Abstract

It has been shown theoretically and experimentally that short cavity swept lasers are passively mode locked. We develop a mathematical model of these lasers and the light field solutions are used to predict the coherence length and coherence revival behavior. The calculations compare favorably with data from a 990–1100 nm laser swept at 100 kHz suitable for optical coherence tomography applications.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Long-to-short wavelength swept source

Bart Johnson, Walid Atia, Mark Kuznetsov, Brian D. Goldberg, Peter Whitney, and Dale C. Flanders
Opt. Express 26(26) 34909-34918 (2018)

Dynamics of a short cavity swept source OCT laser

S. Slepneva, B. O’Shaughnessy, B. Kelleher, S.P. Hegarty, A. Vladimirov, H.-C. Lyu, K. Karnowski, M. Wojtkowski, and G. Huyet
Opt. Express 22(15) 18177-18185 (2014)

Retinal, anterior segment and full eye imaging using ultrahigh speed swept source OCT with vertical-cavity surface emitting lasers

Ireneusz Grulkowski, Jonathan J. Liu, Benjamin Potsaid, Vijaysekhar Jayaraman, Chen D. Lu, James Jiang, Alex E. Cable, Jay S. Duker, and James G. Fujimoto
Biomed. Opt. Express 3(11) 2733-2751 (2012)

References

  • View by:
  • |
  • |
  • |

  1. A. Dhalla, D. Nankivil, and J.A. Izatt, “Complex conjugate resolved heterodyne swept source optical coherence tomography using coherence revival,” Biomed. Opt. Express 3, 633–649 (2012).
    [Crossref] [PubMed]
  2. S.-Y. Baek, O. Kwon, and Y.-H. Kim, “High-resolution mode-spacing measurement of the blue-violet diode laser using interference of fields created with time delays greater than the coherence time,” Jpn. J. Appl. Phys. 46, 7720–7723 (2007).
    [Crossref]
  3. A. Bilenca, S. H. Yun, G. J. Tearney, and B. E. Bouma, “Numerical study of wavelength-swept semiconductor ring lasers: the role of refractive-index nonlinearities in semiconductor optical ampliïňĄers and implications for biomedical imaging applications,” Opt. Lett. 31, 760–762 (2006).
    [Crossref] [PubMed]
  4. G. P. Agrawal and N. A. Olsson, “Self-Phase Modulation and Spectral Broadening of Optical Pulses in Semiconductor Laser Amplifiers,” IEEE J. Quantum Electron. 25, 2297–2306 (1989).
    [Crossref]
  5. S. H. Yun, C. Boudoux, M. C. Pierce, J. F. de Boer, G. J. Tearney, and B. E. Bouma, “Extended-Cavity Semiconductor Wavelength-Swept Laser for Biomedical Imaging,” IEEE Photonics Tech. Lett. 16, 293–295 (2004).
    [Crossref]
  6. B.C. Johnson, W. Atia, M. Kuznetsov, and D. C. Flanders, “Passively mode locked swept lasers,” Photonics West 2013, Poster 8571-103, February 4, 2013, electronic copy available from authors.
  7. B. Johnson, W. Atia, M. Kuznetsov, B. D. Goldberg, P. Whitney, and D. C. Flanders, “Analysis of a spinning polygon wavelength swept laser,” arXiv:1501.07003v2 [physics.optics], (2015).
  8. S. Slepneva, B. OShaughnessy, B. Kelleher, S.P. Hegarty, A. Vladimirov, H.-C. Lyu, K. Karnowski, M. Wojtkowski, and G. Huyet, “Dynamics of a short cavity swept source OCT laser,” Opt. Express 22, 18177–18185 (2014).
    [Crossref] [PubMed]
  9. E. Avrutin and L. Zhang, “Dynamics of semiconductor lasers under fast intracavity frequency sweeping,” 14th Int. Conf. on Transparent Optical Networks (ICTON), 1–4 (2012).
  10. M. Kuznetsov, W. Atia, B. Johnson, and D.C. Flanders, “Compact Ultrafast Reflective Fabry-Perot Tunable Lasers for OCT Imaging Applications,” Proc. SPIE 7554, 75541F (2010).
    [Crossref]
  11. Optical Coherence Tomography, Technology and Applications, 2nd ed., W. Drexler and J. G. Fujimoto, eds. (Springer, 2008) Chap. 21, 639–658.
  12. B. Braaf, K.A. Vermeer, V. Arni, D.P. Sicam, E. van Zeeburg, J.C. van Meurs, and J.F. de Boer, “Phase-stabilized optical frequency domain imaging at 1-μm for the measurement of blood flow in the human choroid,” Opt. Express 19, 20886–20903 (2011).
    [Crossref] [PubMed]
  13. H.A. Haus, “Mode-Locking of Lasers,” IEEE J. Sel. Top. Quantum Electron. 6, 1173–1185 (2000).
    [Crossref]
  14. Franz Kärtner, “Ultrafast Optics,” course notes chapters 11–16 (2005). http://ocw.mit.edu/courses/electrical-engineering-and-computer-science/6-977-ultrafast-optics-spring-2005/index.htm .
  15. D.C. Flanders, M.E. Kuznetsov, and W.A. Atia, “Laser with tilted multi spatial mode resonator tuning element,” US Patent7,415,049, issued August19, 2008.
  16. R. Huber, M. Wojtkowski, K. Taira, and J.G. Fujimoto, “Amplified, frequency swept lasers for frequency domain reflectometry and OCT imaging: design and scaling principles,” Opt. Express 13, 3513–3528 (2005).
    [Crossref] [PubMed]
  17. C. H. Henry, “Theory of the linewidth of semiconductor lasers,” IEEE J. Quantum Electron. 18, 259–264 (1982).
    [Crossref]
  18. M. Prasad, O.E. Martinez, C.S. Menoni, J.J. Rocca, J.L.A. Chilla, M.J. Hafich, and G.Y. Robinson, “Transient grating measurements of ambipolar diffusion and carrier recombination in InGaP/InAlP multiple-quantum wells and InGaP bulk,” J. Electron. Materials 23, 359–362 (1994).
    [Crossref]
  19. A.V. Oppenheim and R.W. Schafer, Digital Signal Processing (Prentice-Hall, 1975).
  20. B.C. Johnson and D.C. Flanders, “Actively Mode Locked Laser Swept Source for OCT Medical Imaging,” US Patent Application12/979225, December27, 2010.
  21. William M. Siebert, Circuits, Signals, and Systems (McGraw Hill, 1986), Chap. 14.

2014 (1)

2012 (1)

2011 (1)

2010 (1)

M. Kuznetsov, W. Atia, B. Johnson, and D.C. Flanders, “Compact Ultrafast Reflective Fabry-Perot Tunable Lasers for OCT Imaging Applications,” Proc. SPIE 7554, 75541F (2010).
[Crossref]

2007 (1)

S.-Y. Baek, O. Kwon, and Y.-H. Kim, “High-resolution mode-spacing measurement of the blue-violet diode laser using interference of fields created with time delays greater than the coherence time,” Jpn. J. Appl. Phys. 46, 7720–7723 (2007).
[Crossref]

2006 (1)

2005 (1)

2004 (1)

S. H. Yun, C. Boudoux, M. C. Pierce, J. F. de Boer, G. J. Tearney, and B. E. Bouma, “Extended-Cavity Semiconductor Wavelength-Swept Laser for Biomedical Imaging,” IEEE Photonics Tech. Lett. 16, 293–295 (2004).
[Crossref]

2000 (1)

H.A. Haus, “Mode-Locking of Lasers,” IEEE J. Sel. Top. Quantum Electron. 6, 1173–1185 (2000).
[Crossref]

1994 (1)

M. Prasad, O.E. Martinez, C.S. Menoni, J.J. Rocca, J.L.A. Chilla, M.J. Hafich, and G.Y. Robinson, “Transient grating measurements of ambipolar diffusion and carrier recombination in InGaP/InAlP multiple-quantum wells and InGaP bulk,” J. Electron. Materials 23, 359–362 (1994).
[Crossref]

1989 (1)

G. P. Agrawal and N. A. Olsson, “Self-Phase Modulation and Spectral Broadening of Optical Pulses in Semiconductor Laser Amplifiers,” IEEE J. Quantum Electron. 25, 2297–2306 (1989).
[Crossref]

1982 (1)

C. H. Henry, “Theory of the linewidth of semiconductor lasers,” IEEE J. Quantum Electron. 18, 259–264 (1982).
[Crossref]

Agrawal, G. P.

G. P. Agrawal and N. A. Olsson, “Self-Phase Modulation and Spectral Broadening of Optical Pulses in Semiconductor Laser Amplifiers,” IEEE J. Quantum Electron. 25, 2297–2306 (1989).
[Crossref]

Arni, V.

Atia, W.

M. Kuznetsov, W. Atia, B. Johnson, and D.C. Flanders, “Compact Ultrafast Reflective Fabry-Perot Tunable Lasers for OCT Imaging Applications,” Proc. SPIE 7554, 75541F (2010).
[Crossref]

B.C. Johnson, W. Atia, M. Kuznetsov, and D. C. Flanders, “Passively mode locked swept lasers,” Photonics West 2013, Poster 8571-103, February 4, 2013, electronic copy available from authors.

B. Johnson, W. Atia, M. Kuznetsov, B. D. Goldberg, P. Whitney, and D. C. Flanders, “Analysis of a spinning polygon wavelength swept laser,” arXiv:1501.07003v2 [physics.optics], (2015).

Atia, W.A.

D.C. Flanders, M.E. Kuznetsov, and W.A. Atia, “Laser with tilted multi spatial mode resonator tuning element,” US Patent7,415,049, issued August19, 2008.

Avrutin, E.

E. Avrutin and L. Zhang, “Dynamics of semiconductor lasers under fast intracavity frequency sweeping,” 14th Int. Conf. on Transparent Optical Networks (ICTON), 1–4 (2012).

Baek, S.-Y.

S.-Y. Baek, O. Kwon, and Y.-H. Kim, “High-resolution mode-spacing measurement of the blue-violet diode laser using interference of fields created with time delays greater than the coherence time,” Jpn. J. Appl. Phys. 46, 7720–7723 (2007).
[Crossref]

Bilenca, A.

Boudoux, C.

S. H. Yun, C. Boudoux, M. C. Pierce, J. F. de Boer, G. J. Tearney, and B. E. Bouma, “Extended-Cavity Semiconductor Wavelength-Swept Laser for Biomedical Imaging,” IEEE Photonics Tech. Lett. 16, 293–295 (2004).
[Crossref]

Bouma, B. E.

A. Bilenca, S. H. Yun, G. J. Tearney, and B. E. Bouma, “Numerical study of wavelength-swept semiconductor ring lasers: the role of refractive-index nonlinearities in semiconductor optical ampliïňĄers and implications for biomedical imaging applications,” Opt. Lett. 31, 760–762 (2006).
[Crossref] [PubMed]

S. H. Yun, C. Boudoux, M. C. Pierce, J. F. de Boer, G. J. Tearney, and B. E. Bouma, “Extended-Cavity Semiconductor Wavelength-Swept Laser for Biomedical Imaging,” IEEE Photonics Tech. Lett. 16, 293–295 (2004).
[Crossref]

Braaf, B.

Chilla, J.L.A.

M. Prasad, O.E. Martinez, C.S. Menoni, J.J. Rocca, J.L.A. Chilla, M.J. Hafich, and G.Y. Robinson, “Transient grating measurements of ambipolar diffusion and carrier recombination in InGaP/InAlP multiple-quantum wells and InGaP bulk,” J. Electron. Materials 23, 359–362 (1994).
[Crossref]

de Boer, J. F.

S. H. Yun, C. Boudoux, M. C. Pierce, J. F. de Boer, G. J. Tearney, and B. E. Bouma, “Extended-Cavity Semiconductor Wavelength-Swept Laser for Biomedical Imaging,” IEEE Photonics Tech. Lett. 16, 293–295 (2004).
[Crossref]

de Boer, J.F.

Dhalla, A.

Flanders, D. C.

B.C. Johnson, W. Atia, M. Kuznetsov, and D. C. Flanders, “Passively mode locked swept lasers,” Photonics West 2013, Poster 8571-103, February 4, 2013, electronic copy available from authors.

B. Johnson, W. Atia, M. Kuznetsov, B. D. Goldberg, P. Whitney, and D. C. Flanders, “Analysis of a spinning polygon wavelength swept laser,” arXiv:1501.07003v2 [physics.optics], (2015).

Flanders, D.C.

M. Kuznetsov, W. Atia, B. Johnson, and D.C. Flanders, “Compact Ultrafast Reflective Fabry-Perot Tunable Lasers for OCT Imaging Applications,” Proc. SPIE 7554, 75541F (2010).
[Crossref]

D.C. Flanders, M.E. Kuznetsov, and W.A. Atia, “Laser with tilted multi spatial mode resonator tuning element,” US Patent7,415,049, issued August19, 2008.

B.C. Johnson and D.C. Flanders, “Actively Mode Locked Laser Swept Source for OCT Medical Imaging,” US Patent Application12/979225, December27, 2010.

Fujimoto, J.G.

Goldberg, B. D.

B. Johnson, W. Atia, M. Kuznetsov, B. D. Goldberg, P. Whitney, and D. C. Flanders, “Analysis of a spinning polygon wavelength swept laser,” arXiv:1501.07003v2 [physics.optics], (2015).

Hafich, M.J.

M. Prasad, O.E. Martinez, C.S. Menoni, J.J. Rocca, J.L.A. Chilla, M.J. Hafich, and G.Y. Robinson, “Transient grating measurements of ambipolar diffusion and carrier recombination in InGaP/InAlP multiple-quantum wells and InGaP bulk,” J. Electron. Materials 23, 359–362 (1994).
[Crossref]

Haus, H.A.

H.A. Haus, “Mode-Locking of Lasers,” IEEE J. Sel. Top. Quantum Electron. 6, 1173–1185 (2000).
[Crossref]

Hegarty, S.P.

Henry, C. H.

C. H. Henry, “Theory of the linewidth of semiconductor lasers,” IEEE J. Quantum Electron. 18, 259–264 (1982).
[Crossref]

Huber, R.

Huyet, G.

Izatt, J.A.

Johnson, B.

M. Kuznetsov, W. Atia, B. Johnson, and D.C. Flanders, “Compact Ultrafast Reflective Fabry-Perot Tunable Lasers for OCT Imaging Applications,” Proc. SPIE 7554, 75541F (2010).
[Crossref]

B. Johnson, W. Atia, M. Kuznetsov, B. D. Goldberg, P. Whitney, and D. C. Flanders, “Analysis of a spinning polygon wavelength swept laser,” arXiv:1501.07003v2 [physics.optics], (2015).

Johnson, B.C.

B.C. Johnson, W. Atia, M. Kuznetsov, and D. C. Flanders, “Passively mode locked swept lasers,” Photonics West 2013, Poster 8571-103, February 4, 2013, electronic copy available from authors.

B.C. Johnson and D.C. Flanders, “Actively Mode Locked Laser Swept Source for OCT Medical Imaging,” US Patent Application12/979225, December27, 2010.

Karnowski, K.

Kelleher, B.

Kim, Y.-H.

S.-Y. Baek, O. Kwon, and Y.-H. Kim, “High-resolution mode-spacing measurement of the blue-violet diode laser using interference of fields created with time delays greater than the coherence time,” Jpn. J. Appl. Phys. 46, 7720–7723 (2007).
[Crossref]

Kuznetsov, M.

M. Kuznetsov, W. Atia, B. Johnson, and D.C. Flanders, “Compact Ultrafast Reflective Fabry-Perot Tunable Lasers for OCT Imaging Applications,” Proc. SPIE 7554, 75541F (2010).
[Crossref]

B.C. Johnson, W. Atia, M. Kuznetsov, and D. C. Flanders, “Passively mode locked swept lasers,” Photonics West 2013, Poster 8571-103, February 4, 2013, electronic copy available from authors.

B. Johnson, W. Atia, M. Kuznetsov, B. D. Goldberg, P. Whitney, and D. C. Flanders, “Analysis of a spinning polygon wavelength swept laser,” arXiv:1501.07003v2 [physics.optics], (2015).

Kuznetsov, M.E.

D.C. Flanders, M.E. Kuznetsov, and W.A. Atia, “Laser with tilted multi spatial mode resonator tuning element,” US Patent7,415,049, issued August19, 2008.

Kwon, O.

S.-Y. Baek, O. Kwon, and Y.-H. Kim, “High-resolution mode-spacing measurement of the blue-violet diode laser using interference of fields created with time delays greater than the coherence time,” Jpn. J. Appl. Phys. 46, 7720–7723 (2007).
[Crossref]

Lyu, H.-C.

Martinez, O.E.

M. Prasad, O.E. Martinez, C.S. Menoni, J.J. Rocca, J.L.A. Chilla, M.J. Hafich, and G.Y. Robinson, “Transient grating measurements of ambipolar diffusion and carrier recombination in InGaP/InAlP multiple-quantum wells and InGaP bulk,” J. Electron. Materials 23, 359–362 (1994).
[Crossref]

Menoni, C.S.

M. Prasad, O.E. Martinez, C.S. Menoni, J.J. Rocca, J.L.A. Chilla, M.J. Hafich, and G.Y. Robinson, “Transient grating measurements of ambipolar diffusion and carrier recombination in InGaP/InAlP multiple-quantum wells and InGaP bulk,” J. Electron. Materials 23, 359–362 (1994).
[Crossref]

Nankivil, D.

Olsson, N. A.

G. P. Agrawal and N. A. Olsson, “Self-Phase Modulation and Spectral Broadening of Optical Pulses in Semiconductor Laser Amplifiers,” IEEE J. Quantum Electron. 25, 2297–2306 (1989).
[Crossref]

Oppenheim, A.V.

A.V. Oppenheim and R.W. Schafer, Digital Signal Processing (Prentice-Hall, 1975).

OShaughnessy, B.

Pierce, M. C.

S. H. Yun, C. Boudoux, M. C. Pierce, J. F. de Boer, G. J. Tearney, and B. E. Bouma, “Extended-Cavity Semiconductor Wavelength-Swept Laser for Biomedical Imaging,” IEEE Photonics Tech. Lett. 16, 293–295 (2004).
[Crossref]

Prasad, M.

M. Prasad, O.E. Martinez, C.S. Menoni, J.J. Rocca, J.L.A. Chilla, M.J. Hafich, and G.Y. Robinson, “Transient grating measurements of ambipolar diffusion and carrier recombination in InGaP/InAlP multiple-quantum wells and InGaP bulk,” J. Electron. Materials 23, 359–362 (1994).
[Crossref]

Robinson, G.Y.

M. Prasad, O.E. Martinez, C.S. Menoni, J.J. Rocca, J.L.A. Chilla, M.J. Hafich, and G.Y. Robinson, “Transient grating measurements of ambipolar diffusion and carrier recombination in InGaP/InAlP multiple-quantum wells and InGaP bulk,” J. Electron. Materials 23, 359–362 (1994).
[Crossref]

Rocca, J.J.

M. Prasad, O.E. Martinez, C.S. Menoni, J.J. Rocca, J.L.A. Chilla, M.J. Hafich, and G.Y. Robinson, “Transient grating measurements of ambipolar diffusion and carrier recombination in InGaP/InAlP multiple-quantum wells and InGaP bulk,” J. Electron. Materials 23, 359–362 (1994).
[Crossref]

Schafer, R.W.

A.V. Oppenheim and R.W. Schafer, Digital Signal Processing (Prentice-Hall, 1975).

Sicam, D.P.

Siebert, William M.

William M. Siebert, Circuits, Signals, and Systems (McGraw Hill, 1986), Chap. 14.

Slepneva, S.

Taira, K.

Tearney, G. J.

A. Bilenca, S. H. Yun, G. J. Tearney, and B. E. Bouma, “Numerical study of wavelength-swept semiconductor ring lasers: the role of refractive-index nonlinearities in semiconductor optical ampliïňĄers and implications for biomedical imaging applications,” Opt. Lett. 31, 760–762 (2006).
[Crossref] [PubMed]

S. H. Yun, C. Boudoux, M. C. Pierce, J. F. de Boer, G. J. Tearney, and B. E. Bouma, “Extended-Cavity Semiconductor Wavelength-Swept Laser for Biomedical Imaging,” IEEE Photonics Tech. Lett. 16, 293–295 (2004).
[Crossref]

van Meurs, J.C.

van Zeeburg, E.

Vermeer, K.A.

Vladimirov, A.

Whitney, P.

B. Johnson, W. Atia, M. Kuznetsov, B. D. Goldberg, P. Whitney, and D. C. Flanders, “Analysis of a spinning polygon wavelength swept laser,” arXiv:1501.07003v2 [physics.optics], (2015).

Wojtkowski, M.

Yun, S. H.

A. Bilenca, S. H. Yun, G. J. Tearney, and B. E. Bouma, “Numerical study of wavelength-swept semiconductor ring lasers: the role of refractive-index nonlinearities in semiconductor optical ampliïňĄers and implications for biomedical imaging applications,” Opt. Lett. 31, 760–762 (2006).
[Crossref] [PubMed]

S. H. Yun, C. Boudoux, M. C. Pierce, J. F. de Boer, G. J. Tearney, and B. E. Bouma, “Extended-Cavity Semiconductor Wavelength-Swept Laser for Biomedical Imaging,” IEEE Photonics Tech. Lett. 16, 293–295 (2004).
[Crossref]

Zhang, L.

E. Avrutin and L. Zhang, “Dynamics of semiconductor lasers under fast intracavity frequency sweeping,” 14th Int. Conf. on Transparent Optical Networks (ICTON), 1–4 (2012).

Biomed. Opt. Express (1)

IEEE J. Quantum Electron. (2)

G. P. Agrawal and N. A. Olsson, “Self-Phase Modulation and Spectral Broadening of Optical Pulses in Semiconductor Laser Amplifiers,” IEEE J. Quantum Electron. 25, 2297–2306 (1989).
[Crossref]

C. H. Henry, “Theory of the linewidth of semiconductor lasers,” IEEE J. Quantum Electron. 18, 259–264 (1982).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

H.A. Haus, “Mode-Locking of Lasers,” IEEE J. Sel. Top. Quantum Electron. 6, 1173–1185 (2000).
[Crossref]

IEEE Photonics Tech. Lett. (1)

S. H. Yun, C. Boudoux, M. C. Pierce, J. F. de Boer, G. J. Tearney, and B. E. Bouma, “Extended-Cavity Semiconductor Wavelength-Swept Laser for Biomedical Imaging,” IEEE Photonics Tech. Lett. 16, 293–295 (2004).
[Crossref]

J. Electron. Materials (1)

M. Prasad, O.E. Martinez, C.S. Menoni, J.J. Rocca, J.L.A. Chilla, M.J. Hafich, and G.Y. Robinson, “Transient grating measurements of ambipolar diffusion and carrier recombination in InGaP/InAlP multiple-quantum wells and InGaP bulk,” J. Electron. Materials 23, 359–362 (1994).
[Crossref]

Jpn. J. Appl. Phys. (1)

S.-Y. Baek, O. Kwon, and Y.-H. Kim, “High-resolution mode-spacing measurement of the blue-violet diode laser using interference of fields created with time delays greater than the coherence time,” Jpn. J. Appl. Phys. 46, 7720–7723 (2007).
[Crossref]

Opt. Express (3)

Opt. Lett. (1)

Proc. SPIE (1)

M. Kuznetsov, W. Atia, B. Johnson, and D.C. Flanders, “Compact Ultrafast Reflective Fabry-Perot Tunable Lasers for OCT Imaging Applications,” Proc. SPIE 7554, 75541F (2010).
[Crossref]

Other (9)

Optical Coherence Tomography, Technology and Applications, 2nd ed., W. Drexler and J. G. Fujimoto, eds. (Springer, 2008) Chap. 21, 639–658.

Franz Kärtner, “Ultrafast Optics,” course notes chapters 11–16 (2005). http://ocw.mit.edu/courses/electrical-engineering-and-computer-science/6-977-ultrafast-optics-spring-2005/index.htm .

D.C. Flanders, M.E. Kuznetsov, and W.A. Atia, “Laser with tilted multi spatial mode resonator tuning element,” US Patent7,415,049, issued August19, 2008.

A.V. Oppenheim and R.W. Schafer, Digital Signal Processing (Prentice-Hall, 1975).

B.C. Johnson and D.C. Flanders, “Actively Mode Locked Laser Swept Source for OCT Medical Imaging,” US Patent Application12/979225, December27, 2010.

William M. Siebert, Circuits, Signals, and Systems (McGraw Hill, 1986), Chap. 14.

E. Avrutin and L. Zhang, “Dynamics of semiconductor lasers under fast intracavity frequency sweeping,” 14th Int. Conf. on Transparent Optical Networks (ICTON), 1–4 (2012).

B.C. Johnson, W. Atia, M. Kuznetsov, and D. C. Flanders, “Passively mode locked swept lasers,” Photonics West 2013, Poster 8571-103, February 4, 2013, electronic copy available from authors.

B. Johnson, W. Atia, M. Kuznetsov, B. D. Goldberg, P. Whitney, and D. C. Flanders, “Analysis of a spinning polygon wavelength swept laser,” arXiv:1501.07003v2 [physics.optics], (2015).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1 External cavity laser with reflective Fabry-Perot MEMS tunable filter. Dashed lines show an additional output port on a test device that is not available on production units.
Fig. 2
Fig. 2 Mode locking and frequency hopping dynamics of a rapidly swept short-cavity laser.
Fig. 3
Fig. 3 Pseudo-ring cavity model for mathematical analysis of the swept laser.
Fig. 4
Fig. 4 Numeric solution to laser model showing mode locking behavior. Blue curves are derived from AO(t – TRT + TF) (SOA forward output) and red from AF (t) (filter output). Plot (a) shows the pulse powers, (b) the instantaneous frequencies (minus an arbitrary fixed lightwave frequency), plot (c) is the gain, g(t), in green and the dynamic threshold in red.
Fig. 5
Fig. 5 Stability map computed from the laser model. Each pixel is a separate simulation. The normalized pump is equal to one at threshold for a zero tuning rate. Unstable, chaotic solutions are obtained for positive tuning rates. Red shifting from modulation of the gain medium allows stable pulsation for negative tuning rates. The map shows regions where there are 1, 2 or 3 mode-locked pulses inside the laser cavity.
Fig. 6
Fig. 6 Photodiode traces showing 1 pulse per round trip at 100 mA (a) and 2 pulses per round trip at 220 mA (b).
Fig. 7
Fig. 7 Spectrograms of photodiode signal traces showing 1 pulse per round trip at 100 mA (b) and 2 pulses per round trip at 220 mA (d). The plots (a) and (c) show optical tuning rates and sweep trigger points for a laser with a 45% data collection duty cycle.
Fig. 8
Fig. 8 Calculated (a) and experimental (b) coherence curves for light emitted through the output coupler and light transmitted through the MEMS tunable filter. The calculation uses parameters in Table 1, but with p = 3.4.
Fig. 9
Fig. 9 Experimental measurement of coherence revival for a 1060 nm laser. (a) Raw interference spectrogram for two different sweep rates. (b) Resampled interference spectrogram in mm units. (c) Artifact map for a 0.4 and 4 mm depth window.
Fig. 10
Fig. 10 Calculated coherence revival for comparison with Fig. 9. (a) Raw interference spectrogram for −6.4 GHz/ns. (b) Artifact map for a 0.4 and 4 mm depth window.

Tables (1)

Tables Icon

Table 1 Laser simulation parameters

Equations (9)

Equations on this page are rendered with MathJax. Learn more.

Δ n = α λ 4 π Δ g
Δ ν = L λ d n d t
d g d t = p l 1 + l F 4 τ g τ ( e 2 g 1 ) e l O | A O ( t T R T T F ) | 2 E ( e 2 g 1 ) e l F | A F ( t ) | 2 E
h ( t ) = 1 π B exp ( π B t ) u ( t )
A ¯ i = C 1 A i + C 2 A ¯ i 1
C 1 = 1 exp ( π B Δ t )
C 2 = exp ( π B Δ t )
A 2 ( t ) = A O ( t T R T + T F ) exp [ ( 1 + i α ) g ( t ) l O / 2 ]
A O ( t ) = A F ( t ) exp [ ( 1 + i α ) g ( t ) l F / 2 ]

Metrics