser Speckle Imaging (LSI),” Lasers Surg. Med. 49(3), 293–304 (2017).
[PubMed]

Bernal, N. P.

C. Crouzet, J. Q. Nguyen, A. Ponticorvo, N. P. Bernal, A. J. Durkin, and B. Choi, “Acute discrimination between superficial-partial and deep-partial thickness burns in a preclinical model with laser speckle imaging,” Burns 41(5), 1058–1063 (2015).
[PubMed]

Boas, D. A.

Bolay, H.

A. K. Dunn, H. Bolay, M. A. Moskowitz, and D. A. Boas, “Dynamic imaging of cerebral blood flow using laser speckle,” J. Cereb. Blood Flow Metab. 21(3), 195–201 (2001).
[PubMed]

Briers, D.

D. Briers, D. D. Duncan, E. Hirst, S. J. Kirkpatrick, M. Larsson, W. Steenbergen, T. Stromberg, and O. B. Thompson, “Laser speckle contrast imaging: theoretical and practical limitations,” J. Biomed. Opt. 18(6), 066018 (2013).
[PubMed]

Briers, J. D.

J. D. Briers, “Time-varying laser speckle for measuring motion and flow,” Proc. SPIE 4242, 25–39 (2001).

A. F. Fercher and J. D. Briers, “Flow visualization by means of single-exposure speckle photography,” Opt. Commun. 37, 326–330 (1981).

Burdakov, O.

I. Fredriksson, O. Burdakov, M. Larsson, and T. Strömberg, “Inverse Monte Carlo in a multilayered tissue model: merging diffuse reflectance spectroscopy and laser Doppler flowmetry,” J. Biomed. Opt. 18(12), 127004 (2013).
[PubMed]

Burmeister, D. M.

A. Ponticorvo, D. M. Burmeister, R. Rowland, M. Baldado, G. T. Kennedy, R. Saager, N. Bernal, B. Choi, and A. J. Durkin, “Quantitative long-term measurements of burns in a rat model using Spatial Frequency Domain Imaging (SFDI) and Laser Speckle Imaging (LSI),” Lasers Surg. Med. 49(3), 293–304 (2017).
[PubMed]

Carp, S. A.

Chaikin, P. M.

D. J. Pine, D. A. Weitz, P. M. Chaikin, and E. Herbolzheimer, “Diffusing wave spectroscopy,” Phys. Rev. Lett. 60(12), 1134–1137 (1988).
[PubMed]

Chappell, P.

T. Lister, P. Wright, and P. Chappell, “Spectrophotometers for the clinical assessment of port-wine stain skin lesions: a review,” Lasers Med. Sci. 25(3), 449–457 (2010).
[PubMed]

Chappell, P. H.

T. Lister, P. A. Wright, and P. H. Chappell, “Optical properties of human skin,” J. Biomed. Opt. 17(9), 90901 (2012).
[PubMed]

Cheng, H.

Choi, B.

A. Ponticorvo, D. M. Burmeister, R. Rowland, M. Baldado, G. T. Kennedy, R. Saager, N. Bernal, B. Choi, and A. J. Durkin, “Quantitative long-term measurements of burns in a rat model using Spatial Frequency Domain Imaging (SFDI) and Laser Speckle Imaging (LSI),” Lasers Surg. Med. 49(3), 293–304 (2017).
[PubMed]

C. Crouzet, R. H. Wilson, A. Bazrafkan, M. H. Farahabadi, D. Lee, J. Alcocer, B. J. Tromberg, B. Choi, and Y. Akbari, “Cerebral blood flow is decoupled from blood pressure and linked to EEG bursting after resuscitation from cardiac arrest,” Biomed. Opt. Express 7(11), 4660–4673 (2016).
[PubMed]

B. Yang, O. Yang, J. Guzman, P. Nguyen, C. Crouzet, K. E. Osann, K. M. Kelly, J. S. Nelson, and B. Choi, “Intraoperative, real-time monitoring of blood flow dynamics associated with laser surgery of port wine stain birthmarks,” Lasers Surg. Med. 47(6), 469–475 (2015).
[PubMed]

C. Crouzet, J. Q. Nguyen, A. Ponticorvo, N. P. Bernal, A. J. Durkin, and B. Choi, “Acute discrimination between superficial-partial and deep-partial thickness burns in a preclinical model with laser speckle imaging,” Burns 41(5), 1058–1063 (2015).
[PubMed]

K. M. Kelly, W. J. Moy, A. J. Moy, B. S. Lertsakdadet, J. J. Moy, E. Nguyen, A. Nguyen, K. E. Osann, and B. Choi, “Talaporfin sodium-mediated photodynamic therapy alone and in combination with pulsed dye laser on cutaneous vasculature,” J. Invest. Dermatol. 135(1), 302–304 (2015).
[PubMed]

J. C. Ramirez-San-Juan, C. Regan, B. Coyotl-Ocelotl, and B. Choi, “Spatial versus temporal laser speckle contrast analyses in the presence of static optical scatterers,” J. Biomed. Opt. 19(10), 106009 (2014).
[PubMed]

C. Regan, J. C. Ramirez-San-Juan, and B. Choi, “Photothermal laser speckle imaging,” Opt. Lett. 39(17), 5006–5009 (2014).
[PubMed]

J. C. Ramirez-San-Juan, E. Mendez-Aguilar, N. Salazar-Hermenegildo, A. Fuentes-Garcia, R. Ramos-Garcia, and B. Choi, “Effects of speckle/pixel size ratio on temporal and spatial speckle-contrast analysis of dynamic scattering systems: Implications for measurements of blood-flow dynamics,” Biomed. Opt. Express 4(10), 1883–1889 (2013).
[PubMed]

T. B. Rice, E. Kwan, C. K. Hayakawa, A. J. Durkin, B. Choi, and B. J. Tromberg, “Quantitative, depth-resolved determination of particle motion using multi-exposure, spatial frequency domain laser speckle imaging,” Biomed. Opt. Express 4(12), 2880–2892 (2013).
[PubMed]

S. A. Sharif, E. Taydas, A. Mazhar, R. Rahimian, K. M. Kelly, B. Choi, and A. J. Durkin, “Noninvasive clinical assessment of port-wine stain birthmarks using current and future optical imaging technology: A review,” Br. J. Dermatol. 167(6), 1215–1223 (2012).
[PubMed]

W. J. Moy, S. J. Patel, B. S. Lertsakdadet, R. P. Arora, K. M. Nielsen, K. M. Kelly, and B. Choi, “Preclinical in vivo evaluation of NPe6-mediated photodynamic therapy on normal vasculature,” Lasers Surg. Med. 44(2), 158–162 (2012).
[PubMed]

S. M. White, R. Hingorani, R. P. Arora, C. C. Hughes, S. C. George, and B. Choi, “Longitudinal In Vivo Imaging to Assess Blood Flow and Oxygenation in Implantable Engineered Tissues,” Tissue Eng. Part C Methods 18(9), 697–709 (2012).
[PubMed]

O. Yang, D. Cuccia, and B. Choi, “Real-time blood flow visualization using the graphics processing unit,” J. Biomed. Opt. 16(1), 016009 (2011).
[PubMed]

A. Mazhar, D. J. Cuccia, T. B. Rice, S. A. Carp, A. J. Durkin, D. A. Boas, B. Choi, and B. J. Tromberg, “Laser speckle imaging in the spatial frequency domain,” Biomed. Opt. Express 2(6), 1553–1563 (2011).
[PubMed]

T. B. Rice, S. D. Konecky, A. Mazhar, D. J. Cuccia, A. J. Durkin, B. Choi, and B. J. Tromberg, “Quantitative determination of dynamical properties using coherent spatial frequency domain imaging,” J. Opt. Soc. Am. A 28(10), 2108–2114 (2011).
[PubMed]

Y. C. Huang, N. Tran, P. R. Shumaker, K. Kelly, E. V. Ross, J. S. Nelson, and B. Choi, “Blood flow dynamics after laser therapy of port wine stain birthmarks,” Lasers Surg. Med. 41(8), 563–571 (2009).
[PubMed]

Y.-C. Huang, T. L. Ringold, J. S. Nelson, and B. Choi, “Noninvasive blood flow imaging for real-time feedback during laser therapy of port wine stain birthmarks,” Lasers Surg. Med. 40(3), 167–173 (2008).
[PubMed]

Coyotl-Ocelotl, B.

J. C. Ramirez-San-Juan, C. Regan, B. Coyotl-Ocelotl, and B. Choi, “Spatial versus temporal laser speckle contrast analyses in the presence of static optical scatterers,” J. Biomed. Opt. 19(10), 106009 (2014).
[PubMed]

Crouzet, C.

C. Crouzet, R. H. Wilson, A. Bazrafkan, M. H. Farahabadi, D. Lee, J. Alcocer, B. J. Tromberg, B. Choi, and Y. Akbari, “Cerebral blood flow is decoupled from blood pressure and linked to EEG bursting after resuscitation from cardiac arrest,” Biomed. Opt. Express 7(11), 4660–4673 (2016).
[PubMed]

B. Yang, O. Yang, J. Guzman, P. Nguyen, C. Crouzet, K. E. Osann, K. M. Kelly, J. S. Nelson, and B. Choi, “Intraoperative, real-time monitoring of blood flow dynamics associated with laser surgery of port wine stain birthmarks,” Lasers Surg. Med. 47(6), 469–475 (2015).
[PubMed]

C. Crouzet, J. Q. Nguyen, A. Ponticorvo, N. P. Bernal, A. J. Durkin, and B. Choi, “Acute discrimination between superficial-partial and deep-partial thickness burns in a preclinical model with laser speckle imaging,” Burns 41(5), 1058–1063 (2015).
[PubMed]

Cuccia, D.

O. Yang, D. Cuccia, and B. Choi, “Real-time blood flow visualization using the graphics processing unit,” J. Biomed. Opt. 16(1), 016009 (2011).
[PubMed]

Cuccia, D. J.

Davis, M.

M. Davis, S. M. S. Kazmi, and A. K. Dunn, “Imaging depth and multiple scattering in laser speckle contrast imaging,” J. Biomed. Opt. 19, 86001 (2014).

Davis, M. A.

M. A. Davis, L. Gagnon, D. A. Boas, and A. K. Dunn, “Sensitivity of laser speckle contrast imaging to flow perturbations in the cortex,” Biomed. Opt. Express 7(3), 759–775 (2016).
[PubMed]

S. M. Kazmi, L. M. Richards, C. J. Schrandt, M. A. Davis, and A. K. Dunn, “Expanding Applications, Accuracy, and Interpretation of Laser Speckle Contrast Imaging of Cerebral Blood Flow,” J. Cereb. Blood Flow Metab. 35(7), 1076–1084 (2015).
[PubMed]

Dixon, P. K.

R. Bandyopadhyay, A. S. Gittings, S. S. Suh, P. K. Dixon, and D. J. Durian, “Speckle-visibility spectroscopy: A tool to study time-varying dynamics,” Rev. Sci. Instrum. 76, 093110 (2005).

Duncan, D. D.

D. Briers, D. D. Duncan, E. Hirst, S. J. Kirkpatrick, M. Larsson, W. Steenbergen, T. Stromberg, and O. B. Thompson, “Laser speckle contrast imaging: theoretical and practical limitations,” J. Biomed. Opt. 18(6), 066018 (2013).
[PubMed]

Dunn, A. K.

L. M. Richards, S. S. Kazmi, K. E. Olin, J. S. Waldron, D. J. Fox, and A. K. Dunn, “Intraoperative multi-exposure speckle imaging of cerebral blood flow,” J. Cereb. Blood Flow Metab. 37(9), 3097–3109 (2017).
[PubMed]

M. A. Davis, L. Gagnon, D. A. Boas, and A. K. Dunn, “Sensitivity of laser speckle contrast imaging to flow perturbations in the cortex,” Biomed. Opt. Express 7(3), 759–775 (2016).
[PubMed]

S. M. Kazmi, L. M. Richards, C. J. Schrandt, M. A. Davis, and A. K. Dunn, “Expanding Applications, Accuracy, and Interpretation of Laser Speckle Contrast Imaging of Cerebral Blood Flow,” J. Cereb. Blood Flow Metab. 35(7), 1076–1084 (2015).
[PubMed]

L. M. Richards, E. L. Towle, D. J. Fox, and A. K. Dunn, “Intraoperative laser speckle contrast imaging with retrospective motion correction for quantitative assessment of cerebral blood flow,” Neurophotonics 1(1), 015006 (2014).
[PubMed]

M. Davis, S. M. S. Kazmi, and A. K. Dunn, “Imaging depth and multiple scattering in laser speckle contrast imaging,” J. Biomed. Opt. 19, 86001 (2014).

D. A. Boas and A. K. Dunn, “Laser speckle contrast imaging in biomedical optics,” J. Biomed. Opt. 15(1), 011109 (2010).
[PubMed]

A. B. Parthasarathy, W. J. Tom, A. Gopal, X. Zhang, and A. K. Dunn, “Robust flow measurement with multi-exposure speckle imaging,” Opt. Express 16(3), 1975–1989 (2008).
[PubMed]

A. K. Dunn, H. Bolay, M. A. Moskowitz, and D. A. Boas, “Dynamic imaging of cerebral blood flow using laser speckle,” J. Cereb. Blood Flow Metab. 21(3), 195–201 (2001).
[PubMed]

Duong, T. Q.

Durian, D. J.

R. Bandyopadhyay, A. S. Gittings, S. S. Suh, P. K. Dixon, and D. J. Durian, “Speckle-visibility spectroscopy: A tool to study time-varying dynamics,” Rev. Sci. Instrum. 76, 093110 (2005).

P. Lemieux and D. J. Durian, “Investigating non-Gaussian scattering processes by using n th-order intensity correlation functions,” J. Opt. Soc. Am. A. 16, 1651–1664 (1999).

Durkin, A. J.

A. Ponticorvo, D. M. Burmeister, R. Rowland, M. Baldado, G. T. Kennedy, R. Saager, N. Bernal, B. Choi, and A. J. Durkin, “Quantitative long-term measurements of burns in a rat model using Spatial Frequency Domain Imaging (SFDI) and Laser Speckle Imaging (LSI),” Lasers Surg. Med. 49(3), 293–304 (2017).
[PubMed]

C. Crouzet, J. Q. Nguyen, A. Ponticorvo, N. P. Bernal, A. J. Durkin, and B. Choi, “Acute discrimination between superficial-partial and deep-partial thickness burns in a preclinical model with laser speckle imaging,” Burns 41(5), 1058–1063 (2015).
[PubMed]

T. B. Rice, E. Kwan, C. K. Hayakawa, A. J. Durkin, B. Choi, and B. J. Tromberg, “Quantitative, depth-resolved determination of particle motion using multi-exposure, spatial frequency domain laser speckle imaging,” Biomed. Opt. Express 4(12), 2880–2892 (2013).
[PubMed]

S. A. Sharif, E. Taydas, A. Mazhar, R. Rahimian, K. M. Kelly, B. Choi, and A. J. Durkin, “Noninvasive clinical assessment of port-wine stain birthmarks using current and future optical imaging technology: A review,” Br. J. Dermatol. 167(6), 1215–1223 (2012).
[PubMed]

D. Yudovsky and A. J. Durkin, “Spatial frequency domain spectroscopy of two layer media,” J. Biomed. Opt. 16(10), 107005 (2011).
[PubMed]

A. Mazhar, D. J. Cuccia, T. B. Rice, S. A. Carp, A. J. Durkin, D. A. Boas, B. Choi, and B. J. Tromberg, “Laser speckle imaging in the spatial frequency domain,” Biomed. Opt. Express 2(6), 1553–1563 (2011).
[PubMed]

T. B. Rice, S. D. Konecky, A. Mazhar, D. J. Cuccia, A. J. Durkin, B. Choi, and B. J. Tromberg, “Quantitative determination of dynamical properties using coherent spatial frequency domain imaging,” J. Opt. Soc. Am. A 28(10), 2108–2114 (2011).
[PubMed]

F. Ayers, A. Grant, D. Kuo, D. J. Cuccia, and A. J. Durkin, “Fabrication and characterization of silicone-based tissue phantoms with tunable optical properties in the visible and near infrared domain,” Proc. SPIE 6870, 71 (2008).

Farahabadi, M. H.

Fercher, A. F.

A. F. Fercher and J. D. Briers, “Flow visualization by means of single-exposure speckle photography,” Opt. Commun. 37, 326–330 (1981).

Foschum, F.

Fox, D. J.

L. M. Richards, S. S. Kazmi, K. E. Olin, J. S. Waldron, D. J. Fox, and A. K. Dunn, “Intraoperative multi-exposure speckle imaging of cerebral blood flow,” J. Cereb. Blood Flow Metab. 37(9), 3097–3109 (2017).
[PubMed]

L. M. Richards, E. L. Towle, D. J. Fox, and A. K. Dunn, “Intraoperative laser speckle contrast imaging with retrospective motion correction for quantitative assessment of cerebral blood flow,” Neurophotonics 1(1), 015006 (2014).
[PubMed]

Fredriksson, I.

I. Fredriksson, O. Burdakov, M. Larsson, and T. Strömberg, “Inverse Monte Carlo in a multilayered tissue model: merging diffuse reflectance spectroscopy and laser Doppler flowmetry,” J. Biomed. Opt. 18(12), 127004 (2013).
[PubMed]

I. Fredriksson, M. Larsson, and T. Strömberg, “Optical microcirculatory skin model: assessed by Monte Carlo simulations paired with in vivo laser Doppler flowmetry,” J. Biomed. Opt. 13(1), 014015 (2008).
[PubMed]

Fuentes-Garcia, A.

Gagnon, L.

George, S. C.

S. M. White, R. Hingorani, R. P. Arora, C. C. Hughes, S. C. George, and B. Choi, “Longitudinal In Vivo Imaging to Assess Blood Flow and Oxygenation in Implantable Engineered Tissues,” Tissue Eng. Part C Methods 18(9), 697–709 (2012).
[PubMed]

Gittings, A. S.

R. Bandyopadhyay, A. S. Gittings, S. S. Suh, P. K. Dixon, and D. J. Durian, “Speckle-visibility spectroscopy: A tool to study time-varying dynamics,” Rev. Sci. Instrum. 76, 093110 (2005).

Gopal, A.

Grant, A.

F. Ayers, A. Grant, D. Kuo, D. J. Cuccia, and A. J. Durkin, “Fabrication and characterization of silicone-based tissue phantoms with tunable optical properties in the visible and near infrared domain,” Proc. SPIE 6870, 71 (2008).

Guzman, J.

B. Yang, O. Yang, J. Guzman, P. Nguyen, C. Crouzet, K. E. Osann, K. M. Kelly, J. S. Nelson, and B. Choi, “Intraoperative, real-time monitoring of blood flow dynamics associated with laser surgery of port wine stain birthmarks,” Lasers Surg. Med. 47(6), 469–475 (2015).
[PubMed]

Hajjarian, Z.

Hayakawa, C. K.

Herbolzheimer, E.

D. J. Pine, D. A. Weitz, P. M. Chaikin, and E. Herbolzheimer, “Diffusing wave spectroscopy,” Phys. Rev. Lett. 60(12), 1134–1137 (1988).
[PubMed]

Hingorani, R.

S. M. White, R. Hingorani, R. P. Arora, C. C. Hughes, S. C. George, and B. Choi, “Longitudinal In Vivo Imaging to Assess Blood Flow and Oxygenation in Implantable Engineered Tissues,” Tissue Eng. Part C Methods 18(9), 697–709 (2012).
[PubMed]

Hirst, E.

D. Briers, D. D. Duncan, E. Hirst, S. J. Kirkpatrick, M. Larsson, W. Steenbergen, T. Stromberg, and O. B. Thompson, “Laser speckle contrast imaging: theoretical and practical limitations,” J. Biomed. Opt. 18(6), 066018 (2013).
[PubMed]

Huang, Y. C.

Y. C. Huang, N. Tran, P. R. Shumaker, K. Kelly, E. V. Ross, J. S. Nelson, and B. Choi, “Blood flow dynamics after laser therapy of port wine stain birthmarks,” Lasers Surg. Med. 41(8), 563–571 (2009).
[PubMed]

Huang, Y.-C.

Y.-C. Huang, T. L. Ringold, J. S. Nelson, and B. Choi, “Noninvasive blood flow imaging for real-time feedback during laser therapy of port wine stain birthmarks,” Lasers Surg. Med. 40(3), 167–173 (2008).
[PubMed]

Hughes, C. C.

S. M. White, R. Hingorani, R. P. Arora, C. C. Hughes, S. C. George, and B. Choi, “Longitudinal In Vivo Imaging to Assess Blood Flow and Oxygenation in Implantable Engineered Tissues,” Tissue Eng. Part C Methods 18(9), 697–709 (2012).
[PubMed]

Jacques, S. L.

S. L. Jacques, “Optical Properties of Biological Tissues: A Review,” Phys. Med. Biol. 58(11), R37–R61 (2013).
[PubMed]

L. Wang, S. L. Jacques, and L. Zheng, “MCML-Monte Carlo modeling of light transport in multi-layered tissues,” Comput. Methods Programs Biomed. 47(2), 131–146 (1995).
[PubMed]

S. L. Jacques and D. J. McAuliffe, “The melanosome: Threshold Temperature for Explosive Vaporization and Internal Absorption Coefficient During Pulsed Laser Irradiation,” Photochem. Photobiol. 53(6), 769–775 (1991).
[PubMed]

Kazmi, S. M.

S. M. Kazmi, L. M. Richards, C. J. Schrandt, M. A. Davis, and A. K. Dunn, “Expanding Applications, Accuracy, and Interpretation of Laser Speckle Contrast Imaging of Cerebral Blood Flow,” J. Cereb. Blood Flow Metab. 35(7), 1076–1084 (2015).
[PubMed]

Kazmi, S. M. S.

M. Davis, S. M. S. Kazmi, and A. K. Dunn, “Imaging depth and multiple scattering in laser speckle contrast imaging,” J. Biomed. Opt. 19, 86001 (2014).

Kazmi, S. S.

L. M. Richards, S. S. Kazmi, K. E. Olin, J. S. Waldron, D. J. Fox, and A. K. Dunn, “Intraoperative multi-exposure speckle imaging of cerebral blood flow,” J. Cereb. Blood Flow Metab. 37(9), 3097–3109 (2017).
[PubMed]

Kelly, K.

Y. C. Huang, N. Tran, P. R. Shumaker, K. Kelly, E. V. Ross, J. S. Nelson, and B. Choi, “Blood flow dynamics after laser therapy of port wine stain birthmarks,” Lasers Surg. Med. 41(8), 563–571 (2009).
[PubMed]

Kelly, K. M.

K. M. Kelly, W. J. Moy, A. J. Moy, B. S. Lertsakdadet, J. J. Moy, E. Nguyen, A. Nguyen, K. E. Osann, and B. Choi, “Talaporfin sodium-mediated photodynamic therapy alone and in combination with pulsed dye laser on cutaneous vasculature,” J. Invest. Dermatol. 135(1), 302–304 (2015).
[PubMed]

B. Yang, O. Yang, J. Guzman, P. Nguyen, C. Crouzet, K. E. Osann, K. M. Kelly, J. S. Nelson, and B. Choi, “Intraoperative, real-time monitoring of blood flow dynamics associated with laser surgery of port wine stain birthmarks,” Lasers Surg. Med. 47(6), 469–475 (2015).
[PubMed]

W. J. Moy, S. J. Patel, B. S. Lertsakdadet, R. P. Arora, K. M. Nielsen, K. M. Kelly, and B. Choi, “Preclinical in vivo evaluation of NPe6-mediated photodynamic therapy on normal vasculature,” Lasers Surg. Med. 44(2), 158–162 (2012).
[PubMed]

S. A. Sharif, E. Taydas, A. Mazhar, R. Rahimian, K. M. Kelly, B. Choi, and A. J. Durkin, “Noninvasive clinical assessment of port-wine stain birthmarks using current and future optical imaging technology: A review,” Br. J. Dermatol. 167(6), 1215–1223 (2012).
[PubMed]

Kennedy, G. T.

A. Ponticorvo, D. M. Burmeister, R. Rowland, M. Baldado, G. T. Kennedy, R. Saager, N. Bernal, B. Choi, and A. J. Durkin, “Quantitative long-term measurements of burns in a rat model using Spatial Frequency Domain Imaging (SFDI) and Laser Speckle Imaging (LSI),” Lasers Surg. Med. 49(3), 293–304 (2017).
[PubMed]

Khaksari, K.

K. Khaksari and S. J. Kirkpatrick, “Combined effects of scattering and absorption on laser speckle contrast imaging,” J. Biomed. Opt. 21(7), 76002 (2016).
[PubMed]

Kienle, A.

Kirkpatrick, S. J.

K. Khaksari and S. J. Kirkpatrick, “Combined effects of scattering and absorption on laser speckle contrast imaging,” J. Biomed. Opt. 21(7), 76002 (2016).
[PubMed]

D. Briers, D. D. Duncan, E. Hirst, S. J. Kirkpatrick, M. Larsson, W. Steenbergen, T. Stromberg, and O. B. Thompson, “Laser speckle contrast imaging: theoretical and practical limitations,” J. Biomed. Opt. 18(6), 066018 (2013).
[PubMed]

Konecky, S. D.

Kuo, D.

F. Ayers, A. Grant, D. Kuo, D. J. Cuccia, and A. J. Durkin, “Fabrication and characterization of silicone-based tissue phantoms with tunable optical properties in the visible and near infrared domain,” Proc. SPIE 6870, 71 (2008).

Kwan, E.

Larsson, M.

I. Fredriksson, O. Burdakov, M. Larsson, and T. Strömberg, “Inverse Monte Carlo in a multilayered tissue model: merging diffuse reflectance spectroscopy and laser Doppler flowmetry,” J. Biomed. Opt. 18(12), 127004 (2013).
[PubMed]

D. Briers, D. D. Duncan, E. Hirst, S. J. Kirkpatrick, M. Larsson, W. Steenbergen, T. Stromberg, and O. B. Thompson, “Laser speckle contrast imaging: theoretical and practical limitations,” J. Biomed. Opt. 18(6), 066018 (2013).
[PubMed]

I. Fredriksson, M. Larsson, and T. Strömberg, “Optical microcirculatory skin model: assessed by Monte Carlo simulations paired with in vivo laser Doppler flowmetry,” J. Biomed. Opt. 13(1), 014015 (2008).
[PubMed]

Lee, D.

Lemieux, P.

P. Lemieux and D. J. Durian, “Investigating non-Gaussian scattering processes by using n th-order intensity correlation functions,” J. Opt. Soc. Am. A. 16, 1651–1664 (1999).

Lertsakdadet, B. S.

K. M. Kelly, W. J. Moy, A. J. Moy, B. S. Lertsakdadet, J. J. Moy, E. Nguyen, A. Nguyen, K. E. Osann, and B. Choi, “Talaporfin sodium-mediated photodynamic therapy alone and in combination with pulsed dye laser on cutaneous vasculature,” J. Invest. Dermatol. 135(1), 302–304 (2015).
[PubMed]

W. J. Moy, S. J. Patel, B. S. Lertsakdadet, R. P. Arora, K. M. Nielsen, K. M. Kelly, and B. Choi, “Preclinical in vivo evaluation of NPe6-mediated photodynamic therapy on normal vasculature,” Lasers Surg. Med. 44(2), 158–162 (2012).
[PubMed]

Li, P.

Lister, T.

T. Lister, P. A. Wright, and P. H. Chappell, “Optical properties of human skin,” J. Biomed. Opt. 17(9), 90901 (2012).
[PubMed]

T. Lister, P. Wright, and P. Chappell, “Spectrophotometers for the clinical assessment of port-wine stain skin lesions: a review,” Lasers Med. Sci. 25(3), 449–457 (2010).
[PubMed]

Luo, Q.

Maret, G.

G. Maret and P. E. Wolf, “Multiple light scattering from disordered media. The effect of brownian motion of scatterers,” Z. Phys. B Condens. Matter 65, 409–413 (1987).

Martinelli, M.

Mazhar, A.

McAuliffe, D. J.

S. L. Jacques and D. J. McAuliffe, “The melanosome: Threshold Temperature for Explosive Vaporization and Internal Absorption Coefficient During Pulsed Laser Irradiation,” Photochem. Photobiol. 53(6), 769–775 (1991).
[PubMed]

Mendez-Aguilar, E.

Michels, R.

Moskowitz, M. A.

A. K. Dunn, H. Bolay, M. A. Moskowitz, and D. A. Boas, “Dynamic imaging of cerebral blood flow using laser speckle,” J. Cereb. Blood Flow Metab. 21(3), 195–201 (2001).
[PubMed]

Moy, A. J.

K. M. Kelly, W. J. Moy, A. J. Moy, B. S. Lertsakdadet, J. J. Moy, E. Nguyen, A. Nguyen, K. E. Osann, and B. Choi, “Talaporfin sodium-mediated photodynamic therapy alone and in combination with pulsed dye laser on cutaneous vasculature,” J. Invest. Dermatol. 135(1), 302–304 (2015).
[PubMed]

Moy, J. J.

K. M. Kelly, W. J. Moy, A. J. Moy, B. S. Lertsakdadet, J. J. Moy, E. Nguyen, A. Nguyen, K. E. Osann, and B. Choi, “Talaporfin sodium-mediated photodynamic therapy alone and in combination with pulsed dye laser on cutaneous vasculature,” J. Invest. Dermatol. 135(1), 302–304 (2015).
[PubMed]

Moy, W. J.

K. M. Kelly, W. J. Moy, A. J. Moy, B. S. Lertsakdadet, J. J. Moy, E. Nguyen, A. Nguyen, K. E. Osann, and B. Choi, “Talaporfin sodium-mediated photodynamic therapy alone and in combination with pulsed dye laser on cutaneous vasculature,” J. Invest. Dermatol. 135(1), 302–304 (2015).
[PubMed]

W. J. Moy, S. J. Patel, B. S. Lertsakdadet, R. P. Arora, K. M. Nielsen, K. M. Kelly, and B. Choi, “Preclinical in vivo evaluation of NPe6-mediated photodynamic therapy on normal vasculature,” Lasers Surg. Med. 44(2), 158–162 (2012).
[PubMed]

Nadkarni, S. K.

Nelson, J. S.

B. Yang, O. Yang, J. Guzman, P. Nguyen, C. Crouzet, K. E. Osann, K. M. Kelly, J. S. Nelson, and B. Choi, “Intraoperative, real-time monitoring of blood flow dynamics associated with laser surgery of port wine stain birthmarks,” Lasers Surg. Med. 47(6), 469–475 (2015).
[PubMed]

Y. C. Huang, N. Tran, P. R. Shumaker, K. Kelly, E. V. Ross, J. S. Nelson, and B. Choi, “Blood flow dynamics after laser therapy of port wine stain birthmarks,” Lasers Surg. Med. 41(8), 563–571 (2009).
[PubMed]

Y.-C. Huang, T. L. Ringold, J. S. Nelson, and B. Choi, “Noninvasive blood flow imaging for real-time feedback during laser therapy of port wine stain birthmarks,” Lasers Surg. Med. 40(3), 167–173 (2008).
[PubMed]

Nguyen, A.

K. M. Kelly, W. J. Moy, A. J. Moy, B. S. Lertsakdadet, J. J. Moy, E. Nguyen, A. Nguyen, K. E. Osann, and B. Choi, “Talaporfin sodium-mediated photodynamic therapy alone and in combination with pulsed dye laser on cutaneous vasculature,” J. Invest. Dermatol. 135(1), 302–304 (2015).
[PubMed]

Nguyen, E.

K. M. Kelly, W. J. Moy, A. J. Moy, B. S. Lertsakdadet, J. J. Moy, E. Nguyen, A. Nguyen, K. E. Osann, and B. Choi, “Talaporfin sodium-mediated photodynamic therapy alone and in combination with pulsed dye laser on cutaneous vasculature,” J. Invest. Dermatol. 135(1), 302–304 (2015).
[PubMed]

Nguyen, J. Q.

C. Crouzet, J. Q. Nguyen, A. Ponticorvo, N. P. Bernal, A. J. Durkin, and B. Choi, “Acute discrimination between superficial-partial and deep-partial thickness burns in a preclinical model with laser speckle imaging,” Burns 41(5), 1058–1063 (2015).
[PubMed]

Nguyen, P.

B. Yang, O. Yang, J. Guzman, P. Nguyen, C. Crouzet, K. E. Osann, K. M. Kelly, J. S. Nelson, and B. Choi, “Intraoperative, real-time monitoring of blood flow dynamics associated with laser surgery of port wine stain birthmarks,” Lasers Surg. Med. 47(6), 469–475 (2015).
[PubMed]

Ni, S.

Nielsen, K. M.

W. J. Moy, S. J. Patel, B. S. Lertsakdadet, R. P. Arora, K. M. Nielsen, K. M. Kelly, and B. Choi, “Preclinical in vivo evaluation of NPe6-mediated photodynamic therapy on normal vasculature,” Lasers Surg. Med. 44(2), 158–162 (2012).
[PubMed]

Olin, K. E.

L. M. Richards, S. S. Kazmi, K. E. Olin, J. S. Waldron, D. J. Fox, and A. K. Dunn, “Intraoperative multi-exposure speckle imaging of cerebral blood flow,” J. Cereb. Blood Flow Metab. 37(9), 3097–3109 (2017).
[PubMed]

Osann, K. E.

K. M. Kelly, W. J. Moy, A. J. Moy, B. S. Lertsakdadet, J. J. Moy, E. Nguyen, A. Nguyen, K. E. Osann, and B. Choi, “Talaporfin sodium-mediated photodynamic therapy alone and in combination with pulsed dye laser on cutaneous vasculature,” J. Invest. Dermatol. 135(1), 302–304 (2015).
[PubMed]

B. Yang, O. Yang, J. Guzman, P. Nguyen, C. Crouzet, K. E. Osann, K. M. Kelly, J. S. Nelson, and B. Choi, “Intraoperative, real-time monitoring of blood flow dynamics associated with laser surgery of port wine stain birthmarks,” Lasers Surg. Med. 47(6), 469–475 (2015).
[PubMed]

Parthasarathy, A. B.

Patel, S. J.

W. J. Moy, S. J. Patel, B. S. Lertsakdadet, R. P. Arora, K. M. Nielsen, K. M. Kelly, and B. Choi, “Preclinical in vivo evaluation of NPe6-mediated photodynamic therapy on normal vasculature,” Lasers Surg. Med. 44(2), 158–162 (2012).
[PubMed]

Pine, D. J.

D. J. Pine, D. A. Weitz, P. M. Chaikin, and E. Herbolzheimer, “Diffusing wave spectroscopy,” Phys. Rev. Lett. 60(12), 1134–1137 (1988).
[PubMed]

Ponticorvo, A.

A. Ponticorvo, D. M. Burmeister, R. Rowland, M. Baldado, G. T. Kennedy, R. Saager, N. Bernal, B. Choi, and A. J. Durkin, “Quantitative long-term measurements of burns in a rat model using Spatial Frequency Domain Imaging (SFDI) and Laser Speckle Imaging (LSI),” Lasers Surg. Med. 49(3), 293–304 (2017).
[PubMed]

C. Crouzet, J. Q. Nguyen, A. Ponticorvo, N. P. Bernal, A. J. Durkin, and B. Choi, “Acute discrimination between superficial-partial and deep-partial thickness burns in a preclinical model with laser speckle imaging,” Burns 41(5), 1058–1063 (2015).
[PubMed]

Rahimian, R.

S. A. Sharif, E. Taydas, A. Mazhar, R. Rahimian, K. M. Kelly, B. Choi, and A. J. Durkin, “Noninvasive clinical assessment of port-wine stain birthmarks using current and future optical imaging technology: A review,” Br. J. Dermatol. 167(6), 1215–1223 (2012).
[PubMed]

Ramirez-San-Juan, J. C.

Ramos-Garcia, R.

Regan, C.

C. Regan, J. C. Ramirez-San-Juan, and B. Choi, “Photothermal laser speckle imaging,” Opt. Lett. 39(17), 5006–5009 (2014).
[PubMed]

J. C. Ramirez-San-Juan, C. Regan, B. Coyotl-Ocelotl, and B. Choi, “Spatial versus temporal laser speckle contrast analyses in the presence of static optical scatterers,” J. Biomed. Opt. 19(10), 106009 (2014).
[PubMed]

Rice, T. B.

Richards, L. M.

L. M. Richards, S. S. Kazmi, K. E. Olin, J. S. Waldron, D. J. Fox, and A. K. Dunn, “Intraoperative multi-exposure speckle imaging of cerebral blood flow,” J. Cereb. Blood Flow Metab. 37(9), 3097–3109 (2017).
[PubMed]

S. M. Kazmi, L. M. Richards, C. J. Schrandt, M. A. Davis, and A. K. Dunn, “Expanding Applications, Accuracy, and Interpretation of Laser Speckle Contrast Imaging of Cerebral Blood Flow,” J. Cereb. Blood Flow Metab. 35(7), 1076–1084 (2015).
[PubMed]

L. M. Richards, E. L. Towle, D. J. Fox, and A. K. Dunn, “Intraoperative laser speckle contrast imaging with retrospective motion correction for quantitative assessment of cerebral blood flow,” Neurophotonics 1(1), 015006 (2014).
[PubMed]

Ringold, T. L.

Y.-C. Huang, T. L. Ringold, J. S. Nelson, and B. Choi, “Noninvasive blood flow imaging for real-time feedback during laser therapy of port wine stain birthmarks,” Lasers Surg. Med. 40(3), 167–173 (2008).
[PubMed]

Ross, E. V.

Y. C. Huang, N. Tran, P. R. Shumaker, K. Kelly, E. V. Ross, J. S. Nelson, and B. Choi, “Blood flow dynamics after laser therapy of port wine stain birthmarks,” Lasers Surg. Med. 41(8), 563–571 (2009).
[PubMed]

Rowland, R.

A. Ponticorvo, D. M. Burmeister, R. Rowland, M. Baldado, G. T. Kennedy, R. Saager, N. Bernal, B. Choi, and A. J. Durkin, “Quantitative long-term measurements of burns in a rat model using Spatial Frequency Domain Imaging (SFDI) and Laser Speckle Imaging (LSI),” Lasers Surg. Med. 49(3), 293–304 (2017).
[PubMed]

Saager, R.

A. Ponticorvo, D. M. Burmeister, R. Rowland, M. Baldado, G. T. Kennedy, R. Saager, N. Bernal, B. Choi, and A. J. Durkin, “Quantitative long-term measurements of burns in a rat model using Spatial Frequency Domain Imaging (SFDI) and Laser Speckle Imaging (LSI),” Lasers Surg. Med. 49(3), 293–304 (2017).
[PubMed]

Salazar-Hermenegildo, N.

Schrandt, C. J.

S. M. Kazmi, L. M. Richards, C. J. Schrandt, M. A. Davis, and A. K. Dunn, “Expanding Applications, Accuracy, and Interpretation of Laser Speckle Contrast Imaging of Cerebral Blood Flow,” J. Cereb. Blood Flow Metab. 35(7), 1076–1084 (2015).
[PubMed]

Sharif, S. A.

S. A. Sharif, E. Taydas, A. Mazhar, R. Rahimian, K. M. Kelly, B. Choi, and A. J. Durkin, “Noninvasive clinical assessment of port-wine stain birthmarks using current and future optical imaging technology: A review,” Br. J. Dermatol. 167(6), 1215–1223 (2012).
[PubMed]

Shumaker, P. R.

Y. C. Huang, N. Tran, P. R. Shumaker, K. Kelly, E. V. Ross, J. S. Nelson, and B. Choi, “Blood flow dynamics after laser therapy of port wine stain birthmarks,” Lasers Surg. Med. 41(8), 563–571 (2009).
[PubMed]

Spanier, J.

Steenbergen, W.

D. Briers, D. D. Duncan, E. Hirst, S. J. Kirkpatrick, M. Larsson, W. Steenbergen, T. Stromberg, and O. B. Thompson, “Laser speckle contrast imaging: theoretical and practical limitations,” J. Biomed. Opt. 18(6), 066018 (2013).
[PubMed]

Stromberg, T.

D. Briers, D. D. Duncan, E. Hirst, S. J. Kirkpatrick, M. Larsson, W. Steenbergen, T. Stromberg, and O. B. Thompson, “Laser speckle contrast imaging: theoretical and practical limitations,” J. Biomed. Opt. 18(6), 066018 (2013).
[PubMed]

Strömberg, T.

I. Fredriksson, O. Burdakov, M. Larsson, and T. Strömberg, “Inverse Monte Carlo in a multilayered tissue model: merging diffuse reflectance spectroscopy and laser Doppler flowmetry,” J. Biomed. Opt. 18(12), 127004 (2013).
[PubMed]

I. Fredriksson, M. Larsson, and T. Strömberg, “Optical microcirculatory skin model: assessed by Monte Carlo simulations paired with in vivo laser Doppler flowmetry,” J. Biomed. Opt. 13(1), 014015 (2008).
[PubMed]

Suh, S. S.

R. Bandyopadhyay, A. S. Gittings, S. S. Suh, P. K. Dixon, and D. J. Durian, “Speckle-visibility spectroscopy: A tool to study time-varying dynamics,” Rev. Sci. Instrum. 76, 093110 (2005).

Taydas, E.

S. A. Sharif, E. Taydas, A. Mazhar, R. Rahimian, K. M. Kelly, B. Choi, and A. J. Durkin, “Noninvasive clinical assessment of port-wine stain birthmarks using current and future optical imaging technology: A review,” Br. J. Dermatol. 167(6), 1215–1223 (2012).
[PubMed]

Thompson, O. B.

D. Briers, D. D. Duncan, E. Hirst, S. J. Kirkpatrick, M. Larsson, W. Steenbergen, T. Stromberg, and O. B. Thompson, “Laser speckle contrast imaging: theoretical and practical limitations,” J. Biomed. Opt. 18(6), 066018 (2013).
[PubMed]

Tom, W. J.

Towle, E. L.

L. M. Richards, E. L. Towle, D. J. Fox, and A. K. Dunn, “Intraoperative laser speckle contrast imaging with retrospective motion correction for quantitative assessment of cerebral blood flow,” Neurophotonics 1(1), 015006 (2014).
[PubMed]

Tran, N.

Y. C. Huang, N. Tran, P. R. Shumaker, K. Kelly, E. V. Ross, J. S. Nelson, and B. Choi, “Blood flow dynamics after laser therapy of port wine stain birthmarks,” Lasers Surg. Med. 41(8), 563–571 (2009).
[PubMed]

Tromberg, B. J.

Venugopalan, V.

Waldron, J. S.

L. M. Richards, S. S. Kazmi, K. E. Olin, J. S. Waldron, D. J. Fox, and A. K. Dunn, “Intraoperative multi-exposure speckle imaging of cerebral blood flow,” J. Cereb. Blood Flow Metab. 37(9), 3097–3109 (2017).
[PubMed]

Wang, L.

L. Wang, S. L. Jacques, and L. Zheng, “MCML-Monte Carlo modeling of light transport in multi-layered tissues,” Comput. Methods Programs Biomed. 47(2), 131–146 (1995).
[PubMed]

Weitz, D. A.

D. J. Pine, D. A. Weitz, P. M. Chaikin, and E. Herbolzheimer, “Diffusing wave spectroscopy,” Phys. Rev. Lett. 60(12), 1134–1137 (1988).
[PubMed]

White, S. M.

S. M. White, R. Hingorani, R. P. Arora, C. C. Hughes, S. C. George, and B. Choi, “Longitudinal In Vivo Imaging to Assess Blood Flow and Oxygenation in Implantable Engineered Tissues,” Tissue Eng. Part C Methods 18(9), 697–709 (2012).
[PubMed]

Wilson, R. H.

Wolf, P. E.

G. Maret and P. E. Wolf, “Multiple light scattering from disordered media. The effect of brownian motion of scatterers,” Z. Phys. B Condens. Matter 65, 409–413 (1987).

Wright, P.

T. Lister, P. Wright, and P. Chappell, “Spectrophotometers for the clinical assessment of port-wine stain skin lesions: a review,” Lasers Med. Sci. 25(3), 449–457 (2010).
[PubMed]

Wright, P. A.

T. Lister, P. A. Wright, and P. H. Chappell, “Optical properties of human skin,” J. Biomed. Opt. 17(9), 90901 (2012).
[PubMed]

Yan, Y.

Yang, B.

B. Yang, O. Yang, J. Guzman, P. Nguyen, C. Crouzet, K. E. Osann, K. M. Kelly, J. S. Nelson, and B. Choi, “Intraoperative, real-time monitoring of blood flow dynamics associated with laser surgery of port wine stain birthmarks,” Lasers Surg. Med. 47(6), 469–475 (2015).
[PubMed]

Yang, O.

B. Yang, O. Yang, J. Guzman, P. Nguyen, C. Crouzet, K. E. Osann, K. M. Kelly, J. S. Nelson, and B. Choi, “Intraoperative, real-time monitoring of blood flow dynamics associated with laser surgery of port wine stain birthmarks,” Lasers Surg. Med. 47(6), 469–475 (2015).
[PubMed]

O. Yang, D. Cuccia, and B. Choi, “Real-time blood flow visualization using the graphics processing unit,” J. Biomed. Opt. 16(1), 016009 (2011).
[PubMed]

Yodh, A. G.

Yudovsky, D.

D. Yudovsky and A. J. Durkin, “Spatial frequency domain spectroscopy of two layer media,” J. Biomed. Opt. 16(10), 107005 (2011).
[PubMed]

Zeng, S.

Zhang, L.

Zhang, X.

Zheng, L.

L. Wang, S. L. Jacques, and L. Zheng, “MCML-Monte Carlo modeling of light transport in multi-layered tissues,” Comput. Methods Programs Biomed. 47(2), 131–146 (1995).
[PubMed]

Biomed. Opt. Express (5)

Br. J. Dermatol. (1)

S. A. Sharif, E. Taydas, A. Mazhar, R. Rahimian, K. M. Kelly, B. Choi, and A. J. Durkin, “Noninvasive clinical assessment of port-wine stain birthmarks using current and future optical imaging technology: A review,” Br. J. Dermatol. 167(6), 1215–1223 (2012).
[PubMed]

Burns (1)

C. Crouzet, J. Q. Nguyen, A. Ponticorvo, N. P. Bernal, A. J. Durkin, and B. Choi, “Acute discrimination between superficial-partial and deep-partial thickness burns in a preclinical model with laser speckle imaging,” Burns 41(5), 1058–1063 (2015).
[PubMed]

Comput. Methods Programs Biomed. (1)

L. Wang, S. L. Jacques, and L. Zheng, “MCML-Monte Carlo modeling of light transport in multi-layered tissues,” Comput. Methods Programs Biomed. 47(2), 131–146 (1995).
[PubMed]

J. Biomed. Opt. (10)

T. Lister, P. A. Wright, and P. H. Chappell, “Optical properties of human skin,” J. Biomed. Opt. 17(9), 90901 (2012).
[PubMed]

D. Yudovsky and A. J. Durkin, “Spatial frequency domain spectroscopy of two layer media,” J. Biomed. Opt. 16(10), 107005 (2011).
[PubMed]

K. Khaksari and S. J. Kirkpatrick, “Combined effects of scattering and absorption on laser speckle contrast imaging,” J. Biomed. Opt. 21(7), 76002 (2016).
[PubMed]

O. Yang, D. Cuccia, and B. Choi, “Real-time blood flow visualization using the graphics processing unit,” J. Biomed. Opt. 16(1), 016009 (2011).
[PubMed]

J. C. Ramirez-San-Juan, C. Regan, B. Coyotl-Ocelotl, and B. Choi, “Spatial versus temporal laser speckle contrast analyses in the presence of static optical scatterers,” J. Biomed. Opt. 19(10), 106009 (2014).
[PubMed]

D. A. Boas and A. K. Dunn, “Laser speckle contrast imaging in biomedical optics,” J. Biomed. Opt. 15(1), 011109 (2010).
[PubMed]

D. Briers, D. D. Duncan, E. Hirst, S. J. Kirkpatrick, M. Larsson, W. Steenbergen, T. Stromberg, and O. B. Thompson, “Laser speckle contrast imaging: theoretical and practical limitations,” J. Biomed. Opt. 18(6), 066018 (2013).
[PubMed]

M. Davis, S. M. S. Kazmi, and A. K. Dunn, “Imaging depth and multiple scattering in laser speckle contrast imaging,” J. Biomed. Opt. 19, 86001 (2014).

I. Fredriksson, M. Larsson, and T. Strömberg, “Optical microcirculatory skin model: assessed by Monte Carlo simulations paired with in vivo laser Doppler flowmetry,” J. Biomed. Opt. 13(1), 014015 (2008).
[PubMed]

I. Fredriksson, O. Burdakov, M. Larsson, and T. Strömberg, “Inverse Monte Carlo in a multilayered tissue model: merging diffuse reflectance spectroscopy and laser Doppler flowmetry,” J. Biomed. Opt. 18(12), 127004 (2013).
[PubMed]

J. Cereb. Blood Flow Metab. (3)

A. K. Dunn, H. Bolay, M. A. Moskowitz, and D. A. Boas, “Dynamic imaging of cerebral blood flow using laser speckle,” J. Cereb. Blood Flow Metab. 21(3), 195–201 (2001).
[PubMed]

L. M. Richards, S. S. Kazmi, K. E. Olin, J. S. Waldron, D. J. Fox, and A. K. Dunn, “Intraoperative multi-exposure speckle imaging of cerebral blood flow,” J. Cereb. Blood Flow Metab. 37(9), 3097–3109 (2017).
[PubMed]

S. M. Kazmi, L. M. Richards, C. J. Schrandt, M. A. Davis, and A. K. Dunn, “Expanding Applications, Accuracy, and Interpretation of Laser Speckle Contrast Imaging of Cerebral Blood Flow,” J. Cereb. Blood Flow Metab. 35(7), 1076–1084 (2015).
[PubMed]

J. Invest. Dermatol. (1)

K. M. Kelly, W. J. Moy, A. J. Moy, B. S. Lertsakdadet, J. J. Moy, E. Nguyen, A. Nguyen, K. E. Osann, and B. Choi, “Talaporfin sodium-mediated photodynamic therapy alone and in combination with pulsed dye laser on cutaneous vasculature,” J. Invest. Dermatol. 135(1), 302–304 (2015).
[PubMed]

J. Opt. Soc. Am. A (3)

J. Opt. Soc. Am. A. (1)

P. Lemieux and D. J. Durian, “Investigating non-Gaussian scattering processes by using n th-order intensity correlation functions,” J. Opt. Soc. Am. A. 16, 1651–1664 (1999).

Lasers Med. Sci. (1)

T. Lister, P. Wright, and P. Chappell, “Spectrophotometers for the clinical assessment of port-wine stain skin lesions: a review,” Lasers Med. Sci. 25(3), 449–457 (2010).
[PubMed]

Lasers Surg. Med. (5)

B. Yang, O. Yang, J. Guzman, P. Nguyen, C. Crouzet, K. E. Osann, K. M. Kelly, J. S. Nelson, and B. Choi, “Intraoperative, real-time monitoring of blood flow dynamics associated with laser surgery of port wine stain birthmarks,” Lasers Surg. Med. 47(6), 469–475 (2015).
[PubMed]

Y. C. Huang, N. Tran, P. R. Shumaker, K. Kelly, E. V. Ross, J. S. Nelson, and B. Choi, “Blood flow dynamics after laser therapy of port wine stain birthmarks,” Lasers Surg. Med. 41(8), 563–571 (2009).
[PubMed]

W. J. Moy, S. J. Patel, B. S. Lertsakdadet, R. P. Arora, K. M. Nielsen, K. M. Kelly, and B. Choi, “Preclinical in vivo evaluation of NPe6-mediated photodynamic therapy on normal vasculature,” Lasers Surg. Med. 44(2), 158–162 (2012).
[PubMed]

Y.-C. Huang, T. L. Ringold, J. S. Nelson, and B. Choi, “Noninvasive blood flow imaging for real-time feedback during laser therapy of port wine stain birthmarks,” Lasers Surg. Med. 40(3), 167–173 (2008).
[PubMed]

A. Ponticorvo, D. M. Burmeister, R. Rowland, M. Baldado, G. T. Kennedy, R. Saager, N. Bernal, B. Choi, and A. J. Durkin, “Quantitative long-term measurements of burns in a rat model using Spatial Frequency Domain Imaging (SFDI) and Laser Speckle Imaging (LSI),” Lasers Surg. Med. 49(3), 293–304 (2017).
[PubMed]

Neurophotonics (1)

L. M. Richards, E. L. Towle, D. J. Fox, and A. K. Dunn, “Intraoperative laser speckle contrast imaging with retrospective motion correction for quantitative assessment of cerebral blood flow,” Neurophotonics 1(1), 015006 (2014).
[PubMed]

Opt. Commun. (1)

A. F. Fercher and J. D. Briers, “Flow visualization by means of single-exposure speckle photography,” Opt. Commun. 37, 326–330 (1981).

Opt. Express (5)

Opt. Lett. (3)

Photochem. Photobiol. (1)

S. L. Jacques and D. J. McAuliffe, “The melanosome: Threshold Temperature for Explosive Vaporization and Internal Absorption Coefficient During Pulsed Laser Irradiation,” Photochem. Photobiol. 53(6), 769–775 (1991).
[PubMed]

Phys. Med. Biol. (1)

S. L. Jacques, “Optical Properties of Biological Tissues: A Review,” Phys. Med. Biol. 58(11), R37–R61 (2013).
[PubMed]

Phys. Rev. Lett. (1)

D. J. Pine, D. A. Weitz, P. M. Chaikin, and E. Herbolzheimer, “Diffusing wave spectroscopy,” Phys. Rev. Lett. 60(12), 1134–1137 (1988).
[PubMed]

Proc. SPIE (2)

F. Ayers, A. Grant, D. Kuo, D. J. Cuccia, and A. J. Durkin, “Fabrication and characterization of silicone-based tissue phantoms with tunable optical properties in the visible and near infrared domain,” Proc. SPIE 6870, 71 (2008).

J. D. Briers, “Time-varying laser speckle for measuring motion and flow,” Proc. SPIE 4242, 25–39 (2001).

Rev. Sci. Instrum. (1)

R. Bandyopadhyay, A. S. Gittings, S. S. Suh, P. K. Dixon, and D. J. Durian, “Speckle-visibility spectroscopy: A tool to study time-varying dynamics,” Rev. Sci. Instrum. 76, 093110 (2005).

Tissue Eng. Part C Methods (1)

S. M. White, R. Hingorani, R. P. Arora, C. C. Hughes, S. C. George, and B. Choi, “Longitudinal In Vivo Imaging to Assess Blood Flow and Oxygenation in Implantable Engineered Tissues,” Tissue Eng. Part C Methods 18(9), 697–709 (2012).
[PubMed]

Z. Phys. B Condens. Matter (1)

G. Maret and P. E. Wolf, “Multiple light scattering from disordered media. The effect of brownian motion of scatterers,” Z. Phys. B Condens. Matter 65, 409–413 (1987).

Other (5)

J. Goodman, Speckle Phenomena in Optics: Theory and Applications. (Roberts and Company, 2007).

S. L. Jacques, Origins of tissue optical properties in the UVA, visible, and NIR regions. OSA TOPS Adv. Opt. Imaging Phot. Migr. 364–371 (1996).

S. Jacques, maketissue.m. (2014).

Laser Microbeam and Medical Program. Virtual Photonics Technology Initiative. (2014). Available at: http://www.virtualphotonics.org/ .

C. Hayakawa, J. Spanier, and V. Venugopalan, Computational Engine for a Virtual Tissue Simulator. in Monte Carlo and Quasi-Monte Carlo Methods 2006 eds. A. Keller, S. Heinrich, and H. Niederreiter (Springer, Berlin, 2008).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 (a) Laser speckle imaging set-up. The laser projects a diffuse speckle pattern onto the sample which is imaged using a CMOS camera. (b) Sample geometry for validation experiments (experimental and computational). The sample consisted of a variable thickness (0.75-4.0mm) top layer above a 5cm bottom layer. For experiments with flow present, a glass microchannel inclusion was placed at the surface of the second layer and Intralipid infused through the tube with a syringe pump. (c) Results from simulated flow in a subsurface inclusion. We modeled speckle contrast for flow through the inclusion at different speeds and exposure times. As expected, speckle contrast decreased with increasing flow speed and exposure time. The results closely matched previous work by Rice et al [41].
Fig. 2
Fig. 2 Simulated data from samples with varying optical properties and camera exposure times. (a) Speckle contrast as a function of absorption coefficient, with μs’ held at 1mm−1 for two commonly used exposure times, 1ms (circles) and 10ms (squares). Speckle contrast increased with increasing absorption due to a reduction in the number of scattering events per remitted photon. Contrast is higher for shorter exposure times. (b) Speckle contrast as a function of μs’, with μa held constant at 0.01mm−1. Contrast decreased as scattering increased due to the increase in momentum transfer associated with longer photon pathlengths.
Fig. 3
Fig. 3 (a) Absorption spectra of chromophores in the skin. (b) Speckle contrast as a function of wavelength and epidermal melanin concentration for fair (3% melanin), tan (14% melanin), and dark (30% melanin) skin. Contrast increases slightly with increasing epidermal melanin, especially at lower wavelengths where the combined absorption of melanin and hemoglobin greatly shorten the photon pathlength. However, contrast values between the three cases are very similar in the optical window, and there is no significant difference in average contrast. (c) Normalized speckle contrast as a function of wavelength (black) compared to the normalized inverse reflectance (red). Both curves exhibit features of the hemoglobin absorption spectra, however, contrast is not as flat in the optical window. Blue circles indicate wavelengths where there is an inflection point in the contrast curve, which are used for the spectral analysis of momentum transfer. (d) Spectral sensitivity to changes in flow of contrast in skin with 3% melanin content. Contrast is most sensitive to changes in flow around 650-700nm.
Fig. 4
Fig. 4 (a) Weighted reflected momentum transfer as a function of depth for a homogeneous sample with μs’ held at 1mm−1 and absorption varied over three orders of magnitude. The majority of the reflected speckle contrast signal originates near the surface of the sample, however as absorption decreases there is more information contributing to the signal from deeper within the tissue. (b) Weighted transmitted momentum transfer as a function of depth for the same optical properties as (a). The transmitted contrast signal consists of information from throughout the entire depth. At very low absorption, the majority of the transmitted signal comes from the center of the sample. For tissues with μa values of 0.1 and 1mm−1, the plots of transmitted momentum transfer overlap and are negligible on this scale.
Fig. 5
Fig. 5 (a) Layered skin geometry used in simulations. The model of skin consisted of a static epidermis (dark gray), two highly perfused capillary beds (upper and lower blood nets, red), and two dermal layers (papillary and reticular dermis, light pink). A semi-infinite lipid layer (light gray) was added below the skin. (b)-(d) Dynamic momentum transfer as a function of depth for three wavelengths: (b) 375nm, (c) 488nm, and (d) 633nm. The upper and lower blood nets (highlighted in red) contribute most to the overall contrast signal due to the tenfold higher blood fraction than the dermal layers. As wavelength increases, the contribution of deeper tissue layers to the speckle signal increases.
Fig. 6
Fig. 6 Percentage of the total momentum transfer contributing to the speckle contrast signal versus wavelength and epidermal melanin content for each of the dermal layers. There is no significant difference in the percent contribution between tissues with different melanin contents. (a) Very little of the signal comes from the papillary dermis, especially at wavelengths typically used for LSI (above 600nm). (b) Most of the contrast signal originates from the upper blood net at lower wavelengths (below 600nm) (c) The proportion of signal coming from the reticular dermis is relatively uniform across different wavelengths. (d) The majority of our speckle contrast signal originates in the lower blood net for wavelengths typically used in LSI (>600nm) supporting the potential for rough depth sectioning using dual-wavelength LSI.
Fig. 7
Fig. 7 (a) Reflectance versus wavelength and epidermal melanin content. At 3% melanin content (light gray) the reflectance curve contains features of the hemoglobin absorption curve. As epidermal melanin increases (dark gray, black), the reflectance curve flattens and is dominated by features of the melanin absorption curve. (b) Percent difference in speckle contrast (pink/red) and reflectance (gray/black) between light skin (3% melanin) and tan/dark skin (14% / 30% melanin). The percent difference in contrast is significantly less than the difference in reflectance, indicating the potential for clinical use of LSI over other optical reflectance techniques.

Tables (5)

Tables Icon

Table 1 Absorption properties of the thin flexible phantoms used to simulate epidermal melanin

Tables Icon

Table 2 Simulated contrast for model validation in homogenous samples with varying optical properties (μs’ and μa) and diffusion coefficients (Db)

Tables Icon

Table 3 Simulated contrast for model validation in two-layer geometry

Tables Icon

Table 4 Six-layer skin model with corresponding layer thickness and blood volume fraction of each layer.

Tables Icon

Table 5 Characteristic depth over which 95% of the fluence or reflected momentum transfer occurred for homogeneous samples with μs’ = 1mm−1 and μa values varied over three orders of magnitude.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

g 1 ( τ )=exp[ 1 6 q i 2 Δ r 2 ( τ ) ]
g 1 ( τ )=  0 P( Y )exp[ Y k 2 Δ r 2 ( τ ) 3 ]dY
g 1 ( τ )=  0 P(Y) 0 1 P(y)exp[ Y k 2 ( y ) Δ r 1 2 ( τ ) +(1y) Δ r 2 2 (τ) 3 ]dy dY
K 2 = 2β T 0 T ( 1 τ T )| g 1 ( τ ) g 1 ( 0 ) | 2 dτ

Metrics