Abstract

Core/shell nanofibers are becoming increasingly popular for applications in tissue engineering. Nanofibers alone provide surface topography and increased surface area that promote cellular attachment; however, core/shell nanofibers provide the versatility of incorporating two materials with different properties into one. Such synthetic materials can provide the mechanical and degradation properties required to make a construct that mimics in vivo tissue. Many variations of these fibers can be produced. The challenge lies in the ability to characterize and quantify these nanofibers post fabrication. We developed a non-invasive method for the composition characterization and quantification at the nanoscale level of fibers using Confocal Raman microscopy. The biodegradable/biocompatible nanofibers, Poly (glycerol-sebacate)/Poly (lactic-co-glycolic) (PGS/PLGA), were characterized as a part of a fiber scaffold to quickly and efficiently analyze the quality of the substrate used for tissue engineering.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Characterization of elastomeric scaffolds developed for tissue engineering applications by compression and nanoindentation tests, μ-Raman and μ-Brillouin spectroscopies

Géraldine Rohman, Salah Ramtani, Sylvie Changotade, Credson Langueh, Didier Lutomski, Yves Roussigné, Florent Tétard, Fréderic Caupin, and Philippe Djemia
Biomed. Opt. Express 10(4) 1649-1659 (2019)

Characterization of a synthetic bioactive polymer by nonlinear optical microscopy

N. Djaker, S. Brustlein, G. Rohman, S. Huot, M. Lamy de la Chapelle, and V. Migonney
Biomed. Opt. Express 5(1) 149-157 (2014)

Femtosecond laser induced periodic surface structure on poly-L-lactic acid

Shuhei Yada and Mitsuhiro Terakawa
Opt. Express 23(5) 5694-5703 (2015)

References

  • View by:
  • |
  • |
  • |

  1. H. Liu, “Electrospining of nanofibers for tissue engineering applications,” J. Nanomater. 2013, 1–31 (2013).
    [Crossref]
  2. N. Bhardwaj and S. C. Kundu, “Electrospinning: a fascinating fiber fabrication technique,” Biotechnol. Adv. 28(3), 325–347 (2010).
    [Crossref] [PubMed]
  3. Z. M. Huang, Y. Z. Zhang, M. Kotaki, and S. Ramakrishna, “A review on polymer nanofibers by electrospinning and their applications in nanocomposites,” Compos. Sci. Technol. 63(15), 2223–2253 (2003).
    [Crossref]
  4. A. Haider, S. Haider, and I. K. Kang, “A comprehensive review summarizing the effect of electrospinning parameters and potential applications of nanofibers in biomedical and biotechnology,” Arab. J. Chem. 11, 15 (2015).
    [Crossref]
  5. J. Doshi and D. H. Reneker, “Electrospinning process and applications of electrospun fibers,” Conf. Rec. 1993 IEEE Ind. Appl. Conf. Twenty-Eighth IAS Annu. Meet. 35, 151–160 (1993).
    [Crossref]
  6. F. Elahi, W. Lu, G. Guoping, and F. Khan, “Core-shell Fibers for Biomedical Applications-A Review,” Bioeng. Biomed. Sci. J. 3(01), 1–14 (2013).
    [Crossref]
  7. I. Chourpa, L. Douziech-eyrolles, L. Ngaboni-okassa, S. Cohen-jonathan, and M. Souce, “Molecular composition of iron oxide nanoparticles, precursors for magnetic drug targeting, as characterized by confocal Raman microspectroscopy,” Analyst 130, 1395–1403 (2005).
  8. L. Zhu, X. Liu, L. Du, and Y. Jin, “Preparation of asiaticoside-loaded coaxially electrospinning nanofibers and their effect on deep partial-thickness burn injury,” Biomed. Pharmacother. 83, 33–40 (2016).
    [Crossref] [PubMed]
  9. S. Ramakrishna, K. Fujihara, W. Teo, T. Yong, Z. Ma, and R. Ramaseshan, “Electrospun nanofibers: solving global issues,” Mater. Today 9(3), 40–50 (2006).
    [Crossref]
  10. R. Chen, C. Huang, Q. Ke, C. He, H. Wang, and X. Mo, “Preparation and characterization of coaxial electrospun thermoplastic polyurethane/collagen compound nanofibers for tissue engineering applications,” Colloids Surf. B Biointerfaces 79(2), 315–325 (2010).
    [Crossref] [PubMed]
  11. Y. Zhang, Z. Huang, X. Xu, C. T. Lim, and S. Ramakrishna, “Preparation of Core - Shell Structured PCL- r-Gelatin Bi-Component Nanofibers by coaxial elctrospinning,” Chem. Mater. 16, 3406–3409 (2004).
  12. K. B. Ning Wanga, “Electrospun Polyurethane-Core and Gelatin-Shell Coaxial Fibre Coatings for Miniature Implantable Biosensors,” Biofabrication 6, 1–30 (2011).
  13. M. Pakravan, M. C. Heuzey, and A. Ajji, “Core-shell structured PEO-chitosan nanofibers by coaxial electrospinning,” Biomacromolecules 13(2), 412–421 (2012).
    [Crossref] [PubMed]
  14. Y. Z. Zhang, J. Venugopal, Z. M. Huang, C. T. Lim, and S. Ramakrishna, “Characterization of the surface biocompatibility of the electrospun PCL-collagen nanofibers using fibroblasts,” Biomacromolecules 6(5), 2583–2589 (2005).
    [Crossref] [PubMed]
  15. Y. Z. Zhang, X. Wang, Y. Feng, J. Li, C. T. Lim, and S. Ramakrishna, “Coaxial electrospinning of (fluorescein isothiocyanate-conjugated bovine serum albumin)-encapsulated poly(ε-caprolactone) nanofibers for sustained release,” Biomacromolecules 7(4), 1049–1057 (2006).
    [Crossref] [PubMed]
  16. T. T. T. Nguyen, O. H. Chung, and J. S. Park, “Coaxial electrospun poly(lactic acid)/chitosan (core/shell) composite nanofibers and their antibacterial activity,” Carbohydr. Polym. 86(4), 1799–1806 (2011).
    [Crossref]
  17. B. Xu, Y. Li, X. Fang, G. A. Thouas, W. D. Cook, D. F. Newgreen, and Q. Chen, “Mechanically tissue-like elastomeric polymers and their potential as a vehicle to deliver functional cardiomyocytes,” J. Mech. Behav. Biomed. Mater. 28, 354–365 (2013).
    [Crossref] [PubMed]
  18. C. Wang, K. W. Yan, Y. D. Lin, and P. C. H. Hsieh, “Biodegradable core/shell fibers by coaxial electrospinning: Processing, fiber characterization, and its application in sustained drug release,” Macromolecules 43(15), 6389–6397 (2010).
    [Crossref]
  19. M. Minsky, “Memoir on inventing the confocal scanning microscope,” Scanning 10(4), 128–138 (1988).
    [Crossref]
  20. A. Lutz, I. De Graeve, and H. Terryn, “Non-destructive 3-dimensional mapping of microcapsules in polymeric coatings by confocal Raman spectroscopy,” Prog. Org. Coat. 88, 32–38 (2015).
    [Crossref]
  21. F. Hennrich, R. Krupke, S. Lebedkin, K. Arnold, R. Fischer, D. E. Resasco, and M. M. Kappes, “Raman spectroscopy of individual single-walled carbon nanotubes from various sources,” J. Phys. Chem. B 109(21), 10567–10573 (2005).
    [Crossref] [PubMed]
  22. P. J. Caspers, G. W. Lucassen, and G. J. Puppels, “Combined in vivo confocal Raman spectroscopy and confocal microscopy of human skin,” Biophys. J. 85(1), 572–580 (2003).
    [Crossref] [PubMed]
  23. K. Klein, A. M. Gigler, T. Aschenbrenner, R. Monetti, W. Bunk, F. Jamitzky, G. Morfill, R. W. Stark, and J. Schlegel, “Label-free live-cell imaging with confocal Raman microscopy,” Biophys. J. 102(2), 360–368 (2012).
    [Crossref] [PubMed]
  24. N. Gierlinger, T. Keplinger, and M. Harrington, “Imaging of plant cell walls by confocal Raman microscopy,” Nat. Protoc. 7(9), 1694–1708 (2012).
    [Crossref] [PubMed]
  25. N. Gierlinger and and M. Schwanninger, “Chemical Imaging of PoplarWood CellWalls by Confocal Raman Microscopy,” Society 140, 1246–1254 (2010).
  26. Y. Wang, G. A. Ameer, B. J. Sheppard, and R. Langer, “A tough biodegradable elastomer,” Nat. Biotechnol. 20(6), 602–606 (2002).
    [Crossref] [PubMed]
  27. D. A. Soscia, S. J. Sequeira, R. A. Schramm, K. Jayarathanam, S. I. Cantara, M. Larsen, and J. Castracane, “Salivary gland cell differentiation and organization on micropatterned PLGA nanofiber craters,” Biomaterials 34(28), 6773–6784 (2013).
    [Crossref] [PubMed]
  28. S. I. Cantara, D. A. Soscia, S. J. Sequeira, R. P. Jean-Gilles, J. Castracane, and M. Larsen, “Selective functionalization of nanofiber scaffolds to regulate salivary gland epithelial cell proliferation and polarity,” Biomaterials 33(33), 8372–8382 (2012).
    [Crossref] [PubMed]
  29. S. J. Sequeira, D. A. Soscia, B. Oztan, A. P. Mosier, R. Jean-Gilles, A. Gadre, N. C. Cady, B. Yener, J. Castracane, and M. Larsen, “The regulation of focal adhesion complex formation and salivary gland epithelial cell organization by nanofibrous PLGA scaffolds,” Biomaterials 33(11), 3175–3186 (2012).
    [Crossref] [PubMed]
  30. L. Sfakis, T. Kamaldinov, M. Larsen, J. Castracane, and A. Khmaladze, “Quantification of Confocal images using LabVIEW for tissue engineering applications,” Tissue Eng. Part C Methods 22(11), 1028–1037 (2016).
    [Crossref] [PubMed]
  31. A. Khmaladze, J. Jasensky, E. Price, C. Zhang, A. Boughton, X. Han, E. Seeley, X. Liu, M. M. Banaszak Holl, and Z. Chen, “Hyperspectral imaging and characterization of live cells by broadband coherent anti-Stokes Raman scattering (CARS) microscopy with singular value decomposition (SVD) analysis,” Appl. Spectrosc. 68(10), 1116–1122 (2014).
    [Crossref] [PubMed]
  32. L. Sfakis, F. Xavier, D. Tuschel, A. Sharikova, M. Larsen, J. Castracane and A. Khmaladze, “Core / Shell Nanofiber Characterization by Raman Scanning Microscopy,” in Latin America Optics & Photonics Conference (LAOP), (Optical Society of America, 2016), paper LTu5A.5.

2016 (2)

L. Zhu, X. Liu, L. Du, and Y. Jin, “Preparation of asiaticoside-loaded coaxially electrospinning nanofibers and their effect on deep partial-thickness burn injury,” Biomed. Pharmacother. 83, 33–40 (2016).
[Crossref] [PubMed]

L. Sfakis, T. Kamaldinov, M. Larsen, J. Castracane, and A. Khmaladze, “Quantification of Confocal images using LabVIEW for tissue engineering applications,” Tissue Eng. Part C Methods 22(11), 1028–1037 (2016).
[Crossref] [PubMed]

2015 (2)

A. Haider, S. Haider, and I. K. Kang, “A comprehensive review summarizing the effect of electrospinning parameters and potential applications of nanofibers in biomedical and biotechnology,” Arab. J. Chem. 11, 15 (2015).
[Crossref]

A. Lutz, I. De Graeve, and H. Terryn, “Non-destructive 3-dimensional mapping of microcapsules in polymeric coatings by confocal Raman spectroscopy,” Prog. Org. Coat. 88, 32–38 (2015).
[Crossref]

2014 (1)

2013 (4)

D. A. Soscia, S. J. Sequeira, R. A. Schramm, K. Jayarathanam, S. I. Cantara, M. Larsen, and J. Castracane, “Salivary gland cell differentiation and organization on micropatterned PLGA nanofiber craters,” Biomaterials 34(28), 6773–6784 (2013).
[Crossref] [PubMed]

B. Xu, Y. Li, X. Fang, G. A. Thouas, W. D. Cook, D. F. Newgreen, and Q. Chen, “Mechanically tissue-like elastomeric polymers and their potential as a vehicle to deliver functional cardiomyocytes,” J. Mech. Behav. Biomed. Mater. 28, 354–365 (2013).
[Crossref] [PubMed]

F. Elahi, W. Lu, G. Guoping, and F. Khan, “Core-shell Fibers for Biomedical Applications-A Review,” Bioeng. Biomed. Sci. J. 3(01), 1–14 (2013).
[Crossref]

H. Liu, “Electrospining of nanofibers for tissue engineering applications,” J. Nanomater. 2013, 1–31 (2013).
[Crossref]

2012 (5)

M. Pakravan, M. C. Heuzey, and A. Ajji, “Core-shell structured PEO-chitosan nanofibers by coaxial electrospinning,” Biomacromolecules 13(2), 412–421 (2012).
[Crossref] [PubMed]

S. I. Cantara, D. A. Soscia, S. J. Sequeira, R. P. Jean-Gilles, J. Castracane, and M. Larsen, “Selective functionalization of nanofiber scaffolds to regulate salivary gland epithelial cell proliferation and polarity,” Biomaterials 33(33), 8372–8382 (2012).
[Crossref] [PubMed]

S. J. Sequeira, D. A. Soscia, B. Oztan, A. P. Mosier, R. Jean-Gilles, A. Gadre, N. C. Cady, B. Yener, J. Castracane, and M. Larsen, “The regulation of focal adhesion complex formation and salivary gland epithelial cell organization by nanofibrous PLGA scaffolds,” Biomaterials 33(11), 3175–3186 (2012).
[Crossref] [PubMed]

K. Klein, A. M. Gigler, T. Aschenbrenner, R. Monetti, W. Bunk, F. Jamitzky, G. Morfill, R. W. Stark, and J. Schlegel, “Label-free live-cell imaging with confocal Raman microscopy,” Biophys. J. 102(2), 360–368 (2012).
[Crossref] [PubMed]

N. Gierlinger, T. Keplinger, and M. Harrington, “Imaging of plant cell walls by confocal Raman microscopy,” Nat. Protoc. 7(9), 1694–1708 (2012).
[Crossref] [PubMed]

2011 (2)

T. T. T. Nguyen, O. H. Chung, and J. S. Park, “Coaxial electrospun poly(lactic acid)/chitosan (core/shell) composite nanofibers and their antibacterial activity,” Carbohydr. Polym. 86(4), 1799–1806 (2011).
[Crossref]

K. B. Ning Wanga, “Electrospun Polyurethane-Core and Gelatin-Shell Coaxial Fibre Coatings for Miniature Implantable Biosensors,” Biofabrication 6, 1–30 (2011).

2010 (4)

C. Wang, K. W. Yan, Y. D. Lin, and P. C. H. Hsieh, “Biodegradable core/shell fibers by coaxial electrospinning: Processing, fiber characterization, and its application in sustained drug release,” Macromolecules 43(15), 6389–6397 (2010).
[Crossref]

N. Bhardwaj and S. C. Kundu, “Electrospinning: a fascinating fiber fabrication technique,” Biotechnol. Adv. 28(3), 325–347 (2010).
[Crossref] [PubMed]

R. Chen, C. Huang, Q. Ke, C. He, H. Wang, and X. Mo, “Preparation and characterization of coaxial electrospun thermoplastic polyurethane/collagen compound nanofibers for tissue engineering applications,” Colloids Surf. B Biointerfaces 79(2), 315–325 (2010).
[Crossref] [PubMed]

N. Gierlinger and and M. Schwanninger, “Chemical Imaging of PoplarWood CellWalls by Confocal Raman Microscopy,” Society 140, 1246–1254 (2010).

2006 (2)

S. Ramakrishna, K. Fujihara, W. Teo, T. Yong, Z. Ma, and R. Ramaseshan, “Electrospun nanofibers: solving global issues,” Mater. Today 9(3), 40–50 (2006).
[Crossref]

Y. Z. Zhang, X. Wang, Y. Feng, J. Li, C. T. Lim, and S. Ramakrishna, “Coaxial electrospinning of (fluorescein isothiocyanate-conjugated bovine serum albumin)-encapsulated poly(ε-caprolactone) nanofibers for sustained release,” Biomacromolecules 7(4), 1049–1057 (2006).
[Crossref] [PubMed]

2005 (3)

Y. Z. Zhang, J. Venugopal, Z. M. Huang, C. T. Lim, and S. Ramakrishna, “Characterization of the surface biocompatibility of the electrospun PCL-collagen nanofibers using fibroblasts,” Biomacromolecules 6(5), 2583–2589 (2005).
[Crossref] [PubMed]

F. Hennrich, R. Krupke, S. Lebedkin, K. Arnold, R. Fischer, D. E. Resasco, and M. M. Kappes, “Raman spectroscopy of individual single-walled carbon nanotubes from various sources,” J. Phys. Chem. B 109(21), 10567–10573 (2005).
[Crossref] [PubMed]

I. Chourpa, L. Douziech-eyrolles, L. Ngaboni-okassa, S. Cohen-jonathan, and M. Souce, “Molecular composition of iron oxide nanoparticles, precursors for magnetic drug targeting, as characterized by confocal Raman microspectroscopy,” Analyst 130, 1395–1403 (2005).

2004 (1)

Y. Zhang, Z. Huang, X. Xu, C. T. Lim, and S. Ramakrishna, “Preparation of Core - Shell Structured PCL- r-Gelatin Bi-Component Nanofibers by coaxial elctrospinning,” Chem. Mater. 16, 3406–3409 (2004).

2003 (2)

Z. M. Huang, Y. Z. Zhang, M. Kotaki, and S. Ramakrishna, “A review on polymer nanofibers by electrospinning and their applications in nanocomposites,” Compos. Sci. Technol. 63(15), 2223–2253 (2003).
[Crossref]

P. J. Caspers, G. W. Lucassen, and G. J. Puppels, “Combined in vivo confocal Raman spectroscopy and confocal microscopy of human skin,” Biophys. J. 85(1), 572–580 (2003).
[Crossref] [PubMed]

2002 (1)

Y. Wang, G. A. Ameer, B. J. Sheppard, and R. Langer, “A tough biodegradable elastomer,” Nat. Biotechnol. 20(6), 602–606 (2002).
[Crossref] [PubMed]

1988 (1)

M. Minsky, “Memoir on inventing the confocal scanning microscope,” Scanning 10(4), 128–138 (1988).
[Crossref]

Ajji, A.

M. Pakravan, M. C. Heuzey, and A. Ajji, “Core-shell structured PEO-chitosan nanofibers by coaxial electrospinning,” Biomacromolecules 13(2), 412–421 (2012).
[Crossref] [PubMed]

Ameer, G. A.

Y. Wang, G. A. Ameer, B. J. Sheppard, and R. Langer, “A tough biodegradable elastomer,” Nat. Biotechnol. 20(6), 602–606 (2002).
[Crossref] [PubMed]

Arnold, K.

F. Hennrich, R. Krupke, S. Lebedkin, K. Arnold, R. Fischer, D. E. Resasco, and M. M. Kappes, “Raman spectroscopy of individual single-walled carbon nanotubes from various sources,” J. Phys. Chem. B 109(21), 10567–10573 (2005).
[Crossref] [PubMed]

Aschenbrenner, T.

K. Klein, A. M. Gigler, T. Aschenbrenner, R. Monetti, W. Bunk, F. Jamitzky, G. Morfill, R. W. Stark, and J. Schlegel, “Label-free live-cell imaging with confocal Raman microscopy,” Biophys. J. 102(2), 360–368 (2012).
[Crossref] [PubMed]

Banaszak Holl, M. M.

Bhardwaj, N.

N. Bhardwaj and S. C. Kundu, “Electrospinning: a fascinating fiber fabrication technique,” Biotechnol. Adv. 28(3), 325–347 (2010).
[Crossref] [PubMed]

Boughton, A.

Bunk, W.

K. Klein, A. M. Gigler, T. Aschenbrenner, R. Monetti, W. Bunk, F. Jamitzky, G. Morfill, R. W. Stark, and J. Schlegel, “Label-free live-cell imaging with confocal Raman microscopy,” Biophys. J. 102(2), 360–368 (2012).
[Crossref] [PubMed]

Cady, N. C.

S. J. Sequeira, D. A. Soscia, B. Oztan, A. P. Mosier, R. Jean-Gilles, A. Gadre, N. C. Cady, B. Yener, J. Castracane, and M. Larsen, “The regulation of focal adhesion complex formation and salivary gland epithelial cell organization by nanofibrous PLGA scaffolds,” Biomaterials 33(11), 3175–3186 (2012).
[Crossref] [PubMed]

Cantara, S. I.

D. A. Soscia, S. J. Sequeira, R. A. Schramm, K. Jayarathanam, S. I. Cantara, M. Larsen, and J. Castracane, “Salivary gland cell differentiation and organization on micropatterned PLGA nanofiber craters,” Biomaterials 34(28), 6773–6784 (2013).
[Crossref] [PubMed]

S. I. Cantara, D. A. Soscia, S. J. Sequeira, R. P. Jean-Gilles, J. Castracane, and M. Larsen, “Selective functionalization of nanofiber scaffolds to regulate salivary gland epithelial cell proliferation and polarity,” Biomaterials 33(33), 8372–8382 (2012).
[Crossref] [PubMed]

Caspers, P. J.

P. J. Caspers, G. W. Lucassen, and G. J. Puppels, “Combined in vivo confocal Raman spectroscopy and confocal microscopy of human skin,” Biophys. J. 85(1), 572–580 (2003).
[Crossref] [PubMed]

Castracane, J.

L. Sfakis, T. Kamaldinov, M. Larsen, J. Castracane, and A. Khmaladze, “Quantification of Confocal images using LabVIEW for tissue engineering applications,” Tissue Eng. Part C Methods 22(11), 1028–1037 (2016).
[Crossref] [PubMed]

D. A. Soscia, S. J. Sequeira, R. A. Schramm, K. Jayarathanam, S. I. Cantara, M. Larsen, and J. Castracane, “Salivary gland cell differentiation and organization on micropatterned PLGA nanofiber craters,” Biomaterials 34(28), 6773–6784 (2013).
[Crossref] [PubMed]

S. I. Cantara, D. A. Soscia, S. J. Sequeira, R. P. Jean-Gilles, J. Castracane, and M. Larsen, “Selective functionalization of nanofiber scaffolds to regulate salivary gland epithelial cell proliferation and polarity,” Biomaterials 33(33), 8372–8382 (2012).
[Crossref] [PubMed]

S. J. Sequeira, D. A. Soscia, B. Oztan, A. P. Mosier, R. Jean-Gilles, A. Gadre, N. C. Cady, B. Yener, J. Castracane, and M. Larsen, “The regulation of focal adhesion complex formation and salivary gland epithelial cell organization by nanofibrous PLGA scaffolds,” Biomaterials 33(11), 3175–3186 (2012).
[Crossref] [PubMed]

Chen, Q.

B. Xu, Y. Li, X. Fang, G. A. Thouas, W. D. Cook, D. F. Newgreen, and Q. Chen, “Mechanically tissue-like elastomeric polymers and their potential as a vehicle to deliver functional cardiomyocytes,” J. Mech. Behav. Biomed. Mater. 28, 354–365 (2013).
[Crossref] [PubMed]

Chen, R.

R. Chen, C. Huang, Q. Ke, C. He, H. Wang, and X. Mo, “Preparation and characterization of coaxial electrospun thermoplastic polyurethane/collagen compound nanofibers for tissue engineering applications,” Colloids Surf. B Biointerfaces 79(2), 315–325 (2010).
[Crossref] [PubMed]

Chen, Z.

Chourpa, I.

I. Chourpa, L. Douziech-eyrolles, L. Ngaboni-okassa, S. Cohen-jonathan, and M. Souce, “Molecular composition of iron oxide nanoparticles, precursors for magnetic drug targeting, as characterized by confocal Raman microspectroscopy,” Analyst 130, 1395–1403 (2005).

Chung, O. H.

T. T. T. Nguyen, O. H. Chung, and J. S. Park, “Coaxial electrospun poly(lactic acid)/chitosan (core/shell) composite nanofibers and their antibacterial activity,” Carbohydr. Polym. 86(4), 1799–1806 (2011).
[Crossref]

Cohen-jonathan, S.

I. Chourpa, L. Douziech-eyrolles, L. Ngaboni-okassa, S. Cohen-jonathan, and M. Souce, “Molecular composition of iron oxide nanoparticles, precursors for magnetic drug targeting, as characterized by confocal Raman microspectroscopy,” Analyst 130, 1395–1403 (2005).

Cook, W. D.

B. Xu, Y. Li, X. Fang, G. A. Thouas, W. D. Cook, D. F. Newgreen, and Q. Chen, “Mechanically tissue-like elastomeric polymers and their potential as a vehicle to deliver functional cardiomyocytes,” J. Mech. Behav. Biomed. Mater. 28, 354–365 (2013).
[Crossref] [PubMed]

De Graeve, I.

A. Lutz, I. De Graeve, and H. Terryn, “Non-destructive 3-dimensional mapping of microcapsules in polymeric coatings by confocal Raman spectroscopy,” Prog. Org. Coat. 88, 32–38 (2015).
[Crossref]

Douziech-eyrolles, L.

I. Chourpa, L. Douziech-eyrolles, L. Ngaboni-okassa, S. Cohen-jonathan, and M. Souce, “Molecular composition of iron oxide nanoparticles, precursors for magnetic drug targeting, as characterized by confocal Raman microspectroscopy,” Analyst 130, 1395–1403 (2005).

Du, L.

L. Zhu, X. Liu, L. Du, and Y. Jin, “Preparation of asiaticoside-loaded coaxially electrospinning nanofibers and their effect on deep partial-thickness burn injury,” Biomed. Pharmacother. 83, 33–40 (2016).
[Crossref] [PubMed]

Elahi, F.

F. Elahi, W. Lu, G. Guoping, and F. Khan, “Core-shell Fibers for Biomedical Applications-A Review,” Bioeng. Biomed. Sci. J. 3(01), 1–14 (2013).
[Crossref]

Fang, X.

B. Xu, Y. Li, X. Fang, G. A. Thouas, W. D. Cook, D. F. Newgreen, and Q. Chen, “Mechanically tissue-like elastomeric polymers and their potential as a vehicle to deliver functional cardiomyocytes,” J. Mech. Behav. Biomed. Mater. 28, 354–365 (2013).
[Crossref] [PubMed]

Feng, Y.

Y. Z. Zhang, X. Wang, Y. Feng, J. Li, C. T. Lim, and S. Ramakrishna, “Coaxial electrospinning of (fluorescein isothiocyanate-conjugated bovine serum albumin)-encapsulated poly(ε-caprolactone) nanofibers for sustained release,” Biomacromolecules 7(4), 1049–1057 (2006).
[Crossref] [PubMed]

Fischer, R.

F. Hennrich, R. Krupke, S. Lebedkin, K. Arnold, R. Fischer, D. E. Resasco, and M. M. Kappes, “Raman spectroscopy of individual single-walled carbon nanotubes from various sources,” J. Phys. Chem. B 109(21), 10567–10573 (2005).
[Crossref] [PubMed]

Fujihara, K.

S. Ramakrishna, K. Fujihara, W. Teo, T. Yong, Z. Ma, and R. Ramaseshan, “Electrospun nanofibers: solving global issues,” Mater. Today 9(3), 40–50 (2006).
[Crossref]

Gadre, A.

S. J. Sequeira, D. A. Soscia, B. Oztan, A. P. Mosier, R. Jean-Gilles, A. Gadre, N. C. Cady, B. Yener, J. Castracane, and M. Larsen, “The regulation of focal adhesion complex formation and salivary gland epithelial cell organization by nanofibrous PLGA scaffolds,” Biomaterials 33(11), 3175–3186 (2012).
[Crossref] [PubMed]

Gierlinger, N.

N. Gierlinger, T. Keplinger, and M. Harrington, “Imaging of plant cell walls by confocal Raman microscopy,” Nat. Protoc. 7(9), 1694–1708 (2012).
[Crossref] [PubMed]

Gigler, A. M.

K. Klein, A. M. Gigler, T. Aschenbrenner, R. Monetti, W. Bunk, F. Jamitzky, G. Morfill, R. W. Stark, and J. Schlegel, “Label-free live-cell imaging with confocal Raman microscopy,” Biophys. J. 102(2), 360–368 (2012).
[Crossref] [PubMed]

Guoping, G.

F. Elahi, W. Lu, G. Guoping, and F. Khan, “Core-shell Fibers for Biomedical Applications-A Review,” Bioeng. Biomed. Sci. J. 3(01), 1–14 (2013).
[Crossref]

Haider, A.

A. Haider, S. Haider, and I. K. Kang, “A comprehensive review summarizing the effect of electrospinning parameters and potential applications of nanofibers in biomedical and biotechnology,” Arab. J. Chem. 11, 15 (2015).
[Crossref]

Haider, S.

A. Haider, S. Haider, and I. K. Kang, “A comprehensive review summarizing the effect of electrospinning parameters and potential applications of nanofibers in biomedical and biotechnology,” Arab. J. Chem. 11, 15 (2015).
[Crossref]

Han, X.

Harrington, M.

N. Gierlinger, T. Keplinger, and M. Harrington, “Imaging of plant cell walls by confocal Raman microscopy,” Nat. Protoc. 7(9), 1694–1708 (2012).
[Crossref] [PubMed]

He, C.

R. Chen, C. Huang, Q. Ke, C. He, H. Wang, and X. Mo, “Preparation and characterization of coaxial electrospun thermoplastic polyurethane/collagen compound nanofibers for tissue engineering applications,” Colloids Surf. B Biointerfaces 79(2), 315–325 (2010).
[Crossref] [PubMed]

Hennrich, F.

F. Hennrich, R. Krupke, S. Lebedkin, K. Arnold, R. Fischer, D. E. Resasco, and M. M. Kappes, “Raman spectroscopy of individual single-walled carbon nanotubes from various sources,” J. Phys. Chem. B 109(21), 10567–10573 (2005).
[Crossref] [PubMed]

Heuzey, M. C.

M. Pakravan, M. C. Heuzey, and A. Ajji, “Core-shell structured PEO-chitosan nanofibers by coaxial electrospinning,” Biomacromolecules 13(2), 412–421 (2012).
[Crossref] [PubMed]

Hsieh, P. C. H.

C. Wang, K. W. Yan, Y. D. Lin, and P. C. H. Hsieh, “Biodegradable core/shell fibers by coaxial electrospinning: Processing, fiber characterization, and its application in sustained drug release,” Macromolecules 43(15), 6389–6397 (2010).
[Crossref]

Huang, C.

R. Chen, C. Huang, Q. Ke, C. He, H. Wang, and X. Mo, “Preparation and characterization of coaxial electrospun thermoplastic polyurethane/collagen compound nanofibers for tissue engineering applications,” Colloids Surf. B Biointerfaces 79(2), 315–325 (2010).
[Crossref] [PubMed]

Huang, Z.

Y. Zhang, Z. Huang, X. Xu, C. T. Lim, and S. Ramakrishna, “Preparation of Core - Shell Structured PCL- r-Gelatin Bi-Component Nanofibers by coaxial elctrospinning,” Chem. Mater. 16, 3406–3409 (2004).

Huang, Z. M.

Y. Z. Zhang, J. Venugopal, Z. M. Huang, C. T. Lim, and S. Ramakrishna, “Characterization of the surface biocompatibility of the electrospun PCL-collagen nanofibers using fibroblasts,” Biomacromolecules 6(5), 2583–2589 (2005).
[Crossref] [PubMed]

Z. M. Huang, Y. Z. Zhang, M. Kotaki, and S. Ramakrishna, “A review on polymer nanofibers by electrospinning and their applications in nanocomposites,” Compos. Sci. Technol. 63(15), 2223–2253 (2003).
[Crossref]

Jamitzky, F.

K. Klein, A. M. Gigler, T. Aschenbrenner, R. Monetti, W. Bunk, F. Jamitzky, G. Morfill, R. W. Stark, and J. Schlegel, “Label-free live-cell imaging with confocal Raman microscopy,” Biophys. J. 102(2), 360–368 (2012).
[Crossref] [PubMed]

Jasensky, J.

Jayarathanam, K.

D. A. Soscia, S. J. Sequeira, R. A. Schramm, K. Jayarathanam, S. I. Cantara, M. Larsen, and J. Castracane, “Salivary gland cell differentiation and organization on micropatterned PLGA nanofiber craters,” Biomaterials 34(28), 6773–6784 (2013).
[Crossref] [PubMed]

Jean-Gilles, R.

S. J. Sequeira, D. A. Soscia, B. Oztan, A. P. Mosier, R. Jean-Gilles, A. Gadre, N. C. Cady, B. Yener, J. Castracane, and M. Larsen, “The regulation of focal adhesion complex formation and salivary gland epithelial cell organization by nanofibrous PLGA scaffolds,” Biomaterials 33(11), 3175–3186 (2012).
[Crossref] [PubMed]

Jean-Gilles, R. P.

S. I. Cantara, D. A. Soscia, S. J. Sequeira, R. P. Jean-Gilles, J. Castracane, and M. Larsen, “Selective functionalization of nanofiber scaffolds to regulate salivary gland epithelial cell proliferation and polarity,” Biomaterials 33(33), 8372–8382 (2012).
[Crossref] [PubMed]

Jin, Y.

L. Zhu, X. Liu, L. Du, and Y. Jin, “Preparation of asiaticoside-loaded coaxially electrospinning nanofibers and their effect on deep partial-thickness burn injury,” Biomed. Pharmacother. 83, 33–40 (2016).
[Crossref] [PubMed]

Kamaldinov, T.

L. Sfakis, T. Kamaldinov, M. Larsen, J. Castracane, and A. Khmaladze, “Quantification of Confocal images using LabVIEW for tissue engineering applications,” Tissue Eng. Part C Methods 22(11), 1028–1037 (2016).
[Crossref] [PubMed]

Kang, I. K.

A. Haider, S. Haider, and I. K. Kang, “A comprehensive review summarizing the effect of electrospinning parameters and potential applications of nanofibers in biomedical and biotechnology,” Arab. J. Chem. 11, 15 (2015).
[Crossref]

Kappes, M. M.

F. Hennrich, R. Krupke, S. Lebedkin, K. Arnold, R. Fischer, D. E. Resasco, and M. M. Kappes, “Raman spectroscopy of individual single-walled carbon nanotubes from various sources,” J. Phys. Chem. B 109(21), 10567–10573 (2005).
[Crossref] [PubMed]

Ke, Q.

R. Chen, C. Huang, Q. Ke, C. He, H. Wang, and X. Mo, “Preparation and characterization of coaxial electrospun thermoplastic polyurethane/collagen compound nanofibers for tissue engineering applications,” Colloids Surf. B Biointerfaces 79(2), 315–325 (2010).
[Crossref] [PubMed]

Keplinger, T.

N. Gierlinger, T. Keplinger, and M. Harrington, “Imaging of plant cell walls by confocal Raman microscopy,” Nat. Protoc. 7(9), 1694–1708 (2012).
[Crossref] [PubMed]

Khan, F.

F. Elahi, W. Lu, G. Guoping, and F. Khan, “Core-shell Fibers for Biomedical Applications-A Review,” Bioeng. Biomed. Sci. J. 3(01), 1–14 (2013).
[Crossref]

Khmaladze, A.

Klein, K.

K. Klein, A. M. Gigler, T. Aschenbrenner, R. Monetti, W. Bunk, F. Jamitzky, G. Morfill, R. W. Stark, and J. Schlegel, “Label-free live-cell imaging with confocal Raman microscopy,” Biophys. J. 102(2), 360–368 (2012).
[Crossref] [PubMed]

Kotaki, M.

Z. M. Huang, Y. Z. Zhang, M. Kotaki, and S. Ramakrishna, “A review on polymer nanofibers by electrospinning and their applications in nanocomposites,” Compos. Sci. Technol. 63(15), 2223–2253 (2003).
[Crossref]

Krupke, R.

F. Hennrich, R. Krupke, S. Lebedkin, K. Arnold, R. Fischer, D. E. Resasco, and M. M. Kappes, “Raman spectroscopy of individual single-walled carbon nanotubes from various sources,” J. Phys. Chem. B 109(21), 10567–10573 (2005).
[Crossref] [PubMed]

Kundu, S. C.

N. Bhardwaj and S. C. Kundu, “Electrospinning: a fascinating fiber fabrication technique,” Biotechnol. Adv. 28(3), 325–347 (2010).
[Crossref] [PubMed]

Langer, R.

Y. Wang, G. A. Ameer, B. J. Sheppard, and R. Langer, “A tough biodegradable elastomer,” Nat. Biotechnol. 20(6), 602–606 (2002).
[Crossref] [PubMed]

Larsen, M.

L. Sfakis, T. Kamaldinov, M. Larsen, J. Castracane, and A. Khmaladze, “Quantification of Confocal images using LabVIEW for tissue engineering applications,” Tissue Eng. Part C Methods 22(11), 1028–1037 (2016).
[Crossref] [PubMed]

D. A. Soscia, S. J. Sequeira, R. A. Schramm, K. Jayarathanam, S. I. Cantara, M. Larsen, and J. Castracane, “Salivary gland cell differentiation and organization on micropatterned PLGA nanofiber craters,” Biomaterials 34(28), 6773–6784 (2013).
[Crossref] [PubMed]

S. J. Sequeira, D. A. Soscia, B. Oztan, A. P. Mosier, R. Jean-Gilles, A. Gadre, N. C. Cady, B. Yener, J. Castracane, and M. Larsen, “The regulation of focal adhesion complex formation and salivary gland epithelial cell organization by nanofibrous PLGA scaffolds,” Biomaterials 33(11), 3175–3186 (2012).
[Crossref] [PubMed]

S. I. Cantara, D. A. Soscia, S. J. Sequeira, R. P. Jean-Gilles, J. Castracane, and M. Larsen, “Selective functionalization of nanofiber scaffolds to regulate salivary gland epithelial cell proliferation and polarity,” Biomaterials 33(33), 8372–8382 (2012).
[Crossref] [PubMed]

Lebedkin, S.

F. Hennrich, R. Krupke, S. Lebedkin, K. Arnold, R. Fischer, D. E. Resasco, and M. M. Kappes, “Raman spectroscopy of individual single-walled carbon nanotubes from various sources,” J. Phys. Chem. B 109(21), 10567–10573 (2005).
[Crossref] [PubMed]

Li, J.

Y. Z. Zhang, X. Wang, Y. Feng, J. Li, C. T. Lim, and S. Ramakrishna, “Coaxial electrospinning of (fluorescein isothiocyanate-conjugated bovine serum albumin)-encapsulated poly(ε-caprolactone) nanofibers for sustained release,” Biomacromolecules 7(4), 1049–1057 (2006).
[Crossref] [PubMed]

Li, Y.

B. Xu, Y. Li, X. Fang, G. A. Thouas, W. D. Cook, D. F. Newgreen, and Q. Chen, “Mechanically tissue-like elastomeric polymers and their potential as a vehicle to deliver functional cardiomyocytes,” J. Mech. Behav. Biomed. Mater. 28, 354–365 (2013).
[Crossref] [PubMed]

Lim, C. T.

Y. Z. Zhang, X. Wang, Y. Feng, J. Li, C. T. Lim, and S. Ramakrishna, “Coaxial electrospinning of (fluorescein isothiocyanate-conjugated bovine serum albumin)-encapsulated poly(ε-caprolactone) nanofibers for sustained release,” Biomacromolecules 7(4), 1049–1057 (2006).
[Crossref] [PubMed]

Y. Z. Zhang, J. Venugopal, Z. M. Huang, C. T. Lim, and S. Ramakrishna, “Characterization of the surface biocompatibility of the electrospun PCL-collagen nanofibers using fibroblasts,” Biomacromolecules 6(5), 2583–2589 (2005).
[Crossref] [PubMed]

Y. Zhang, Z. Huang, X. Xu, C. T. Lim, and S. Ramakrishna, “Preparation of Core - Shell Structured PCL- r-Gelatin Bi-Component Nanofibers by coaxial elctrospinning,” Chem. Mater. 16, 3406–3409 (2004).

Lin, Y. D.

C. Wang, K. W. Yan, Y. D. Lin, and P. C. H. Hsieh, “Biodegradable core/shell fibers by coaxial electrospinning: Processing, fiber characterization, and its application in sustained drug release,” Macromolecules 43(15), 6389–6397 (2010).
[Crossref]

Liu, H.

H. Liu, “Electrospining of nanofibers for tissue engineering applications,” J. Nanomater. 2013, 1–31 (2013).
[Crossref]

Liu, X.

Lu, W.

F. Elahi, W. Lu, G. Guoping, and F. Khan, “Core-shell Fibers for Biomedical Applications-A Review,” Bioeng. Biomed. Sci. J. 3(01), 1–14 (2013).
[Crossref]

Lucassen, G. W.

P. J. Caspers, G. W. Lucassen, and G. J. Puppels, “Combined in vivo confocal Raman spectroscopy and confocal microscopy of human skin,” Biophys. J. 85(1), 572–580 (2003).
[Crossref] [PubMed]

Lutz, A.

A. Lutz, I. De Graeve, and H. Terryn, “Non-destructive 3-dimensional mapping of microcapsules in polymeric coatings by confocal Raman spectroscopy,” Prog. Org. Coat. 88, 32–38 (2015).
[Crossref]

Ma, Z.

S. Ramakrishna, K. Fujihara, W. Teo, T. Yong, Z. Ma, and R. Ramaseshan, “Electrospun nanofibers: solving global issues,” Mater. Today 9(3), 40–50 (2006).
[Crossref]

Minsky, M.

M. Minsky, “Memoir on inventing the confocal scanning microscope,” Scanning 10(4), 128–138 (1988).
[Crossref]

Mo, X.

R. Chen, C. Huang, Q. Ke, C. He, H. Wang, and X. Mo, “Preparation and characterization of coaxial electrospun thermoplastic polyurethane/collagen compound nanofibers for tissue engineering applications,” Colloids Surf. B Biointerfaces 79(2), 315–325 (2010).
[Crossref] [PubMed]

Monetti, R.

K. Klein, A. M. Gigler, T. Aschenbrenner, R. Monetti, W. Bunk, F. Jamitzky, G. Morfill, R. W. Stark, and J. Schlegel, “Label-free live-cell imaging with confocal Raman microscopy,” Biophys. J. 102(2), 360–368 (2012).
[Crossref] [PubMed]

Morfill, G.

K. Klein, A. M. Gigler, T. Aschenbrenner, R. Monetti, W. Bunk, F. Jamitzky, G. Morfill, R. W. Stark, and J. Schlegel, “Label-free live-cell imaging with confocal Raman microscopy,” Biophys. J. 102(2), 360–368 (2012).
[Crossref] [PubMed]

Mosier, A. P.

S. J. Sequeira, D. A. Soscia, B. Oztan, A. P. Mosier, R. Jean-Gilles, A. Gadre, N. C. Cady, B. Yener, J. Castracane, and M. Larsen, “The regulation of focal adhesion complex formation and salivary gland epithelial cell organization by nanofibrous PLGA scaffolds,” Biomaterials 33(11), 3175–3186 (2012).
[Crossref] [PubMed]

Newgreen, D. F.

B. Xu, Y. Li, X. Fang, G. A. Thouas, W. D. Cook, D. F. Newgreen, and Q. Chen, “Mechanically tissue-like elastomeric polymers and their potential as a vehicle to deliver functional cardiomyocytes,” J. Mech. Behav. Biomed. Mater. 28, 354–365 (2013).
[Crossref] [PubMed]

Ngaboni-okassa, L.

I. Chourpa, L. Douziech-eyrolles, L. Ngaboni-okassa, S. Cohen-jonathan, and M. Souce, “Molecular composition of iron oxide nanoparticles, precursors for magnetic drug targeting, as characterized by confocal Raman microspectroscopy,” Analyst 130, 1395–1403 (2005).

Nguyen, T. T. T.

T. T. T. Nguyen, O. H. Chung, and J. S. Park, “Coaxial electrospun poly(lactic acid)/chitosan (core/shell) composite nanofibers and their antibacterial activity,” Carbohydr. Polym. 86(4), 1799–1806 (2011).
[Crossref]

Ning Wanga, K. B.

K. B. Ning Wanga, “Electrospun Polyurethane-Core and Gelatin-Shell Coaxial Fibre Coatings for Miniature Implantable Biosensors,” Biofabrication 6, 1–30 (2011).

Oztan, B.

S. J. Sequeira, D. A. Soscia, B. Oztan, A. P. Mosier, R. Jean-Gilles, A. Gadre, N. C. Cady, B. Yener, J. Castracane, and M. Larsen, “The regulation of focal adhesion complex formation and salivary gland epithelial cell organization by nanofibrous PLGA scaffolds,” Biomaterials 33(11), 3175–3186 (2012).
[Crossref] [PubMed]

Pakravan, M.

M. Pakravan, M. C. Heuzey, and A. Ajji, “Core-shell structured PEO-chitosan nanofibers by coaxial electrospinning,” Biomacromolecules 13(2), 412–421 (2012).
[Crossref] [PubMed]

Park, J. S.

T. T. T. Nguyen, O. H. Chung, and J. S. Park, “Coaxial electrospun poly(lactic acid)/chitosan (core/shell) composite nanofibers and their antibacterial activity,” Carbohydr. Polym. 86(4), 1799–1806 (2011).
[Crossref]

Price, E.

Puppels, G. J.

P. J. Caspers, G. W. Lucassen, and G. J. Puppels, “Combined in vivo confocal Raman spectroscopy and confocal microscopy of human skin,” Biophys. J. 85(1), 572–580 (2003).
[Crossref] [PubMed]

Ramakrishna, S.

Y. Z. Zhang, X. Wang, Y. Feng, J. Li, C. T. Lim, and S. Ramakrishna, “Coaxial electrospinning of (fluorescein isothiocyanate-conjugated bovine serum albumin)-encapsulated poly(ε-caprolactone) nanofibers for sustained release,” Biomacromolecules 7(4), 1049–1057 (2006).
[Crossref] [PubMed]

S. Ramakrishna, K. Fujihara, W. Teo, T. Yong, Z. Ma, and R. Ramaseshan, “Electrospun nanofibers: solving global issues,” Mater. Today 9(3), 40–50 (2006).
[Crossref]

Y. Z. Zhang, J. Venugopal, Z. M. Huang, C. T. Lim, and S. Ramakrishna, “Characterization of the surface biocompatibility of the electrospun PCL-collagen nanofibers using fibroblasts,” Biomacromolecules 6(5), 2583–2589 (2005).
[Crossref] [PubMed]

Y. Zhang, Z. Huang, X. Xu, C. T. Lim, and S. Ramakrishna, “Preparation of Core - Shell Structured PCL- r-Gelatin Bi-Component Nanofibers by coaxial elctrospinning,” Chem. Mater. 16, 3406–3409 (2004).

Z. M. Huang, Y. Z. Zhang, M. Kotaki, and S. Ramakrishna, “A review on polymer nanofibers by electrospinning and their applications in nanocomposites,” Compos. Sci. Technol. 63(15), 2223–2253 (2003).
[Crossref]

Ramaseshan, R.

S. Ramakrishna, K. Fujihara, W. Teo, T. Yong, Z. Ma, and R. Ramaseshan, “Electrospun nanofibers: solving global issues,” Mater. Today 9(3), 40–50 (2006).
[Crossref]

Resasco, D. E.

F. Hennrich, R. Krupke, S. Lebedkin, K. Arnold, R. Fischer, D. E. Resasco, and M. M. Kappes, “Raman spectroscopy of individual single-walled carbon nanotubes from various sources,” J. Phys. Chem. B 109(21), 10567–10573 (2005).
[Crossref] [PubMed]

Schlegel, J.

K. Klein, A. M. Gigler, T. Aschenbrenner, R. Monetti, W. Bunk, F. Jamitzky, G. Morfill, R. W. Stark, and J. Schlegel, “Label-free live-cell imaging with confocal Raman microscopy,” Biophys. J. 102(2), 360–368 (2012).
[Crossref] [PubMed]

Schramm, R. A.

D. A. Soscia, S. J. Sequeira, R. A. Schramm, K. Jayarathanam, S. I. Cantara, M. Larsen, and J. Castracane, “Salivary gland cell differentiation and organization on micropatterned PLGA nanofiber craters,” Biomaterials 34(28), 6773–6784 (2013).
[Crossref] [PubMed]

Seeley, E.

Sequeira, S. J.

D. A. Soscia, S. J. Sequeira, R. A. Schramm, K. Jayarathanam, S. I. Cantara, M. Larsen, and J. Castracane, “Salivary gland cell differentiation and organization on micropatterned PLGA nanofiber craters,” Biomaterials 34(28), 6773–6784 (2013).
[Crossref] [PubMed]

S. I. Cantara, D. A. Soscia, S. J. Sequeira, R. P. Jean-Gilles, J. Castracane, and M. Larsen, “Selective functionalization of nanofiber scaffolds to regulate salivary gland epithelial cell proliferation and polarity,” Biomaterials 33(33), 8372–8382 (2012).
[Crossref] [PubMed]

S. J. Sequeira, D. A. Soscia, B. Oztan, A. P. Mosier, R. Jean-Gilles, A. Gadre, N. C. Cady, B. Yener, J. Castracane, and M. Larsen, “The regulation of focal adhesion complex formation and salivary gland epithelial cell organization by nanofibrous PLGA scaffolds,” Biomaterials 33(11), 3175–3186 (2012).
[Crossref] [PubMed]

Sfakis, L.

L. Sfakis, T. Kamaldinov, M. Larsen, J. Castracane, and A. Khmaladze, “Quantification of Confocal images using LabVIEW for tissue engineering applications,” Tissue Eng. Part C Methods 22(11), 1028–1037 (2016).
[Crossref] [PubMed]

Sheppard, B. J.

Y. Wang, G. A. Ameer, B. J. Sheppard, and R. Langer, “A tough biodegradable elastomer,” Nat. Biotechnol. 20(6), 602–606 (2002).
[Crossref] [PubMed]

Soscia, D. A.

D. A. Soscia, S. J. Sequeira, R. A. Schramm, K. Jayarathanam, S. I. Cantara, M. Larsen, and J. Castracane, “Salivary gland cell differentiation and organization on micropatterned PLGA nanofiber craters,” Biomaterials 34(28), 6773–6784 (2013).
[Crossref] [PubMed]

S. I. Cantara, D. A. Soscia, S. J. Sequeira, R. P. Jean-Gilles, J. Castracane, and M. Larsen, “Selective functionalization of nanofiber scaffolds to regulate salivary gland epithelial cell proliferation and polarity,” Biomaterials 33(33), 8372–8382 (2012).
[Crossref] [PubMed]

S. J. Sequeira, D. A. Soscia, B. Oztan, A. P. Mosier, R. Jean-Gilles, A. Gadre, N. C. Cady, B. Yener, J. Castracane, and M. Larsen, “The regulation of focal adhesion complex formation and salivary gland epithelial cell organization by nanofibrous PLGA scaffolds,” Biomaterials 33(11), 3175–3186 (2012).
[Crossref] [PubMed]

Souce, M.

I. Chourpa, L. Douziech-eyrolles, L. Ngaboni-okassa, S. Cohen-jonathan, and M. Souce, “Molecular composition of iron oxide nanoparticles, precursors for magnetic drug targeting, as characterized by confocal Raman microspectroscopy,” Analyst 130, 1395–1403 (2005).

Stark, R. W.

K. Klein, A. M. Gigler, T. Aschenbrenner, R. Monetti, W. Bunk, F. Jamitzky, G. Morfill, R. W. Stark, and J. Schlegel, “Label-free live-cell imaging with confocal Raman microscopy,” Biophys. J. 102(2), 360–368 (2012).
[Crossref] [PubMed]

Teo, W.

S. Ramakrishna, K. Fujihara, W. Teo, T. Yong, Z. Ma, and R. Ramaseshan, “Electrospun nanofibers: solving global issues,” Mater. Today 9(3), 40–50 (2006).
[Crossref]

Terryn, H.

A. Lutz, I. De Graeve, and H. Terryn, “Non-destructive 3-dimensional mapping of microcapsules in polymeric coatings by confocal Raman spectroscopy,” Prog. Org. Coat. 88, 32–38 (2015).
[Crossref]

Thouas, G. A.

B. Xu, Y. Li, X. Fang, G. A. Thouas, W. D. Cook, D. F. Newgreen, and Q. Chen, “Mechanically tissue-like elastomeric polymers and their potential as a vehicle to deliver functional cardiomyocytes,” J. Mech. Behav. Biomed. Mater. 28, 354–365 (2013).
[Crossref] [PubMed]

Venugopal, J.

Y. Z. Zhang, J. Venugopal, Z. M. Huang, C. T. Lim, and S. Ramakrishna, “Characterization of the surface biocompatibility of the electrospun PCL-collagen nanofibers using fibroblasts,” Biomacromolecules 6(5), 2583–2589 (2005).
[Crossref] [PubMed]

Wang, C.

C. Wang, K. W. Yan, Y. D. Lin, and P. C. H. Hsieh, “Biodegradable core/shell fibers by coaxial electrospinning: Processing, fiber characterization, and its application in sustained drug release,” Macromolecules 43(15), 6389–6397 (2010).
[Crossref]

Wang, H.

R. Chen, C. Huang, Q. Ke, C. He, H. Wang, and X. Mo, “Preparation and characterization of coaxial electrospun thermoplastic polyurethane/collagen compound nanofibers for tissue engineering applications,” Colloids Surf. B Biointerfaces 79(2), 315–325 (2010).
[Crossref] [PubMed]

Wang, X.

Y. Z. Zhang, X. Wang, Y. Feng, J. Li, C. T. Lim, and S. Ramakrishna, “Coaxial electrospinning of (fluorescein isothiocyanate-conjugated bovine serum albumin)-encapsulated poly(ε-caprolactone) nanofibers for sustained release,” Biomacromolecules 7(4), 1049–1057 (2006).
[Crossref] [PubMed]

Wang, Y.

Y. Wang, G. A. Ameer, B. J. Sheppard, and R. Langer, “A tough biodegradable elastomer,” Nat. Biotechnol. 20(6), 602–606 (2002).
[Crossref] [PubMed]

Xu, B.

B. Xu, Y. Li, X. Fang, G. A. Thouas, W. D. Cook, D. F. Newgreen, and Q. Chen, “Mechanically tissue-like elastomeric polymers and their potential as a vehicle to deliver functional cardiomyocytes,” J. Mech. Behav. Biomed. Mater. 28, 354–365 (2013).
[Crossref] [PubMed]

Xu, X.

Y. Zhang, Z. Huang, X. Xu, C. T. Lim, and S. Ramakrishna, “Preparation of Core - Shell Structured PCL- r-Gelatin Bi-Component Nanofibers by coaxial elctrospinning,” Chem. Mater. 16, 3406–3409 (2004).

Yan, K. W.

C. Wang, K. W. Yan, Y. D. Lin, and P. C. H. Hsieh, “Biodegradable core/shell fibers by coaxial electrospinning: Processing, fiber characterization, and its application in sustained drug release,” Macromolecules 43(15), 6389–6397 (2010).
[Crossref]

Yener, B.

S. J. Sequeira, D. A. Soscia, B. Oztan, A. P. Mosier, R. Jean-Gilles, A. Gadre, N. C. Cady, B. Yener, J. Castracane, and M. Larsen, “The regulation of focal adhesion complex formation and salivary gland epithelial cell organization by nanofibrous PLGA scaffolds,” Biomaterials 33(11), 3175–3186 (2012).
[Crossref] [PubMed]

Yong, T.

S. Ramakrishna, K. Fujihara, W. Teo, T. Yong, Z. Ma, and R. Ramaseshan, “Electrospun nanofibers: solving global issues,” Mater. Today 9(3), 40–50 (2006).
[Crossref]

Zhang, C.

Zhang, Y.

Y. Zhang, Z. Huang, X. Xu, C. T. Lim, and S. Ramakrishna, “Preparation of Core - Shell Structured PCL- r-Gelatin Bi-Component Nanofibers by coaxial elctrospinning,” Chem. Mater. 16, 3406–3409 (2004).

Zhang, Y. Z.

Y. Z. Zhang, X. Wang, Y. Feng, J. Li, C. T. Lim, and S. Ramakrishna, “Coaxial electrospinning of (fluorescein isothiocyanate-conjugated bovine serum albumin)-encapsulated poly(ε-caprolactone) nanofibers for sustained release,” Biomacromolecules 7(4), 1049–1057 (2006).
[Crossref] [PubMed]

Y. Z. Zhang, J. Venugopal, Z. M. Huang, C. T. Lim, and S. Ramakrishna, “Characterization of the surface biocompatibility of the electrospun PCL-collagen nanofibers using fibroblasts,” Biomacromolecules 6(5), 2583–2589 (2005).
[Crossref] [PubMed]

Z. M. Huang, Y. Z. Zhang, M. Kotaki, and S. Ramakrishna, “A review on polymer nanofibers by electrospinning and their applications in nanocomposites,” Compos. Sci. Technol. 63(15), 2223–2253 (2003).
[Crossref]

Zhu, L.

L. Zhu, X. Liu, L. Du, and Y. Jin, “Preparation of asiaticoside-loaded coaxially electrospinning nanofibers and their effect on deep partial-thickness burn injury,” Biomed. Pharmacother. 83, 33–40 (2016).
[Crossref] [PubMed]

Analyst (1)

I. Chourpa, L. Douziech-eyrolles, L. Ngaboni-okassa, S. Cohen-jonathan, and M. Souce, “Molecular composition of iron oxide nanoparticles, precursors for magnetic drug targeting, as characterized by confocal Raman microspectroscopy,” Analyst 130, 1395–1403 (2005).

Appl. Spectrosc. (1)

Arab. J. Chem. (1)

A. Haider, S. Haider, and I. K. Kang, “A comprehensive review summarizing the effect of electrospinning parameters and potential applications of nanofibers in biomedical and biotechnology,” Arab. J. Chem. 11, 15 (2015).
[Crossref]

Bioeng. Biomed. Sci. J. (1)

F. Elahi, W. Lu, G. Guoping, and F. Khan, “Core-shell Fibers for Biomedical Applications-A Review,” Bioeng. Biomed. Sci. J. 3(01), 1–14 (2013).
[Crossref]

Biofabrication (1)

K. B. Ning Wanga, “Electrospun Polyurethane-Core and Gelatin-Shell Coaxial Fibre Coatings for Miniature Implantable Biosensors,” Biofabrication 6, 1–30 (2011).

Biomacromolecules (3)

M. Pakravan, M. C. Heuzey, and A. Ajji, “Core-shell structured PEO-chitosan nanofibers by coaxial electrospinning,” Biomacromolecules 13(2), 412–421 (2012).
[Crossref] [PubMed]

Y. Z. Zhang, J. Venugopal, Z. M. Huang, C. T. Lim, and S. Ramakrishna, “Characterization of the surface biocompatibility of the electrospun PCL-collagen nanofibers using fibroblasts,” Biomacromolecules 6(5), 2583–2589 (2005).
[Crossref] [PubMed]

Y. Z. Zhang, X. Wang, Y. Feng, J. Li, C. T. Lim, and S. Ramakrishna, “Coaxial electrospinning of (fluorescein isothiocyanate-conjugated bovine serum albumin)-encapsulated poly(ε-caprolactone) nanofibers for sustained release,” Biomacromolecules 7(4), 1049–1057 (2006).
[Crossref] [PubMed]

Biomaterials (3)

D. A. Soscia, S. J. Sequeira, R. A. Schramm, K. Jayarathanam, S. I. Cantara, M. Larsen, and J. Castracane, “Salivary gland cell differentiation and organization on micropatterned PLGA nanofiber craters,” Biomaterials 34(28), 6773–6784 (2013).
[Crossref] [PubMed]

S. I. Cantara, D. A. Soscia, S. J. Sequeira, R. P. Jean-Gilles, J. Castracane, and M. Larsen, “Selective functionalization of nanofiber scaffolds to regulate salivary gland epithelial cell proliferation and polarity,” Biomaterials 33(33), 8372–8382 (2012).
[Crossref] [PubMed]

S. J. Sequeira, D. A. Soscia, B. Oztan, A. P. Mosier, R. Jean-Gilles, A. Gadre, N. C. Cady, B. Yener, J. Castracane, and M. Larsen, “The regulation of focal adhesion complex formation and salivary gland epithelial cell organization by nanofibrous PLGA scaffolds,” Biomaterials 33(11), 3175–3186 (2012).
[Crossref] [PubMed]

Biomed. Pharmacother. (1)

L. Zhu, X. Liu, L. Du, and Y. Jin, “Preparation of asiaticoside-loaded coaxially electrospinning nanofibers and their effect on deep partial-thickness burn injury,” Biomed. Pharmacother. 83, 33–40 (2016).
[Crossref] [PubMed]

Biophys. J. (2)

P. J. Caspers, G. W. Lucassen, and G. J. Puppels, “Combined in vivo confocal Raman spectroscopy and confocal microscopy of human skin,” Biophys. J. 85(1), 572–580 (2003).
[Crossref] [PubMed]

K. Klein, A. M. Gigler, T. Aschenbrenner, R. Monetti, W. Bunk, F. Jamitzky, G. Morfill, R. W. Stark, and J. Schlegel, “Label-free live-cell imaging with confocal Raman microscopy,” Biophys. J. 102(2), 360–368 (2012).
[Crossref] [PubMed]

Biotechnol. Adv. (1)

N. Bhardwaj and S. C. Kundu, “Electrospinning: a fascinating fiber fabrication technique,” Biotechnol. Adv. 28(3), 325–347 (2010).
[Crossref] [PubMed]

Carbohydr. Polym. (1)

T. T. T. Nguyen, O. H. Chung, and J. S. Park, “Coaxial electrospun poly(lactic acid)/chitosan (core/shell) composite nanofibers and their antibacterial activity,” Carbohydr. Polym. 86(4), 1799–1806 (2011).
[Crossref]

Chem. Mater. (1)

Y. Zhang, Z. Huang, X. Xu, C. T. Lim, and S. Ramakrishna, “Preparation of Core - Shell Structured PCL- r-Gelatin Bi-Component Nanofibers by coaxial elctrospinning,” Chem. Mater. 16, 3406–3409 (2004).

Colloids Surf. B Biointerfaces (1)

R. Chen, C. Huang, Q. Ke, C. He, H. Wang, and X. Mo, “Preparation and characterization of coaxial electrospun thermoplastic polyurethane/collagen compound nanofibers for tissue engineering applications,” Colloids Surf. B Biointerfaces 79(2), 315–325 (2010).
[Crossref] [PubMed]

Compos. Sci. Technol. (1)

Z. M. Huang, Y. Z. Zhang, M. Kotaki, and S. Ramakrishna, “A review on polymer nanofibers by electrospinning and their applications in nanocomposites,” Compos. Sci. Technol. 63(15), 2223–2253 (2003).
[Crossref]

J. Mech. Behav. Biomed. Mater. (1)

B. Xu, Y. Li, X. Fang, G. A. Thouas, W. D. Cook, D. F. Newgreen, and Q. Chen, “Mechanically tissue-like elastomeric polymers and their potential as a vehicle to deliver functional cardiomyocytes,” J. Mech. Behav. Biomed. Mater. 28, 354–365 (2013).
[Crossref] [PubMed]

J. Nanomater. (1)

H. Liu, “Electrospining of nanofibers for tissue engineering applications,” J. Nanomater. 2013, 1–31 (2013).
[Crossref]

J. Phys. Chem. B (1)

F. Hennrich, R. Krupke, S. Lebedkin, K. Arnold, R. Fischer, D. E. Resasco, and M. M. Kappes, “Raman spectroscopy of individual single-walled carbon nanotubes from various sources,” J. Phys. Chem. B 109(21), 10567–10573 (2005).
[Crossref] [PubMed]

Macromolecules (1)

C. Wang, K. W. Yan, Y. D. Lin, and P. C. H. Hsieh, “Biodegradable core/shell fibers by coaxial electrospinning: Processing, fiber characterization, and its application in sustained drug release,” Macromolecules 43(15), 6389–6397 (2010).
[Crossref]

Mater. Today (1)

S. Ramakrishna, K. Fujihara, W. Teo, T. Yong, Z. Ma, and R. Ramaseshan, “Electrospun nanofibers: solving global issues,” Mater. Today 9(3), 40–50 (2006).
[Crossref]

Nat. Biotechnol. (1)

Y. Wang, G. A. Ameer, B. J. Sheppard, and R. Langer, “A tough biodegradable elastomer,” Nat. Biotechnol. 20(6), 602–606 (2002).
[Crossref] [PubMed]

Nat. Protoc. (1)

N. Gierlinger, T. Keplinger, and M. Harrington, “Imaging of plant cell walls by confocal Raman microscopy,” Nat. Protoc. 7(9), 1694–1708 (2012).
[Crossref] [PubMed]

Prog. Org. Coat. (1)

A. Lutz, I. De Graeve, and H. Terryn, “Non-destructive 3-dimensional mapping of microcapsules in polymeric coatings by confocal Raman spectroscopy,” Prog. Org. Coat. 88, 32–38 (2015).
[Crossref]

Scanning (1)

M. Minsky, “Memoir on inventing the confocal scanning microscope,” Scanning 10(4), 128–138 (1988).
[Crossref]

Society (1)

N. Gierlinger and and M. Schwanninger, “Chemical Imaging of PoplarWood CellWalls by Confocal Raman Microscopy,” Society 140, 1246–1254 (2010).

Tissue Eng. Part C Methods (1)

L. Sfakis, T. Kamaldinov, M. Larsen, J. Castracane, and A. Khmaladze, “Quantification of Confocal images using LabVIEW for tissue engineering applications,” Tissue Eng. Part C Methods 22(11), 1028–1037 (2016).
[Crossref] [PubMed]

Other (2)

L. Sfakis, F. Xavier, D. Tuschel, A. Sharikova, M. Larsen, J. Castracane and A. Khmaladze, “Core / Shell Nanofiber Characterization by Raman Scanning Microscopy,” in Latin America Optics & Photonics Conference (LAOP), (Optical Society of America, 2016), paper LTu5A.5.

J. Doshi and D. H. Reneker, “Electrospinning process and applications of electrospun fibers,” Conf. Rec. 1993 IEEE Ind. Appl. Conf. Twenty-Eighth IAS Annu. Meet. 35, 151–160 (1993).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1 Scanning electron microscope (SEM) images of fibers used for this study. PGS/PLGA fiber mat with varying flow rates of (a) 9 µl/min / 1.5 µl/min and (b) 1.5 µl/min / 1.5 µl/min, respectively. (c) SEM image of PLGA nanofiber mat. Scale, 2µm. Average fiber diameters for Fig. 1(a), 1(b) and 1(c) were 366 ± 150 nm, 245 ± 60 nm and 166 ± 37 nm, respectively.
Fig. 2
Fig. 2 A diagram of the electrospinning apparatus with SEM image of the fiber mat (a), and the expected internal structure of the fibers, with laser spot from Raman scanning microscope shown to scale (b).
Fig. 3
Fig. 3 XY Raman mapping of PLGA nanofiber and PGS film.
Fig. 4
Fig. 4 Raman reference spectra: (a) Spectra of PLGA nanofiber and PGS film. Arrow indicates the greatest difference between the polymer spectra. Red and blue spectra are PLGA and PGS, respectively. (b) Zoomed in view of distinct polymer peaks. Chosen peaks for PLGA and PGS were 2947 cm−1 and 2911 cm−1 respectively. (c) 50x optical image of PGS/PLGA nanofibers with bubble in the middle. The red line shows where Raman imaging was performed (indicated with an arrow). Scale, 10µm. (d). Spectra obtained from core/shell PLGA/PGS nanofiber bubble structure, demonstrating that both polymers are present in the “bubble” spectrum, with peaks characteristic of PLGA (blue) and PGS (red) indicated with arrows.
Fig. 5
Fig. 5 Raman spectra from PLGA nanofiber. (a) Schematic of PLGA fiber cross-section. Raman mapping was performed along the dashed arrow. (b) Optical image showing sample surface mapping recorded parallel to the fiber (indicated with an arrow). Image taken with 50x objective. The red line indicates the location of Raman scan. Scale, 5 µm. (c) Lateral profile confocal Raman scan showing polymer component contribution through the nanofiber. PLGA (red) and PGS (blue). (d) Schematic of PLGA fiber cross-section. Dashed arrow indicates where Raman mapping was performed. (e) Optical image showing sample surface mapping recorded perpendicular to the fiber (indicated with an arrow). Image taken with 50x objective. The red line indicates the location of Raman scan. Scale, 5µm. (f) Confocal Raman scan across the fiber showing polymer component contribution through the nanofiber. PLGA (red) and PGS (blue).
Fig. 6
Fig. 6 Raman spectra from core/shell nanofiber cross section. (a) Schematic of fiber cross-section. Raman mapping was done perpendicular to nanofiber (indicated with a dashed arrow). (b) Optical image showing sample surface mapping recorded perpendicular to fiber (indicated with an arrow). Image taken with 50x objective. Scale, 5µm. (c) Confocal Raman scan across the fiber showing polymer component contribution through a nanofiber (only the part of the scan crossing the fiber is shown; the sum of PLGA and PGS components is normalized to 100%). PLGA (red) and PGS (blue).
Fig. 7
Fig. 7 Raman spectra from core/shell nanofiber lateral section. (a) Schematic of fiber cross-section. Raman mapping was parallel to nanofiber (indicated with a dashed arrow). (b) Optical image showing sample surface mapping parallel to a fiber (indicated with an arrow). Image taken with 50x objective. Scale, 10 µm. (c) Lateral profile confocal Raman scan showing polymer component contribution through a nanofiber (the sum of PLGA and PGS components is normalized to 100%). PLGA (red) and PGS (blue).
Fig. 8
Fig. 8 Raman spectroscopic imaging of a nanofiber cross-section by Singular Value Decomposition (SVD): (a) SVD scatter plot, showing clear separation of core and shell spectra (b); 1-D hyperspectral Raman image of the structure of the fiber based on the SVD analysis. Blue indicates core material, green indicates shell material, and black indicates no chemical signature of either polymer.

Metrics